JP5023940B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP5023940B2
JP5023940B2 JP2007256215A JP2007256215A JP5023940B2 JP 5023940 B2 JP5023940 B2 JP 5023940B2 JP 2007256215 A JP2007256215 A JP 2007256215A JP 2007256215 A JP2007256215 A JP 2007256215A JP 5023940 B2 JP5023940 B2 JP 5023940B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
solid
capacitor element
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007256215A
Other languages
Japanese (ja)
Other versions
JP2009088257A (en
Inventor
貴之 中路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2007256215A priority Critical patent/JP5023940B2/en
Publication of JP2009088257A publication Critical patent/JP2009088257A/en
Application granted granted Critical
Publication of JP5023940B2 publication Critical patent/JP5023940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、導電性高分子化合物を固体電解質とする固体電解コンデンサに係り、特に、耐電圧特性の向上を図るべく改良を施した固体電解コンデンサに関するものである。   The present invention relates to a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte, and more particularly to a solid electrolytic capacitor that has been improved to improve withstand voltage characteristics.

アルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極電極としての弁作用金属をエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化に欠かせないものとなっている。   An electrolytic capacitor using a metal having a valve action such as aluminum can obtain a small size and a large capacity by expanding the surface of the dielectric by making the valve action metal as an anode electrode into the shape of an etching foil or the like. It is widely used because it can. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization and high functionality of electronic equipment.

固体電解コンデンサに用いられる固体電解質としては、電導度が高く、陽極電極の酸化皮膜層との密着性に優れた導電性ポリマーが固体電解質として用いられている。この導電性ポリマーとしては、例えば、ポリアニリン、ポリチオフェン、ポリエチレンジオキシチオフェン等が知られている。   As the solid electrolyte used for the solid electrolytic capacitor, a conductive polymer having high conductivity and excellent adhesion to the oxide film layer of the anode electrode is used as the solid electrolyte. As this conductive polymer, for example, polyaniline, polythiophene, polyethylenedioxythiophene and the like are known.

なかでも、酸化皮膜の厚さに対して耐電圧を高くとることができるという理由から、高耐圧化が図れる導電性ポリマーとして、ポリエチレンジオキシチオフェン(以下、PEDOTと記す)が注目されている。このPEDOTを用いるコンデンサにおいては、化学酸化重合が用いられ、以下のようにして作製される。   Among these, polyethylenedioxythiophene (hereinafter referred to as PEDOT) has attracted attention as a conductive polymer that can achieve a high breakdown voltage because the withstand voltage can be increased with respect to the thickness of the oxide film. In the capacitor using PEDOT, chemical oxidative polymerization is used, and it is manufactured as follows.

すなわち、陽極箔と陰極箔とをセパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子にEDOT及び酸化剤溶液を含浸し、加熱して、両電極間にPEDOTポリマー層を形成し、固体電解コンデンサを形成する(特許文献1参照)。   That is, an anode foil and a cathode foil are wound through a separator to form a capacitor element, this capacitor element is impregnated with EDOT and an oxidant solution, and heated to form a PEDOT polymer layer between both electrodes. A solid electrolytic capacitor is formed (see Patent Document 1).

このような固体電解コンデンサは、車載用途、インバータ用途に用いられるが、使用電圧は20WVから35WVへと上昇し、これらに対応すべくコンデンサ素子内にビニル基を有する化合物とホウ酸化合物とからなる結合体を含有させることによって耐電圧を上昇させることが開示されている(特許文献2参照)。
特開平9−293639号公報 特開2003−100560号公報
Such a solid electrolytic capacitor is used for in-vehicle use and inverter use, but the working voltage increases from 20 WV to 35 WV, and in order to cope with these, the capacitor element is composed of a compound having a vinyl group and a boric acid compound. It is disclosed that the withstand voltage is increased by containing a conjugate (see Patent Document 2).
Japanese Patent Laid-Open No. 9-293639 JP 2003-100560 A

しかしながら、このような技術をもってしても、高耐電圧化は十分ではなく、さらなる高耐電圧特性を有する固体電解コンデンサの開発が切望されていた。   However, even with such a technique, a high withstand voltage is not sufficient, and the development of a solid electrolytic capacitor having further high withstand voltage characteristics has been desired.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、高耐電圧特性を有する固体電解コンデンサを提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and an object thereof is to provide a solid electrolytic capacitor having high withstand voltage characteristics.

本発明者等は、上記課題を解決すべく、高耐電圧特性を有する固体電解コンデンサについて鋭意検討を重ね、誘電体酸化皮膜の上に酸化重合性の導電性ポリマーからなる固体電解質層を形成する前に、当該誘電酸化皮膜をpH緩衝剤に浸漬させることを試み、その効果について調べた結果、pH緩衝剤を含ませないで形成するよりも良好な電気特性が得られることが判明したものである。   In order to solve the above-mentioned problems, the present inventors have made extensive studies on a solid electrolytic capacitor having a high withstand voltage characteristic, and form a solid electrolyte layer made of an oxidatively polymerizable conductive polymer on a dielectric oxide film. Before trying to immerse the dielectric oxide film in a pH buffer and investigating its effect, it was found that better electrical properties can be obtained than forming without including a pH buffer. is there.

本発明に係る固体電解コンデンサの製造方法は以下の通りである。陰極箔と誘電体酸化皮膜層が形成された陽極箔をセパレータを介在させて巻回して作製したコンデンサ素子に、アジピン酸アンモニウム等の水溶液を合浸させることで修復化成を施す。そして、このようにして作製したコンデンサ素子をpH緩衝剤として用いるリン酸塩緩衝液に浸漬することで、当該誘電体酸化皮膜上にpH緩衝剤を存在させている。   The manufacturing method of the solid electrolytic capacitor according to the present invention is as follows. Restoration and chemical conversion are performed by immersing an aqueous solution of ammonium adipate or the like into a capacitor element produced by winding a cathode foil and an anode foil on which a dielectric oxide film layer is formed with a separator interposed therebetween. And the pH buffer agent is made to exist on the said dielectric oxide film by immersing the capacitor element produced in this way in the phosphate buffer solution used as a pH buffer agent.

続いて、このコンデンサ素子を重合性モノマーと酸化剤の混合液に浸漬し、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。そして、このコンデンサ素子を外装ケースに収納し、開口端部を封ロゴムで封止し、固体電解コンデンサを形成する。   Subsequently, the capacitor element is immersed in a mixed solution of a polymerizable monomer and an oxidizing agent, and a polymerization reaction of a conductive polymer is generated in the capacitor element to form a solid electrolyte layer. And this capacitor | condenser element is accommodated in an exterior case, an opening edge part is sealed with sealing rubber | gum, and a solid electrolytic capacitor is formed.

なお、コンデンサ素子に重合性モノマーと酸化剤を含浸する方法としては、モノマーと酸化剤の混合液にコンデンサ素子を浸漬する方法、モノマー溶液にコンデンサ素子を浸漬した後、酸化剤溶液に浸漬する方法、コンデンサ素子にモノマー溶液を吐出した後、酸化剤溶液を吐出する方法等を用いることができる。   The capacitor element is impregnated with a polymerizable monomer and an oxidizing agent. The capacitor element is immersed in a mixture of a monomer and an oxidizing agent. The capacitor element is immersed in a monomer solution and then immersed in an oxidizing agent solution. A method of discharging the oxidant solution after discharging the monomer solution to the capacitor element can be used.

また、本発明に係る平板型の固体電解コンデンサの製造方法は以下の通りである。つまり、エッチング等によって粗面化した帯状アルミニウム箔の表面に陽極酸化皮膜層を形成し、この陽極酸化皮膜が形成された帯状アルミニウム箔をpH緩衝剤であるリン酸塩緩衝液に浸漬することで、pH緩衝剤を酸化皮膜上に存在させる。   Moreover, the manufacturing method of the flat type solid electrolytic capacitor based on this invention is as follows. That is, an anodized film layer is formed on the surface of a strip-shaped aluminum foil roughened by etching or the like, and the strip-shaped aluminum foil on which the anodized film is formed is immersed in a phosphate buffer that is a pH buffering agent. A pH buffering agent is present on the oxide film.

そして、所定の部分に陽極引出し部と陰極部とを区分するための絶縁性樹脂帯を形成した後、所定の部分に導電性高分子化合物膜を形成し、当該導電性高分子化合物膜上にグラファイト層、銀ペースト層を順次形成して、陰極引出し部を構成する。さらには、陰極引出し部と外部陰極端子とを銀ペーストで接続する。   Then, after forming an insulating resin band for separating the anode lead portion and the cathode portion in a predetermined portion, a conductive polymer compound film is formed in the predetermined portion, and the conductive polymer compound film is formed on the conductive polymer compound film. A cathode layer is formed by sequentially forming a graphite layer and a silver paste layer. Further, the cathode lead portion and the external cathode terminal are connected with silver paste.

なお、前記絶縁性樹脂帯で区分された所定の陽極引出し部は、はんだ付けが不可能なアルミニウム箔であるため、はんだ付け可能な金属板を超音波溶着、電気抵抗溶着、レーザー溶接等により、電気的接続を行う。   In addition, since the predetermined anode lead portion divided by the insulating resin band is an aluminum foil that cannot be soldered, a solderable metal plate is subjected to ultrasonic welding, electrical resistance welding, laser welding, etc. Make electrical connections.

(pH緩衝剤)
上述した通り、コンデンサ素子をpH緩衝剤に浸漬することにより、誘電体皮膜上にpH緩衝剤を存在させるが、これは、その後、重合性モノマーと酸化剤の混合液に浸漬する際に酸化剤のpHを上昇させ、形成された酸化皮膜の損傷を抑制するために行われる。ここで、pH緩衝剤としは、リン酸塩緩衝液を採用し、リン酸(H3PO4)、リン酸水素カリウム(KH2PO4)、リン酸水素ナトリウム(Na2HPO4)を組み合わせた混合液を用いてpH=2.0〜6.0に調整したものを使用する。
(PH buffer)
As described above, by immersing the capacitor element in the pH buffering agent, the pH buffering agent is present on the dielectric film. This is because the oxidizing agent is subsequently immersed in the mixture of the polymerizable monomer and the oxidizing agent. This is performed in order to increase the pH of the film and to suppress damage to the formed oxide film. Here, a phosphate buffer is used as the pH buffering agent, and a combination of phosphoric acid (H 3 PO 4 ), potassium hydrogen phosphate (KH 2 PO 4 ), and sodium hydrogen phosphate (Na 2 HPO 4 ) is combined. What was adjusted to pH = 2.0-6.0 using the prepared liquid mixture is used.

具体的には、pH=2.0〜4.0弱までに調整するには、リン酸(H3PO4)とリン酸水素カリウム(KH2PO4)を所定の配分で混合し、pH=4.0〜6.0までに調整するには、リン酸水素カリウム(KH2PO4とリン酸水素ナトリウム(Na2HPO4)を所定の割合で混合する。なお、pH=2.0〜6.0のうち、好ましくは、2.0〜4.0のリン酸塩緩衝液を使用する。 Specifically, in order to adjust the pH to less than 2.0 to 4.0, phosphoric acid (H 3 PO 4 ) and potassium hydrogen phosphate (KH 2 PO 4 ) are mixed at a predetermined distribution, and pH is adjusted. In order to adjust to 4.0 to 6.0, potassium hydrogen phosphate (KH 2 PO 4 and sodium hydrogen phosphate (Na 2 HPO 4 ) are mixed at a predetermined ratio. Among ˜6.0, preferably, a phosphate buffer of 2.0 to 4.0 is used.

特に、pH=2.0〜4.0に限定するのは、2.0未満であると、強酸性の重合液によって皮膜が損傷を受けて、漏れ電流が増大することで効果が低減し、4.0を超える場合は、pHが高すぎて重合反応が不十分となり、静電容量の低下し、ESRの増大するからである。また、6.0を超える場合は、さらに酸化重合が遅延してこれらの特性が劣化してしまう。   In particular, the pH is limited to 2.0 to 4.0, and if it is less than 2.0, the coating is damaged by the strongly acidic polymerization liquid, and the effect is reduced by increasing the leakage current. If it exceeds 4.0, the pH is too high, the polymerization reaction becomes insufficient, the capacitance decreases, and the ESR increases. On the other hand, if it exceeds 6.0, the oxidative polymerization is further delayed to deteriorate these properties.

(重合性モノマー)
重合性モノマーとして3,4−エチレンジオキシチオフェン(以下、EDOTという)を用いた場合、コンデンサ素子基材に含浸するEDOTとしては、EDOTモノマーを用いることができるが、EDOTと揮発性溶媒とを混合したモノマー溶液を用いることもできる。
(Polymerizable monomer)
When 3,4-ethylenedioxythiophene (hereinafter referred to as EDOT) is used as the polymerizable monomer, an EDOT monomer can be used as the EDOT impregnated in the capacitor element substrate. A mixed monomer solution can also be used.

前記揮発性溶媒としては、ペンタン、ヘキサン等の炭化水素類、テトラヒドロフラン、ジプロピルエーテル等のエーテル類、ギ酸エチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、プロパノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。   Examples of the volatile solvent include hydrocarbons such as pentane and hexane, ethers such as tetrahydrofuran and dipropyl ether, esters such as ethyl formate and ethyl acetate, ketones such as acetone and methyl ethyl ketone, methanol, ethanol, and propanol. Alcohols, nitrogen compounds such as acetonitrile can be used, and methanol, ethanol, acetone and the like are particularly preferable.

(酸化剤)
酸化剤としては、パラトルエンスルホン酸第二鉄などの有機スルホン酸金属塩や、過ヨウ素酸もしくはヨウ素酸を用いることができる。
(Oxidant)
As the oxidizing agent, an organic sulfonic acid metal salt such as ferric paratoluene sulfonate, periodic acid or iodic acid can be used.

(修復化成の化成液)
修復化成の化成液としては、上記で用いたアジピン酸アンモニウム等のアジピン酸系の他、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液を用いることができる。
(Chemical solution for restoration conversion)
As the chemical solution for restoration conversion, in addition to the adipic acid type such as ammonium adipate used above, phosphoric acid type chemical conversion solution such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid such as ammonium borate, etc. A chemical conversion solution of the system can be used.

(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDOTの他に、EDOT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。
(Other polymerizable monomers)
As the polymerizable monomer used in the present invention, in addition to the EDOT, a thiophene derivative other than EDOT, aniline, pyrrole, furan, acetylene, or a derivative thereof, which is oxidized and polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied.

(作用効果)
本発明の作用効果は、以下の通りである。
従来の固体電解コンデンサにおいては、重合反応に用いる酸化剤の酸化作用によって誘電体酸化皮膜が損傷を受け、この酸化皮膜の耐電圧特性が低下するという問題点があった。
(Function and effect)
The effects of the present invention are as follows.
The conventional solid electrolytic capacitor has a problem that the dielectric oxide film is damaged by the oxidizing action of the oxidizing agent used for the polymerization reaction, and the withstand voltage characteristic of the oxide film is lowered.

これに対して、本発明では、誘電体酸化皮膜上にpH=2.0〜6.0、好ましくは、2.0〜4.0のpH緩衝剤を存在させることにより、その後に被覆する酸化剤のpHを上昇させることができるので、当該酸化皮膜の損傷を抑制し、固体電解コンデンサの漏れ電流特性が向上する。ここで、本発明においては、誘電体酸化皮膜の上にpH緩衝剤を存在させているので、モノマーと酸化剤の混合液によって重合することが好ましい。すなわち、混合液の状態で重合が進行しながらpH緩衝剤で酸化皮膜を保護するので、重合が遅延することがない。酸化剤、モノマー溶液のどちらかを先に浸漬した場合、反応液にpH緩衝剤が混合して重合状態に作用するので重合が遅延することが考えられる。   On the other hand, in the present invention, a pH buffering agent having a pH of 2.0 to 6.0, preferably 2.0 to 4.0 is present on the dielectric oxide film, thereby oxidizing the coating thereafter. Since the pH of the agent can be increased, damage to the oxide film is suppressed, and the leakage current characteristics of the solid electrolytic capacitor are improved. Here, in the present invention, since a pH buffering agent is present on the dielectric oxide film, it is preferably polymerized with a mixed solution of a monomer and an oxidizing agent. That is, the polymerization is not delayed because the oxide film is protected by the pH buffer while the polymerization proceeds in a mixed solution state. When either the oxidizing agent or the monomer solution is first immersed, it is considered that the polymerization is delayed because the pH buffering agent is mixed with the reaction solution and acts on the polymerization state.

本発明によれば、高耐電圧特性を有する固体電解コンデンサを提供することができる。   According to the present invention, it is possible to provide a solid electrolytic capacitor having high withstand voltage characteristics.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、実施例、比較例1,2及び従来例の試料は、それぞれ以下のようにして作製し、電気的特性を評価した。   Hereinafter, the present invention will be described in more detail based on examples. In addition, the samples of Examples, Comparative Examples 1 and 2 and the conventional example were prepared as follows, and the electrical characteristics were evaluated.

(実施例)
アルミニウム箔表面をエッチング液で粗面化し表面積を拡大した後、誘電体酸化皮膜を生成した陽極箔と、同様に、アルミニウム箔表面をエッチング液で粗面化し表面積を拡大した陰極箔に、セパレータを介在させて巻回したコンデンサ素子を形成する。なお、陽極箔、陰極箔共に引出し端子が接続されている。
(Example)
After roughening the surface of the aluminum foil with an etching solution to increase the surface area, the anode foil having a dielectric oxide film formed thereon was similarly applied to the cathode foil having the surface of the aluminum foil roughened with an etching solution to increase the surface area. A capacitor element wound with an intervening layer is formed. Note that a lead terminal is connected to both the anode foil and the cathode foil.

そして、このコンデンサ素子をアジピン酸アンモニウム等の水溶液で再化成し、巻回過程で生じた誘電体酸化皮膜を修復する。このコンデンサ素子を本実施例では、リン酸(H3PO4)とリン酸水素カリウム(KH2PO4の水溶液(pH=3.4)に浸漬することで誘電体酸化皮膜上に、pH緩衝剤を存在させた。 Then, the capacitor element is re-formed with an aqueous solution of ammonium adipate or the like to repair the dielectric oxide film generated in the winding process. In this embodiment, the capacitor element is immersed in an aqueous solution of phosphoric acid (H 3 PO 4 ) and potassium hydrogen phosphate (KH 2 PO 4 (pH = 3.4) to provide a pH buffer on the dielectric oxide film. Agent was present.

その後、このコンデンサ素子に、3,4−エチレンジオキシチオフェンのモノマー溶液と酸化剤の混合液を含浸し、コンデンサ素子内でポリエチレンジオキシチオフェンを化学酸化重合させて固体電解質層を形成した。ついで、この固体電解改質層が形成されたコンデンサ素子は、外装ケース内に収納され、当該外装ケースの開口部を封口ゴムで封止した後、定格電圧を印加してエージング処理を行うことで、16WV−33μFの固体電解コンデンサを作製した。   Thereafter, the capacitor element was impregnated with a mixed solution of a monomer solution of 3,4-ethylenedioxythiophene and an oxidizing agent, and polyethylenedioxythiophene was chemically oxidatively polymerized in the capacitor element to form a solid electrolyte layer. Next, the capacitor element in which the solid electrolytic reforming layer is formed is housed in an exterior case, and after sealing the opening of the exterior case with a sealing rubber, an aging treatment is performed by applying a rated voltage. A solid electrolytic capacitor of 16 WV-33 μF was produced.

(比較例1)
比較例1の試料は、上記実施例の試料の製造方法のうち、コンデンサ素子をリン酸(H3PO4)とリン酸水素カリウム(KH2PO4)の水溶液(pH=3.4)に浸漬する工程を経ずに作製した。なお、このコンデンサ素子には、3,4−エチレンジオキシチオフェンのモノマー溶液と酸化剤の混合液に加えてアンモニアも混合させて含浸させている。コンデンサ素子内でポリエチレンジオキシチオフェンを化学酸化重合させて固体電解質層を形成した。その他の工程は上記実施例1と同様であるので、説明は省略する。
(Comparative Example 1)
The sample of Comparative Example 1 is a sample manufacturing method of the above example, in which the capacitor element is made into an aqueous solution (pH = 3.4) of phosphoric acid (H 3 PO 4 ) and potassium hydrogen phosphate (KH 2 PO 4 ). It produced without going through the process of immersing. The capacitor element is impregnated by mixing ammonia in addition to the mixed solution of 3,4-ethylenedioxythiophene monomer solution and oxidizing agent. Polyethylenedioxythiophene was chemically oxidatively polymerized in the capacitor element to form a solid electrolyte layer. Since other steps are the same as those in the first embodiment, description thereof will be omitted.

(比較例2)
比較例2の試料は、上記実施例の試料の製造方法のうち、コンデンサ素子に、リン酸(H3PO4)とリン酸水素カリウム(KH2PO4の水溶液(pH=3.4)に浸漬する工程を、固体電解質層の形成後に行い、作製した。すなわち、比較例2の試料は、コンデンサ素子に、3,4−エチレンジオキシチオフェンのモノマー溶液と酸化剤の混合液を含浸し、コンデンサ素子内でポリエチレンジオキシチオフェンを化学酸化重合させた後に、リン酸(H3PO4)とリン酸水素カリウム(KH2PO4)の水溶液(pH=3.4)に浸漬することで、作製された。なお、比較例1のような、コンデンサ素子に3,4−エチレンジオキシチオフェンのモノマー溶液と酸化剤の混合液に加えてアンモニアも混合させる工程を除外している。
(Comparative Example 2)
The sample of Comparative Example 2 was used as a capacitor element in the sample manufacturing method of the above example, and phosphoric acid (H 3 PO 4 ) and potassium hydrogen phosphate (KH 2 PO 4 aqueous solution (pH = 3.4)). The immersion step was performed after the formation of the solid electrolyte layer, that is, the sample of Comparative Example 2 was impregnated with a mixed solution of 3,4-ethylenedioxythiophene monomer solution and oxidizing agent in the capacitor element, After chemically oxidizing and polymerizing polyethylenedioxythiophene in the capacitor element, it is immersed in an aqueous solution (pH = 3.4) of phosphoric acid (H 3 PO 4 ) and potassium hydrogen phosphate (KH 2 PO 4 ), In addition, the step of mixing ammonia in addition to the monomer solution of 3,4-ethylenedioxythiophene and the oxidant in the capacitor element as in Comparative Example 1 is excluded.

(従来例)
従来例の試料は、上記実施例の試料の製造方法のうち、コンデンサ素子をリン酸(H3PO4)とリン酸水素カリウム(KH2PO4の水溶液(pH=3.4)に浸漬する工程を経ずに作製した。また、比較例1のような、コンデンサ素子に3,4エチレンジオキシチオフェンのモノマー溶液と酸化剤の混合液に加えてアンモニアも混合させる工程も除外している。
(Conventional example)
In the sample of the conventional example, the capacitor element is immersed in an aqueous solution (pH = 3.4) of phosphoric acid (H 3 PO 4 ) and potassium hydrogen phosphate (KH 2 PO 4 ) in the sample manufacturing method of the above example. In addition, the step of mixing ammonia in addition to the monomer solution of 3,4 ethylenedioxythiophene and the oxidizing agent in the capacitor element as in Comparative Example 1 is also excluded.

(比較結果)
上記のようにして作製した実施例、比較例1,2及び従来例の各試料について、電気的特性(静電容量、tanδ、漏れ電流、ESR)を評価した結果は図1及び表1のようになる。
(Comparison result)
The results of evaluating the electrical characteristics (capacitance, tan δ, leakage current, ESR) of the samples of Examples, Comparative Examples 1 and 2 and the conventional example produced as described above are as shown in FIG. become.

Figure 0005023940
Figure 0005023940

図1及び表1に示すように、pH緩衝剤を誘電体酸化皮膜上に存在させ、その後に固体電解質を形成した実施例は、酸化重合後にpH緩衝剤に浸漬した比較例2、pH緩衝剤が存在しない従来例及び比較例1と比べて、漏れ電流が低減しており、酸化皮膜の損傷が抑制されていることがわかる。   As shown in FIG. 1 and Table 1, an example in which a pH buffering agent was present on a dielectric oxide film and a solid electrolyte was formed thereafter was Comparative Example 2 in which the pH buffering agent was immersed in the pH buffering agent after oxidative polymerization. It can be seen that the leakage current is reduced and the damage to the oxide film is suppressed as compared with the conventional example and the comparative example 1 in which no is present.

具体的には、漏れ電流に関して、従来例が5.65μA、比較例1が5.07μA、比較例2が3542.91μAであるのに対し、実施例は1.94μAであり漏れ電流が格段に低く、耐電圧特性が向上しており、本願の効果がわかる。   Specifically, with respect to the leakage current, the conventional example is 5.65 μA, the comparative example 1 is 5.07 μA, and the comparative example 2 is 3542.91 μA, whereas the example is 1.94 μA, and the leakage current is remarkably high. The withstand voltage characteristic is low and the effect of the present application can be seen.

本発明の実施形態における実施例、比較例1,2と従来例の電気特性比較図Comparison of electrical characteristics of Examples, Comparative Examples 1 and 2 and Conventional Example in the embodiment of the present invention

Claims (5)

pHが2.0〜4.0であるpH緩衝剤を存在させた誘電体酸化皮膜の上に、酸化重合性の導電性ポリマーからなる固体電解質層を形成したことを特徴とする固体電解コンデンサ。 on the pH of the dielectric oxide film to a pH buffering agent was present which is 2.0 to 4.0, oxidative polymerization of the formed of a conductive polymer solid electrolyte layer a solid body electrolyte you characterized in that the formation Capacitor. 前記pH緩衝剤は、リン酸塩緩衝液であることを特徴とする請求項1に記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1, wherein the pH buffer is a phosphate buffer. 前記固体電解コンデンサが、巻回型であることを特徴とする請求項1又は2に記載の固体電解コンデンサ。 The solid electrolytic capacitor, the solid electrolytic capacitor according to claim 1 or 2, characterized in that a winding type. 前記固体電解コンデンサが、箔又は板状の拡面化した弁金属の表面に陽極酸化皮膜層を形成し、その上に導電性ポリマーからなる固体電解質層を形成し、その上にグラファイト層、銀ペースト層を順次形成して陰極部を形成する平板型であることを特徴とする請求項1又は2に記載の固体電解コンデンサ。 In the solid electrolytic capacitor, an anodized film layer is formed on the surface of a foil or plate-shaped valve metal, and a solid electrolyte layer made of a conductive polymer is formed thereon. A graphite layer, silver the solid electrolytic capacitor according to claim 1 or 2, characterized in that the paste layer are sequentially formed is a flat plate type forming a cathode portion. 前記導電性ポリマーからなる固体電解質層が、ポリ3、4−エチレンジオキシチオフェンであることを特徴とする請求項1〜のいずれか1項に記載の固体電解コンデンサ。
The solid electrolytic capacitor according to any one of claims 1 to 4 , wherein the solid electrolyte layer made of the conductive polymer is poly 3,4-ethylenedioxythiophene.
JP2007256215A 2007-09-28 2007-09-28 Solid electrolytic capacitor Active JP5023940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256215A JP5023940B2 (en) 2007-09-28 2007-09-28 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256215A JP5023940B2 (en) 2007-09-28 2007-09-28 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009088257A JP2009088257A (en) 2009-04-23
JP5023940B2 true JP5023940B2 (en) 2012-09-12

Family

ID=40661284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256215A Active JP5023940B2 (en) 2007-09-28 2007-09-28 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5023940B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392214B (en) * 2011-02-18 2016-08-17 松下知识产权经营株式会社 Electrolysis condenser and manufacture method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488303B2 (en) * 2003-09-26 2010-06-23 昭和電工株式会社 Capacitor manufacturing method
JP4217147B2 (en) * 2003-11-27 2009-01-28 ニチコン株式会社 Method for producing aluminum electrode foil for electrolytic capacitor
JP2005203662A (en) * 2004-01-19 2005-07-28 Japan Carlit Co Ltd:The Manufacturing method for solid electrolytic capacitor
WO2007077914A1 (en) * 2005-12-28 2007-07-12 Showa Denko K.K. Solid electrolytic capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JP2009088257A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4983744B2 (en) Manufacturing method of solid electrolytic capacitor
US8345409B2 (en) Solid electrolytic capacitor
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JPH1187187A (en) Manufacture of solid electroytic capacitor
JP2009094155A (en) Method for manufacturing solid electrolytic capacitor
JP5023940B2 (en) Solid electrolytic capacitor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP4797784B2 (en) Solid electrolytic capacitor
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP2013138145A (en) Manufacturing method of solid state electrolytic capacitor
WO2024057931A1 (en) Additive for organic conductors
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4668140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4114700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP5541756B2 (en) Manufacturing method of solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005109079A (en) Solid electrolytic capacitor and its manufacturing method
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150