JP5024064B2 - 多層セラミック基板およびその製造方法 - Google Patents

多層セラミック基板およびその製造方法 Download PDF

Info

Publication number
JP5024064B2
JP5024064B2 JP2008005186A JP2008005186A JP5024064B2 JP 5024064 B2 JP5024064 B2 JP 5024064B2 JP 2008005186 A JP2008005186 A JP 2008005186A JP 2008005186 A JP2008005186 A JP 2008005186A JP 5024064 B2 JP5024064 B2 JP 5024064B2
Authority
JP
Japan
Prior art keywords
constraining
layer
layers
green
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008005186A
Other languages
English (en)
Other versions
JP2009170566A (ja
Inventor
達也 上田
聡 浅倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008005186A priority Critical patent/JP5024064B2/ja
Publication of JP2009170566A publication Critical patent/JP2009170566A/ja
Application granted granted Critical
Publication of JP5024064B2 publication Critical patent/JP5024064B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

この発明は、多層セラミック基板およびその製造方法に関するもので、特に、いわゆる無収縮プロセスを用いて製造される多層セラミック基板の形態についての精度を向上させるための改良に関するものである。
この発明にとって興味ある多層セラミック基板の従来の製造方法として、たとえば特開2001−291955号公報(特許文献1)に記載されたものがある。
特許文献1では、いわゆる無収縮プロセスによる多層セラミック基板の製造方法、特に、多層セラミック基板を得るために焼成される生の積層体において、低温焼結セラミック材料を含む基体用グリーン層と、基体用グリーン層の特定のものの主面に接するように配置されかつ低温焼結セラミック材料の焼結温度では焼結しない無機材料粉末を含む複数の拘束用グリーン層とが形成され、焼成工程の結果、基体用セラミック層に含まれる材料の一部が拘束用グリーン層に浸透することによって、拘束用グリーン層に含まれていた無機材料粉末が固着された状態となり、そのため、拘束用グリーン層に由来する複数の拘束層が除去されずに残される形式の多層セラミック基板の製造方法が記載されている。
また、特許文献1では、生の積層体において積層される複数の基体用グリーン層の各厚みが互いに異なるとき、焼成工程においては、より厚い基体用グリーン層ほどより大きく収縮しようとする傾向があるため、得られた多層セラミック基板に反り、歪み、うねりのような形態不良が生じ得る、といった課題を解決するための手段が開示されている。すなわち、特許文献1においては、より厚い基体用グリーン層に接する拘束用グリーン層はより厚く、より薄い基体用グリーン層に接する拘束用グリーン層はより薄くすることによって、複数の基体用グリーン層の各々の収縮率を互いに等しくするようにし、それによって、得られた多層セラミック基板の形態不良を生じさせにくくしている。
しかしながら、上述の方法により形態不良を生じさせないようにするためには、複数の基体用グリーン層の各々の厚みに基づいて、個々の拘束用グリーン層の厚みを正確に調整しなければならないことになるが、このような調整は比較的困難である上、厚みの互いに異なる拘束用グリーン層となるべき多種類のグリーンシートを用意しなければならず、工程の煩雑化をもたらすという問題を招くことになる。
特開2001−291955号公報
そこで、この発明の目的は、上述のような問題を解決し得る多層セラミック基板の製造方法を提供しようとすることである。
この発明の他の目的は、上述の製造方法によって得られる多層セラミック基板を提供しようとすることである。
この発明は、低温焼結セラミック材料を含みかつ積層された複数の基体用グリーン層と、基体用グリーン層の複数のものの主面にそれぞれ接するように配置されかつ低温焼結セラミック材料の焼結温度では焼結しない無機材料粉末を有機バインダ中に分散してなる複数の拘束用グリーン層と、基体用グリーン層および/または拘束用グリーン層に関連して設けられる配線導体とを備える、生の積層体を作製する工程と、低温焼結セラミック材料が焼結する条件下で、基体用グリーン層に対して収縮抑制のための拘束力を拘束用グリーン層によって及ぼしながら生の積層体を焼成する工程とを備える、多層セラミック基板の製造方法にまず向けられるものであって、上述した技術的課題を解決するため、生の積層体に備える複数の拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層は、中間位置にある拘束用グリーン層よりも高い拘束力を有するようにされることを特徴としている。
上述した生の積層体が5層以上の拘束用グリーン層を備える場合、拘束力は、積層方向における最外位置により近い拘束用グリーン層のものほど段階的により高くなるようにされることが好ましい。
生の積層体に備える複数の拘束用グリーン層の間で前述したような拘束力の差を生じさせるため、第1の典型的な実施態様では、積層方向における最外位置にある拘束用グリーン層が、中間位置にある拘束用グリーン層よりも厚くされ、第2の典型的な実施態様では、積層方向における最外位置にある拘束用グリーン層における有機バインダに対する無機材料粉末の割合が、中間位置にある拘束用グリーン層における有機バインダに対する無機材料粉末の割合よりも高くされ、第3の典型的な実施態様では、積層方向における最外位置にある拘束用グリーン層におけるガラス成分に対する無機材料粉末の割合が、中間位置にある拘束用グリーン層におけるガラス成分に対する無機材料粉末の割合よりも高くされ、第4の典型的な実施態様では、積層方向における最外位置にある拘束用グリーン層における無機材料粉末の粒径が、中間位置にある拘束用グリーン層における無機材料粉末の粒径よりも小さくされる。
この発明に係る多層セラミック基板の製造方法において、生の積層体に備える複数の拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層は、生の積層体の最外層を形成していることが好ましい。
この発明は、また、上述したような製造方法によって得られる多層セラミック基板にも向けられる。
この発明に係る多層セラミック基板は、生の積層体を焼成することによって得られる多層セラミック基板であって、低温焼結セラミック材料を含みかつ積層された、複数の基体用セラミック層と、基体用セラミック層の複数のものの主面にそれぞれ接するように配置され、低温焼結セラミック材料の焼結温度では焼結しない無機材料粉末を含み、かつこれに接する基体用セラミック層に含まれる材料の一部が浸透することによって無機材料粉末が固着されている、複数の拘束層と、基体用セラミック層および/または拘束層に関連して設けられる、配線導体とを備え、複数の拘束層のうち、積層方向における最外位置にある拘束層については、焼成工程において基体用セラミック層となるべき基体用グリーン層に対して収縮抑制のために与え得る拘束力が、中間位置にある拘束層の拘束力よりも高いことを特徴としている。
この発明に係る多層セラミック基板は、5層以上の拘束層を備えるとき、上述の拘束力は、積層方向における最外位置により近い拘束層のものほど段階的により高いことが好ましい。
この発明に係る多層セラミック基板において、複数の拘束層のうち、第1の典型的な実施態様では、積層方向における最外位置にある拘束層が、中間位置にある拘束層よりも厚く、第2の典型的な実施形態では、積層方向における最外位置にある拘束層となるべき拘束用グリーン層に含まれていた有機バインダに対する無機材料粉末の割合が、中間位置にある拘束層となるべき拘束用グリーン層に含まれていた有機バインダに対する無機材料粉末の割合よりも高く、第3の典型的な実施態様では、積層方向における最外位置にある拘束層におけるガラス成分に対する無機材料粉末の割合が、中間位置にある拘束層におけるガラス成分に対する無機材料粉末の割合よりも高く、第4の典型的に実施態様では、積層方向における最外位置にある拘束層における無機材料粉末の粒径が、中間位置にある拘束層における無機材料粉末の粒径よりも小さい。
複数の拘束層のうち、積層方向における最外位置にある拘束層は、多層セラミック基板の最外層を形成していることが好ましい。
この発明によれば、反り、歪み、うねりといった形態不良を生じさせにくく、形態について高い精度を有する多層セラミック基板を製造することができる。その理由は次のとおりである。
積層方向における最外位置にある拘束用グリーン層が及ぼし得る拘束力が高くなれば、最外位置にある基体用グリーン層は、中間位置にある基体用グリーン層と比較して主面方向により収縮しにくくなる。したがって、中間位置にある拘束用グリーン層が及ぼす拘束力と比較して、最外位置にある拘束用グリーン層が及ぼす拘束力を高めることにより、中間位置にある基体用グリーン層に比べて、最外位置にある基体用グリーン層がより収縮しなくなるため、最外位置にある基体用グリーン層に引っ張られるようにして中間位置にある基体用グリーン層も収縮しにくくなる。また、多層セラミック基板においては、主面方向に収縮しない方が、セラミックの焼結段階で発生し得る反りや歪み、うねりなどの形態不良を生じさせにくくすることができるため、形態精度を高めることができる。このようなことから、最外位置にある拘束用グリーン層が及ぼす拘束力を高めることにより、多層セラミック基板の形態精度を高めることができる。
なお、最外位置にある拘束用グリーン層が及ぼす拘束力が逆に弱い場合、中間位置にある拘束用グリーン層が及ぼす拘束力の方が高くなるため、中間位置にある拘束用グリーン層による拘束力が多層セラミック基板の形態精度を決めてしまう。中間位置にあっては基体用グリーン層の数が多く、また、配線導体の配置も製品によって異なるため、反り量などについても製品によって異なり、安定しない。したがって、最外位置にある拘束用グリーン層が及ぼす拘束力が低いと、多層セラミック基板の形態精度が安定しない。これに対して、この発明のように、最外位置にある拘束用グリーン層が及ぼす拘束力が高いと、たとえ中間位置にある拘束用グリーン層による拘束力が不安定であり、配線導体の影響があったとしても、多層セラミック基板の形態精度を安定させることができる。
この発明において、生の積層体が5層以上の拘束用グリーン層を備える場合、拘束力が、積層方向における最外位置により近い拘束用グリーン層のものほど段階的により高くなるようにされると、最外位置にある拘束用グリーン層が及ぼす拘束力に中間位置にある拘束用グリーン層および基体用グリーン層が引っ張られる形が強化されるため、中間位置にある拘束用グリーン層が及ぼす拘束力が不安定であっても、多層セラミック基板の形態精度をより確実に安定させることができる。
なお、これらの形態精度の向上および安定化の効果は、最外位置にある拘束層が、多層セラミック基板の最外層を形成している場合において、より顕著に現れる。
図1は、この発明の第1の実施形態による多層セラミック基板1を示す断面図である。図2は、図1に示した多層セラミック基板1を得るために作製される生の積層体2を示す断面図である。多層セラミック基板1は、生の積層体2を焼成することによって得られるものである。
図1を参照して、多層セラミック基板1は、低温焼結セラミック材料を含みかつ積層された、複数の基体用セラミック層3〜7を備えている。また、多層セラミック基板1は、基体用セラミック層3〜7の複数のものの主面にそれぞれ接するように配置される、複数の拘束層8〜13を備えている。拘束層8〜13は、上述した低温焼結セラミック材料の焼結温度では焼結しない無機材料粉末を含み、かつそれに接する基体用セラミック層3〜7に含まれる材料の一部が浸透することによって無機材料粉末が固着された状態にある。
この実施形態では、多層セラミック基板1の最外層を形成するように拘束層8および13が配置されるとともに、複数の基体用セラミック層3〜7の各々の間のすべての界面に沿って拘束層9〜12が配置されているが、拘束層が配置されない基体用セラミック層3〜7間の界面が存在していてもよい。
多層セラミック基板1は、さらに、基体用セラミック層3〜7および/または拘束層8〜13に関連して設けられる、配線導体14を備えている。配線導体14としては、たとえば、多層セラミック基板1の外表面上に設けられる外部導体膜15、多層セラミック基板1の内部において基板用セラミック層3〜7の主面に沿って延びる内部導体膜16、ならびに基体用セラミック層3〜7および拘束層8〜13の厚み方向に貫通するように延びるビアホール導体17がある。
このような多層セラミック基板1において、基体用セラミック層3〜7の各々の厚みT3〜T7は互いに同じであるが、拘束層8〜13の各々の厚みT8〜T13に注目すると、最外位置にある拘束層8および13の厚みT8およびT13は、中間位置にある拘束層9〜12の厚みT9〜T12よりも厚くされている。
上述の多層セラミック基板1を得るため、図2に示した生の積層体2が作製される。
生の積層体2は、低温焼結セラミック材料を含みかつ積層された複数の基体用グリーン層23〜27を備えている。基体用グリーン層23〜27は、焼成後において、前述した基体用セラミック層3〜7となるものである。したがって、基体用グリーン層23〜27の各々の厚みT23〜T27は互いに同じである。
生の積層体2は、また、基体用グリーン層23〜27の複数のものの主面にそれぞれ接するように配置される、複数の拘束用グリーン層28〜33を備えている。拘束用グリーン層28〜33は、上記低温焼結セラミック材料の焼結温度では焼結しない無機材料粉末を有機バインダ中に分散させてなる組成を有している。拘束用グリーン層28〜33は、焼成後において、前述した拘束層8〜13となるものである。したがって、積層方向における最外位置にある拘束用グリーン層28および33の厚みT28およびT33は、中間位置にある拘束用グリーン層29〜32の厚みT29〜T32よりも厚くされ、したがって、後述する焼成工程において、収縮抑制のため、より高い拘束力を及ぼすことができる。
また、生の積層体2は、基体用グリーン層23〜27および/または拘束用グリーン層28〜33に関連して設けられる配線導体14を備えている。配線導体14としては、前述したように、外部導体膜15、内部導体膜16およびビアホール導体17があるが、この段階では、未焼結の導電性ペーストから構成されている。
生の積層体2を作製するため、通常、次のような方法が採用される。
まず、基体用グリーン層23〜27の各々となる基体用グリーンシートが用意される。基体用グリーンシートは、低温焼結セラミック材料に対して、有機バインダおよび溶剤から有機ビヒクルと可塑剤とを添加し、これらを混合することによって、スラリーを作製し、次いで、このスラリーを、ドクターブレード法によってシート状に成形し、乾燥させることによって得ることができる。
低温焼結セラミック材料としては、たとえば、アルミナとホウケイ酸系ガラスとを混合したガラスセラミックや、焼成中にガラス成分を生成するBa−Al−Si−B系酸化物セラミックなどのように、銀や銅などの低融点金属をもって配線導体14を形成した場合でも同時焼成できるようにするため、たとえば1000℃以下の温度で焼成可能なものであって、焼成中にその一部(たとえば、ガラス成分)が拘束用グリーン層28〜33へと浸透し得るものが用いられる。
なお、上述のような材料の浸透を容易にするため、基体用グリーン層23〜27の各々の厚みT23〜T27は、焼成後において、すなわち基体用セラミック層3〜7の状態において、5〜150μmの範囲内に選ばれることが好ましい。
拘束用グリーン層28〜33は、上述したような低温焼結セラミック材料の焼結温度では焼結しない無機材料粉末を含むものであるが、この無機材料粉末としては、たとえば、アルミナ粉末やジルコニア粉末を用いることが好ましい。強度の高いアルミナ粉末やジルコニア粉末を無機材料粉末として用いるとともに、これらの含有量を増やすことによって、焼成後の多層セラミック基板の強度を高めることができる。なお、無機材料粉末として、他に、TiO粉末、SiO、Nb粉末、Ta粉末等を用いることもできる。
拘束用グリーン層28〜33は、上述の無機材料粉末に対して、有機バインダおよび溶剤からなる有機ビヒクルと可塑剤とを添加し、混合することによって、スラリーを作製し、これを、上述した基体用グリーンシートの表面に塗布し、乾燥させることによって形成することができる。
拘束用グリーン層28〜33の厚みT28〜T33については、前述した条件を満足することが前提となるが、最外位置にある拘束用グリーン層28および33の各々の厚みT28およびT33は、焼成後において、すなわち拘束層8および13の各々の状態において、1〜15μmの範囲内に選ばれることが好ましく、中間位置にある拘束用グリーン層29〜32の各々の厚みT29〜T32は、焼成後において、すなわち拘束層9〜12の状態において、1〜10μmの範囲内に選ばれることが好ましい。
配線導体14は、導電性ペーストを付与することによって形成される。より具体的には、外部導体膜15および内部導体膜16については、たとえばスクリーン印刷によって、導電性ペーストが基体用グリーン層23〜27の所定のものまたは拘束用グリーン層28〜33の所定のものの上に印刷される。他方、ビアホール導体17にあっては、基体用グリーン層23〜27の所定のものおよび拘束用グリーン層28〜33の所定のものに貫通孔を設け、この貫通孔内に導電性ペーストを充填することによって形成される。
導電性ペーストに含まれる導電成分としては、たとえば、Cu、Ag、NiもしくはPd、これらの酸化物、またはこれらの金属を含む合金が使用可能であるが、特に、Cuを主成分とすることが好ましい。
なお、外部導体膜15を形成するための導電性ペーストとしては、Cuを主成分とし、そこに、基体用グリーン層23〜27に含まれるセラミック材料および拘束用グリーン層28〜33に含まれる無機材料を添加したものを用いることが好ましい。特に、拘束用グリーン層28〜33に含まれる無機材料は、Cu粒子の表面に付着した状態で用いることが好ましい。このような導電性ペーストを外部導体膜15の形成のために用いると、導電性ペースト単独での焼結収縮を実質的に生じさせなくすることができ、焼成後における配線導体14の導電性の低下を最小限に抑えることができる。
次に、基体用グリーン層23〜27の各々となるべきセラミックグリーンシートが所定の順序および方向に従って積層され、圧着されることによって、図2に示すような生の積層体2が得られる。
次に、生の積層体2は、低温焼結セラミック材料が焼結する条件下で焼成され、それによって、多層セラミック基板1が得られる。
上述の焼成工程において、拘束用グリーン層28〜33は、それ自身、実質的に収縮しない。そのため、拘束用グリーン層28〜33は、基体用グリーン層23〜27に対して、その主面方向での収縮を抑制する拘束力を及ぼす。このようなことから、基体用グリーン層23〜27は、その主面方向での収縮が抑制されながら、そこに含まれる低温焼結セラミック材料が焼結し、実質的に厚み方向にのみ収縮し、得られた多層セラミック基板1における基体用セラミック層3〜7を形成する。他方、拘束用グリーン層28〜33においては、基体用グリーン層23〜27に含まれていたガラス成分等の材料の一部が浸透し、それによって、無機材料粉末が固着された状態にある拘束層8〜13が形成される。
このようにして得られた多層セラミック基板1は、主面方向に関して高い寸法精度を有している。また、そればかりでなく、多層セラミック基板1は、反り、歪み、うねりといった形態不良が生じにくく、形態についても高い精度を有している。その理由は、以下のとおりである。
最外位置にある拘束用グリーン層28および33の厚みT28およびT33が、中間位置にある拘束用グリーン層29〜32の厚みT29〜T32より厚く、それゆえ、最外位置にある拘束用グリーン層28および33が及ぼす拘束力が、中間位置にある拘束用グリーン層29〜32が及ぼす拘束力よりも高い。そのため、中間位置にある基体用グリーン層24〜26に比べて、最外位置にある基体用グリーン層23および27がより収縮しなくなり、最外位置にある基体用グリーン層23および27に引っ張られるようにして中間位置にある基体用グリーン層24〜26も収縮しにくくなる。このようなことから、最外位置にある拘束用グリーン層28および33が及ぼす拘束力を高めることにより、多層セラミック基板1の形態精度を高めることができる。
上述のようにして得られた多層セラミック基板1には、必要に応じて、たとえば外部導体膜15へのNiおよび/またはAu無電解めっきのような表面処理が施され、次いで、所望の電子部品(図示せず。)が、外部導体膜15と電気的に接続されるように、多層セラミック基板1上に実装される。このように実装される電子部品としては、たとえば、トランジスタ、IC、LSIなどの能動素子や、チップコンデンサ、チップ抵抗、チップサーミスタ、チップインダクタなどの受動素子がある。
図3は、この発明の第2の実施形態による多層セラミック基板1aを示す断面図である、図4は図3に示した多層セラミック基板1aを得るために作製される生の積層体2aを示す断面図である。図3および図4は、それぞれ、図1および図2に対応する図であって、図3および図4において、図1および図2に示す要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
第2の実施形態では、基体用セラミック層3〜7の各々の厚みT3〜T7が互いに同じではなく、それゆえ、基体用グリーン層23〜27の各々の厚みT23〜T27が互いに同じではないことを特徴としている。より具体的には、基体用セラミック層3〜7の間では、基体用セラミック層4の厚みT4が最も厚く、基体用セラミック層6の厚みT6が2番目に厚く、基体用セラミック層3および7の厚みT3およびT7が3番目に厚く、基体用セラミック層5の厚みT5が最も薄い。基体用グリーン層23〜27の各々の厚みT23〜T27の関係は、基体用セラミック層3〜7の各々の厚みT3〜T7の関係と同様である。
上述のような厚みの関係を有していると、焼成工程において、最も厚い基体用グリーン層24が、本来的に、最も高い収縮能力を有し、以下、基体用グリーン層26、基体用グリーン層23および27、基体用グリーン層25の順である。したがって、何らの対策をも講じない場合には、焼成工程の結果、多層セラミック基板1aに反り等の形態不良がもたらされることがある。
この形態不良を抑制するため、前述した特許文献1に記載の技術では、基体用グリーン層23〜27の各々の厚みT23〜T27に応じて、拘束用グリーン層28〜33の各々の厚みT28〜T33を異ならせ、拘束用グリーン層28〜33が基体用グリーン層23〜27に対して収縮抑制のために及ぼす各拘束力を互いに異ならせるといった対策が講じられる。
これに対して、この実施形態では、単に、最外位置にある拘束用グリーン層28および33の厚みT28およびT33を中間位置にある拘束用グリーン層29〜32の厚みT29〜T32より厚くするだけで反り等の形態不良を抑制するようにしている。すなわち、基本的に、基体用グリーン層23〜27の各々の厚みT23〜T27とは無関係に拘束用グリーン層28〜33の各々の厚みT28〜T33を決定することができる。
図5は、この発明の第3の実施形態による多層セラミック基板1bを示す断面図である。図6は、図5に示した多層セラミック基板1bを得るために作製される生の積層体2bを示す断面図である。図5および図6において、図1および図2に示す要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
第3の実施形態では、5層以上の拘束層8〜13あるいは5層以上拘束用グリーン層28〜33を備え、積層方向における最外位置により近い拘束層あるいは拘束用グリーン層の厚みほど段階的により厚くされていることを特徴としている。すなわち、厚みT8=厚みT13>厚みT9=厚みT12>厚みT10=厚みT11の関係を有している。したがって、拘束力は、積層方向における最外位置により近い拘束層あるいは拘束用グリーン層のものほど段階的により高い。すなわち、厚みT28=厚みT33>厚みT29=厚みT32>厚みT30=厚みT31の関係を有している。
この実施形態によれば、最外位置にある拘束用グリーン層28および33が及ぼす拘束力に中間位置にある拘束用グリーン層29〜32ならびに基体用グリーン層23〜27が引っ張られる形が強化されるため、中間位置にある拘束用グリーン層29〜32が及ぼす拘束力が不安定であっても、多層セラミック基板1bの形態精度をより確実に安定させることができる。
図7は、この発明の第4の実施形態による多層セラミック基板1cを示す断面図である。図8は、図7に示した多層セラミック基板1cを得るために作製される生の積層体2cを示す断面図である。図7および図8において、図1および図2に示す要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
第4の実施形態では、最外位置にある拘束用グリーン層28および33と中間位置にある拘束用グリーン層29〜32との間で拘束力の差を与えるため、拘束用グリーン層28〜33の厚みT28〜T33によるのではなく、拘束用グリーン層28〜33の組成によることを特徴としている。すなわち、第4の実施形態では、拘束層8〜13の各々の厚みT8〜T13が互いに同じであり、拘束用グリーン層28〜33の各々の厚みT28〜T33が互いに同じであるが、積層方向における最外位置にある拘束用グリーン層28および33における有機バインダに対する無機材料粉末の割合が、中間位置にある拘束用グリーン層29〜32における有機バインダに対する無機材料粉末の割合よりも高くされ、それによって、最外位置にある拘束用グリーン層28および33が、中間位置にある拘束用グリーン層29〜32よりも高い拘束力を与え得るようにされる。
図7および図8は、この発明の第5および第6の実施形態を説明するためにも参照される。
第5の実施形態では、拘束用グリーン層28〜33がガラス成分を含む場合、積層方向における最外位置にある拘束用グリーン層28および33におけるガラス成分に対する無機材料粉末の割合が、中間位置にある拘束用グリーン層29〜32におけるガラス成分に対する無機材料粉末よりも高くされ、それによって、最外位置にある拘束用グリーン層28および33が、中間位置にある拘束用グリーン層29〜32よりも高い拘束力を与え得るようにされる。
第6の実施形態では、積層方向における最外位置にある拘束用グリーン層28および33における無機材料粉末の粒径が、中間位置にある拘束用グリーン層29〜32における無機材料粉末の粒径よりも小さくされ、それによって、最外位置にある拘束用グリーン層28および33が、中間位置にある拘束用グリーン層29〜32よりも高い拘束力を与え得るようにされる。
図9は、この発明の第7の実施形態による多層セラミック基板1dを示す断面図である。図10は、図9示した多層セラミック基板1dを得るために作製される生の積層体2dを示す断面図である。図9および図10において、図1および図2に示す要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
第7の実施形態では、積層方向における最外位置にある拘束層8および13が、多層セラミック基板1dの最外層を形成しておらず、同様に、最外位置にある拘束用グリーン層28および33が、生の積層体2dの最外層を形成していないことを特徴としている。
この発明による多層セラミック基板の形態精度の向上および安定化ならびに強度向上の効果は、第1ないし第6の実施形態のように、最外位置にある拘束層が多層セラミック基板の最外層を形成している場合、あるいは最外位置にある拘束用グリーン層が生の積層体の最外層を形成している場合において、より顕著に現れるものである。図9および図10に示した第7の実施形態は、最外位置にある拘束層8および13が多層セラミック基板1dの最外層を形成していなくても、あるいは、最外位置にある拘束用グリーン層28および33が生の積層体2dの最外層を形成していなくても、この発明の範囲内にあることを明示する意義がある。
以上、この発明を図示した実施形態について説明したが、この発明の範囲内において、その他種々の変形例が可能である。
たとえば、図示した多層セラミック基板1および生の積層体2等が有する構造は一例にすぎず、積層数や配線導体の配置等について種々に変更することができる。
また、この発明では、生の積層体2等に備える複数の拘束用グリーン層28〜33のうち、積層方向における最外位置にある拘束用グリーン層28および33が、中間位置にある拘束用グリーン層29〜32よりも高い拘束力を有することが必須の条件であるが、この条件さえ満たせば、たとえば、最外位置にある拘束用グリーン層28および33の間で拘束力に差がもたらされても、中間位置にある拘束用グリーン層29〜32の間で拘束力に差がもたらされてもよい。
また、生の積層体に備える複数の拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層が生の積層体の最外層を形成している実施形態において、最外層の拘束用グリーン層の線膨張係数を中間位置にある拘束用グリーン層および基体用グリーン層の線膨張係数よりも小さくしてもよい。この場合には、焼成後の多層セラミック基板の強度が向上するという効果を得ることができる。
また、第1ないし第3および第7の実施形態の各々に対して、第4ないし第6の実施形態の少なくとも1つが組み合わされて実施されてもよい。
次に、この発明による効果を確認するための実施した実験例について説明する。
試料として、10層の基体用セラミック層を備える多層セラミック基板を作製した。この多層セラミック基板においては、拘束層を、基体用セラミック層の各々の間の界面に沿うとともに最外層を形成するように配置した。基体用セラミック層をBa−Al−Si−B系酸化物セラミックから構成し、各々の厚みを焼成後において20μmとした。他方、拘束層は、無機材料粉末としてAl粉末を含み、さらに、このAl60重量部に対して、BaO−Al−SiO−B−CaOを主成分とするガラス成分を40重量部含む組成とした。そして、最外位置にある拘束層の厚みおよび中間位置にある拘束層の厚みを、表1に示すように設定した。また、各試料に係る多層セラミック基板の平面寸法を、4インチ(約10cm)角とした。
各試料に係る多層セラミック基板について、反り量と曲げ強度とを測定した。曲げ強度については、「JIS R 1601」による3点曲げ強さ試験方法に基づき求めた。これらの結果が表1に示されている。
Figure 0005024064
表1を参照すれば、最外位置にある拘束層の厚みを中間位置にある拘束層の厚みよりも厚くした試料2および3によれば、最外位置にある拘束層の厚みと中間位置にある拘束層の厚みとが等しい試料1に比べて、反り量が少なく、かつ曲げ強度が高められていることがわかる。
この発明の第1の実施形態による多層セラミック基板1を示す断面図である。 図1に示した多層セラミック基板1を得るために作製される生の積層体2を示す断面図である。 この発明の第2の実施形態による多層セラミック基板1aを示す断面図である。 図3に示した多層セラミック基板1aを得るために作製される生の積層体2aを示す断面図である。 この発明の第3の実施形態による多層セラミック基板1bを示す断面図である。 図5に示した多層セラミック基板1bを得るために作製される生の積層体2bを示す断面図である。 この発明の第4、第5または第6の実施形態による多層セラミック基板1cを示す断面図である。 図7に示した多層セラミック基板1cを得るために作製される生の積層体2cを示す断面図である。 この発明の第7の実施形態による多層セラミック基板1dを示す断面図である。 図9に示した多層セラミック基板1dを得るために作製される生の積層体2dを示す断面図である。
符号の説明
1,1a,1b,1c,1d 多層セラミック基板
2,2a,2b,2c,2d 生の積層体
3〜7 基体用セラミック層
8〜13 拘束層
14 配線導体
23〜27 基体用グリーン層
28〜33 拘束用グリーン層
T3〜T7 基体用セラミック層の厚み
T8〜T13 拘束層の厚み
T23〜T27 基体用グリーン層の厚み
T28〜T33 拘束用グリーン層の厚み

Claims (14)

  1. 低温焼結セラミック材料を含みかつ積層された複数の基体用グリーン層と、前記基体用グリーン層の複数のものの主面にそれぞれ接するように配置されかつ前記低温焼結セラミック材料の焼結温度では焼結しない無機材料粉末を有機バインダ中に分散させてなる複数の拘束用グリーン層と、前記基体用グリーン層および/または前記拘束用グリーン層に関連して設けられる配線導体とを備える、生の積層体を作製する工程と、
    前記低温焼結セラミック材料が焼結する条件下で、前記基体用グリーン層に対して収縮抑制のための拘束力を前記拘束用グリーン層によって及ぼしながら前記生の積層体を焼成する工程と
    を備える、多層セラミック基板の製造方法であって、
    前記生の積層体に備える複数の前記拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層は、中間位置にある拘束用グリーン層よりも高い前記拘束力を有する、多層セラミック基板の製造方法。
  2. 前記生の積層体は5層以上の前記拘束用グリーン層を備え、前記拘束力は、積層方向における最外位置により近い前記拘束用グリーン層のものほど段階的により高くなるようにされる、請求項1に記載の多層セラミック基板の製造方法。
  3. 前記生の積層体に備える複数の前記拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層は、中間位置にある拘束用グリーン層よりも厚い、請求項1または2に記載の多層セラミック基板の製造方法。
  4. 前記生の積層体に備える複数の前記拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層における前記有機バインダに対する前記無機材料粉末の割合は、中間位置にある拘束用グリーン層における前記有機バインダに対する前記無機材料粉末の割合よりも高い、請求項1ないし3のいずれかに記載の多層セラミック基板の製造方法。
  5. 前記拘束用グリーン層はガラス成分を含み、前記生の積層体に備える複数の前記拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層における前記ガラス成分に対する前記無機材料粉末の割合は、中間位置にある拘束用グリーン層における前記ガラス成分に対する前記無機材料粉末の割合よりも高い、請求項1ないし4のいずれかに記載の多層セラミック基板の製造方法。
  6. 前記生の積層体に備える複数の前記拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層における前記無機材料粉末の粒径は、中間位置にある拘束用グリーン層における前記無機材料粉末の粒径よりも小さい、請求項1ないし5のいずれかに記載の多層セラミック基板の製造方法。
  7. 前記生の積層体に備える複数の前記拘束用グリーン層のうち、積層方向における最外位置にある拘束用グリーン層は、前記生の積層体の最外層を形成している、請求項1ないし6のいずれかに記載の多層セラミック基板の製造方法。
  8. 生の積層体を焼成することによって得られる多層セラミック基板であって、
    低温焼結セラミック材料を含みかつ積層された、複数の基体用セラミック層と、
    前記基体用セラミック層の複数のものの主面にそれぞれ接するように配置され、前記低温焼結セラミック材料の焼結温度では焼結しない無機材料粉末を含み、かつこれに接する前記基体用セラミック層に含まれる材料の一部が浸透することによって前記無機材料粉末が固着されている、複数の拘束層と、
    前記基体用セラミック層および/または前記拘束層に関連して設けられる、配線導体と
    を備え、
    複数の前記拘束層のうち、積層方向における最外位置にある拘束層については、焼成工程において前記基体用セラミック層となるべき基体用グリーン層に対して収縮抑制のために与え得る拘束力が、中間位置にある拘束層の拘束力よりも高い、多層セラミック基板。
  9. 5層以上の前記拘束層を備え、前記拘束力は、積層方向における最外位置により近い前記拘束層のものほど段階的により高い、請求項8に記載の多層セラミック基板。
  10. 複数の前記拘束層のうち、積層方向における最外位置にある拘束層は、中間位置にある拘束層よりも厚い、請求項8または9に記載の多層セラミック基板。
  11. 複数の前記拘束層のうち、積層方向における最外位置にある拘束層となるべき拘束用グリーン層に含まれていた有機バインダに対する前記無機材料粉末の割合は、中間位置にある拘束層となるべき拘束用グリーン層に含まれていた有機バインダに対する前記無機材料粉末の割合よりも高い、請求項8ないし10のいずれかに記載の多層セラミック基板。
  12. 前記拘束層はガラス成分を含み、複数の前記拘束層のうち、積層方向における最外位置にある拘束層における前記ガラス成分に対する前記無機材料粉末の割合は、中間位置にある拘束層における前記ガラス成分に対する前記無機材料粉末の割合よりも高い、請求項8ないし11のいずれかに記載の多層セラミック基板。
  13. 複数の前記拘束層のうち、積層方向における最外位置にある拘束層における前記無機材料粉末の粒径は、中間位置にある拘束層における前記無機材料粉末の粒径よりも小さい、請求項8ないし12のいずれかに記載の多層セラミック基板。
  14. 複数の前記拘束層のうち、積層方向における最外位置にある拘束層は、当該多層セラミック基板の最外層を形成している、請求項8ないし13のいずれかに記載の多層セラミック基板。
JP2008005186A 2008-01-15 2008-01-15 多層セラミック基板およびその製造方法 Expired - Fee Related JP5024064B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005186A JP5024064B2 (ja) 2008-01-15 2008-01-15 多層セラミック基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008005186A JP5024064B2 (ja) 2008-01-15 2008-01-15 多層セラミック基板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2009170566A JP2009170566A (ja) 2009-07-30
JP5024064B2 true JP5024064B2 (ja) 2012-09-12

Family

ID=40971436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005186A Expired - Fee Related JP5024064B2 (ja) 2008-01-15 2008-01-15 多層セラミック基板およびその製造方法

Country Status (1)

Country Link
JP (1) JP5024064B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626054B2 (en) 2015-06-29 2020-04-21 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate and method for manufacturing multilayer ceramic substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263226B2 (ja) 2010-07-05 2013-08-14 株式会社村田製作所 多層セラミック基板およびその製造方法
JP5510554B2 (ja) 2011-04-06 2014-06-04 株式会社村田製作所 積層型インダクタ素子およびその製造方法
KR101214691B1 (ko) 2011-10-04 2012-12-21 삼성전기주식회사 다층 세라믹 기판 및 이의 제조 방법
WO2017187753A1 (ja) 2016-04-28 2017-11-02 株式会社村田製作所 多層セラミック基板
WO2023238527A1 (ja) * 2022-06-09 2023-12-14 株式会社村田製作所 コンデンサアレイ
WO2023238528A1 (ja) * 2022-06-09 2023-12-14 株式会社村田製作所 コンデンサアレイ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601671B2 (ja) * 1998-04-28 2004-12-15 株式会社村田製作所 複合積層体の製造方法
JP2002368421A (ja) * 2001-06-08 2002-12-20 Murata Mfg Co Ltd 多層セラミック基板の製造方法および多層セラミック基板
JP4826356B2 (ja) * 2006-06-22 2011-11-30 株式会社村田製作所 セラミック基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626054B2 (en) 2015-06-29 2020-04-21 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate and method for manufacturing multilayer ceramic substrate

Also Published As

Publication number Publication date
JP2009170566A (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5024064B2 (ja) 多層セラミック基板およびその製造方法
JP5012899B2 (ja) 多層セラミック基板およびその製造方法
JPWO2009069398A1 (ja) セラミック複合多層基板及びその製造方法並びに電子部品
JP2014123707A (ja) 基板内蔵用積層セラミック電子部品及びその製造方法、並びに基板内蔵用積層セラミック電子部品を備えるプリント基板
US20110036622A1 (en) Laminated ceramic electronic component and method for manufacturing the same
JP4784690B2 (ja) 多層セラミック基板およびその製造方法
US10638603B2 (en) Multilayer ceramic substrate
KR101434103B1 (ko) 적층 세라믹 전자부품 및 적층 세라믹 전자부품의 실장 기판
JP7309666B2 (ja) 多層セラミック基板及び電子装置
JP6922918B2 (ja) セラミック基板及び電子部品内蔵モジュール
JP4059148B2 (ja) 導電性ペーストおよびセラミック多層基板
KR101188770B1 (ko) 저온 소결 세라믹 재료, 저온 소결 세라믹 소결체 및 다층 세라믹 기판
WO2017094335A1 (ja) 多層セラミック基板及び電子部品
JP2008042057A (ja) 多層セラミック基板の製造方法および多層セラミック基板作製用複合グリーンシート
JP4844317B2 (ja) セラミック電子部品およびその製造方法
JP4696443B2 (ja) 多層セラミック基板の製造方法
JP5840993B2 (ja) アルミナ質セラミックス、およびそれを用いた配線基板
JP2010177335A (ja) 多層配線基板およびその製造方法
JP4826348B2 (ja) 突起状電極付き多層セラミック電子部品の製造方法
WO2011122407A1 (ja) 金属ベース基板
JP2010278117A (ja) 配線基板の製造方法
JP6455633B2 (ja) 多層セラミック基板及び電子装置
JP2009231301A (ja) 多層セラミック基板およびその製造方法
JP5209563B2 (ja) 多層セラミック基板の製造方法
JP2010225959A (ja) 多層配線基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees