JP5016788B2 - セルロースアシレートフィルム、偏光板および液晶表示装置 - Google Patents

セルロースアシレートフィルム、偏光板および液晶表示装置 Download PDF

Info

Publication number
JP5016788B2
JP5016788B2 JP2005143493A JP2005143493A JP5016788B2 JP 5016788 B2 JP5016788 B2 JP 5016788B2 JP 2005143493 A JP2005143493 A JP 2005143493A JP 2005143493 A JP2005143493 A JP 2005143493A JP 5016788 B2 JP5016788 B2 JP 5016788B2
Authority
JP
Japan
Prior art keywords
group
film
cellulose acylate
liquid crystal
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005143493A
Other languages
English (en)
Other versions
JP2006022311A (ja
Inventor
伸隆 深川
秀典 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005143493A priority Critical patent/JP5016788B2/ja
Publication of JP2006022311A publication Critical patent/JP2006022311A/ja
Application granted granted Critical
Publication of JP5016788B2 publication Critical patent/JP5016788B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、セルロースアシレートフィルム、偏光板及び液晶表示装置に関する。
液晶表示装置は、消費電力の小さい省スペースの画像表示装置として年々用途が広がっている。従来、画像の視野角依存性が大きいことが液晶表示装置の大きな欠点であったが、近年、VAモード、IPSモード等の高視野角液晶モードが実用化されており、これによりテレビ等の高視野角が要求される市場でも液晶表示装置の需要が急速に拡大しつつある。
これに伴い、液晶表示装置に用いられる光学補償フィルム及び偏光板に対しても一段と高い性能が要求され始めている。とりわけ、温度及び湿度の変化に対して安定して光学補償機能を発揮することが強く求められている。
従来偏光板に光学補償機能を付与する方法は大きく二つに分けられる。まず、第1に偏光板保護フィルム上に新たに光学異方性層を設けるまたは位相差フィルムを貼りあわせる方法であり、第2に偏光板保護フィルム自体に位相差を持たせる方法である。従来偏光板保護フィルムとしてはセルロースアセテートあるいはセルロースアセテートプロピオネートフィルムを使用することが一般的である。しかし、これらのフィルムは吸水による寸度変化、位相差変化が大きく、これらの方法はいずれにおいても、使用環境の温度及びあるいは湿度変化によりコントラストの低下、視野角の低減、表示ムラ等の問題が発生することが知られていた。
この問題を改良する手段として、従来大きく二つの方法が知られていた。第1は偏光板保護フィルムとして透水度の低いポリマーフィルムを使用する方法(例えば特許文献1)、第2は上下の偏光板保護フィルムの弾性率を調節し、温湿度変化による偏光板の寸度変化を小さくする方法である(例えば特許文献2)。
しかし、前者では偏光子とポリマーフィルムとの密着が損なわれる、あるいは湿式延伸で作製される偏光板の場合、偏光板貼り合わせ後の乾燥工程における水分の蒸発が不十分となり、偏光度の低下をもたらす等の弊害があった。
また、後者の方法では比較的マイルドな条件では一定の改良効果を有するものの、高温高湿での表示ムラの発生を十分抑えることはできなかった。
特開2002−243943号公報 特開2003−279743号公報
本発明の目的は、熱・湿度によるコントラスト、色味、視野角の変化が小さい偏光板を提供することである。
本発明の別の目的は、視野角補償能に優れた偏光板を液晶表示装置に用いることで、光漏れなどの問題を生じることなく、広視野角で表示品位の高い液晶表示装置を提供することである。
本発明のさらに別の目的は、視角による色味変化の小さい液晶表示装置を提供することである。
本発明者は鋭意検討した結果、セル側の保護フィルムとして使用されるセルロースアシレートフィルムのレターデーションと他の位相差フィルムあるいは光学異方性層のレターデーションとの相対関係適度を調節することにより本発明の目的が達せられることを見出した。
すなわち、少なくとも1つのレターデーション上昇剤を含有し、面内レターデーションRe及び厚み方向レターデーションRthが下記式(A)の関係を満たすことを特徴とするセルロースアシレートフィルム、それを用いた偏光板及び液晶表示装置である。
(A) 30<Rth(590)/Re(590)
(ここでRe(λ)及びRth(λ)は、それぞれ波長λnmにおけるRe及びRthを表す。)
本発明によれば、視野角拡大効果が大きく、視角による色味変化が小さく、かつ熱・湿度による透過率の変化が小さい偏光板を提供することができる。さらに、本発明の視野角補償能に優れた位相差フィルム及び/または透湿度の低い保護フィルムを偏光子の両側に配置した偏光板を液晶表示装置に用いることで、光漏れなどの問題を生じることなく、広視野角で表示品位の高い液晶表示装置を提供することができる。
本発明のセルロースアシレートフィルムは、少なくとも1つのレターデーション上昇剤を含有し、面内レターデーションRe及び厚み方向レターデーションRthが下記式(A)の関係を満たすことを特徴とする。
(A) 30<Rth(590)/Re(590)
ここでRe(λ)、Rth(λ)は、それぞれ波長λnmにおけるRe及びRthを表す。
なお、Re及びRthの測定方法は、実施例に記載したとおりである。
本発明のセルロースアシレートフィルムのRe(590)は0nm以上5nm以下が好ましく、0nm以上2nm以下がさらに好ましい。
また、Rth(590)は100nm以上400nm以下が好ましく、110nm以上300nm以下がさらに好ましい。
また、Rth(590)/Re(590)比は30より大きいことが好ましく、50より大きいことがさらに好ましい。
上記範囲にRe(590)及びRth(590)を調節することにより、熱・湿度によるコントラスト及び色味の視野角変化の小さいフィルムが得られる。特に、他の位相差フィルムあるいは光学異方性層との積層体として使用するとさらに効果が大きい。
さらにRthの波長分散は下記式(B)及び(C)の関係を満たすことが好ましい。
1.0<Rth(480)/Rth(546)<2.0 (B)
0.5<Rth(628)/Rth(546)<1.0 (C)
上記範囲にRthの波長分散を調節したセルロースアシレートフィルムを液晶セル側保護フィルムとした偏光板を用いることにより、視角により色味変化の小さい液晶表示装置が得られる。
本発明のセルロースアシレートフィルムのレターデーションは様々な方法により調節可能である。このうち、後述するレターデーション上昇剤による調節、及びフィルムの延伸による調節を特に好ましく用いることができる。
(セルロースアシレート)
まず、本発明に使用するセルロースアシレートについて説明する。
セルロースアシレートの置換度は、セルロースの構成単位(β1→4グリコシド結合しているグルコース)に存在している三つの水酸基がアシル化されている割合を意味する。置換度は、セルロースの構成単位重量当りの結合脂肪酸量を測定して算出することができる。測定方法は、ASTM−D817−91に準じて実施する。
本発明のセルロースアシレートはアシル化度が2.5以上2.95以下のものが好ましい。アシル基の炭素数は2以上10以下が好ましく、アセチル基、プロピオニル基、ブチリル基を用いることが特に好ましい。アシル基としてアセチル基のみを有するセルロースアシレートの場合、アセチル化度は2.0以上2.95以下が好ましく、2.5以上2.9以下がさらに好ましい。
セルロースアシレートがアセチル基とそれ以外のアシル基を有する場合、アセチル基の置換度Aと、炭素原子数が3以上のアシル基の置換度Bとが、下記式(D)及び(E)を満たすことが好ましい。
(D) 2.0≦A+B≦3.0
(E) 0≦B≦1.5
アセチル基の置換度は1以上2.5以下が好ましく、1.5以上2.0以下がさらに好ましい。アセチル基以外のアシル基としてはプロピオニル基およびブチリル基が好ましい。
本発明に使用するセルロースアシレートは、250乃至800の重合度を有することが好ましく、280乃至600の重合度を有することがさらに好ましい。本発明のセルロースアシレートは、70,000乃至230,000の数平均分子量を有することが好ましく、75,000乃至230,000の数平均分子量を有することがさらに好ましく、78,000乃至120,000の数平均分子量を有することが最も好ましい。
本発明に使用するセルロースアシレートは、アシル化剤として酸無水物や酸塩化物を用いて合成できる。アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例、酢酸)や塩化メチレンが使用される。触媒としては、硫酸のようなプロトン性触媒が用いられる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物が用いられる。工業的に最も一般的な合成方法では、セルロースをアセチル基および他のアシル基に対応する有機酸(酢酸、プロピオン酸、酪酸)またはそれらの酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)を含む混合有機酸成分でエステル化してセルロースエステルを合成する。この方法において、綿花リンターや木材パルプのようなセルロースは、酢酸のような有機酸で活性化処理した後、硫酸触媒の存在下で、上記のような有機酸成分の混合液を用いてエステル化する場合が多い。有機酸無水物成分は、一般にセルロース中に存在する水酸基の量に対して過剰量で使用する。このエステル化処理では、エステル化反応に加えてセルロース主鎖β1→4グリコシド結合)の加水分解反応(解重合反応)が進行する。主鎖の加水分解反応が進むとセルロースエステルの重合度が低下し、製造するセルロースエステルフィルムの物性が低下する。そのため、反応温度等の反応条件は、得られるセルロースエステルの重合度や分子量を考慮して決定する必要がある。
重合度の高い(分子量の大きい)セルロースエステルを得るためには、エステル化反応工程における最高温度を50℃以下に調節することが重要である。最高温度は、好ましくは35乃至50℃、さらに好ましくは37乃至47℃に調節する。反応温度が上記範囲であるとエステル化反応が円滑に進行し、セルロースエステルの重合度も適当となる。
エステル化反応の後、温度上昇を抑制しながら反応を停止すると、さらに重合度の低下を抑制でき、高い重合度のセルロースエステルを合成できる。すなわち、反応終了後に反応停止剤(例、水、酢酸)を添加すると、エステル化反応に関与しなかった過剰の酸無水物は、加水分解して対応する有機酸を副成する。この加水分解反応は激しい発熱を伴い、反応装置内の温度が上昇する。反応停止剤の添加速度が大きいと、反応装置の冷却能力を超えて急激に発熱する。そのため、セルロース主鎖の加水分解反応が著しく進行し、得られるセルロースエステルの重合度が低下することがある。また、エステル化の反応中に触媒の一部はセルロースと結合しており、その大部分は反応停止剤の添加中にセルロースから解離する。しかし、反応停止剤の添加速度が大きいと、触媒が解離するために充分な反応時間がなく、触媒の一部がセルロースに結合した状態で残る。強酸の触媒が一部結合しているセルロースエステルは安定性が非常に悪く、製品の乾燥時の熱などで容易に分解して重合度が低下する。これらの理由により、エステル化反応の後、好ましくは4分以上、さらに好ましくは4乃至30分の時間をかけて反応停止剤を添加して、反応を停止することが望ましい。反応停止剤の添加時間が上記範囲であると、工業的な生産性が低下しない。反応停止剤としては、一般に酸無水物を分解する水やアルコールが用いられている。ただし、本発明では、各種有機溶媒への溶解性が低いトリエステルを析出させないために、水と有機酸との混合物が、反応停止剤として好ましく用いられる。以上のような条件でエステル化反応を実施すると、重量平均重合度が500以上である高分子量セルロースエステルを容易に合成することができる。
(レターデーション上昇剤)
次に、本発明に使用するレターデーション上昇剤について説明する。
本発明のレターデーション上昇剤としては、分子の分極率異方性の大きい化合物が好ましい。
下記式(I)または(II)で表される化合物を特に好ましく使用できる。
Figure 0005016788
(式中、X1は、単結合、−NR4−、−O−または−S−であり;X2は、単結合、−NR5−、−O−または−S−であり;X3は、単結合、−NR6−、−O−または−S−であり;R1、R2、およびR3は、それぞれ独立に、アルキル基、アルケニル基、芳香族環基または複素環基であり;R4、R5およびR6は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。)
Figure 0005016788
(式中、R1、R2、R3、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子または置換基を表し、R1、R2、R3、R4およびR5のうち少なくとも1つは電子供与性基を表し、R8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表す。)
まず、式(I)で表される化合物について詳しく説明する。
Figure 0005016788
(式中、X1は、単結合、−NR4−、−O−または−S−であり;X2は、単結合、−NR5−、−O−または−S−であり;X3は、単結合、−NR6−、−O−または−S−であり;R1、R2およびR3は、それぞれ独立に、アルキル基、アルケニル基、アリール基または複素環基であり;R4、R5およびR6は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。)
式(I)において、R1、R2、及びR3は、それぞれ独立に、アルキル基、アルケニル基、芳香族環基または複素環基を表すが、芳香族環または複素環がより好ましい。R1、R2、及びR3がそれぞれ表す芳香族環は、フェニルまたはナフチルであることが好ましく、フェニルであることが特に好ましい。
1、R2、及びR3は芳香族環または複素環に置換基を有していてもよい。置換基の例としては、ハロゲン原子、ヒドロキシル基、シアノ基、ニトロ基、カルボキシル基、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルオンアミド基、カルバモイル基、アルキル置換カルバモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基及びアシル基が挙げられる。
1、R2、及びR3が複素環基を表す場合、複素環は芳香族性を有することが好ましい。芳香族性を有する複素環とは、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることが最も好ましい。複素環のヘテロ原子は、窒素原子、硫黄原子または酸素原子であることが好ましく、窒素原子であることが特に好ましい。芳香族性を有する複素環としては、ピリジン環(複素環基としては、2−ピリジルまたは4−ピリジル)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記に挙げた置換基の例と同様である。これらの置換基は、上記置換基でさらに置換されていても良い。
式(I)中、X1は単結合、−NR4−、−O−または−S−を表し、X2は単結合、−NR5−、−O−または−S−を表し、X3は単結合、−NR6−、−O−または−S−を表す。R4、R5およびR6は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリール基または複素環基を表す。
4、R5およびR6がそれぞれ表すアルキル基は、環状アルキル基であっても鎖状アルキル基であってもよいが、鎖状アルキル基が好ましく、分岐を有する鎖状アルキル基よりも、直鎖状アルキル基がより好ましい。アルキル基の炭素原子数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることがさらに好ましく、1〜8がさらに好ましく、1〜6であることが最も好ましい。アルキル基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、アルコキシ基(例えばメトキシ、エトキシ)およびアシルオキシ基(例、アクリロイルオキシ、メタクリロイルオキシ)が含まれる。
4、R5およびR6がそれぞれ表すアルケニル基は、環状アルケニル基であっても鎖状アルケニル基であってもよいが、鎖状アルケニル基が好ましく、分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基がより好ましい。アルケニル基の炭素原子数は、2〜30であることが好ましく、2〜20であることがより好ましく、2〜10であることがさらに好ましく、2〜8であることがさらに好ましく、2〜6であることが最も好ましい。アルケニル基は置換基を有していてもよい。置換基の例には、前述のアルキル基の置換基と同様である。
4、R5およびR6がそれぞれ表す芳香族環基(アリール基)および複素環基は、R1、R2及びR3がそれぞれ表す芳香族環および複素環と同様であり、好ましい範囲も同様である。芳香族環基および複素環基はさらに置換基を有していてもよく、置換基の例にはR1、R2及びR3の芳香族環および複素環の置換基と同様である。
以下に本発明の式(I)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
次に式(II)の化合物について詳しく説明する。
Figure 0005016788
(式中、R1、R2、R3、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子または置換基を表し、R1、R2、R3、R4およびR5のうち少なくとも1つは電子供与性基を表し、R8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表す。)
式(II)中、R1、R2、R3、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子、または置換基を表し、置換基は後述の置換基Tが適用できる。
1、R2、R3、R4およびR5のうち少なくとも1つは電子供与性基を表す。R1、R3またはR5のうちの1つが電子供与性基であることが好ましく、R3が電子供与性基であることがより好ましい。
電子供与性基とはHammetのσp値がO以下のものを表し、Chem.Rev.,91,165(1991).記載のHammetのσp値が0以下のものが好ましく適用でき、より好ましくは−0.85〜0のものが用いられる。例えば、アルキル基、アルコキシ基、アミノ基、水酸基などが挙げられる。
電子供与性基として好ましくはアルキル基、アルコキシ基であり、より好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。
1として好ましくは、水素原子または電子供与性基であり、より好ましくはアルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、最も好ましくはメトキシ基である。
2として好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
3として好ましくは、水素原子または電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、アルキル基、アルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。最も好ましくはn−プロポキシ基、エトキシ基、メトキシ基である
4として好ましくは、水素原子または電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、水素原子、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、特に好ましくは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基であり、最も好ましくは水素原子、メチル基、メトキシ基である。
5として好ましい基は、R2で挙げた基と同じである。
6、R7、R9およびR10として好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、ハロゲン原子であり、より好ましくは、水素原子、ハロゲン原子であり、更に好ましくは水素原子である。
8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表し、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。
8として好ましくは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数2〜12アリールオキシ基であり、より好ましくは、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基であり、更に好ましくは炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)であり、特に好ましくは、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基である。
式(II)のうちより好ましくは下記式(II−A)である。
Figure 0005016788
(式(II−A)中、R11はアルキル基を表す。R1、R2、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子、または置換基を表す。R8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表し、R11はアルキル基を表す。)
式(II−A)中、R1、R2、R4、R5、R6、R7、R8、R9およびR10はそれぞれ式(II)におけるそれらと同義であり、また好ましい範囲も同様である。
式(II−A)中、R11はアルキル基を表し、R11で表されるアルキル基は直鎖でも分岐があってもよく、また更に置換基を有してもよいが、好ましくは炭素数1〜12のアルキル基、より好ましくは炭素数1〜8アルキル基、更に好ましくは炭素数1〜6アルキル基、特に好ましくは炭素数1〜4のアルキル基(例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基などが挙げられる)を表す。
式(II)のうちより好ましくは下記式(II−B)である。
Figure 0005016788
(式(II−B)中、R1、R2、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子、または置換基を表す。R11は炭素数1〜12のアルキル基を表す。Xは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表す。)
式(II−B)中、R1、R2、R4、R5、R6、R7、R9、R10は式(II)におけるそれらと同義であり、また好ましい範囲も同様である。
式(II−B)中、R11は式(II−A)におけるそれらと同義であり、また好ましい範囲も同様である。
式(II−B)中、Xは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表す。
1、R2、R4、R5がすべて水素原子の場合にはXとして好ましくはアルキル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基であり、より好ましくは、アリール基、アルコキシ基、アリールオキシ基であり、更に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)であり、特に好ましくは、メトキシ基、メトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基である。
1、R2、R4、R5のうち少なくとも1つが置換基の場合にはXとして好ましくはアルキニル基、アリール基、アルコキシカルボニル基、シアノ基、であり、より好ましくはアリール基(好ましくは炭素数6〜12)、シアノ基、アルコキシカルボニル基(好ましくは炭素数2〜12)であり、更に好ましくはアリール基(好ましくは炭素数6〜12のアリール基であり、より好ましくはフェニル基、p−シアノフェニル基、p−メトキシフェニルである。)、アルコキシカルボニル基(好ましくは炭素2〜12、より好ましくは炭素数2〜6、更に好ましくは炭素数2〜4、特に好ましくはメトキシカルボニル、エトキシカルボニル、n−プロポキシカルボニルである。)、シアノ基であり、特に好ましくは、フェニル基、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、シアノ基である。
式(II)のうち更に好ましくは下記式(II−C)である。
Figure 0005016788
式(II−C)中、R1、R2、R4、R5、R11およびXは式(II−B)におけるそれらと同義であり、また好ましい範囲も同様である。)
式(II)で表される化合物の中で好ましいのは下記式(II−D)で表される化合物である。
Figure 0005016788
(式(II−D)中、R2、R4およびR5は式(II−C)におけるそれらと同義であり、また好ましい範囲も同様である。R21、R22はそれぞれ独立に炭素数1〜4のアルキル基である。X1は炭素数6〜12のアリール基、炭素数2〜12のアルコキシカルボニル基、又はシアノ基である。)
21は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基である。
22は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
1は炭素数6〜12のアリール基、炭素2〜12アルコキシカルボニル基、又はシアノ基であり、好ましくは炭素数6〜10のアリール基、炭素数2〜6アルコキシカルボニル基、シアノ基であり、より好ましくはフェニル基、p−シアノフェニル基、p−メトキシフェニル基、メトキシカルボニル、エトキシカルボニル、n−プロポキシカルボニル、シアノ基であり、更に好ましくは、フェニル基、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、シアノ基である。
式(II)のうち最も好ましくは下記式(II−E)である。
Figure 0005016788
(式(II−E)中、R2、R4およびR5は式(II−D)におけるそれらと同義であり、また好ましい範囲も同様だが、いずれか1つは−OR13で表される基である(R13は炭素数1〜4のアルキル基である。)。R21、R22、X1は式(II−D)におけるそれらと同義であり、また好ましい範囲も同様である。)
式(II−E)中、R2、R4およびR5は式(II−D)におけるそれらと同義であり、また好ましい範囲も同様だが、いずれか1つは−OR13で表される基であり(R13は炭素数1〜4のアルキル基である。)、好ましくはR4、R5が−OR13で表される基であり、より好ましくはR4が−OR13で表される基である。
13は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
以下に前述の置換基Tについて説明する。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、
置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、
スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、アルキルスルホニル基又はアリールスルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、アルキルスルフィニル基又はアリールスルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、
ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。
また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
以下に式(II)で表される化合物に関して具体例をあげて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
本発明に使用する式(II)で表される化合物は置換安息香酸とフェノール誘導体の一般的なエステル反応によって合成でき、エステル結合形成反応であればどのような反応を用いてもよい。例えば、置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法、縮合剤あるいは触媒を用いて置換安息香酸とフェノール誘導体を脱水縮合する方法などがあげられる。
製造プロセス等を考慮すると置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法が好ましい。
反応溶媒として炭化水素系溶媒(好ましくはトルエン、キシレンが挙げられる。)、エーテル系溶媒(好ましくはジメチルエーテル、テトラヒドロフラン、ジオキサンなどが挙げられる)、ケトン系溶媒、エステル系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドなどを用いることができる。これらの溶媒は単独でも数種を混合して用いてもよく、反応溶媒として好ましくはトルエン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドである。
反応温度としては、好ましくは0〜150℃、より好ましくは0〜100℃、更に好ましくは0〜90℃であり、特に好ましくは20℃〜90℃である。
本反応には塩基を用いないのが好ましく、塩基を用いる場合には有機塩基、無機塩基のどちらでもよく、好ましくは有機塩基であり、ピリジン、3級アルキルアミン(好ましくはトリエチルアミン、エチルジイソプルピルアミンなどが挙げられる)である。
以下に本発明の化合物の合成法に関して具体的に記載するが、本発明は以下の具体例によって何ら限定されることはない。
[合成例1:例示化合物A−1の合成]
3,4,5−トリメトキシ安息香酸24.6g(0.116モル)、トルエン100mL、N−N−ジメチルホルムアミド1mLを60℃に加熱した後、塩化チオニル15.2g(0.127モル)をゆっくりと滴下し、2時間60℃で加熱した。その後、あらかじめ4−シアノフェノール15.1g(0.127モル)をアセトニトリル50mLに溶解させた液をゆっくりと滴下し、滴下終了後、60℃で3時間加熱撹拌した。反応液を室温まで冷却した後、酢酸エチル、水で分液操作を行い、得られた有機相を硫酸ナトリウムで水分を除去した後、溶媒を減圧留去し、得られた固形物に、アセトニトリル100mLを加え、再結晶操作を行った。アセトニトリル溶液を室温まで冷却し、析出した結晶をろ過回収し、白色の結晶として目的化合物を11.0g(収率11%)得た。なお、化合物の同定は1H−NMR(400MHz)およびマススペクトルで行った。
1H−NMR(CDCl3)δ3.50(br,9H),7.37(d,2H),7.45(s,2H),7.77(s,2H)
マススペクトル:m/z 314(M+H)+
得られた化合物の融点は172〜173℃であった。
[合成例2:例示化合物A−2の合成]
2,4,5−トリメトキシ安息香酸106.1g(0.5モル)、トルエン340mL、ジメチルホルムアミド1mLを60℃に加熱した後、塩化チオニル65.4g(0.55モル)をゆっくりと滴下し、2時間65〜70℃で加熱した。その後、あらかじめ4−シアノフェノール71.5g(0.6モル)をアセトニトリル150mLに溶解させた液をゆっくりと滴下し、滴下終了後、80〜85℃で2時間加熱撹拌した。反応液を室温まで冷却した後、酢酸エチル(1L)、水で分液操作を行い、得られた有機相を硫酸マグネシウムで水分を除去した後、約500mLの溶媒を減圧留去し、メタノール1Lを加え、再結晶操作を行った。析出した結晶をろ過回収し、白色の結晶として目的化合物を125.4g(収率80%)得た。なお、化合物の同定は1H−NMR(400MHz)およびマススペクトルで行った。
1H−NMR(CDCl3)δ3.91(s,3H),3.93(s,3H),3.98(s,3H),6.59(s,1H),7.35(d,2H),7.58(s,1H),7.74(d,2H)
マススペクトル:m/z 314(M+H)+
得られた化合物の融点は116℃であった。
[合成例3:例示化合物A−3の合成]
2,3,4−トリメトキシ安息香酸10.1g(47.5ミリモル)、トルエン40mL、ジメチルホルムアミド0.5mLを80℃に加熱した後、塩化チオニル6.22g(52.3ミリモル)をゆっくりと滴下し、80℃で2時間加熱撹拌した。その後、あらかじめ4−シアノフェノール6.2g(52.3ミリモル)をアセトニトリル20mLに溶解させた液をゆっくりと滴下し、滴下終了後、80〜85℃で2時間加熱撹拌した。反応液を室温まで冷却した後、酢酸エチル、水で分液操作を行い、得られた有機相を硫酸ナトリウムで水分を除去した後、溶媒を減圧留去し、メタノール50mLを加え、再結晶操作を行った。析出した結晶をろ過回収し、白色の結晶として目的化合物を11.9g(収率80%)得た。なお、化合物の同定は1H−NMR(400MHz)およびマススペクトルで行った。
1H−NMR(CDCl3):δ3.50(br,9H),7.37(d,2H),7.45(s,2H),7.77(s,2H)
マススペクトル:m/z 314(M+H)+
得られた化合物の融点は102〜103℃であった。
[合成例4:例示化合物A−4の合成]
2,4,6−トリメトキシ安息香酸25.0g(118ミリモル)、トルエン100mL、ジメチルホルムアミド1mLを60℃に加熱した後、塩化チオニル15.4g(129ミリモル)をゆっくりと滴下し、60℃で2時間加熱撹拌した。その後、あらかじめ4−シアノフェノール15.4g(129ミリモル)をアセトニトリル50mLに溶解させた液をゆっくりと滴下し、滴下終了後、80〜85℃で4.5時間加熱撹拌した。反応液を室温まで冷却した後、酢酸エチル、水で分液操作を行い、得られた有機相を硫酸ナトリウムで水分を除去した後、溶媒を減圧留去し、メタノール500mL、アセトニトリル100mLを加え、再結晶操作を行った。析出した結晶をろ過回収し、白色の結晶として目的化合物を10.0g(収率27%)得た。なお、化合物の同定はマススペクトルで行った。
マススペクトル:m/z 314(M+H)+
得られた化合物の融点は172〜173℃であった。
[合成例5:例示化合物A−5の合成]
2,3−ジメトキシ安息香酸15.0g(82.3ミリモル)、トルエン60mL、ジメチルホルムアミド0.5mLを60℃に加熱した後、塩化チオニル10.7(90.5ミリモル)をゆっくりと滴下し、60℃で2時間加熱撹拌した。その後、あらかじめ4−シアノフェノール10.8g(90.5ミリモル)をアセトニトリル30mLに溶解させた液をゆっくりと滴下し、滴下終了後、70〜80℃で7時間加熱撹拌した。反応液を室温まで冷却した後、イソプロピルアルコール90mLを加え、析出した結晶をろ過回収し、白色の結晶として目的化合物を12.3g(収率53%)得た。なお、化合物の同定はマススペクトルで行った。
マススペクトル:m/z 284(M+H)+
得られた化合物の融点は104℃であった。
[合成例6:例示化合物A−6の合成]
A−5における2,3−ジメトキシ安息香酸を2,4−ジメトキシ安息香酸に変更する以外は同様の方法で合成した。また化合物の同定はマススペクトルで行った。
マススペクトル:m/z 284(M+H)+
得られた化合物の融点は134〜136℃であった。
[合成例7:例示化合物A−7の合成]
2,5−ジメトキシ安息香酸25.0g(137ミリモル)、トルエン100mL、ジメチルホルムアミド1.0mLを60℃に加熱した後、塩化チオニル18.0(151ミリモル)をゆっくりと滴下し、60℃で2時間加熱撹拌した。その後、あらかじめ4−シアノフェノール18.0g(151ミリモル)をアセトニトリル50mLに溶解させた液をゆっくりと滴下し、滴下終了後、70〜80℃で7.5時間加熱撹拌した。反応液を室温まで冷却した後、酢酸エチル、飽和食塩水で分液操作を行い、得られた有機相を硫酸ナトリウムで水分を除去した後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(ヘキサン−酢酸エチル(9/1、V/V))で精製操作を行い、白色の結晶として目的化合物を18.8g(収率48%)得た。また化合物の同定はマススペクトルで行った。
マススペクトル:m/z 284(M+H)+
得られた化合物の融点は79〜80℃であった。
[合成例8:例示化合物A−8の合成]
A−5における2,3−ジメトキシ安息香酸を2,6−ジメトキシ安息香酸に変更する以外は同様の方法で合成した。また化合物の同定はマススペクトルで行った。
マススペクトル:m/z 284(M+H)+
得られた化合物の融点は130〜131℃であった。
[合成例9:例示化合物A−11の合成]
A−2における4−シアノフェノール71.5gを4−クロロフェノール76.9gに変更する以外は同様の方法で目的化合物を得た。また化合物の同定は1H−NMR(400MHz)およびマススペクトルで行った。
1H−NMR(CDCl3)δ3.90(s,3H),3.94(s,3H),3.99(s,3H),6.58(s,1H),7.15(d,2H),7.37(d,2H),7.56(s,1H)
マススペクトル:m/z 323(M+H)+
得られた化合物の融点は127〜129℃であった。
[合成例10:例示化合物A−12の合成]
2,4,5−トリメトキシ安息香酸45.0g(212ミリモル)、トルエン180mL、ジメチルホルムアミド1.8mLを60℃に加熱した後、塩化チオニル27.8g(233ミリモル)をゆっくりと滴下し、60℃で2.5時間加熱撹拌した。その後、あらかじめ4−ヒドロキシ安息香酸メチル35.4g(233ミリモル)をジメチルホルムアミド27mLに溶解させた液をゆっくりと添加し、80℃で3時間加熱撹拌した後、反応液を室温まで冷却し、メタノール270mLを加え、析出した結晶をろ過回収し、白色の結晶として目的化合物を64.5g(収率88%)得た。また化合物の同定は1H−NMR(400MHz)およびマススペクトルにより行った。
1H−NMR(CDCl3)δ3.95(m,9H),3.99(s,3H),6.57(s,1H),7.28(d,2H),7.57(s,1H)8.11(d,2H)
マススペクトル:m/z 347(M+H)+
得られた化合物の融点は121〜123℃であった。
[合成例11:例示化合物A−13の合成]
2,4,5−トリメトキシ安息香酸20.0g(94.3ミリモル)、トルエン100mL、ジメチルホルムアミド1mLを60℃に加熱した後、塩化チオニル12.3g(104ミリモル)をゆっくりと滴下し、60℃で3.5時間加熱撹拌した。その後、あらかじめ4−フェニルフェノール17.7g(104ミリモル)をトルエン150mLに溶解させた液をゆっくりと添加し、80℃で3時間加熱撹拌した後、反応液を室温まで冷却し、メタノール250mLを加え、析出した結晶をろ過回収し、白色の結晶として目的化合物を21.2g(収率62%)得た。また化合物の同定は1H−NMR(400MHz)およびマススペクトルにより行った。
1H−NMR(CDCl3)δ3.93(s,3H),3.96(s,3H),3.99(s,3H),6.59(s,1H),7.26−7.75(m,10H)
マススペクトル:m/z 365(M+H)+
得られた化合物の融点は131−132℃であった。
[合成例12:例示化合物A−14の合成]
2,4,5−トリメトキシ安息香酸12.9g(61ミリモル)、トルエン50mL、ジメチルホルムアミド0.6mLを60℃に加熱した後、塩化チオニル8.0g(67ミリモル)をゆっくりと滴下し、60℃で3.5時間加熱撹拌した。その後、あらかじめ4−フェニルフェノール17.7g(104ミリモル)をアセトニトリル25mLに溶解させた液をゆっくりと添加し、80℃で3時間加熱撹拌した後、反応液を室温まで冷却し、メタノール100mLを加え、析出した結晶をろ過回収し、白色の結晶として目的化合物を21.6g(収率93%)得た。なお、化合物の同定はマススペクトルにより行った。
マススペクトル:m/z 381(M+H)+
得られた化合物の融点は91〜92℃であった。
[合成例13:例示化合物A−15の合成]
A−2における4−シアノフェノール71.5gをフェノール56.4gに変更する以外は同様の方法で目的化合物を得た。なお、化合物の同定は1H−NMRおよびマススペクトルにより行った。
1H−NMR(CDCl3)δ3.91(s,3H),3.93(s,3H),3.99(s,3H),6.58(s,1H),7.19−7.27(m,3H),7.42(m,2H),7.58(s,1H)
マススペクトル:m/z 365(M+H)+
得られた化合物の融点は105〜108℃であった。
マススペクトル:m/z 289(M+H)+
[合成例14:例示化合物A−16の合成]
A−2における4−シアノフェノール71.5gを4−メトキシフェノール74.4gに変更する以外は同様の方法で目的化合物を得ることができる。なお、化合物の同定は1H−NMRおよびマススペクトルにより行った。
1H−NMR(CDCl3)δ3.84(s,3H),3.92(s,3H),3.93(s,3H),3.99(s,3H),6.58(s,1H),6.92(d,2H),7.12(d,2H),7.42(m,2H),7.58(s,1H)
マススペクトル:m/z 319(M+H)+
得られた化合物の融点は102〜103℃であった。
[合成例15:例示化合物A−17の合成]
A−2における4−シアノフェノール71.5gを4−エチルフェノール73.3gに変更する以外は同様の方法で目的化合物を得た。なお、化合物の同定は1H−NMR(400MHz)およびマススペクトルにより行った。
マススペクトル:m/z 317(M+H)+
得られた化合物の融点は70〜71℃であった。
[合成例16:例示化合物A−24の合成]
4−エトキシ安息香酸27.3g(164ミリモル)、トルエン108mL、ジメチルホルムアミド1mLを60℃に加熱した後、塩化チオニル21.5g(181ミリモル)をゆっくりと滴下し、60℃で2時間加熱撹拌した。その後、あらかじめ4−エトキシフェノール25.0g(181ミリモル)をアセトニトリル50mLに溶解させた溶液をゆっくり添加し、80℃で4時間加熱撹拌した後、反応液を室温まで冷却した後、メタノール100mLを加え、析出した結晶をろ過回収し、白色の結晶として目的化合物を30.6g(収率65%)得た。なお、化合物の同定は1H−NMR(400MHz)およびマススペクトルにより行った。
1H−NMR(CDCl3)δ1.48−1.59(m,6H),4.05(q,2H),4.10(q,2H),6.89−7.00(m,4H),7.10(d,2H),8.12(d,2H)
マススペクトル:m/z 287(M+H)+
得られた化合物の融点は113〜114℃であった。
[合成例17:例示化合物A−25の合成]
4−エトキシ安息香酸24.7g(149ミリモル)、トルエン100mL、ジメチルホルムアミド1mLを60℃に加熱した後、塩化チオニル19.5g(164ミリモル)をゆっくりと滴下し、60℃で2時間加熱撹拌した。その後、あらかじめ4−プロポキシフェノール25.0g(165ミリモル)をアセトニトリル50mLに溶解させた溶液をゆっくり添加し、80℃で4時間加熱撹拌した後、反応液を室温まで冷却した後、メタノール100mLを加え、析出した結晶をろ過回収し、得られた固体にメタノール100mLを加え再結晶操作を行い、得られた結晶をろ過回収し、白色の結晶として目的化合物を33.9g(収率76%)得た。なお、化合物の同定は1H−NMR(400MHz)およびマススペクトルにより行った。
1H−NMR(CDCl3)δ1.04(t,3H),1.45(t,3H),1.82(q,2H),3.93(q,2H),4.04(q,2H),6.89−7.00(m,4H),7.10(d,2H),8.12(d,2H)
マススペクトル:m/z 301(M+H)+
得られた化合物の融点は107℃であった。
[合成例18:例示化合物A−27の合成]
A−24の合成法における4−エトキシ安息香酸27.3gを4−プロポキシ安息香酸29.5gに変更する以外は同様の方法で合成した。なお、化合物の同定はマススペクトルにより行った。
マススペクトル:m/z 301(M+H)+
得られた化合物の融点は88〜89℃であった。
[合成例19:例示化合物A−28の合成]
A−25の合成法における4−エトキシ安息香酸24.7gを4−プロポキシ安息香酸26.8gに変更する以外は同様の方法で合成した。なお、化合物の同定はマススペクトルにより行った。
マススペクトル:m/z 315(M+H)+
得られた化合物の融点は92℃であった。
[合成例20:例示化合物A−40の合成]
2,4−ジメトキシ安息香酸20.0g(109ミリモル)、トルエン80mL、ジメチルホルムアミド0.8mLを60℃に加熱した後、塩化チオニル14.4g(121ミリモル)をゆっくりと滴下し、60℃で3.5時間加熱撹拌した。その後、あらかじめ4−フェニルフェノール20.5g(121ミリモル)をジメチルホルムアミド50mLに溶解させた溶液をゆっくり添加し、80℃で6時間加熱撹拌した後、反応液を室温まで冷却した後、メタノール100mLを加え、析出した結晶をろ過回収し、白色の結晶として目的化合物を31.7g(収率86%)得た。なお、化合物の同定はマススペクトルにより行った。
マススペクトル:m/z 335(M+H)+
得られた化合物の融点は161〜162℃であった。
[合成例21:例示化合物A−42の合成]
2,4−ジメトキシ安息香酸30.0g(165ミリモル)、トルエン120mL、ジメチルホルムアミド1.2mLを60℃に加熱した後、塩化チオニル21.6g(181ミリモル)をゆっくりと滴下し、60℃で2時間加熱撹拌した。その後、あらかじめ4−フヒドロキシ安息香酸メチル27.6g(181ミリモル)をジメチルホルムアミド40mLに溶解させた溶液をゆっくり添加し、80℃で6時間加熱撹拌した後、反応液を室温まで冷却した後、メタノール140mLを加え、析出した結晶をろ過回収し、白色の結晶として目的化合物を24.4g(収率47%)得た。なお、化合物の同定は1H−NMR(400MHz)およびマススペクトルにより行った。
1H−NMR(CDCl3)δ3.92(m,9H),6.56(m,2H),7.27(m,2H),8.09(m,3H)
マススペクトル:m/z 317(M+H)+
得られた化合物の融点は122〜123℃であった。
本発明のレターデーション上昇剤としては、下記式(III)で表される化合物も好ましい。以下に式(III)の化合物に関して詳細に説明する
Figure 0005016788
(式中、Ar1およびAr3はそれぞれ独立にアリール基または一価芳香族ヘテロ環基を表し、Ar2はアリーレン基または二価芳香族へテロ環基を表し、L1およびL2はそれぞれ独立に単結合または2価の連結基を表し、nは3以上の整数を表し、また、それぞれAr2とL2は同一であっても異なっていてもよい。)
式(III)中、Ar1およびAr3はそれぞれ独立にアリール基または一価芳香族へテロ環基を表し、Ar2はアリーレン基または二価芳香族へテロ環基を表し、繰り返し単位中のAr2は、すべて同一であってもそれぞれ異なっていてもよい。
式(III)中、Ar1またはAr3で表されるアリール基として好ましくは炭素数6〜30のアリール基であり、単環であってもよいし、さらに他の環と縮合環を形成してもよい。また、可能な場合には置換基を有してもよく、置換基としては後述の置換基T’が適用できる。Ar1又はAr3で表されるアリール基としてより好ましくは炭素数6〜20、特に好ましくは炭素数6〜14であり、例えばフェニル基、2,4−ジアルコキシフェニル基、2,4,5−トリアルコキシフェニル基、ナフチル基などが挙げられる。
式(III)中、Ar2で表されるアリーレン基として好ましくは炭素数6〜30のアリーレン基であり、単環であってもよいし、さらに他の環と縮合環を形成してもよい。また、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。Ar2で表されるアリーレン基としてより好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニレン基、メチルフェニレン基、メトキシフェニレン基、ナフチレン基などが挙げられる。
式(III)中、Ar1またはAr3で表される一価芳香族ヘテロ環基は、酸素原子、窒素原子または硫黄原子のうち少なくとも1つを含む芳香族ヘテロ環から水素原子を一個取り去った一価の基であることが好ましく、より好ましくは5ないし6員環の酸素原子、窒素原子または硫黄原子のうち少なくとも1つを含む一価芳香族ヘテロ環基である。また、可能な場合にはさらに置換基を有してもよい。置換基としては後述の置換基T’が適用できる。
式(III)中、Ar2で表される二価芳香族ヘテロ環基は、上記Ar1またはAr3で示した一価芳香族ヘテロ環基の水素原子を一個取り去った二価の基であることが好ましい。
式(III)中、Ar1、Ar2またはAr3で表される芳香族ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデン、ピロロトリアゾール、ピラゾロトリアゾールなどが挙げられる。その中でも芳香族ヘテロ環として好ましいものは、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾールである。
式(III)中、L1、L2はそれぞれ独立に単結合、または2価の連結基を表す。L1及びL2は、同じであってもよく異なっていてもよい。また、繰り返し単位中のL2は、すべて同一であっても異なっていてもよい。
二価の連結基として好ましいものは、−O−、−NR―(Rは水素原子または置換基を有してもよいアルキル基またはアリール基を表す)、−CO−、−SO2−、−S−、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基およびこれらの二価の基を2つ以上組み合わせて得られる基であり、その内より好ましいものは−O−、−NR−、−CO−、−SO2NR−、−NRSO2−、−CONR−、−NRCO−、−COO−、−OCO−、−OCOO−、−C(CH32−、−C(CF32−、および、アルキニレン基である。Rは好ましくは水素原子、アルキル基、又は、アリール基を表し、より好ましくは水素原子である。
本発明の式(III)で表される化合物において、Ar2はL1およびL2と結合するが、Ar2がフェニレン基である場合、L1−Ar2−L2、およびL2−Ar2−L2は互いにパラ位(1,4−位)の関係にあることが最も好ましい。
式(III)中、nは3以上の整数を表し、好ましくは3〜7であり、より好ましくは3〜6であり、さらに好ましくは3〜5である。
前記式(III)の化合物のうち、下記式(III−A)で表される化合物が好ましく用いることができる。
Figure 0005016788
(式中、R2、R4、R5はそれぞれ独立に水素原子または置換基を表し、R11、R12はそれぞれ独立に水素原子またはアルキル基を表し、L2、L3はそれぞれ独立に単結合または二価の連結基を表し、Ar2はアリーレン基または二価芳香族へテロ環基を表し、Ar3はアリール基または一価芳香族へテロ環基を表し、nは3以上の整数を表し、また、n種存在するL2、Ar2はそれぞれ同一であっても異なっていてもよい。ただし、R11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。)
式(III−A)中、Ar2、Ar3及びL2は、式(III)におけるそれらと同義であり、また好ましい範囲も同様である。また、L3は、単結合または二価の連結基を表し、式(III)におけるL1及びL2の単結合または二価の連結基と同義であり、好ましい範囲も同様である。
式(III−A)中、R2、R4、R5はそれぞれ独立に水素原子または置換基を表し、置換基は後述の置換基Tが適用できる。
2として好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基であり、最も好ましくは水素原子である。
4として好ましくは、水素原子または電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、水素原子、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、特に好ましくは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基であり、最も好ましくは水素原子、メトキシ基である。
5として好ましくは、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。最も好ましくは水素原子である。
11、R12はそれぞれ独立に水素原子またはアルキル基を表し、R11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。ここでヘテロ原子とは水素原子、炭素原子以外の原子のことを表し、酸素原子、窒素原子、硫黄原子、リン、ケイ素、ハロゲン原子(F、Cl、Br、I)、ホウ素などが挙げられる。
11、R12で表されるアルキル基としては、直鎖、分岐、または環状であって、置換もしくは無置換のアルキル基を表し、好ましくは置換もしくは無置換の炭素数1から30のアルキル基、炭素数3から30の置換もしくは無置換のシクロアルキル基、炭素数5から30の置換もしくは無置換のビシクロアルキル基(つまり、炭素数5から30のビシクロアルカンから水素原子を一個取り去った一価の基。)、更に環構造が多いトリシクロ構造などが挙げられる。
11、R12で表されるアルキル基の好ましい例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、iso−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、tert−オクチル基、2−エチルヘキシル基、n−ノニル基、1,1,3−トリメチルヘキシル基、n−デシル基、2−ヘキシルデシル基、シクロヘキシル基、シクロヘプチル基、2−ヘキセニル基、オレイル基、リノレイル基、リノレニル基等を挙げることができる。また、シクロアルキル基としては、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基などが挙げられ、ビシクロアルキル基としては、ビシクロ[1,2,2]ヘプタン−2−イル基、ビシクロ[2,2,2]オクタン−3−イル基などを挙げることができる。
11として更に好ましくは水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくはメチル基である。
12として特に好ましくは、炭素原子2個以上を含むアルキル基であり、より好ましくは炭素原子3個以上を含むアルキル基である。分岐または環状構造をもったものは特に好ましく用いられる。
以下にR12で表されるアルキル基の具体例を挙げて説明するが、本発明は以下の具体例によって何ら限定されることはない。
Figure 0005016788
上記例中、#は酸素原子側を意味する。
式(III−A)中、nは3以上の整数を表し、好ましくは3〜7であり、より好ましくは3〜6であり、さらに好ましくは3〜5である。
前記式(III−A)の化合物のうち、下記式(III−B)及び(III−C)で表される化合物はより好ましく用いることができる。
Figure 0005016788
(式中、R2、R5はそれぞれ独立に水素原子または置換基を表し、R11、R12はそれぞれ独立に水素原子またはアルキル基を表し、L2、L3はそれぞれ独立に単結合または二価の連結基を表し、Ar2はアリーレン基または二価芳香族へテロ環基を表し、Ar3はアリール基または一価芳香族へテロ環基を表し、nは3以上の整数を表し、また、n種存在するL2、Ar2はそれぞれ同一であっても異なっていてもよい。ただしR11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。)
式(III−B)中、R2、R5、R11、R12、nは式(III−A)におけるそれらと同義であり、また好ましい範囲も同様である。また、L2、L3、Ar2、Ar3は式(III−A)におけるそれらと同義であり、好ましい範囲も同様である。
Figure 0005016788
(式中、R2、R5はそれぞれ独立に水素原子または置換基を表し、R11、R12、R13はそれぞれ独立に水素原子またはアルキル基を表し、L2、L3はそれぞれ独立に単結合または二価の連結基を表す。Ar2はアリーレン基または二価芳香族へテロ環基を表し、Ar3はアリール基または一価芳香族へテロ環基を表し、nは3以上の整数を表し、また、n種存在するL2、Ar1はそれぞれ同一であっても異なっていてもよい。ただしR11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。)
式(III−C)中、R2、R5、R11、R12、nは式(III−A)におけるそれらと同義であり、また好ましい範囲も同様である。また、L2、L3、Ar2、Ar3は式(III−A)におけるそれらと同義であり、好ましい範囲も同様である。
13は水素原子またはアルキル基を表し、アルキル基としてはR11、R12の好ましい例として示したアルキル基が好ましく用いられる。また好ましくは、水素原子または炭素数1〜4のアルキル基を表し、より好ましくは水素原子または炭素数1〜3のアルキル基であり、さらに好ましくはメチル基である。R11とR13は同じであっても異なっていてもよいが、ともにメチル基であることが特に好ましい。
また、前記式(III)の化合物のうち、下記式(IV)で表される化合物はさらに好ましく用いることができる。
Figure 0005016788
(式中、R11、R12、R13、R14、R15及びR16はそれぞれ独立に水素原子またはアルキル基を表し、R21、R22、R23及びR24はそれぞれ独立に水素原子または置換基を表し、Ar4はアリーレン基または二価芳香族ヘテロ環基を表し、L3およびL4はそれぞれ独立に単結合または2価の連結基を表し、nは3以上の整数を表し、また、それぞれAr4とL4は同一であっても異なっていても良い。)
式(IV)中、R11、R12及びR13は式(III−C)におけるそれらと同義であり、R14、R15及びR16は上記R11、R12及びR13とそれぞれ同義であり、また好ましい範囲も同様である。R21、R22、R23及びR24は、式(III−A)におけるR2及びR5と同義であり、好ましい範囲も同様である。L3は式(III−C)におけるL3と同義であり、好ましい範囲も同様である。L4、Ar4及びnは式(III)におけるL2、Ar2及びnと同義であり、また好ましい範囲も同様である。
また、前記式(IV)の化合物のうち、下記式(V)で表される化合物もさらに好ましく用いることができる。
Figure 0005016788
(式(V)中、R21、R22はそれぞれ独立に水素原子または置換基を表し、R11、R12はそれぞれ独立に水素原子またはアルキル基を表し、L3、L4はそれぞれ独立に単結合または二価の連結基を表し、Ar4はアリーレン基または二価芳香族ヘテロ環基を表し、nは3以上の整数を表し、また、それぞれL4、Ar4は同一であっても異なっていてもよい。ただし、R11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。)
式(V)中、R11、R12、R21、R22、L3、L4、Ar4、nは式(IV)におけるそれらと同義であり、また好ましい範囲も同様である。ただし、R11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。
また、前記式(IV)の化合物のうち、下記式(VI)で表される化合物は特に好ましく用いることができる。
Figure 0005016788
(式(VI)中、R21、R22はそれぞれ独立に水素原子または置換基を表し、R11、R12及びR13はそれぞれ独立に水素原子またはアルキル基を表し、L3、L4はそれぞれ独立に単結合または二価の連結基を表し、Ar4はアリーレン基または二価芳香族ヘテロ環基を表し、nは3以上の整数を表し、また、それぞれL4、Ar4は同一であっても異なっていてもよい。ただし、R11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。)
式(VI)中、R11、R12、R13、R21、R22、L3、L4、Ar4、nは式(IV)におけるそれらと同義であり、また好ましい範囲も同様である。ただし、R11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。
以下に前述の式(III)〜式(VI)における置換基T’について説明する。
置換基T’として好ましくはハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数1〜30のアルキル基、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、t−ブチル基、n−オクチル基、2−エチルヘキシル基)、シクロアルキル基(好ましくは、炭素数3〜30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基)、ビシクロアルキル基(好ましくは、炭素数5〜30の置換または無置換のビシクロアルキル基、つまり、炭素数5〜30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン−2−イル、ビシクロ[2,2,2]オクタン−3−イル)、アルケニル基(好ましくは炭素数2〜30の置換または無置換のアルケニル基、例えば、ビニル基、アリル基)、シクロアルケニル基(好ましくは、炭素数3〜30の置換または無置換のシクロアルケニル基、つまり、炭素数3〜30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル)、ビシクロアルケニル基(置換または無置換のビシクロアルケニル基、好ましくは、炭素数5〜30の置換または無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2,2,1]ヘプト−2−エン−1−イル、ビシクロ[2,2,2]オクト−2−エン−4−イル)、アルキニル基(好ましくは、炭素数2〜30の置換または無置換のアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(好ましくは炭素数6〜30の置換または無置換のアリール基、例えばフェニル基、p−トリル基、ナフチル基)、ヘテロ環基(好ましくは5または6員の置換または無置換の、芳香族または非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、さらに好ましくは、炭素数3〜30の5または6員の芳香族のヘテロ環基である。例えば、2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基)、
シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素数1〜30の置換または無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基)、アリールオキシ基(好ましくは、炭素数6〜30の置換または無置換のアリールオキシ基、例えば、フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基)、シリルオキシ基(好ましくは、炭素数3〜20のシリルオキシ基、例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基)、ヘテロ環オキシ基(好ましくは、炭素数2〜30の置換または無置換のヘテロ環オキシ基、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基)、アシルオキシ基(好ましくはホルミルオキシ基、炭素数2〜30の置換または無置換のアルキルカルボニルオキシ基、炭素数6〜30の置換または無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基)、カルバモイルオキシ基(好ましくは、炭素数1〜30の置換または無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基)、アルコキシカルボニルオキシ基(好ましくは、炭素数2〜30の置換または無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基)、アリールオキシカルボニルオキシ基(好ましくは、炭素数7〜30の置換または無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基)、
アミノ基(好ましくは、アミノ基、炭素数1〜30の置換または無置換のアルキルアミノ基、炭素数6〜30の置換または無置換のアニリノ基、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基)、アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1〜30の置換または無置換のアルキルカルボニルアミノ基、炭素数6〜30の置換または無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基)、アミノカルボニルアミノ基(好ましくは、炭素数1〜30の置換または無置換のアミノカルボニルアミノ基、例えば、カルバモイルアミノ基、N,N−ジメチルアミノカルボニルアミノ基、N,N−ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30の置換または無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチルーメトキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは、炭素数7〜30の置換または無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基)、スルファモイルアミノ基(好ましくは、炭素数0〜30の置換または無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基)、アルキルおよびアリールスルホニルアミノ基(好ましくは炭素数1〜30の置換または無置換のアルキルスルホニルアミノ、炭素数6〜30の置換または無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基)、
メルカプト基、アルキルチオ基(好ましくは、炭素数1〜30の置換または無置換のアルキルチオ基、例えばメチルチオ基、エチルチオ基、n−ヘキサデシルチオ基)、アリールチオ基(好ましくは炭素数6〜30の置換または無置換のアリールチオ基、例えば、フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基)、ヘテロ環チオ基(好ましくは炭素数2〜30の置換または無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ基、1−フェニルテトラゾール−5−イルチオ基)、スルファモイル基(好ましくは炭素数0〜30の置換または無置換のスルファモイル基、例えば、N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N’フェニルカルバモイル)スルファモイル基)、スルホ基、アルキルおよびアリールスルフィニル基(好ましくは、炭素数1〜30の置換または無置換のアルキルスルフィニル基、6〜30の置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、p−メチルフェニルスルフィニル基)、アルキルおよびアリールスルホニル基(好ましくは、炭素数1〜30の置換または無置換のアルキルスルホニル基、6〜30の置換または無置換のアリールスルホニル基、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、p−メチルフェニルスルホニル基)、
アシル基(好ましくはホルミル基、炭素数2〜30の置換または無置換のアルキルカルボニル基、炭素数7〜30の置換または無置換のアリールカルボニル基、例えば、アセチル基、ピバロイルベンゾイル基)、アリールオキシカルボニル基(好ましくは、炭素数7〜30の置換または無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル基、o−クロロフェノキシカルボニル基、m−ニトロフェノキシカルボニル基、p−tert−ブチルフェノキシカルボニル基)、アルコキシカルボニル基(好ましくは、炭素数2〜30の置換または無置換アルコキシカルボニル基、例えば、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基、n−オクタデシルオキシカルボニル基)、カルバモイル基(好ましくは、炭素数1〜30の置換または無置換のカルバモイル基、例えば、カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基)、
アリールおよびヘテロ環アゾ基(好ましくは炭素数6〜30の置換または無置換のアリールアゾ基、炭素数3〜30の置換または無置換のヘテロ環アゾ基、例えば、フェニルアゾ基、p−クロロフェニルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基)、イミド基(好ましくは、N−スクシンイミド基、N−フタルイミド基)、ホスフィノ基(好ましくは、炭素数2〜30の置換または無置換のホスフィノ基、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基)、ホスフィニル基(好ましくは、炭素数2〜30の置換または無置換のホスフィニル基、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基)、ホスフィニルオキシ基(好ましくは、炭素数2〜30の置換または無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基)、ホスフィニルアミノ基(好ましくは、炭素数2〜30の置換または無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基)、シリル基(好ましくは、炭素数3〜30の置換または無置換のシリル基、例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基)を表す。
上記の置換基の中で、水素原子を有するものは、これを取り去りさらに上記の基で置換されていても良い。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル基、p−メチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基が挙げられる。
また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
式(IV)〜(VI)で表される化合物の好ましいものは、
11がメチル基であり、
21、R22がいずれも水素原子であり、
12が炭素原子3個以上をもつアルキル基であり、
3が、単結合、−O−、−CO−、−NR−、−SO2NR−、−NRSO2−、−CONR−、−NRCO−、−COO−、−OCO−、及び、アルキニレン基(Rは水素原子、置換基を有してもよいアルキル基、アリール基を表す。好ましくはメチル基又は水素原子であり、より好ましくは水素原子である。)であり、
4が−O−または−NR−(Rは水素原子、置換基を有してもよいアルキル基、アリール基を表す。好ましくは水素原子である。)であり、
Ar4がアリーレン基であり、
nが3以上6以下である化合物を挙げることができる。
以下に式(V)又は式(VI)で表される化合物に関して、具体例を挙げて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
式(III)で表される化合物はまず置換安息香酸を合成したのちに、この置換安息香酸とフェノール誘導体もしくはアニリン誘導体の一般的なエステル反応もしくはアミド化反応によって合成でき、エステル結合、アミド結合形成反応であればどのような反応を用いてもよい。例えば、置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノール誘導体もしくはアニリン誘導体と縮合する方法、縮合剤あるいは触媒を用いて置換安息香酸とフェノール誘導体もしくはアニリン誘導体を脱水縮合する方法などが挙げられる。
製造プロセス等を考慮すると置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノール誘導体もしくはアニリン誘導体と縮合する方法が好ましい。
反応溶媒として炭化水素系溶媒(好ましくはトルエン、キシレンが挙げられる。)、エーテル系溶媒(好ましくはジメチルエーテル、テトラヒドロフラン、ジオキサンなどが挙げられる)、ケトン系溶媒、エステル系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドなどを用いることができる。これらの溶媒は単独でも数種を混合して用いてもよく、反応溶媒として好ましくはトルエン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドである。
反応温度としては、好ましくは0〜150℃、より好ましくは0〜100℃、更に好ましくは0〜90℃であり、特に好ましくは20℃〜90℃である。
本反応には塩基を用いないのが好ましく、塩基を用いる場合には有機塩基、無機塩基のどちらでもよく、好ましくは有機塩基であり、ピリジン、3級アルキルアミン(好ましくはトリエチルアミン、エチルジイソプルピルアミンなどが挙げられる)である。
式(VI)で表される化合物は、公知の方法で合成することができ、例えば、n=4である化合物の場合、下記構造:
Figure 0005016788
(式中、Aは水酸基、ハロゲン原子等の反応性基を表し、R11、R12、R13、R21及びR22は先に記載した通りである。)
を有する原料化合物を、水酸基、アミノ基等の反応性部位を有する誘導体との反応に付して得られた中間体:
Figure 0005016788
(式中、A’はカルボキシル基等の反応性基を表し、R11、R12、R13、R21、R22、Ar4及びL3は先に記載した通りである。)
2分子を、
Figure 0005016788
(式中、BおよびB’は水酸基、アミノ基等の反応性基を表し、Ar4およびL4は先に記載したAr4、L4と同義である。)
1分子により連結することによって得ることができる。ただし、本発明の化合物の合成法はこの例に限定されない。
上記式(I)〜(VI)で表される本発明のレターデーション上昇剤のセルロースアシレート100質量部に対する含有量は0.1〜30質量%が好ましく、1〜25質量%がさらに好ましく、3〜15質量%が最も好ましい。
本発明のレターデーション上昇剤は、アルコールやメチレンクロライド、ジオキソランの有機溶媒に溶解してから、セルロースアシレート溶液(ドープ)に添加するか、または直接ドープ組成中に添加してもよい。
式(I)〜(VI)で表されるレターデーション上昇剤は、単独あるいは2種類以上混合して用いることができる。本発明においては、式(I)〜(VI)で表されるレターデーション上昇剤の併用も好ましい。
(紫外線吸収剤)
本発明のセルロースアシレートフィルムは前記レターデーション上昇剤の他にUV吸収剤を含有することが好ましい。
本発明に用いられる紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることが出来るが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10−182621号、特開平8−337574号記載の紫外線吸収剤、特開平6−148430号記載の高分子紫外線吸収剤も好ましく用いられる。本発明のセルロースアシレートフィルムを偏光板の保護フィルムとして用いる場合、紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
本発明に有用なベンゾトリアゾール系紫外線吸収剤の具体例として、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物等を挙げることが出来るが、これらに限定されない。また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326(何れもチバ・スペシャリティ・ケミカルズ社製)を好ましく使用できる。
(有機溶媒)
本発明に使用する有機溶媒は、炭素原子数が3〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステルおよび炭素原子数が1〜6のハロゲン化炭化水素から選ばれる溶媒を含むことが好ましい。
エーテル、ケトンおよびエステルは、環状構造を有していてもよい。エーテル、ケトンおよびエステルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、有機溶媒として用いることができる。有機溶媒は、アルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する有機溶媒の場合、その炭素原子数はいずれかの官能基を有する溶媒の上記した好ましい炭素原子数範囲内であることが好ましい。
炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトールが含まれる。
炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロヘキサノンおよびメチルシクロヘキサノンが含まれる。
炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテートが含まれる。
二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノールが含まれる。
ハロゲン化炭化水素の炭素原子数は、1または2であることが好ましく、1であることが最も好ましい。ハロゲン化炭化水素のハロゲンは、塩素であることが好ましい。ハロゲン化炭化水素の水素原子が、ハロゲンに置換されている割合は、25〜75モル%であることが好ましく、30〜70モル%であることがより好ましく、35〜65モル%であることがさらに好ましく、40〜60モル%であることが最も好ましい。メチレンクロリドが、代表的なハロゲン化炭化水素である。
二種類以上の有機溶媒を混合して用いてもよい。
(劣化防止剤)
セルロースアシレートフィルムには、劣化防止剤(例、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン)を添加してもよい。劣化防止剤については、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。劣化防止剤の添加量は、調製する溶液(ドープ)の0.01〜1質量%であることが好ましく、0.01〜0.2質量%であることがさらに好ましい。添加量が上記範囲であると、劣化防止剤の効果が得られやすく、フィルム表面への劣化防止剤のブリードアウト(滲み出し)が起こりにくい。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)、トリベンジルアミン(TBA)を挙げることができる。
(マット剤)
また、本発明のセルロースアシレートフィルムには、マット剤として微粒子が添加されることが好ましい。
微粒子の種類としては、無機化合物が好ましく、無機化合物の例としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化錫等の微粒子が挙げられる。この中では、珪素原子を含有する化合物であることが好ましく、フィルムのヘイズ(もや、霞み)を小さくすることができる二酸化珪素微粒子が特に好ましい。
二酸化珪素微粒子としては、例えばアエロジル株式会社製のAEROSIL−200、200V、300、R972、R972V、R974、R202、R812,R805、OX50、TT600などがあげられる。
本発明において、最終的に乾燥フィルム中での微粒子の平均粒径は100nm〜500nmであることが好ましく、150nm〜400nmがさらに好ましい。
フィルム中での微粒子の平均粒径は断面写真を撮影し観察することで確認できる。粒径が、上記範囲であるとヘイズ(もや、霞み)の劣化等が起こりにくく、異物による巻状態での故障発生が起こりにくく、巻き取り性の改善効果も充分となる。
微粒子の場合は、1次粒径、溶媒に分散した後の粒径、フィルムに添加された後の粒径が変化する場合が多く、重要であるのは、最終的にフィルム中で微粒子がセルロースエステルと複合し凝集して形成される粒径をコントロールすることである。
溶媒に分散した直後の粒径をA、フィルム中の平均粒径をBとすると、A/B=0.5〜1.0であることが好ましい。この粒径変化は微粒子を分散してから、セルローストリアセテートや他の低分子化合物(疎水化剤等)と溶媒下で混合された場合、凝集が促進されやすいことに起因する。A/Bが上記範囲であると、フィルム中の平均粒径がてきどとなるため、フィルムの透明性が良好となり、フィルム同士がくっつきにくくなるため好ましい。
A/Bを0.5〜1.0にするためには、微粒子分散溶媒の選択や、微粒子の表面の官能基を分散溶媒やセルローストリアセテート、紫外線吸収剤との相溶性を良くすること、あるいはまた微粒子を、セルロースエステルを溶解したドープや紫外線吸収剤を溶解したドープに添加後、せん断を掛けて分散することにより達成できる。ここで用いる分散機は、超音波分散機や、ラインミル、ホモミキサー等が好適に用いられる。
本発明において、上記微粒子の添加量は、フィルム中に対して、平均粒径100〜500nmの微粒子が0.15〜0.5質量%であり、好ましくは0.20〜0.35質量%、さらに好ましくは0.20〜0.30質量%である。
微粒子の分散は、微粒子と溶剤を混合した組成物を、高圧分散装置で処理すると良い。分散に用いる高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだすような高圧分散装置を用いることができる。高圧分散装置で処理することにより、例えば、管径1〜2,000μmの細管中で、装置内部の最大圧力条件が100kgf/cm2以上であることが好ましく、さらに好ましくは200kgf/cm2以上である。またその際、最高到達速度が100m/秒以上に達するもの、伝熱速度が100kcal/時以上に達するものが好ましい。
上記のような高圧分散装置としては、マイクロフルイディックコーポレーション社製の超高圧ホモジナイザー(商品名マイクロフルイダイザー)あるいはナノマイザー社製のナノマイザーがあり、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ社製のホモゲナイザー等が挙げられる。
微粒子は、水溶性溶媒を25〜100質量%含有する溶剤中で分散した後、非水溶性有機溶剤を水溶性溶媒に対して0.5〜1.5倍添加して希釈し、セルロースアシレートを溶剤に溶解したドープと混合する。
そして、該混合液を支持体上に流延し、乾燥して、製膜することによりセルロースアシレートフィルムを得る。
ここで、水溶性溶媒としては、主に低級アルコールが用いられる。低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。
また非水溶性溶媒としては、特に限定されないが、セルロースアシレートの製膜時に用いられる溶剤を用いることが好ましく、水に対する溶解度が30質量%以下のものが用いられ、これには、メチレンクロライド、クロロホルム、酢酸メチル等があげられる。
微粒子は溶媒中で1〜30質量%の濃度で分散される。上記範囲で分散すると、粘度が適当な範囲となるため好ましい。分散液中の微粒子の濃度としては、好ましくは5〜25質量%、さらに好ましくは10〜20質量%である。
[セルロースアシレートフィルムの製造]
本発明のセルロースアシレートフィルムは、ソルベントキャスト法により製造することができる。ソルベントキャスト法では、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造する。
0℃以上の温度(常温または高温)で処理することからなる一般的な方法で、セルロースアシレート溶液を調製することができる。溶液の調製は、通常のソルベントキャスト法におけるドープの調製方法および装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶媒としてハロゲン化炭化水素(特にメチレンクロリド)を用いることが好ましい。
セルロースアシレートの量は、得られる溶液中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。有機溶媒(主溶媒)中には、後述する任意の添加剤を添加しておいてもよい。
溶液は、常温(0〜40℃)でセルロースアシレートと有機溶媒とを撹拌することにより調製することができる。高濃度の溶液は、加圧および加熱条件下で撹拌してもよい。具体的には、セルロースアシレートと有機溶媒とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、かつ溶媒が沸騰しない範囲の温度に加熱しながら撹拌する。
加熱温度は、通常は40℃以上であり、好ましくは60〜200℃であり、さらに好ましくは80〜110℃である。
各成分は予め粗混合してから容器に入れてもよい。また、順次容器に投入してもよい。容器は撹拌できるように構成されている必要がある。窒素ガス等の不活性気体を注入して容器を加圧することができる。また、加熱による溶媒の蒸気圧の上昇を利用してもよい。あるいは、容器を密閉後、各成分を圧力下で添加してもよい。
加熱する場合、容器の外部より加熱することが好ましい。例えば、ジャケットタイプの加熱装置を用いることができる。また、容器の外部にプレートヒーターを設け、配管して液体を循環させることにより容器全体を加熱することもできる。
容器内部に撹拌翼を設けて、これを用いて撹拌することが好ましい。撹拌翼は、容器の壁付近に達する長さのものが好ましい。撹拌翼の末端には、容器の壁の液膜を更新するため、掻取翼を設けることが好ましい。
容器には、圧力計、温度計等の計器類を設置してもよい。容器内で各成分を溶剤中に溶解する。調製したドープは冷却後容器から取り出すか、あるいは、取り出した後、熱交換器等を用いて冷却する。
冷却溶解法により、溶液を調製することもできる。冷却溶解法では、通常の溶解方法では溶解させることが困難な有機溶媒中にもセルロースアシレートを溶解させることができる。なお、通常の溶解方法でセルロースアシレートを溶解できる溶媒であっても、冷却溶解法によると迅速に均一な溶液が得られるとの効果がある。
冷却溶解法では最初に、室温で有機溶媒中にセルロースアシレートを撹拌しながら徐々に添加する。セルロースアシレートの量は、この混合物中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。さらに、混合物中には上記の任意の添加剤を添加しておいてもよい。
次に、混合物を−100〜−10℃(好ましくは−80〜−10℃、さらに好ましくは−50〜−20℃、最も好ましくは−50〜−30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(−75℃)や冷却したジエチレングリコール溶液(−30〜−20℃)中で実施できる。冷却によりセルロースアシレートと有機溶媒の混合物は固化する。
冷却速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。冷却速度は、速いほど好ましいが、10,000℃/秒が理論的な上限であり、1,000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、冷却速度は、冷却を開始する時の温度と最終的な冷却温度との差を、冷却を開始してから最終的な冷却温度に達するまでの時間で割った値である。
さらに、これを0〜200℃(好ましくは0〜150℃、さらに好ましくは0〜120℃、最も好ましくは0〜50℃)に加温すると、有機溶媒中にセルロースアシレートが溶解する。昇温は、室温中に放置するだけでもよく、温浴中で加温してもよい。
加温速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。加温速度は、速いほど好ましいが、10,000℃/秒が理論的な上限であり、1,000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、加温速度は、加温を開始する時の温度と最終的な加温温度との差を加温を開始してから最終的な加温温度に達するまでの時間で割った値である。
以上のようにして、均一な溶液が得られる。なお、溶解が不充分である場合は冷却、加温の操作を繰り返してもよい。溶解が充分であるかどうかは、目視により溶液の外観を観察するだけで判断することができる。
冷却溶解法においては、冷却時の結露による水分混入を避けるため、密閉容器を用いることが望ましい。また、冷却加温操作において、冷却時に加圧し、加温時の減圧すると、溶解時間を短縮することができる。加圧および減圧を実施するためには、耐圧性容器を用いることが望ましい。
なお、セルロースアセテート(酢化度:60.9%、粘度平均重合度:299)を冷却溶解法によりメチルアセテート中に溶解した20質量%の溶液は、示差走査熱量計(DSC)による測定によると、33℃近傍にゾル状態とゲル状態との疑似相転移点が存在し、この温度以下では均一なゲル状態となる。従って、この溶液は疑似相転移温度以上、好ましくはゲル相転移温度プラス10℃程度の温度で保する必要がある。ただし、この疑似相転移温度は、セルロースアセテートの酢化度、粘度平均重合度、溶液濃度や使用する有機溶媒により異なる。
調製したセルロースアシレート溶液(ドープ)から、ソルベントキャスト法によりセルロースアシレートフィルムを製造する。ドープにはレターデーション上昇剤を添加することが好ましい。
ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が18〜35%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ドープは、表面温度が10℃以下のドラムまたはバンド上に流延することが好ましい。
ソルベントキャスト法における乾燥方法については、米国特許2,336,310号、同2,367,603号、同2,492,078号、同2,492,977号、同2,492,978号、同2,607,704号、同2,739,069号、同2,739,070号、英国特許640731号、同736892号の各明細書、特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号、同62−115035号の各公報に記載がある。バンドまたはドラム上での乾燥は空気、窒素などの不活性ガスを送風することにより行なうことができる。
得られたフィルムをドラムまたはバンドから剥ぎ取り、さらに100℃から160℃まで逐次温度を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラムまたはバンドの表面温度においてドープがゲル化することが必要である。
調製したセルロースアシレート溶液(ドープ)を用いて二層以上の流延を行いフィルム化することもできる。この場合、ソルベントキャスト法によりセルロースアシレートフィルムを作製することが好ましい。ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が10〜40%の範囲となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。
二層以上の複数のセルロースアシレート液を流延する場合、複数のセルロースアシレート溶液を流延することが可能で、支持体の進行方向に間隔をおいて設けられた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよい。例えば、特開昭61−158414号、特開平1−122419号、および、特開平11−198285号の各公報に記載の方法を用いることができる。また、2つの流延口からセルロースアシレート溶液を流延することによってもフィルム化することもできる。例えば、特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、および、特開平6−134933号の各公報に記載の方法を用いることができる。また、特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高・低粘度のセルロースアシレート溶液を同時に押し出すセルロースアシレートフィルムの流延方法を用いることもできる。
また、二個の流延口を用いて、第一の流延口により支持体に成形したフィルムを剥ぎ取り、支持体面に接していた側に第二の流延を行うことにより、フィルムを作製することもできる。例えば、特公昭44−20235号公報に記載の方法を挙げることができる。
流延するセルロースアシレート溶液は同一の溶液を用いてもよいし、異なるセルロースアシレート溶液を用いてもよい。複数のセルロースアシレート層に機能をもたせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押し出せばよい。さらに本発明のセルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、紫外線吸収層、偏光層など)と同時に流延することもできる。
従来の単層液では、必要なフィルムの厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押し出すことが必要である。その場合セルロースアシレート溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良となったりして問題となることが多かった。この問題の解決方法として、複数のセルロースアシレート溶液を流延口から流延することにより、高粘度の溶液を同時に支持体上に押し出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。
これら流延から後乾燥までの工程は、空気雰囲気下でもよいし窒素ガスなどの不活性ガス雰囲気下でもよい。本発明に用いるセルロースアシレートフィルムの製造に用いる巻き取り機は一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法などの巻き取り方法で巻き取ることができる。
(延伸)
本発明のセルロースアシレートフィルムの延伸は幅方向のみの一軸延伸、あるいは幅方向及び搬送方向の二軸延伸が好ましい。
幅方向に延伸する方法は、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号などの各公報に記載されている。
フィルムの延伸は、常温または加熱条件下で実施する。加熱温度は、フィルムのガラス転移温度以下であることが好ましい。フィルムは、乾燥中の処理で延伸することができ、特に溶媒が残存する場合は有効である。長手方向の延伸の場合、例えば、フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くするとフィルムは延伸される。幅方向の延伸の場合、フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に広げることによってもフィルムを延伸できる。フィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)もできる。
二軸延伸には、同時二軸延伸法と逐次二軸延伸法があるが、連続製造の観点から逐次二軸延伸方法が好ましく、ドープを流延した後、バンドもしくはドラムよりフィルムを剥ぎ取り、幅方向(長手方法)に延伸した後、長手方向(幅方向)に延伸される。
本発明のセルロースアシレートフィルムの好ましい延伸倍率は、幅方向のみの一軸延伸の場合1.0倍以上1.1倍以下が好ましく、1.02倍以上1.07倍以下がさらに好ましい。
2軸延伸の場合、搬送方向と幅方向の延伸倍率が下記式(F)の関係を満たすことが好ましい。
(F) 0.01<(垂直方向の延伸倍率)−(平行方向の延伸倍率)<0.1
さらに好ましくは0.02<(垂直方向の延伸倍率)−(平行方向の延伸倍率)<0.08である。
これらの範囲に調節することにより、搬送時に発生するセルロースアシレート分子鎖の配向を打ち消すことによりフィルムのReを好ましい範囲に調節することができ、かつ面状を大幅に改良することができる。
[セルロースアシレートフィルムの厚み]
本発明のセルロースアシレートフィルムの厚みは10μm以上90μm以下が好ましく、20μm以上80μm以下がさらに好ましい。
[セルロースアシレートフィルムの弾性率]
セルロースアシレートフィルムの弾性率はフィルム中のセルロースアシレート分子鎖の運動の自由度と相関があり、弾性率が大きいものほどセルロースアシレート分子鎖の運動の自由度が小さく、したがって、フィルム中の、水等の低分子化合物の拡散速度も小さくなる。セルロースアシレートフィルムの弾性率は結晶化度を高くすることにより大きくすることが可能である。逆にセルロースと相溶性の高い化合物を添加すると弾性率は小さくなる。セルロースアシレートフィルムの弾性率は引っ張り試験により求めることができる。
具体的にはサンプルを25℃60%RHの環境下で24時間調湿し、JIS K7127に記載の方法に従って弾性率を測定する。引っ張り試験機は(株)エー・アンド・デイ製テンシロンなどを用いることができる。
本発明のセルロースアシレートフィルムは、幅方向又は長手方向のいずれかの方向における25℃60%RHの弾性率が、250kgf/mm2以上650Kgf/mm2以下が好ましく、350kgf/mm2以上550Kgf/mm2以下がさらに好ましい。弾性率が上記範囲であると、偏光板の寸度安定性やフィルムの加工特性が良好となる。
[セルロースアシレートフィルムの結晶化度]
フィルムの結晶化度は様々な方法により増大させうるが、残留溶剤量の高い状態で高温で処理すると効果的に結晶化を進行させられる。したがって、セルロースアシレートフィルムの製造においては、フィルムをバンドあるいはドラム上から剥ぎ取った直後に高温で乾燥させることが好ましい。乾燥温度は80℃以上200℃以下が好ましく、100℃以上180℃以下がさらに好ましく、120℃以上160℃以下が最も好ましい。
結晶化増大に効果的な残留溶剤量は溶剤種の組み合わせにより異なる。例えば、メチレンクロライド/メタノール混合溶剤系の場合、セルロースアシレートフィルムに対する該混合溶媒の質量比は1%以上70%以下が好ましく、5%以上60%以下がさらに好ましく、10%以上50%以下が最も好ましい。また、メチレンクロライド/メタノール/n−ブタノール混合溶剤系では20%以上90%以下が好ましく、30%以上80%以下がさらに好ましく、30%以上70%以下が最も好ましい。
本発明で定義する結晶化度はX線回折測定で検出された回折ピーク強度からブラッグ角2θ=14°の回折強度を引いた値の和である。
本発明のアシレートフィルムの結晶化度は3,000以上15,000以下が好ましく、4,000以上12,000以下がさらに好ましく、5,000以上9,000以下が最も好ましい。
[セルロースアシレートフィルムの含水率]
セルロースアシレートフィルムの含水率は一定温湿度における平衡含水率を測定することにより評価することができる。平衡含水率は前記温湿度に24時間放置した後、平衡に達した試料の水分量をカールフィッシャー法で測定し、水分量(g)を試料質量(g)で除して算出したものである。
本発明のセルロースアシレートフィルムの25℃80%RHにおける含水率は3.5質量%以下であることが好ましく、3.2質量%以下であることがさらに好ましい。
[透湿度]
透湿度はJIS Z 0208に記載の方法に則り、各試料の透湿度を測定し、面積1m2あたり24時間で蒸発する水分量(g)として算出する。透湿度は偏光板の耐久性と密接に関係したフィルム物性であり、透湿度を下げることにより偏光板耐久性を向上させることができる。本発明のセルロースアシレートフィルムでは、25℃90%RH24hrでの透湿度が80g/m2以上250g/m2以下であることが好ましい。より好ましくは、100g/m2以上200g/m2以下である。
また、フィルム1μあたりの透湿度は1g/m2以上3g/m2以下が好ましく、1.5g/m2以上2.8g/m2以下がさらに好ましい。
透湿度が上記範囲であると、偏光板作成時の乾燥が適度となり、外界からの水の浸入も少なくなるので、偏光板耐久性が良好となる。
透湿度は水の吸着量及びフィルム中の水の拡散速度を小さくすることにより、低下させることができる。疎水化剤を使用するとフィルム中の水の拡散速度を大きくすることなく、水の吸着量を小さくできるため、特に好ましい。また、セルロースアシレートフィルムの結晶化度を上げる方法も、フィルム中の水の拡散速度を大きくすることなく、水の吸着量を小さくでき好ましい。
さらに、透湿度は製膜時に搬送方向及び/あるいは幅方向に延伸し、セルロースアシレートの分子鎖の配向を密にすることによっても低下させることが可能である。延伸は一軸延伸、二軸延伸のどちらでも可能である。
[吸湿膨張係数]
吸湿膨張係数は、一定温度下において相対湿度を変化させた時の試料の長さの変化量を示す。
偏光板耐久試験における額縁状の透過率上昇を防止するために、セルロースアシレートフィルムの吸湿膨張係数は、30×10-5/%RH以下とすることが好ましく、15×10-5/%RH以下とすることが更に好ましく、10×10-5/%RH以下とすることが最も好ましい。また、吸湿膨張係数は小さい方が好ましいが、通常は、1.0×10-5/%RH以上の値である。
吸湿膨張係数の測定方法について以下に示す。セルロースアシレートフィルムから幅5mm、長さ20mmの試料を切り出し、片方の端を固定して25℃、20%RH(R0)の雰囲気下にぶら下げる。他方の端に0.5gの重りをぶら下げて、10分間放置し長さ(L0)を測定する。次に、温度は25℃のまま、湿度を80%RH(R1)にして、長さ(L1)を測定する。吸湿膨張係数は下式により算出する。測定は同一試料につき10サンプル行い、平均値を採用する。
吸湿膨張係数[/%RH]={(L1−L0)/L0}/(R1−R0)
上記吸湿による寸度変化を小さくするには、製膜時の残留溶剤量を低くし、ポリマーフィルム中の自由体積を小さくすることが好ましい。
残留溶剤を減らすための一般的手法は、高温かつ長時間で乾燥することであるが、あまり長時間であると、当然のことながら生産性が落ちる。従ってセルロースアシレートフィルムに対する残留溶剤の量は、0.01〜1質量%の範囲にあることが好ましく、0.02〜0.07質量%の範囲にあることがさらに好ましく、0.03〜0.05質量%の範囲にあることが最も好ましい。
上記残留溶剤量を制御することにより、光学補償能を有する偏光板を安価に高い生産性で製造することができる。
残留溶剤量は、一定量の試料をクロロフォルムに溶解し、ガスクロマトグラフ(GC18A、島津製作所(株)製)を用いて測定する。
上記のような溶液流延法では、ポリマー材料を有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造する。溶液流延法での乾燥は、ドラム(またはバンド)面での乾燥と、フィルム搬送時の乾燥に大きく分かれる。ドラム(またはバンド)面での乾燥時には、使用している溶剤の沸点を越えない温度(沸点を越えると泡となる)でゆっくりと乾燥させることが好ましい。また、フィルム搬送時の乾燥は、ポリマー材料のガラス転移点±30℃、更に好ましくは±20℃で行うことが好ましい。
また、上記吸湿による寸度変化を小さくする別の方法として、疎水基を有する化合物を添加することが好ましい。疎水基を有する素材としては、分子中にアルキル基やフェニル基のような疎水基を有する素材であれば特に制限はない。
これらの疎水基を有する化合物の添加量は、調整する溶液(ドープ)に対して0.01〜30質量%の範囲にあることが好ましく、0.1〜20質量%の範囲にあることがさらに好ましい。
[光弾性]
本発明のセルロースアシレートの光弾性係数は60×10-8cm2/N以下が好ましく、20×10-8cm2/Nがさらに好ましい。光弾性係数はエリプソメーターにより求めることができる。
[ガラス転移温度]
本発明のセルロースアシレートのガラス転移温度は120℃以上180℃以下が好ましく、更に130℃以上160℃以下がさらに好ましい。ガラス転移温度は、示差走査型熱量計(DSC)を用いて昇温速度10℃/分で測定したときにフィルムのガラス転移に由来するベースラインが変化しはじめる温度と再びベースラインに戻る温度との平均値として求めたものである。
[セルロースアシレートフィルムの表面処理]
セルロースアシレートフィルムは、表面処理を施すことが好ましい。具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理または紫外線照射処理が挙げられる。また、特開平7−333433号公報に記載のように、下塗り層を設けることも好ましい。
フィルムの平面性を保持する観点から、これら処理においてセルロースアシレートフィルムの温度をTg(ガラス転移温度)以下、具体的には150℃以下とすることが好ましい。
セルロースアシレートフィルムを偏光板の透明保護フィルムとして使用する場合、偏光子との接着性の観点から、酸処理またはアルカリ処理、すなわちセルロースアシレートに対するケン化処理を実施することが特に好ましい。
セルロースアシレートフィルムの表面エネルギーは55mN/m以上であることが好ましく、60mN/m以上75mN/m以下であることが更に好ましい。固体の表面エネルギーは、「ぬれの基礎と応用」(リアライズ社 1989.12.10発行)に記載のように接触角法、湿潤熱法、および吸着法により求めることができる。本発明のセルロースアシレートフィルムの場合、接触角法を用いることが好ましい。
具体的には、表面エネルギーが既知である2種の溶液をセルロースアシレートフィルムに滴下し、液滴の表面とフィルム表面との交点において、液滴に引いた接線とフィルム表面のなす角で、液滴を含む方の角を接触角と定義し、計算によりフィルムの表面エネルギーを算出できる。
以下、アルカリ鹸化処理を例に、具体的に説明する。
セルロースアシレートフィルムのアルカリ鹸化処理は、フィルム表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行われることが好ましい。
アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられ、水酸化イオンの規定濃度は0.1〜3.0Nの範囲にあることが好ましく、0.5〜2.0Nの範囲にあることがさらに好ましい。アルカリ溶液温度は、室温〜90℃の範囲にあることが好ましく、40〜70℃の範囲にあることがさらに好ましい。
(偏光板)
本発明の偏光板は、偏光子の両側に保護フィルムが貼りあわされてなる偏光板であって、保護フィルムの少なくとも1枚が上述のセルロースアシレートフィルムである偏光板である。
(偏光板の構成)
まず、本発明の偏光板を構成する保護フィルム、偏光子について説明する。
本発明の偏光板は、偏光子や保護フィルム以外にも、粘着剤層、セパレートフィルム、保護フィルムを構成要素として有していても構わない。
(1)保護フィルム
本発明の偏光板は偏光子の両側に1ずつ合計2枚の保護フィルムを有し、少なくとも1枚は本発明のセルロースアシレートフィルムである。また、2枚の保護フィルムのうち、少なくとも一枚は位相差フィルムとしての機能を合わせてもつことが好ましい。また、偏光子の両側の保護フィルムの弾性率比が下記式(G)を満たすことが好ましい。
(G)
0.75<(液晶セル側の保護フィルムの弾性率)/(空気界面側の保護フィルムの弾性率)<1.33
さらに好ましくは、
85<(液晶セル側の保護フィルムの弾性率)/(空気界面側の保護フィルムの弾性率)<1.2
である。この範囲に弾性率比を調節することにより、温度及び湿度にともなう偏光板の透過率変化を小さくすることができる。
液晶表示装置に本発明の偏光板を用いる場合、液晶セルの両側に配置される二枚の偏光板の少なくとも一方が、本発明の偏光板であることが好ましい。
(2)偏光子
本発明の偏光子は、ポリビニルアルコール(PVA)と二色性分子から構成することが好ましいが、特開平11−248937に記載されているようにPVAやポリ塩化ビニルを脱水、脱塩素することによりポリエン構造を生成し、これを配向させたポリビニレン系偏光子も使用することができる。
PVAは、ポリ酢酸ビニルをケン化したポリマー素材であるが、例えば不飽和カルボン酸、不飽和スルホン酸、オレフィン類、ビニルエーテル類のような酢酸ビニルと共重合可能な成分を含有しても構わない。また、アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等を含有する変性PVAも用いることができる。
PVAのケン化度は特に限定されないが、溶解性等の観点から80〜100mol%が好ましく、90〜100mol%が特に好ましい。またPVAの重合度は特に限定されないが、1000〜10000が好ましく、1500〜5000が特に好ましい。
PVAのシンジオタクティシティーは特許2978219号に記載されているように耐久性を改良するため55%以上が好ましいが、特許第3317494号に記載されている45〜52.5%も好ましく用いることができる。
PVAはフィルム化した後、二色性分子を導入して偏光子を構成することが好ましい。PVAフィルムの製造方法は、PVA系樹脂を水又は有機溶媒に溶解した原液を流延して成膜する方法が一般に好ましく用いられる。原液中のポリビニルアルコール系樹脂の濃度は、通常5〜20質量%であり、この原液を流延法により製膜することによって、膜厚10〜200μmのPVAフィルムを製造できる。PVAフィルムの製造は、特許第3342516号、特開平09−328593号、特開2001−302817号、特開2002−144401号を参考にして行うことができる。
PVAフィルムの結晶化度は、特に限定されないが、特許第3251073号に記載されている平均結晶化度(Xc)50〜75質量%や、面内の色相バラツキを低減させるため、特開2002−236214号に記載されている結晶化度38%以下のPVAフィルムを用いることができる。
PVAフィルムの複屈折(△n)は小さいことが好ましく、特許第3342516号に記載されている複屈折が1.0×10-3以下のPVAフィルムを好ましく用いることができる。但し、特開2002−228835号に記載されているように、PVAフィルムの延伸時の切断を回避しながら高偏光度を得るため、PVAフィルムの複屈折を0.02以上0.01以下としてもよいし、特開2002−060505号に記載されているように(nx+ny)/2−nzの値を0.0003以上0.01以下としてもよい。PVAフィルムのレターデーション(面内)は0nm以上100nm以下が好ましく、0nm以上50nm以下がさらに好ましい。また、PVAフィルムのRth(膜厚方向)は0nm以上500nm以下が好ましく、0nm以上300nm以下がさらに好ましい。
この他、本発明の偏光板には、特許3021494号に記載されている1、2−グリコール結合量が1.5モル%以下のPVAフィルム、特開2001−316492号に記載されている5μm以上の光学的異物が100cm2当たり500個以下であるPVAフィルム、特開2002−030163号に記載されているフィルムのTD方向の熱水切断温度斑が1.5℃以下であるPVAフィルム、さらにグリセリンなどの3〜6価の多価アルコ−ルを1〜100質量部したり、特開平06−289225号に記載されている可塑剤を15質量%以上混合した溶液から製膜したPVAフィルムを好ましく用いることができる。
PVAフィルムの延伸前のフィルム膜厚は特に限定されないが、フィルム保持の安定性、延伸の均質性の観点から、1μm〜1mmが好ましく、20〜200μmが特に好ましい。特開2002−236212号に記載されているように水中において4倍から6倍の延伸を行った時に発生する応力が10N以下となるような薄いPVAフィルムを使用してもよい。
二色性分子はI3 -やI5 -などの高次のヨウ素イオンもしくは二色性染料を好ましく使用することができる。本発明では高次のヨウ素イオンが特に好ましく使用される。高次のヨウ素イオンは、「偏光板の応用」永田良編、CMC出版や工業材料、第28巻、第7号、p.39〜p.45に記載されているようにヨウ素をヨウ化カリウム水溶液に溶解した液および/またはホウ酸水溶液にPVAを浸漬し、PVAに吸着・配向した状態で生成することができる。
二色性分子として二色性染料を用いる場合は、アゾ系色素が好ましく、特にビスアゾ系とトリスアゾ系色素が好ましい。二色性染料は水溶性のものが好ましく、このため二色性分子にスルホン酸基、アミノ基、水酸基などの親水性置換基が導入され、遊離酸、あるいはアルカリ金属塩、アンモニウム塩、アミン類の塩として好ましく用いられる。
このような二色性染料の具体例としては、例えば、C.I.Direct Red 37、 Congo Red(C.I. Direct Red 28)、C.I.Direct Violet 12、 C.I.Direct Blue 90、 C.I.Direct Blue 22、 C.I.Direct Blue 1、 C.I.Direct Blue 151、 C.I.Direct Green 1等のベンジジン系、C.I.Direct Yellow 44、 C.I.Direct Red 23、 C.I.Direct Red 79等のジフェニル尿素系、C.I.Direct Yellow 12等のスチルベン系、C.I.Direct Red 31等のジナフチルアミン系、C.I.Direct Red 81、 C.I.Direct Violet 9、 C.I.Direct Blue 78等のJ酸系を挙げることができる。
これ以外にも、C.I.Direct Yellow 8、C.I.Direct Yellow 28、C.I.Direct Yellow 86、C.I.Direct Yellow 87、C.I.Direct Yellow 142、C.I.Direct Orange 26、C.I.Direct Orange 39、C.I.Direct Orange 72、C.I.Direct Orange 106、C.I.Direct Orange 107、C.I.Direct Red 2、C.I.Direct Red 39、C.I.Direct Red 83、C.I.Direct Red 89、C.I.Direct Red 240、C.I.Direct Red 242、C.I.Direct Red 247、C.I.Direct Violet 48、C.I.Direct Violet 51、C.I.Direct Violet 98、C.I.Direct Blue 15、C.I.Direct Blue 67、C.I.Direct Blue 71、C.I.Direct Blue 98、C.I.Direct Blue 168、C.I.Direct Blue 202、C.I.Direct Blue 236、C.I.Direct Blue 249、C.I.Direct Blue 270、C.I.Direct Green 59、C.I.Direct Green 85、C.I.Direct Brown 44、C.I.Direct Brown 106、C.I.Direct Brown 195、C.I.Direct Brown 210、C.I.Direct Brown 223、C.I.Direct Brown 224、C.I.Direct Black 1、C.I.Direct Black 17、C.I.Direct Black 19、C.I.Direct Black 54等が、さらに特開昭62−70802号、特開平1−161202号、特開平1−172906号、特開平1−172907号、特開平1−183602号、特開平1−248105号、特開平1−265205号、特開平7−261024号、の各公報記載の二色性染料等も好ましく使用することができる。各種の色相を有する二色性分子を製造するため、これらの二色性染料は2種以上を配合してもかまわない。二色性染料を用いる場合、特開2002−082222号に記載されているように吸着厚みが4μm以上であってもよい。
フィルム中の該二色性分子の含有量は、少なすぎると偏光度が低く、また、多すぎても単板透過率が低下することから通常、フィルムのマトリックスを構成するポリビニルアルコール系重合体に対して、0.01質量%から5質量%の範囲に調整される。
偏光子の好ましい膜厚としては、5μm〜40μmが好ましく、さらに好ましくは10μm〜30μmである。偏光子の厚さと後述する保護フィルムの厚さの比を、特開2002−174727号に記載されている0.01≦A(偏光子膜厚)/B(保護フィルム膜厚)≦0.16範囲とすることも好ましい。
保護フィルムの遅相軸と偏光子の吸収軸の交差角は、任意の値でよいが、平行もしくは45±20゜の方位角であることが好ましい。
(偏光板の製造工程)
次に、本発明の偏光板の製造工程について説明する。
本発明における偏光板の製造工程は、膨潤工程、染色工程、硬膜工程、延伸工程、乾燥工程、保護フィルム貼り合わせ工程、貼り合わせ後乾燥工程から構成されることが好ましい。染色工程、硬膜工程、延伸工程の順序を任意に変えること、また、いくつかの工程を組み合わせて同時に行っても構わない。また、特許第3331615に記載されているように、硬膜工程の後に水洗することも好ましく行うことができる。
本発明では、膨潤工程、染色工程、硬膜工程、延伸工程、乾燥工程、保護フィルム貼り合わせ工程、貼り合わせ後乾燥工程を記載の順序で遂次行うことが特に好ましい。また、前述の工程中あるいは後にオンライン面状検査工程を設けても構わない。
膨潤工程は、水のみで行うことが好ましいが、特開平10−153709に記載されているように、光学性能の安定化及び、製造ラインでの偏光板基材のシワ発生回避のために、偏光板基材をホウ酸水溶液により膨潤させて、偏光板基材の膨潤度を管理することもできる。
また、膨潤工程の温度、時間は、任意に定めることができるが、10℃以上60℃以下、5秒以上2000秒以下が好ましい。
染色工程は、特開2002−86554に記載の方法を用いることができる。また、染色方法としては浸漬だけでなく、ヨウ素あるいは染料溶液の塗布あるいは噴霧等、任意の手段が可能である。また、特開2002−290025号に記載されているように、ヨウ素の濃度、染色浴温度、浴中の延伸倍率、および浴中の浴液を撹拌させながら染色させる方法を用いてもよい。
二色性分子として高次のヨウ素イオンを用いる場合、高コントラストな偏光板を得るためには、染色工程はヨウ素をヨウ化カリウム水溶液に溶解した液を用いることが好ましい。この場合のヨウ素−ヨウ化カリウム水溶液のヨウ素は0.05〜20g/l、ヨウ化カリウムは3〜200g/l、ヨウ素とヨウ化カリウムの質量比は1〜2000が好ましい範囲である。染色時間は10〜1200秒が好ましく、液温度は10〜60℃が好ましい。さらに好ましくは、ヨウ素は0.5〜2g/l、ヨウ化カリウムは30〜120g/l、ヨウ素とヨウ化カリウムの質量比は30〜120がよく、染色時間は30〜600秒、液温度は20〜50℃がよい。
また、特許第3145747号に記載されているように、染色液にホウ酸、ホウ砂等のホウ素系化合物を添加しても良い。
硬膜工程は、架橋剤溶液に浸漬、または溶液を塗布して架橋剤を含ませるのが好ましい。また、特開平11−52130に記載されているように、硬膜工程を数回に分けて行うこともできる。
架橋剤としては米国再発行特許第232897号に記載のものが使用でき、特許第3357109号に記載されているように、寸法安定性を向上させるため、架橋剤として多価アルデヒドを使用することもできるが、ホウ酸類が最も好ましく用いられる。硬膜工程に用いる架橋剤としてホウ酸を用いる場合には、ホウ酸−ヨウ化カリウム水溶液に金属イオンを添加しても良い。金属イオンとしては塩化亜鉛が好ましいが、特開2000−35512に記載されているように、塩化亜鉛の変わりに、ヨウ化亜鉛などのハロゲン化亜鉛、硫酸亜鉛、酢酸亜鉛などの亜鉛塩を用いることもできる。
本発明では、塩化亜鉛を添加したホウ酸−ヨウ化カリウム水溶液を作製し、PVAフィルムを浸漬させて硬膜を行うことが好ましく行われる。ホウ酸は1〜100g/l、ヨウ化カリウムは1〜120g/l、塩化亜鉛は0.01〜10g/l、硬膜時間は10〜1200秒が好ましく、液温度は10〜60℃が好ましい。さらに好ましくは、ホウ酸は10〜80g/l、ヨウ化カリウムは5〜100g/l、塩化亜鉛は0.02〜8g/l、硬膜時間は30〜600秒がよく、液温度は20〜50℃がよい。
延伸工程は、米国特許2、454、515などに記載されているような、縦一軸延伸方式、もしくは特開2002−86554に記載されているようなテンター方式を好ましく用いることができる。好ましい延伸倍率は2倍以上12倍以下であり、さらに好ましくは3倍以上10倍以下である。また、延伸倍率と原反厚さと偏光子厚さの関係は特開2002−040256号に記載されている(保護フィルム貼合後の偏光子膜厚/原反膜厚)×(全延伸倍率)>0.17としたり、最終浴を出た時の偏光子の幅と保護フィルム貼合時の偏光子幅の関係は特開2002−040247号に記載されている0.80≦(保護フィルム貼合時の偏光子幅/最終浴を出た時の偏光子の幅)≦0.95とすることも好ましく行うことができる。
乾燥工程は、特開2002−86554で公知の方法を使用できるが、好ましい温度範囲は30℃〜100℃であり、好ましい乾燥時間は30秒〜60分である。また、特許第3148513号に記載されているように、水中退色温度を50℃以上とするような熱処理を行ったり、特開平07−325215号や特開平07−325218号に記載されているように温湿度管理した雰囲気でエージングすることも好ましく行うことができる。
保護フィルム貼り合わせ工程は、乾燥工程を出た前述の偏光子の両面を2枚の保護フィルムで貼合する工程である。貼合直前に接着液を供給し、偏光子と保護フィルムを重ね合わせるように、一対のロールで貼り合わせる方法が好ましく使用される。また、特開2001−296426及び特開2002−86554に記載されているように、偏光子の延伸に起因するレコードの溝状の凹凸を抑制するため、貼り合わせ時の偏光子の水分率を調整することが好ましい。本発明では0.1%〜30%の水分率が好ましく用いられる。
偏光子と保護フィルムとの接着剤は特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液等が挙げられ、中でもPVA系樹脂が好ましい。接着剤層厚みは乾燥後に0.01〜5μmが好ましく、0.05〜3μmが特に好ましい。
また、偏光子と保護フィルムの接着力を向上させるために、保護フィルムを表面処理して親水化してから接着することが好ましく行われる。表面処理の方法は特に制限は無いが、アルカリ溶液を用いてケン化する方法、コロナ処理法など公知の方法を用いることができる。また、表面処理後にゼラチン下塗り層等の易接着層を設けても良い。特開2002−267839号に記載されているように保護フィルム表面の水との接触角は50°以下が好ましい。
貼り合わせ後乾燥条件は、特開2002−86554に記載の方法に従うが、好ましい温度範囲は30℃〜100℃であり、好ましい乾燥時間は30秒〜60分である。また、特開平07−325220号に記載されているように温湿度管理をした雰囲気でエージングすることも好ましい。
偏光子中の元素含有量は、ヨウ素0.1〜3.0g/m2、ホウ素0.1〜5.0g/m2、カリウム0.1〜2.00g/m2、亜鉛0〜2.00g/m2であることが好ましい。また、カリウム含有量は特開2001−166143号に記載されているように0.2質量%以下であってもよいし、偏光子中の亜鉛含有量を特開2000−035512号に記載されている0.04質量%〜0.5質量%としてもよい。
特許第3323255号に記載されているように、偏光板の寸法安定性をあげるために、染色工程、延伸工程および硬膜工程のいずれかの工程において有機チタン化合物および/または有機ジルコニウム化合物を添加使用し、有機チタン化合物および有機ジルコニウム化合物から選ばれた少なくとも一種の化合物を含有することもできる。また、偏光板の色相を調整するために二色性染料を添加しても良い。
(偏光板の特性)
(1)透過率および偏光度
本発明の偏光板の好ましい単板透過率は42.5%以上49.5%以下であるが、さらに好ましくは42.8%以上49.0%以下である。透過率は式3で定義される。式4で定義される偏光度の好ましい範囲は99.900%以上99.999%以下であり、さらに好ましくは99.940%以上99.995%以下である。平行透過率の好ましい範囲は36%以上42%以下であり、直交透過率の好ましい範囲は、0.001%以上0.05%以下である。式5で定義される二色性比の好ましい範囲は48以上、1215以下であるが、さらに好ましくは53以上525以下である。
上述の透過率はJISZ8701に基づいて定義される。
Figure 0005016788
ここで、K、S(λ)、y(λ)、τ(λ)は以下の通りである。
Figure 0005016788
S(λ):色の表示に用いる標準光の分光分布
y(λ):XYZ系における等色関数
τ(λ):分光透過率
偏光度は下記式4で定義される。
Figure 0005016788
また、二色性比は下記式5で定義される。
Figure 0005016788
ヨウ素濃度と単板透過率は特開2002−258051号に記載されている範囲であってもよい。
平行透過率は、特開2001−083328号や特開2002−022950号に記載されているように波長依存性が小さくてもよい。偏光板をクロスニコルに配置した場合の光学特性は、特開2001−091736号に記載されている範囲であってもよく、平行透過率と直交透過率の関係は、特開2002−174728号に記載されている範囲内であってもよい。
特開2002−221618号に記載されているように、光の波長が420〜700nmの間での10nm毎の平行透過率の標準偏差が3以下で、且つ、光の波長が420〜700nmの間での10nm毎の(平行透過率/直交透過率)の最小値が300以上であってもよい。
偏光板の波長440nmにおける平行透過率と直交透過率、平行透過率、波長550nmにおける平行透過率と直交透過率、波長610nmにおける平行透過率と直交透過率が、特開2002−258042号や特開2002−258043号に記載された範囲とすることも好ましく行うことができる。
(2)色相
本発明の偏光板の色相は、CIE均等知覚空間として推奨されているL***表色系における明度指数L*およびクロマティクネス指数a*とb*を用いて好ましく評価される。
*、a*、b*については、例えば東京電気大学出版局刊、色彩工学等に記載されている。
*、a*、b*は、上述のX、Y、Zを用い使って式6で定義される。
Figure 0005016788
ここでX0、Y0、Z0は照明光源の三刺激値を表し、標準光Cの場合、X0=98.072、Y0=100、Z0=118.225であり、標準光D65の場合、X0=95.045、Y0=100、Z0=108.892である。
偏光板単枚の好ましいa*の範囲は−2.5以上0.2以下であり、さらに好ましくは−2.0以上0以下である。偏光板単枚の好ましいb*の範囲は1.5以上5以下であり、さらに好ましくは2以上4.5以下である。2枚の偏光板の平行透過光のa*の好ましい範囲は−4.0以上0以下であり、さらに好ましくは−3.5以上−0.5以下である。2枚の偏光板の平行透過光のb*の好ましい範囲は2.0以上8以下であり、さらに好ましくは2.5以上7以下である。2枚の偏光板の直交透過光のa*の好ましい範囲は−0.5以上1.0以下であり、さらに好ましくは0以上2以下である。2枚の偏光板の直交透過光のb*の好ましい範囲は−2.0以上2以下であり、さらに好ましくは−1.5以上0.5以下である。
色相は、前述のX、Y、Zから算出される色度座標(x,y)で評価しても良く、例えば、2枚の偏光板の平行透過光の色度(xp、yp)と直交透過光の色度(xc、yc)は、特開2002−214436号、特開2001−166136号や特開2002−169024に記載されている範囲にしたり、色相と吸光度の関係を特開2001−311827号に記載されている範囲内にすることも好ましく行うことができる。
(3)視野角特性
偏光板をクロスニコルに配置して波長550nmの光を入射させる場合の、垂直光を入射させた場合と、偏光軸に対して45度の方位から法線に対し40度の角度で入射させた場合の、透過率比やxy色度差を特開2001−166135号や特開2001−166137号に記載された範囲とすることも好ましい。また、特開平10−068817号に記載されているように、クロスニコル配置した偏光板積層体の垂直方向の光透過率(T0)と、積層体の法線から60°傾斜方向の光透過率(T60)との比(T60/T0)を10000以下としたり、特開2002−139625号に記載されているように、偏光板に法線から仰角80度までの任意な角度で自然光を入射させた場合に、その透過スペクトルの520〜640nmの波長範囲において波長域20nm以内における透過光の透過率差を6%以下としたり、特開平08−248201号に記載されている、フィルム上の任意の1cm離れた場所における透過光の輝度差が30%以内とすることも好ましい。
(4)耐久性
(4−1)湿熱耐久性
特開2001−116922号に記載されているように60℃、90%RHの雰囲気に500時間放置した場合のその前後における光透過率及び偏光度の変化率が絶対値に基づいて3%以下であることが好ましい。特に光透過率の変化率は2%以下、また、偏光度の変化率は絶対値に基づいて1.0%以下、更には0.1%以下であることが好ましい。また、特開平07−077608号に記載されているように80℃、90%RH、500時間放置後の偏光度が95%以上、単体透過率が38%以上であることも好ましい。
(4−2)ドライ耐久性
80℃、ドライ雰囲気下に500時間放置した場合のその前後における光透過率及び偏光度の変化率も絶対値に基づいて3%以下であることが好ましい。特に、光透過率の変化率は2%以下、また、偏光度の変化率は絶対値に基づいて1.0%以下、更には0.1%以下であることが好ましい。
(4−3)その他の耐久性
さらに、特開平06−167611号に記載されているように80℃で2時間放置した後の収縮率が0.5%以下としたり、ガラス板の両面にクロスニコル配置した偏光板積層体を69℃の雰囲気中で750時間放置した後のx値及びy値が特開平10−068818号に記載されている範囲内としたり、80℃、90%RHの雰囲気中で200時間放置処理後のラマン分光法による105cm-1及び157cm-1のスペクトル強度比の変化を、特開平08−094834号や特開平09−197127号に記載された範囲とすることも好ましく行うことができる。
(5)配向度
PVAの配向度は高い程良好な偏光性能が得られるが、偏光ラマン散乱や偏光FT−IR等の手段によって算出されるオーダーパラメーター値として0.2〜1.0が好ましい範囲である。また、特開昭59−133509号に記載されているように、偏光子の全非晶領域の高分子セグメントの配向係数と占領分子の配向係数(0.75以上)との差を少なくとも0.15としたり、特開平04−204907号に記載されているように偏光子の非晶領域の配向係数が0.65〜0.85としたり、I3 -やI5 -の高次ヨウ素イオンの配向度を、オーダーパラメーター値として0.8〜1.0とすることも好ましく行うことができる。
(6)その他の特性
特開2002−006133号に記載されているように、80℃30分加熱したときの単位幅あたりの吸収軸方向の収縮力が4.0N/cm以下としたり、特開2002−236213号に記載されているように、偏光板を70℃の加熱条件下に120時間置いた場合に、偏光板の吸収軸方向の寸法変化率及び偏光軸方向の寸法変化率を、共に±0.6%以内としたり、偏光板の水分率を特開2002−090546号に記載されているように3質量%以下とすることも好ましく行うことができる。さらに、特開2000−249832号に記載されているように延伸軸に垂直な方向の表面粗さが中心線平均粗さに基づいて0.04μm以下としたり、特開平10−268294号に記載されているように透過軸方向の屈折率n0を1.6より大きくしたり、偏光板の厚みと保護フィルムの厚みの関係を特開平10−111411号に記載された範囲とすることも好ましく行うことができる。
(偏光板の機能化)
本発明の偏光板は、LCDの視野角拡大フィルム、反射型LCDに適用するためのλ/4板等の位相差フィルム、ディスプレイの視認性向上のための反射防止フィルム、輝度向上フィルムや、ハードコート層、前方散乱層、アンチグレア(防眩)層等の機能層を有する光学フィルムと複合した機能化偏光板として好ましく使用される。
本発明の偏光板と上述の機能性光学フィルムを複合した構成の一実施態様を図1に示した。偏光板5の片側の保護フィルムとして機能性光学フィルム3を偏光子2に粘着層を介して接着しても良いし(図1(A))、偏光子2の両面に保護フィルム1a、1bを設けた偏光板5に粘着層4を介して機能性光学フィルム3を接着しても良い(図1(B))。前者の場合、もう一方の保護フィルム1には任意の透明保護フィルムを使用してもよい。また、本発明の偏光板においては、保護フィルムに光学機能層を粘着層を介して貼り合わせ、機能性光学フィルム3として、図1(A)の構成とすることも好ましい。機能層や保護フィルム等の各層間の剥離強度は特開2002−311238号に記載されている4.0N/25mm以上とすることも好ましい。機能性光学フィルムは、目的とする機能に応じて液晶モジュール側に配置したり、液晶モジュールとは反対側、すなわち表示側もしくはバックライト側に配置することが好ましい。
以下に本発明の偏光板と複合して使用される機能性光学フィルムについて説明する。
(1)光学補償フィルム
本発明の偏光板は、TN(Twisted Nematic)、IPS(In−Plane Switching)、OCB(Optically Compensatory Bend)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)のような表示モードに提案されている光学補償フィルムと組み合わせて使用することができる。
本発明の偏光板と複合して使用される光学補償フィルムは大きく2つに分けられる。
第1にセル側の保護フィルムに粘着剤等を介して位相差フィルムを貼り合せたものであり、第2はセル側の保護フィルム上に光学異方性層を設けるものである。
さらに、第1のタイプと第2のタイプをさらに積層したものを好ましく用いることができる。
まず、セル側の保護フィルムに粘着剤等を介して位相差フィルムを貼り合せたタイプの光学補償フィルムについて説明する。
位相差フィルムとしては、ポリマーフィルムを延伸したものを用いることができる。ポリマーフィルムとしては、ポリカーボネート、ポリイミド、さらにノルボルネン系樹脂(JSR社製アートン、日本ゼオン社製ゼオノア等)を好ましく用いることができる。
延伸は目標のレターデーションに応じて1軸延伸、2軸延伸のどちらも用いることができる。
本発明の位相差フィルムのレターデーションは下記式(H)を満たすことが好ましい。
(H)
液晶セル側の保護フィルムのRe/Rth比>位相差フィルムのRe/Rth比
さらに好ましくは
液晶セル側の保護フィルムのRe/Rth比>位相差フィルムのRe/Rth比+10
である。
また、本発明の位相差フィルムの透湿度はセル側の保護フィルムの透湿度に対して下記式(J)の関係を満たすことが好ましい。
(J)
液晶セル側の保護フィルムの単位厚みあたりの透湿度>位相差フィルムの単位厚みあたりの透湿度
さらに好ましくは、
液晶セル側の保護フィルムの単位厚みあたりの透湿度>位相差フィルムの単位厚みあたりの透湿度+0.5
である。なお、単位厚みあたりの透湿度はJIS Z 0208に記載の方法により25℃90%24hrの温湿度条件で測定した透湿度(g/m2)をフィルムの厚み(μm)で序したものである。
レターデーションと透湿度を上記関係に調節することにより、温度湿度による視野角補償効果の変化の小さい光学補償フィルムを得られる。
次にセル側の保護フィルム上に光学異方性層を設けるタイプについて説明する。
光学異方性層は液晶セル側の偏光板保護フィルムとしてのセルロースアシレートフィルム、その上に設けられた配向層、および該配向層上に形成された液晶性化合物からなる光学異方性層から構成され、かつ光学異方性層がUV光照射により架橋されている。
配向層は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログループを有する層の形成のような手段で設けることができる。さらに電場の付与、磁場の付与あるいは光照射により配向機能が生じる配向層も知られているが、ポリマーのラビング処理により形成する配向層が特に好ましい。ラビング処理はポリマー層の表面を紙や布で一定方向に数回こすることにより好ましく実施される。偏光子の吸収軸方向とラビング方向は実質的に平行であることが好ましい。配向層に使用するポリマーの種類は、ポリイミド、ポリビニルアルコール、特開平9−152509号公報に記載された重合性基を有するポリマー等を好ましく使用することができる。配向層の厚さは0.01〜5μmであることが好ましく、0.05〜2μmであることがさらに好ましい。
光学異方性層は液晶性化合物を含有していることが好ましい。本発明に使用される液晶性化合物はディスコティック化合物(ディスコティック液晶)及び棒状化合物のどちらも好ましく用いることができる。ディスコティック液晶分子は、D−1のトリフェニレン誘導体のように円盤状のコア部を有し、そこから放射状に側鎖が伸びた構造を有している。また、経時安定性を付与するため、熱、光等で反応する基をさらに導入することも好ましく行われる。上記ディスコティック液晶の好ましい例は特開平8−50206号公報に記載されている。
Figure 0005016788
ディスコティック液晶分子は、配向層付近ではラビング方向にプレチルト角を持ってほぼフィルム平面に平行に配向しており、反対の空気面側ではディスコティック液晶分子が面に垂直に近い形で立って配向している。ディスコティック液晶層全体としては、ハイブリッド配向を取っており、この層構造によってTNモードのTFT−LCDの視野角拡大を実現することができる。
棒状液晶性分子は、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましい。低分子の液晶性分子だけではなく、高分子液晶性分子も用いることができる。
棒状液晶性分子は、重合性基を有することが好ましく、棒状分子構造の両端に、二つの重合性基を有することがさらに好ましい。好ましい重合性棒状液晶性分子を、下記式(VII)で示す。
(VII) Q1−L1−Cy1−L2−(Cy2−L3)n−Cy3−L4−Q2
式中、Q1およびQ2は、それぞれ独立に、重合性基であり;L1およびL4は、それぞれ独立に、二価の連結基であり;L2およびL3は、それぞれ独立に、単結合または二価の連結基であり;Cy1、Cy2およびCy3は、それぞれ独立に、二価の環状基であり;そして、nは、0、1または2である。
Q1およびQ2の重合性基は、付加重合反応、開環重合反応または縮重合反応が可能な官能基であることが好ましい。以下に、重合性基の例を示す。
重合性基は、付加重合反応が可能な官能基(例、Q−1〜Q−7)または開環重合反応が可能な官能基(例、Q−8、Q−9)がより好ましく、付加重合反応が可能な官能基がさらに好ましく、エチレン性不飽和重合性基(例、Q−1〜Q−6)が最も好ましい。
L1、L2、L3およびL4における二価の連結基は、−O−、−S−、−CO−、−NR−(Rは、水素原子または炭素原子数が1乃至7のアルキル基)、二価の鎖状基およびそれらの組み合わせから選ばれることが好ましい。以下に、組み合わせからなる二価の連結基の例を示す。以下の例における左右は、逆になってもよい。
L−1:−CO−O−
L−2:−CO−NH−
L−3:−O−CO−O−
L−4:−二価の鎖状基−O−
L−5:−二価の鎖状基−CO−
L−6:−二価の鎖状基−O−CO−
L−7:−二価の鎖状基−CO−O−
L−8:−二価の鎖状基−O−CO−O−
L−9:−O−二価の鎖状基−O−
L−10:−O−二価の鎖状基−CO−
L−11:−O−二価の鎖状基−O−CO−
L−12:−O−二価の鎖状基−CO−O−
L−13:−O−二価の鎖状基−O−CO−O−
L−14:−CO−二価の鎖状基−CO−
L−15:−CO−二価の鎖状基−O−CO−
L−16:−CO−二価の鎖状基−CO−O−
L−17:−CO−二価の鎖状基−O−CO−O−
L−18:−CO−O−二価の鎖状基−O−CO−
L−19:−CO−O−二価の鎖状基−CO−O−
L−20:−CO−O−二価の鎖状基−O−CO−O−
L−21:−O−CO−二価の鎖状基−CO−O−
L−22:−O−CO−二価の鎖状基−O−CO−O−
L−23:−O−CO−O−二価の鎖状基−O−CO−O−
L−24:−二価の鎖状基−O−二価の鎖状基−O−
L−25:−二価の鎖状基−O−二価の鎖状基−CO−
L−26:−二価の鎖状基−O−二価の鎖状基−O−CO−
L−27:−二価の鎖状基−O−二価の鎖状基−CO−O−
L−28:−二価の鎖状基−O−二価の鎖状基−O−CO−O−
L−29:−O−二価の鎖状基−O−二価の鎖状基−O−
L−30:−O−二価の鎖状基−O−二価の鎖状基−CO−
L−31:−O−二価の鎖状基−O−二価の鎖状基−O−CO−
L−32:−O−二価の鎖状基−O−二価の鎖状基−CO−O−
L−33:−O−二価の鎖状基−O−二価の鎖状基−O−CO−O−
L−34:−CO−二価の鎖状基−O−二価の鎖状基−CO−
L−35:−CO−二価の鎖状基−O−二価の鎖状基−O−CO−
L−36:−CO−二価の鎖状基−O−二価の鎖状基−CO−O−
L−37:−CO−二価の鎖状基−O−二価の鎖状基−O−CO−O−
L−38:−CO−O−二価の鎖状基−O−二価の鎖状基−O−CO−
L−39:−CO−O−二価の鎖状基−O−二価の鎖状基−CO−O−
L−40:−CO−O−二価の鎖状基−O−二価の鎖状基−O−CO−O−
L−41:−O−CO−二価の鎖状基−O−二価の鎖状基−CO−O−
L−42:−O−CO−二価の鎖状基−O−二価の鎖状基−O−CO−O−
L−43:−O−CO−O−二価の鎖状基−O−二価の鎖状基−O−CO−O−
L−44:−二価の鎖状基−S−二価の鎖状基−O−
L−45:−二価の鎖状基−S−二価の鎖状基−CO−
L−46:−二価の鎖状基−S−二価の鎖状基−O−CO−
L−47:−二価の鎖状基−S−二価の鎖状基−CO−O−
L−48:−二価の鎖状基−S−二価の鎖状基−O−CO−O−
L−49:−O−二価の鎖状基−S−二価の鎖状基−O−
L−50:−O−二価の鎖状基−S−二価の鎖状基−CO−
L−51:−O−二価の鎖状基−S−二価の鎖状基−O−CO−
L−52:−O−二価の鎖状基−S−二価の鎖状基−CO−O−
L−53:−O−二価の鎖状基−S−二価の鎖状基−O−CO−O−
L−54:−CO−二価の鎖状基−S−二価の鎖状基−CO−
L−55:−CO−二価の鎖状基−S−二価の鎖状基−O−CO−
L−56:−CO−二価の鎖状基−S−二価の鎖状基−CO−O−
L−57:−CO−二価の鎖状基−S−二価の鎖状基−O−CO−O−
L−58:−CO−O−二価の鎖状基−S−二価の鎖状基−O−CO−
L−59:−CO−O−二価の鎖状基−S−二価の鎖状基−CO−O−
L−60:−CO−O−二価の鎖状基−S−二価の鎖状基−O−CO−O−
L−61:−O−CO−二価の鎖状基−S−二価の鎖状基−CO−O−
L−62:−O−CO−二価の鎖状基−S−二価の鎖状基−O−CO−O−
L−63:−O−CO−O−二価の鎖状基−S−二価の鎖状基−O−CO−O−
二価の鎖状基は、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基および置換アルキニレン基からなる群より選ばれる。アルキレン基、置換アルキレン基、アルケニレン基および置換アルケニレン基が好ましく、アルキレン基またはアルケニレン基がさらに好ましい。
アルキレン基は、分岐を有していてもよい。アルキレン基の炭素原子数は、1乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることが最も好ましい。
置換アルキレン基のアルキレン部分は、上記アルキレン基と同様である。置換アルキレン基の置換基の例には、ハロゲン原子が含まれる。
アルケニレン基は、分岐を有していてもよい。アルケニレン基の炭素原子数は、2乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることが最も好ましい。
置換アルケニレン基のアルケニレン部分は、上記アルケニレン基と同様である。置換アルケニレン基の置換基の例には、ハロゲン原子が含まれる。
アルキニレン基は、分岐を有していてもよい。アルキニレン基の炭素原子数は、2乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることが最も好ましい。
置換アルキニレン基のアルキニレン部分は、上記アルキニレン基と同様である。置換アルキニレン基の置換基の例には、ハロゲン原子が含まれる。
二価の鎖状基の例には、エチレン、トリメチレン、プロピレン、テトラメチレン、1−メチルテトラメチレン、ペンタメチレン、ヘキサメチレン、1−メチルトリメチレンおよび2−メチルトリメチレンが含まれる。
Cy1、Cy2およびCy3における二価の環状基が有する環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることが最も好ましい。
環状基が有する環は、縮合環であってもよい。ただし、縮合環よりも単環の方が好ましい。
環状基が有する環は、芳香族環、脂肪族環または複素環である。芳香族環の例には、ベンゼン環およびナフタレン環が含まれる。脂肪族環の例には、シクロヘキサン環が含まれる。複素環の例には、1,3−ジオキサン環、1,3,2−ジオキサボラン環、2,4,7−トリオキサビシクロ〔2.2.2〕オクタン環、ピリジン環およびピリミジン環が含まれる。
ベンゼン環を有する環状基は、1,4−フェニレンが好ましい。ナフタレン環を有する環状基は、1,5−ナフチレンおよび2,6−ナフチレンが好ましい。シクロヘキサン環を有する環状基は、1,4−シクロへキシレンが好ましい。1,3−ジオキサン環を有する環状基は、1,3−ジオキサン−2,5−ジイルが好ましい。1,3,2−ジオキサボラン環を有する環状基は、1,3,2−ジオキサボラン−2,5−ジイルが好ましい。2,4,7−トリオキサビシクロ〔2.2.2〕オクタン環を有する環状基は、2,4,7−トリオキサビシクロ〔2.2.2〕オクタン−1,4−ジイルが好ましい。ピリジン環を有する環状基は、2,5−ピリジンジイルが好ましい。ピリミジン環を有する環状基は、2,5−ピリミジンジイルが好ましい。
環状基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、シアノ、ニトロ、炭素原子数が1乃至5のアルキル基、炭素原子数が1乃至5のハロゲン置換アルキル基、炭素原子数が1乃至5のアルコキシ基、炭素原子数が1乃至5のアルキルチオ基、炭素原子数が1乃至5のアシル基、炭素原子数が2乃至6のアシルオキシ基、炭素原子数が2乃至6のアルコキシカルボニル基、カルバモイル、炭素原子数が2乃至6のアルキル置換カルバモイル基および炭素原子数が2乃至6のアミド基が含まれる。
式(VII)におけるnが2の場合、二つのL3は異なってもよく、二つのCy2も異なってもよい。nは、1または2であることが好ましく、1であることがさらに好ましい。
以下に、式(VII)で表される重合性棒状液晶性分子の例を示す。
Figure 0005016788
Figure 0005016788
Figure 0005016788
Figure 0005016788
上記光学異方性層は、一般に液晶性化合物及び他の化合物(更に、例えば重合性モノマー、光重合開始剤)を溶剤に溶解した溶液を配向層上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱した後、UV光の照射等により重合させ、さらに冷却することにより得られる。本発明に用いる液晶性化合物のネマティック液晶相−固相転移温度としては、70〜300℃が好ましく、特に70〜170℃が好ましい。
また、上記光学異方性層に添加する液晶性化合物以外の化合物としては、液晶性化合物と相溶性を有し、液晶性化合物に好ましい傾斜角の変化を与えられるか、あるいは配向を阻害しない限り、どのような化合物も使用することができる。これらの中で、重合性モノマー(例、ビニル基、ビニルオキシ基、アクリロイル基及びメタクリロイル基を有する化合物)、含フッ素トリアジン化合物等の空気界面側の配向制御用添加剤が、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロース及びセルロースアセテートブチレート等のポリマーを挙げることができる。これらの化合物は、ディスコティック化合物に対して一般に0.1〜50質量%、好ましくは0.1〜30質量%の添加量にて使用される。
光学異方性層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましい
本発明の光学異方性層のレターデーションと液晶セル側の保護フィルムのレターデーションは下記式(I)を満たすことが好ましい。
(I)
液晶セル側の保護フィルムのRe/Rth比>光学異方性層のRe/Rth比
さらに好ましくは
液晶セル側の保護フィルムのRe/Rth比>光学異方性層のRe/Rth比+10
である。
また、本発明の光学異方性層の透湿度はセル側の保護フィルムの透湿度に対して下記式(K)の関係を満たすことが好ましい。
(K)
液晶セル側の保護フィルムの単位厚みあたりの透湿度>光学異方性層の単位厚みあたりの透湿度
さらに好ましくは、
液晶セル側の保護フィルムの単位厚みあたりの透湿度>光学異方性層の単位厚みあたりの透湿度+0.5
である。なお、単位厚みあたりの透湿度はJIS Z 0208に記載の方法により25℃90%24hrの温湿度条件で測定した透湿度(g/m2)をフィルムの厚み(μm)で序したものである。
レターデーションと透湿度を上記関係に調節することにより、温度湿度による視野角補償効果の変化の小さい光学補償フィルムを得られる。
また、上記以外にも光学補償フィルムと本発明の偏光板を組み合わせる場合、例えば、特開平07−198942号に記載されているように板面に対し交差する方向に光軸を有して複屈折に異方性を示す位相差板と積層したり、特開2002−258052号に記載されているように保護フィルムと光学異方性層の寸法変化率が実質的に同等とすることも好ましく行うことができる。また、特開平12−258632号に記載されているように光学補償フィルムと貼合される偏光板の水分率を2.4%以下としたり、特開2002−267839号に記載されているように光学補償フィルム表面の水との接触角を70°以下とすることも好ましく行うことができる。
TNモード用の光学補償フィルムとしては、日本印刷学会誌第36巻第3号(1999)p.40〜44、月刊ディスプレイ8月号(2002)p.20〜24、特開平4−229828、特開平6−75115、特開平6−214116号、特開平8−50206等に記載されたWVフィルム(富士写真フイルム(株)製)を好ましく組み合わせて使用される。
IPSモード液晶セル用光学補償フィルムは、電界無印状態の黒表示時において、基板面に平行配向した液晶分子の光学補償および偏光板の直交透過率の視野角特性向上に用いる。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の透過軸は直交している。しかし斜めから観察した場合は、透過軸の交差角が90°ではなくなり、漏れ光が生じてコントラストが低下する。この漏れ光を低減させるためには、本発明のセルロースアシレートフィルムを液晶セル側の保護フィルムとし、さらにこの上にReが200nm以上350nm以下でRthが負の位相差フィルムあるいは光学異方性層を設けることが好ましい。
OCBモードの液晶セル用光学補償フィルムは、電界印加により液晶層中央部で垂直配向し、基板界面付近で傾斜配向した液晶層の光学補償を行い、黒表示の視野角特性を改善するために使用される。、本発明のセルロースアシレートフィルムを液晶セル側保護フィルムとし、この上に米国特許5805253号に記載されたような円盤状の液晶性化合物をハイブリット配向させた光学異方性層を設けた光学補償フィルムは、OCBモード液晶セル用に好ましい。
VAモードの液晶セル用光学補償フィルムは、電界無印加状態で液晶分子が基板面に対して垂直配向した状態の黒表示の視野角特性を改善する。本発明のセルロースアシレートフィルムを液晶セル側保護フィルムとし、この上に、ノルボルネン系樹脂フィルムやポリカーボネート樹脂を延伸することにより位相差を付与したものを貼りあわせることにより、VA用光学補償フィルムとして好ましく用いることができる。
(2)反射防止フィルム
本発明の偏光板は反射防止フィルムと組み合わせて使用することができる。反射防止フィルムは、フッ素系ポリマー等の低屈折率素材を単層付与しただけの反射率1.5%程度のフィルム、もしくは薄膜の多層干渉を利用した反射率1%以下のフィルムのいずれも使用できる。本発明では、透明支持体上に低屈折率層、及び低屈折率層より高い屈折率を有する少なくとも一層の層(即ち、高屈折率層、中屈折率層)を積層した構成が好ましく使用される。また、日東技報, vol.38, No.1, may, 2000, 26頁〜28頁や特開2002−301783号などに記載された反射防止フィルムも好ましく使用できる。
各層の屈折率は以下の関係を満足する。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
反射防止フィルムに用いる透明支持体は、前述の偏光子の保護フィルムに使用する透明ポリマーフィルムを好ましく使用することができる。
低屈折率層の屈折率は1.20〜1.55であり、好ましくは1.30〜1.50である。低屈折率層は、耐擦傷性、防汚性を有する最外層として使用することが好ましい。耐擦傷性向上のため、シリコーン基や、フッ素の含有する素材を用い表面への滑り性付与することも好ましく行われる。
含フッ素化合物としては、例えば、特開平9−222503号公報明細書段落番号[0018]〜[0026]、同11−38202号公報明細書段落番号[0019]〜[0030]、特開2001−40284号公報明細書段落番号[0027]〜[0028]、特開2000−284102号公報等に記載の化合物を好ましく使用することができる。
含シリコーン化合物はポリシロキサン構造を有する化合物が好ましいが、反応性シリコーン(例、サイラプレーン(チッソ(株)製)や両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報)等を使用することもできる。シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化させてもよい(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報、特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)。
低屈折率層には、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820公報の段落番号[0020]〜[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有させることも好ましく行うことができる。
低屈折率層は、気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良いが、安価に製造できる点で、塗布法で形成することが好ましい。塗布法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート、マイクログラビア法を好ましく使用することができる。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
中屈折率層および高屈折率層は、平均粒径100nm以下の高屈折率の無機化合物超微粒子をマトリックス用材料に分散した構成とすることが好ましい。高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物、例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等を好ましく使用できる。
このような超微粒子は、粒子表面を表面処理剤で処理したり(シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造としたり(特開2001−166104等)、特定の分散剤併用する(例、特開平11−153703号公報、特許番号US6210858B1、特開2002−2776069号公報等)等の態様で使用することができる。
マトリックス用材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等を使用できるが、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の多官能性材料や、特開2001−293818号公報等に記載の金属アルコキシド組成物から得られる硬化性膜を使用することもできる。
高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。
反射防止フィルムのヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。又膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
(4)輝度向上フィルム
本発明の偏光板は、輝度向上フィルムと組み合わせて使用することができる。輝度向上フィルムは、円偏光もしくは直線偏光の分離機能を有しており、偏光板とバックライトの間に配置され、一方の円偏光もしくは直線偏光をバックライト側に後方反射もしくは後方散乱する。バックライト部からの再反射光は、部分的に偏光状態を変化させ、輝度向上フィルムおよび偏光板に再入射する際、部分的に透過するため、この過程を繰り返すことにより光利用率が向上し、正面輝度が1.4倍程度に向上する。輝度向上フィルムとしては異方性反射方式および異方性散乱方式が知られており、いずれも本発明の偏光板と組み合わせることができる。
異方性反射方式では、一軸延伸フィルムと未延伸フィルムを多重に積層して、延伸方向の屈折率差を大きくすることにより反射率ならびに透過率の異方性を有する輝度向上フィルムが知られており、誘電体ミラーの原理を用いた多層膜方式(WO95/17691号、WO95/17692号、WO95/17699号の各明細書記載)やコレステリック液晶方式(欧州特許606940A2号明細書、特開平8−271731号公報記載)が知られている。誘電体ミラーの原理を用いた多層方式の輝度向上フィルムとしてはDBEF−E、DBEF−D、DBEF−M(いずれも3M社製)、コレステリック液晶方式の輝度向上フィルムとしてはNIPOCS(日東電工(株)製)が本発明で好ましく使用される。NIPOCSについては、日東技報, vol.38, No.1, may, 2000, 19頁〜21頁などを参考にすることができる。
また、本発明ではWO97/32223号、WO97/32224号、WO97/32225号、WO97/32226号の各明細書および特開平9−274108号、同11−174231号の各公報に記載された正の固有複屈折性ポリマーと負の固有複屈折性ポリマーをブレンドして一軸延伸した異方性散乱方式の輝度向上フィルムと組み合わせて使用することも好ましい。異方性散乱方式輝度向上フィルムとしては、DRPF−H(3M社製)が好ましい。
本発明の偏光板と輝度向上フィルムは、粘着剤を介して貼合された形態、もしくは偏光板の保護フィルムの一方を輝度向上フィルムとした一体型として使用することが好ましい。
(5)他の機能性光学フィルム
本発明の偏光板は、さらに、ハードコート層、前方散乱層、アンチグレア(防眩)層、ガスバリア層、滑り層、帯電防止層、下塗り層や保護層等を設けた機能性光学フィルムと組み合わせて使用することも好ましい。また、これらの機能層は、前述の反射防止フィルムにおける反射防止層、あるいは視野角補償フィルムにおける光学異方性層等と同一層内で相互に複合して使用することも好ましい。これらの機能層は、偏光子側および偏光子と反対面(より空気側の面)のどちらか片面、もしくは両面の設けて使用できる。
(5−1)ハードコート層
本発明の偏光板は耐擦傷性等の力学的強度を付与するため、ハードコート層を透明支持体の表面に設けた機能性光学フィルムと組み合わせることが好ましく行われる。ハードコート層を、前述の反射防止フィルムに適用して用いる場合は、特に、透明支持体と高屈折率層の間に設けることが好ましい。
ハードコート層は、光及び/又は熱による硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。硬化性官能基としては、光重合性官能基が好ましく、又加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、WO00/46617号公報等記載のものを好ましく使用することができる。
ハードコート層の膜厚は、0.2〜100μmであることが好ましい。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。又、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
ハードコート層を形成する材料は、エチレン性不飽和基を含む化合物、開環重合性基を含む化合物を用いることができ、これらの化合物は単独あるいは組み合わせて用いることができる。エチレン性不飽和基を含む化合物の好ましい例としては、エチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等のポリオールのポリアクリレート類;ビスフェノールAジグリシジルエーテルのジアクリレート、ヘキサンジオールジグリシジルエーテルのジアクリレート等のエポキシアクリレート類;ポリイソシナネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を好ましい化合物として挙げることができる。また、市販化合物としては、EB−600、EB−40、EB−140、EB−1150、EB−1290K、IRR214、EB−2220、TMPTA、TMPTMA(以上、ダイセル・ユーシービー(株)製)、UV−6300、UV−1700B(以上、日本合成化学工業(株)製)等が挙げられる。
また、開環重合性基を含む化合物の好ましい例としては、グリシジルエーテル類としてエチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、トリグリシジルトリスヒドロキシエチルイソシアヌレート、ソルビトールテトラグリシジルエーテル、ペンタエリスリトールテトラグリシルエーテル、クレゾールノボラック樹脂のポリグリシジルエーテル、フェノールノボラック樹脂のポリグリシジルエーテルなど、脂環式エポキシ類としてセロキサイド2021P、セロキサイド2081、エポリードGT−301、エポリードGT−401、EHPE3150CE(以上、ダイセル化学工業(株)製)、フェノールノボラック樹脂のポリシクロヘキシルエポキシメチルエーテルなど、オキセタン類としてOXT−121、OXT−221、OX−SQ、PNOX−1009(以上、東亞合成(株)製)などが挙げられる。その他にグリシジル(メタ)アクリレートの重合体、或いはグリシジル(メタ)アクリレートと共重合できるモノマーとの共重合体をハードコート層に使用することもできる。
ハードコート層には、ハードコート層の硬化収縮の低減、基材との密着性の向上、本発明のハードコート処理物品のカールを低減するため、ケイ素、チタン、ジルコニウム、アルミニウム等の酸化物微粒子やポリエチレン、ポリスチレン、ポリ(メタ)アクリル酸エステル類、ポリジメチルシロキサン等の架橋粒子、SBR、NBRなどの架橋ゴム微粒子等の有機微粒子等の架橋微粒子を添加することも好ましく行われる。これらの架橋微粒子の平均粒径は、1nmないし20000nmであることが好ましい。また、架橋微粒子の形状は、球状、棒状、針状、板状など特に制限無く使用できる。微粒子の添加量は硬化後のハードコート層の60体積%以下であることが好ましく、40体積%以下がより好ましい。
上記で記載した無機微粒子を添加する場合、一般にバインダーポリマーとの親和性が悪いため、ケイ素、アルミニウム、チタニウム等の金属を含有し、かつアルコキシド基、カルボン酸基、スルホン酸基、ホスホン酸基等の官能基を有する表面処理剤を用いて表面処理を行うことも好ましく行われる。
ハードコート層は、熱または活性エネルギー線を用いて硬化することが好ましく、その中でも放射線、ガンマー線、アルファー線、電子線、紫外線等の活性エネルギー線を用いることがより好ましく、安全性、生産性を考えると電子線、紫外線を用いることが特に好ましい。熱で硬化させる場合は、プラスチック自身の耐熱性を考えて、加熱温度は140℃以下が好ましく、より好ましくは100℃以下である。
(5−2)前方散乱層
前方散乱層は、本発明の偏光板を液晶表示装置に適用した際の、上下左右方向の視野角特性(色相と輝度分布)改良するために使用される。本発明では、屈折率の異なる微粒子をバインダー分散した構成が好ましく、例えば、前方散乱係数を特定化した特開11−38208号公報、透明樹脂と微粒子の相対屈折率を特定範囲とした特開2000−199809号公報、ヘイズ値を40%以上と規定した特開2002−107512号公報等の構成を使用することができる。また、本発明の偏光板をヘイズの視野角特性を制御するため、住友化学の技術レポート「光機能性フィルム」31頁〜39頁に記載された「ルミスティ」と組み合わせて使用することも好ましく行うことができる。
(5−3)アンチグレア層
アンチグレア(防眩)層は、反射光を散乱させ映り込みを防止するために使用される。アンチグレア機能は、液晶表示装置の最表面(表示側)に凹凸を形成することにより得られる。アンチグレア機能を有する光学フィルムのヘイズは、3〜30%であることが好ましく、5〜20%であることがさらに好ましく、7〜20%であることが最も好ましい。
フィルム表面に凹凸を形成する方法は、例えば、微粒子を添加して膜表面に凹凸を形成する方法(例えば、特開2000−271878号公報等)、比較的大きな粒子(粒径0.05〜2μm)を少量(0.1〜50質量%)添加して表面凹凸膜を形成する方法(例えば、特開2000−281410号公報、同2000−95893号公報、同2001−100004号公報、同2001−281407号公報等)、フィルム表面に物理的に凹凸形状を転写する方法(例えば、エンボス加工方法として、特開昭63−278839号公報、特開平11−183710号公報、特開2000−275401号公報等記載)等を好ましく使用することができる。
(粘着剤)
次に、本発明で好ましく用いられる粘着剤について説明する。
粘着剤としては、アクリル酸系、メタクリル酸系、ブチルゴム系、シリコーン系などのベースポリマーを用いた粘着剤が使用できる。特に限定されるものでないが、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシルのような(メタ)アクリル酸エステル系ベースポリマーや、これらの(メタ)アクリル酸エステルを二種類以上用いた共重合系ベースポリマーが好適に用いられる。粘着剤では通常、これらのベースポリマー中に極性モノマーが共重合されている。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基などを有するモノマーを挙げることができる。
粘着剤は通常、架橋剤を含有する。架橋剤としては、2価又は多価金属イオンとカルボン酸金属塩を生成するもの、ポリアミン化合物とアミド結合を形成するもの、ポリエポキシ化合物やポリオールとエステル結合を形成するもの、ポリイソシアネート化合物とアミド結合を形成するものなどが挙げられ、これらの化合物が架橋剤として1種又は2種以上、ベースポリマーに混合して用いられる。
本発明の粘着剤層の厚みは、2〜50μmが好ましい。粘着剤層の偏光板と反対側の面には、粘着剤層の保護のために、セパレートフィルムが貼合されているのが通常の形態である。セパレートフィルムとしては、シリコーン樹脂などによって離型処理されたポリエステルフィルムなどが用いられる。このセパレートフィルムは、液晶セルや他の光学機能性フィルムとの貼合時に剥離除去される。
(偏光板を使用する液晶表示装置)
次に本発明の偏光板が使用される液晶表示装置について説明する。
図2は、本発明の偏光板が使用される液晶表示装置の一例である。
図2に示す液晶表示装置は、液晶セル(15〜19)、および液晶セル(15〜19)を挟持して配置された上側偏光板11と下側偏光板22とを有する。偏光板は偏光子および一対の透明保護フィルムによって挟持されているが、図2中では一体化された偏光板として示し、詳細構造は省略する。液晶セルは、上側基板15および下側基板18と、これらに挟持される液晶分子17から形成される液晶層からなる。液晶セルは、ON・OFF表示を行う液晶分子の配向状態の違いで、TN(Twisted Nematic)、IPS(In−Plane Switching)、OCB(Optically Compensatory Bend)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)のような表示モードに分類されるが、本発明の偏光板は透過および反射型によらず、いずれの表示モードにも使用できる。
基板15および18の液晶分子17に接触する表面(以下、「内面」という場合がある)には、配向膜(不図示)が形成されていて、配向膜上に施されたラビング処理等により、電界無印加状態もしくは低印加状態における液晶分子17の配向が制御されている。また、基板15および18の内面には、液晶分子17からなる液晶層に電界を印加可能な透明電極(不図示)が形成されている。
TNモードのラビング方向は上下基板で互いに直交する方向に施し、その強さとラビング回数などでチルト角の大きさが制御できる。配向膜はポリイミド膜を塗布後焼成して形成する。液晶層のねじれ角(ツイスト角)の大きさは、上下基板のラビング方向の交差角と液晶材料に添加するカイラル剤により決まる。ここではツイスト角が90°になるようにするためピッチ60μm程度のカイラル剤を添加する。
なお、ツイスト角は、ノートパソコンやパソコンモニタ、テレビ用の液晶表示装置の場合は90°近傍(85から95°)に、携帯電話などの反射型表示装置として使用する場合は0から70°に設定する。またIPSモードやECBモードでは、ツイスト角が0°となる。IPSモードでは電極が下側基板8のみに配置され、基板面に平行な電界が印加される。また、OCBモードでは、ツイスト角がなく、チルト角を大きくされ、VAモードでは液晶分子17が上下基板に垂直に配向する。
ここで液晶層の厚さdと屈折率異方性Δnの積Δndの大きさは白表示時の明るさを変化させる。このため最大の明るさを得るために表示モード毎にその範囲を設定する。
上側偏光板11の吸収軸12と下側偏光板22の吸収軸23の交差角は一般に概略直交に積層することで高コントラストが得られる。液晶セルの上側偏光板11の吸収軸12と上側基板15のラビング方向の交差角は液晶表示モードによってことなるが、TN、IPSモードでは一般に平行か垂直に設定する。OCB、ECBモードでは45°に設定することが多い。ただし、表示色の色調や視野角の調整のために各表示モードで最適値が異なり、この範囲に限定されるわけではない。
本発明の偏光板が使用される液晶表示装置は、図2の構成に限定されず、他の部材を含んでいてもよい。例えば、液晶セルと偏光子との間にカラーフィルターを配置してもよい。また、液晶セルと偏光板との間に、別途、前述した視野角拡大フィルム13、20を配置することもできる。偏光板11、22と視野角拡大フィルム13、20は粘着剤で貼合した積層形態で配置されてもよいし、液晶セル側保護フィルムの一方を視野角拡大に使用した、いわゆる一体型楕円偏光板として配置されてもよい。
また、本発明の偏光板が使用される液晶表示装置を透過型として使用する場合は、冷陰極あるいは熱陰極蛍光管、あるいは発光ダイオード、フィールドエミッション素子、エレクトロルミネッセント素子を光源とするバックライトを背面に配置できる。また、本発明の偏光板が使用される液晶表示装置は、反射型であってもよく、かかる場合は、偏光板は観察側に1枚配置したのみでよく、液晶セル背面あるいは液晶セルの下側基板の内面に反射膜を設置する。もちろん前記光源を用いたフロントライトを液晶セル観察側に設けてもよい。
以下、実施例に基づき本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
[実施例1]
(セルロースアシレートフィルム1の作製)
<セルロースアシレート溶液の調製>
下記の組成物をミキシングタンクに投入し、撹拌して各成分を溶解し、セルロースアシレート溶液Aを調製した。
(セルロースアシレート溶液A組成)
アセチル化度2.80のセルロースアセテート 100.0質量部
トリフェニルフォスフェート(可塑剤) 6.0質量部
ビフェニルフォスフェート(可塑剤) 3.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
<マット剤溶液の調製>
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製) 2.0質量部
メチレンクロライド(第1溶媒) 75.0質量部
メタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液A 10.3質量部
<レターデーション上昇剤溶液の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら撹拌して、各成分を溶解し、レターデーション上昇剤溶液を調製した。
(レターデーション上昇剤溶液組成)
レターデーション上昇剤(I−2) 20.0質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアシレート溶液A 12.8質量部
上記セルロースアシレート溶液Aを94.5質量部、マット剤溶液を1.3質量部、レターデーション上昇剤溶液4.2質量部をそれぞれを濾過後に混合し、バンド流延機を用いて流延した。残留溶剤含量35%でフィルムをバンドから剥離し、125℃の条件でフィルムをテンターを用いて4%の延伸倍率で横延伸し、延伸後の幅のまま140℃で30秒間保持した。その後、クリップを外して140℃で40分間乾燥させ、セルロースアシレートフィルムを製造した。出来あがったセルロースアシレートフィルムの残留溶剤量は0.2%であり、膜厚は65μmであった。
(セルロースアシレートフィルム2〜11の作製)
セルロースアシレートの種類、レターデーション上昇剤の種類、添加量、UV剤の種類、添加量並びに搬送方向及び幅方向の延伸倍率を表1の内容に変更した以外はセルロースアシレートフィルム1と同様にしてセルロースアシレートフィルム2〜11を作製した。
Figure 0005016788
セルロースアシレートフィルムの作製に用いた可塑剤A、B及びUV剤(UV吸収剤)A〜Dの化学構造を以下に示す。
Figure 0005016788
このようにして作製したセルロースアシレートフィルムの透湿度、レターデーションを下記の方法で測定した。結果を表2に示す。
<透湿度の測定>
JIS Z 0208に記載の方法に従い、各サンプルの透湿度を測定した。試験を行った温湿度条件は25℃90%RHである。
<光学特性の測定>
また、下記方法により25℃60%におけるRe及びRthを測定した。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)製)を用い、25℃60%における波長590nmのRe及びRthを測定した。
Figure 0005016788
[実施例2]
(鹸化処理)
セルロースアシレートフィルム1〜11を、1.5規定の水酸化ナトリウム水溶液に、55℃で2分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、セルロースアシレートフィルムの表面をケン化した。
[実施例3]
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製し、ポリビニルアルコール系接着剤を用いて、実施例1で作製したセルロースアシレートフィルム1を偏光子の両側に貼り付けた。偏光子の透過軸とセルロースアシレートフィルムの遅相軸とは平行になるように配置した。このようにして偏光板(A)を作製した。
[実施例4]
実施例3と同様にして表3に示すセルロースアシレートフィルムの組み合わせで偏光板(A)〜(M)を作製した。
偏光板(A)〜(M)の保護フィルムの平均弾性率を以下の方法で測定した。結果を表3に示す。
<弾性率の測定>
サンプルを25℃60%RHの環境下で24時間調湿し、JIS K7127に記載の方法に従って弾性率を測定した。引っ張り試験機は(株)エー・アンド・デイ製テンシロンを用いた。
Figure 0005016788
[実施例5]
実施例4で作製した偏光板(A)のセルロースアシレートフィルム1側にJSR(株)製のアートンフィルムを2軸延伸処理した位相差膜を粘着剤で貼りあわせた。使用した位相差フィルムのReは62nm、Rthは25nmであった。このようにして位相差フィルムつき偏光板(A)を作製した
[実施例6]
偏光板(B)〜(M)についても実施例5と同様にして実施例5と同じ位相差フィルムを貼りあわせ、位相差つき偏光板(B)〜(M)を作製した。
[実施例7]
〔VA液晶表示装置の作製と評価〕
図3の液晶表示装置を作製した。即ち、観察方向(上)からセルロースアシレートフィルム33及び偏光子34からなる上側偏光板30、VAモード液晶セル(上基板、液晶層、下基板)31、セルロースアシレートフィルム33及び偏光子34からなる下側偏光板32を積層し、さらにバックライト光源(図示せず)を配置した。以下の例では、上側偏光板に実施例4で作製した位相差フィルムつき偏光板(A)を、下側偏光板に本発明の比較例の偏光板(K)を使用している。
<液晶セルの作製>
液晶セルは、基板間のセルギャップを3.6μmとし、負の誘電率異方性を有する液晶材料(「MLC6608」、メルク社製)を基板間に滴下注入して封入し、基板間に液晶層を形成して作製した。液晶層のレターデーション(即ち、記液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・d)を300nmとした。なお、液晶材料は垂直配向するように配向させた。
上記の垂直配向型液晶セルを使用した液晶表示装置(図3)の上側偏光板には実施例4で作製した位相差フィルムつき偏光板(A)を位相差フィルムが液晶セル側となるように、下側偏光板には実施例3で作製した偏光板(K)を、本発明のセルロースアシレートフィルム11が液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸が上下方向に、そして、バックライト側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。このようにして液晶表示装置(A)を作製した。
さらに、上側偏光板を位相差フィルムつき偏光板(B)〜(M)に変更した以外は同様にして、液晶表示装置(B)〜(M)を作製した。
作製した液晶表示装置の耐久性を以下の方法で評価した。結果を表4に示す。
<耐久性評価>
液晶表示装置を40℃90%RHの湿度で200時間連続点灯した後の、周辺部に発生する光漏れ部の面積、及び中央部のコントラストを評価した。
(光漏れ)
光漏れの程度を下記の基準で評価した。
A:全体の5%以下の面積で光漏れ
B:全体の5%以上10%以下の面積で光漏れ
C:全体の10%以上20%以下の面積で光漏れ
D:全体の20%以上40%以下の面積で光漏れ
E:全体の40%以上面積で光漏れ
(コントラスト)
TOPCON社製BM−5で中央部を左30°から観察し、コントラストを測定した。
Figure 0005016788
表4の結果から、本発明の液晶表示装置は高湿下で長時間使用しても画質が劣化せず好ましいことがわかった。
[実施例8]
<鹸化処理>
実施例1で作製したセルロースアセテートフィルム1上に下記組成の液を5.2ml/m2塗布し、60℃で10秒間乾燥させた。フィルムの表面を流水で10秒洗浄し、25℃の空気を吹き付けることでフィルム表面を乾燥させた。
(鹸化液組成)
イソプロピルアルコール 818質量部
水 167質量部
プロピレングリコール 187質量部
水酸化カリウム 68質量部
界面活性剤 n−C1633O(C2410H 12質量部
(配向膜の形成)
鹸化処理したセルロースアシレートフィルム上に、下記の組成の塗布液を#16のワイヤーバーコーターで28ml/m2塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。
次に、セルロースアシレートフィルムの長手方向と平行な方向に、形成した膜にラビング処理を実施した。
(配向膜塗布液組成)
変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
配向膜塗布液に使用した変性ポリビニルアルコールの化学構造式を以下に示す。
Figure 0005016788
変性ポリビニルアルコール
(光学異方性層の形成)
配向膜上に、棒状液晶性化合物(IV−6)41.01g、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06g、セルロースアセテートブチレート(CAB551−0.2、イーストマンケミカル社製)0.90g、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.23g、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45gを、102gのメチルエチルケトンに溶解した塗布液を、#3.6のワイヤーバーで塗布した。これを130℃の恒温ゾーンで2分間加熱し、円盤状化合物を配向させた。次に、60℃の雰囲気下で120W/cm高圧水銀灯を用いて、1分間UV照射し液晶性化合物を重合させた。その後、室温まで放冷した。このようにして、光学異方性層を形成し、光学補償シート(D−1)を作製した。
波長546nmで測定した光学異方性層のReが43nm、Rthは67nmであった。
また、単位あたりの透湿度は15g/m2/μmであった。なお、光学異方性層の透湿度は光学異方性塗布前後でのフィルムの透湿度変化を測定することにより求めることができる。
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製し、ポリビニルアルコール系接着剤を用いて、本発明のセルロースアセテートフィルムが偏光子側となるように偏光子の片側に貼り付けた。偏光子の透過軸と光学異方性層の遅相軸とは平行になるように配置した。
さらに市販のセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を前記と同様にケン化処理し、ポリビニルアルコール系接着剤を用いて、偏光子の反対側に貼り付けた。
(液晶表示装置の作製)
TN型液晶セルを使用した20インチの液晶表示装置(LC−20V1、シャープ(株)製)に設けられている一対の偏光板を剥がし、代わりに上記で作製した偏光板を、光学補償シートが液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸とバックライト側の偏光板の透過軸が直交するように配置した。
本発明の光学補償シートを用いた液晶表示装置は高湿下で長時間使用しても表示ムラが発生せず良好な画像が得られることがわかった。
[実施例9]
(セルロースアシレートフィルム201の作製)
<セルロースアシレート溶液の調製>
下記の組成物をミキシングタンクに投入し、撹拌して各成分を溶解し、セルロースアシレート溶液201を調製した。
(セルロースアシレート溶液201組成)
アセチル化度2.80のセルロースアセテート 100.0質量部
トリフェニルフォスフェート(可塑剤) 5.0質量部
ビフェニルフォスフェート(可塑剤) 3.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
<マット剤溶液の調製>
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製) 2.0質量部
メチレンクロライド(第1溶媒) 75.0質量部
メタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液201 10.3質量部
<レターデーション上昇剤溶液の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら撹拌して、各成分を溶解し、レターデーション上昇剤溶液を調製した。
(レターデーション上昇剤溶液組成)
レターデーション上昇剤(B−121) 10.0質量部
レターデーション上昇剤(B−122) 10.0質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアシレート溶液201 12.8質量部
上記セルロースアシレート溶液201を94.5質量部、マット剤溶液を1.3質量部、レターデーション上昇剤溶液4.2質量部をそれぞれ、濾過後に混合し、バンド流延機を用いて流延した。残留溶剤含量33%でフィルムをバンドから剥離し、125℃の条件でフィルムをテンターを用いて4%の延伸倍率で横延伸し、延伸後の幅のまま125℃で30秒間保持した。その後、クリップを外して130℃で40分間乾燥させ、本発明のセルロースアシレートフィルム201を製造した。出来あがったセルロースアシレートフィルム(201)の残留溶剤量は0.2%であり、膜厚は80μmであった。
(セルロースアシレートフィルム202〜204の作製)
セルロースアシレートフィルム201においてレターデーション上昇剤の種類及び添加量を表5の内容に変更した以外は同様にして本発明のセルロースアシレートフィルム202〜204を作製した。
Figure 0005016788
(セルロースアシレートフィルム211の作製)
<セルロースアシレート溶液の調製>
下記の組成物をミキシングタンクに投入し、撹拌して各成分を溶解し、セルロースアシレート溶液211を調製した。
(セルロースアシレート溶液211組成)
アセチル化度2.0、プロピオニル化度0.8のセルロースアセテートプロピオネート
100.0質量部
トリフェニルフォスフェート(可塑剤) 5.0質量部
エチルフタリルエチルグリコレート(可塑剤) 2.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
エタノール(第2溶媒) 60.0質量部
<マット剤溶液の調製>
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製) 2.0質量部
メチレンクロライド(第1溶媒) 75.0質量部
エタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液211 10.3質量部
<紫外線吸収剤溶液の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら撹拌して、各成分を溶解し、紫外線吸収剤溶液を調製した。
(レターデーション上昇剤溶液組成)
UV剤A 10.0質量部
UV剤B 10.0質量部
メチレンクロライド(第1溶媒) 58.4質量部
エタノール(第2溶媒) 8.7質量部
セルロースアシレート溶液A 12.8質量部
上記セルロースアシレート溶液Aを96.6質量部、マット剤溶液を1.3質量部、レターデーション上昇剤溶液2.1質量部をそれぞれ、濾過後に混合し、バンド流延機を用いて流延した。残留溶剤含量30%でフィルムをバンドから剥離し、130℃の条件でフィルムをテンターを用いて4%の延伸倍率で横延伸し、延伸後の幅のまま130℃で30秒間保持した。その後、クリップを外して130℃で40分間乾燥させ、セルロースアシレートフィルム211を製造した。出来あがったセルロースアシレートフィルム211の残留溶剤量は0.3%であり、膜厚は115μmであった。
<光学特性の測定>
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)製)により25℃60%におけるRe及びRthを測定した。結果を表6に示す。
Figure 0005016788
[実施例10]
(偏光板201〜204及び211の作製)
実施例9で作製したセルロースアシレートフィルム201〜204及び211を用いて実施例2および3と同様の処理により偏光板201〜204及び偏光板211を作製した。
[実施例11]
(偏光板201−Aの作製)
実施例10で作製した偏光板201の本発明のセルロースアシレートフィルム201側に粘着剤を用いて延伸アートンフィルム(Re(590)=100、Rth(590)=117nm)を貼り付け偏光板201−Aを作製した。なお、偏光板の透過軸と延伸アートンフィルムの遅相軸が平行となるように貼りあわせた。
(偏光板202−A〜204−A及び211−Aの作製)
偏光板201−Aと同様にして偏光板202〜204及び211についても延伸アートンフィルムを貼りあわせ、偏光板202−A〜204−A及び211−Aを作製した。
[実施例12]
(液晶表示装置の作製)
実施例7の液晶表示装置(図3)の上側偏光板には実施例11で作製した延伸アートンフィルムつき偏光板(201−A)を延伸アートンフィルムが液晶セル側となるように、下側偏光板には市販の偏光板(サンリッツ社製HLC2−5618)を、粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸が上下方向に、そして、バックライト側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。このようにして液晶表示装置401を作製した。
さらに、上側偏光板を延伸アートンフィルムつき偏光板(202−A)〜(204−A)及び(211−A)に変更した以外は同様にして、液晶表示装置402〜405を作製した。
[実施例13]
(色味視野角の変化)
実施例12で作製した液晶表示装置401〜405について極角60°において、方位角0°と方位角80°との色味変化をELDIM社製Ezcontrastにより測定し、xy色度図上での色味変化の絶対値Δx,Δyを求めた。
結果を表7に示す。
Figure 0005016788
表7の結果から本発明の光学補償シートを用いた偏光板は液晶表示に組み込んだ場合、視角による色味変化が少なく、好ましいことがわかった。とりわけ、Rthの波長分散が前記式(B)及び(C)の関係を満たすセルロースアシレートフィルム201〜204を使用した液晶表示装置401〜404は視角による色味変化が特に小さく好ましい。
図1は、本発明の偏光板と機能性光学フィルムとを複合した構成の一例である。 図2は、本発明の偏光板が使用される液晶表示装置の一例である。 図3は、本発明の液晶表示装置の一例を示す模式図である。
符号の説明
1、1a、1b 保護フィルム
2 偏光子
3 機能性光学フィルム
4 粘着層
5 偏光板
11 上偏光板
12 上偏光板吸収軸
13 上視野角拡大フィルム
14 上視野角拡大フィルム配向制御方向
15 液晶セル上電極基板
16 上基板配向制御方向
17 液晶層
18 液晶セル下電極基板
19 下基板配向制御方向
20 下視野角拡大フィルム
21 下視野角拡大フィルム配向制御方向
22 下偏光板
23 下偏光板吸収軸
30 上側偏光板
31 VAモード液晶セル
32 下側偏光板
33 セルロースアシレートフィルム
34 偏光子

Claims (22)

  1. 少なくとも1つのレターデーション上昇剤を含有し、
    前記レターデーション上昇剤が、下記式(III)で表される化合物を少なくとも2種含有し、
    面内レターデーションRe及び厚み方向レターデーションRthが下記式(A)の関係を満たすことを特徴とする
    セルロースアシレートフィルム。
    (A) 30<Rth(590)/Re(590)
    (ここでRe(λ)及びRth(λ)は、それぞれ波長λnmにおけるRe及びRthを表す。)
    Figure 0005016788
    (式中、Ar1およびAr3はそれぞれ独立にアリール基または一価芳香族ヘテロ環基を表し、Ar2はアリーレン基または二価芳香族へテロ環基を表し、L1およびL2はそれぞれ独立に単結合または2価の連結基を表し、nは3以上の整数を表し、また、それぞれAr2とL2は同一であっても異なっていてもよい。)
  2. Re(590)が0nm以上5nm以下である請求項1に記載のセルロースアシレートフィルム。
  3. Rth(590)が100nm以上400nm以下である請求項1又は2に記載のセルロースアシレートフィルム。
  4. 前記レターデーション上昇剤が、2種の前記式(III)で表される化合物である請求項1〜3のいずれか1つに記載のセルロースアシレートフィルム。
  5. 膜厚が90μm以下である請求項1〜4のいずれか1つに記載のセルロースアシレートフィルム。
  6. アセチル基の置換度Aと、炭素原子数が3以上のアシル基の置換度Bとが下記式(D)及び(E)を満たす請求項1〜5のいずれか1つに記載のセルロースアシレートフィルム。
    (D) 2.0≦A+B≦3.0
    (E) 0≦B≦1.5
  7. 前記nが、3〜7の整数である請求項1〜6のいずれか1つに記載のセルロースアシレートフィルム。
  8. 前記Ar2が、アリーレン基である請求項1〜7のいずれか1つに記載のセルロースアシレートフィルム。
  9. 前記式(III)で表される化合物が、下記式(IV)で表される化合物である請求項1〜8のいずれか1つに記載のセルロースアシレートフィルム。
    Figure 0005016788
    (式中、R11、R12、R13、R14、R15及びR16はそれぞれ独立に水素原子またはアルキル基を表し、R21、R22、R23及びR24はそれぞれ独立に水素原子または置換基を表し、Ar4はアリーレン基または二価芳香族ヘテロ環基を表し、L3およびL4はそれぞれ独立に単結合または2価の連結基を表し、nは3以上の整数を表し、また、それぞれAr4とL4は同一であっても異なっていても良い。)
  10. 前記式(IV)で表される化合物が、下記式(VI)で表される化合物である請求項9に記載のセルロースアシレートフィルム。
    Figure 0005016788
    (式中、R21、R22はそれぞれ独立に水素原子または置換基を表し、R11、R12及びR13はそれぞれ独立に水素原子またはアルキル基を表し、L3、L4はそれぞれ独立に単結合または二価の連結基を表し、Ar4はアリーレン基または二価芳香族ヘテロ環基を表し、nは3以上の整数を表し、また、それぞれL4、Ar4は同一であっても異なっていてもよい。ただし、R11、R12は互いに異なっており、R12で表されるアルキル基はへテロ原子を含まない。)
  11. セルロースアシレート、レターデーション上昇剤及び溶媒を含む溶液を調製する工程、前記溶液を支持体上に流延する工程、及び前記溶媒を除去乾燥してフィルムを形成する工程を含むセルロースアシレートフィルムの製造方法であって、
    フィルム製膜時の搬送方向に対して垂直な方向(以下幅方向)に1.0以上1.1以下の倍率で延伸する工程をさらに含む請求項1〜10のいずれか1つに記載のセルロースアシレートフィルムの製造方法。
  12. セルロースアシレート、レターデーション上昇剤及び溶媒を含む溶液を調製する工程、前記溶液を支持体上に流延する工程、及び前記溶媒を除去乾燥してフィルムを形成する工程を含むセルロースアシレートフィルムの製造方法であって、
    フィルム製膜時の搬送方向に対して、平行及び垂直の2方向に同時あるいは逐次に延伸する工程をさらに含み、搬送方向の延伸倍率と垂直方向の延伸倍率が下記式(F)の関係を満たす請求項1〜10のいずれか1つに記載のセルロースアシレートフィルムの製造方法。
    式(F)
    0.01<(垂直方向の延伸倍率)−(平行方向の延伸倍率)<0.1
  13. 請求項11又は12に記載の製造方法により製造されたセルロースアシレートフィルム。
  14. 偏光子の両側に保護フィルムが貼り合わされてなる偏光板であって、
    該保護フィルムの少なくとも1枚が請求項1〜10、13のいずれか1つに記載のセルロースアシレートフィルムであることを特徴とする
    偏光板。
  15. 偏光子の両側の保護フィルムの弾性率比が下記式(G)を満たす請求項14に記載の偏光板。
    式(G)
    0.75<(液晶セル側の保護フィルムの弾性率)/(空気界面側の保護フィルムの弾性率)<1.33
  16. 液晶セル側の保護フィルム上にさらに1枚以上の位相差フィルムが貼りあわされた請求項14又は15に記載の偏光板。
  17. 液晶セル側の保護フィルム上に光学異方性層を設けた請求項14〜16のいずれか1つに記載の偏光板。
  18. 液晶セル側の保護フィルムが請求項1〜10、13のいずれか1つに記載のセルロースアシレートフィルムであり、液晶セル側の保護フィルム上の位相差フィルムのRth(590)/Re(590)比が下記式(H)の関係を満たす請求項16に記載の偏光板。
    式(H)
    液晶セル側の保護フィルムのRth(590)/Re(590)比>位相差フィルムのRth(590)/Re(590)比
  19. 液晶セル側の保護フィルムが請求項1〜10、13のいずれか1つに記載のセルロースアシレートフィルムであり、液晶セル側の保護フィルム上の光学異方性層のRth(590)/Re(590)比が下記式(I)の関係を満たす請求項17に記載の偏光板。
    式(I)
    液晶セル側の保護フィルムのRth(590)/Re(590)比>光学異方性層のRth(590)/Re(590)比
  20. 液晶セル側の保護フィルムが請求項1〜10、13のいずれか1つに記載のセルロースアシレートフィルムであり、液晶セル側の保護フィルム上の位相差フィルムの単位厚みあたりの透水度が下記式(J)の関係を満たす請求項16又は18に記載の偏光板。
    式(J)
    液晶セル側の保護フィルムの単位厚みあたりの透水度>位相差フィルムの単位厚みあたりの透水度
  21. 液晶セル側の保護フィルムが請求項1〜10、13のいずれか1つに記載のセルロースアシレートフィルムであり、液晶セル側保護フィルム上の光学異方性層の単位厚みあたりの透水度が下記式(K)の関係を満たす請求項17又は19の偏光板。
    式(K)
    液晶セル側の保護フィルムの単位厚みあたりの透水度>光学異方性層の単位厚みあたりの透水度
  22. 液晶セルおよびその両側に配置された二枚の偏光板を有する液晶表示装置であって、
    少なくとも1枚の偏光板が請求項14〜21のいずれか1つに記載の偏光板であることを特徴とする
    液晶表示装置。
JP2005143493A 2004-06-09 2005-05-17 セルロースアシレートフィルム、偏光板および液晶表示装置 Expired - Fee Related JP5016788B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143493A JP5016788B2 (ja) 2004-06-09 2005-05-17 セルロースアシレートフィルム、偏光板および液晶表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004171446 2004-06-09
JP2004171446 2004-06-09
JP2005143493A JP5016788B2 (ja) 2004-06-09 2005-05-17 セルロースアシレートフィルム、偏光板および液晶表示装置

Publications (2)

Publication Number Publication Date
JP2006022311A JP2006022311A (ja) 2006-01-26
JP5016788B2 true JP5016788B2 (ja) 2012-09-05

Family

ID=35795812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143493A Expired - Fee Related JP5016788B2 (ja) 2004-06-09 2005-05-17 セルロースアシレートフィルム、偏光板および液晶表示装置

Country Status (1)

Country Link
JP (1) JP5016788B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI353461B (en) * 2004-05-18 2011-12-01 Fujifilm Corp Optical film, optical compensation film, polarizin
CN101080454B (zh) 2004-12-15 2012-10-17 富士胶片株式会社 酰化纤维素膜、酰化纤维素膜的制备方法、偏振片和液晶显示器
US7709067B2 (en) * 2005-05-10 2010-05-04 Konica Minolta Opto, Inc. Cellulose ester film, polarizing plate and liquid crystal display
JP2007264480A (ja) * 2006-03-29 2007-10-11 Fujifilm Corp 液晶表示装置
JP2007293266A (ja) * 2006-03-29 2007-11-08 Fujifilm Corp ポリマーフィルム、偏光板保護フィルム、偏光板および液晶表示装置
JP4953915B2 (ja) * 2006-05-18 2012-06-13 富士フイルム株式会社 セルロースアシレートフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP4910524B2 (ja) * 2006-07-11 2012-04-04 コニカミノルタオプト株式会社 可塑剤、セルロースエステルフィルム、偏光板及び液晶表示装置
WO2008007566A1 (fr) * 2006-07-13 2008-01-17 Konica Minolta Opto, Inc. Procédé de production de film protecteur pour polariseur, film protecteur pour polariseur, polariseur, et écran à cristaux liquides
TWI408160B (zh) * 2006-09-29 2013-09-11 Fujifilm Corp 透明保護薄膜、光學補償薄膜、偏光板及液晶顯示裝置
JP5061066B2 (ja) * 2007-09-07 2012-10-31 富士フイルム株式会社 ポリマーフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
TW201028292A (en) * 2008-12-11 2010-08-01 Sumitomo Chemical Co Process for producing composite polarizing plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240799B2 (ja) * 2000-10-18 2009-03-18 コニカミノルタホールディングス株式会社 光学用セルロースエステルフィルム、その製造方法及び偏光板
JP2002196146A (ja) * 2000-10-19 2002-07-10 Fuji Photo Film Co Ltd 光学補償シート、偏光板、およびそれを用いた液晶表示装置
JP2003055477A (ja) * 2001-08-15 2003-02-26 Fuji Photo Film Co Ltd セルロースアセテートフイルム、光学補償シート、偏光板および液晶表示装置

Also Published As

Publication number Publication date
JP2006022311A (ja) 2006-01-26

Similar Documents

Publication Publication Date Title
JP5016788B2 (ja) セルロースアシレートフィルム、偏光板および液晶表示装置
US7462306B2 (en) Cellulose acylate film, process for producing cellulose acylate film, polarizing plate and liquid crystal display device
KR101247843B1 (ko) 액정 표시장치
US8017199B2 (en) Cellulose acylate film, process for producing cellulose acylate film, polarizing plate and liquid crystal display device
JP4759365B2 (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、偏光板及び液晶表示装置
JP4856995B2 (ja) 光学樹脂フィルム、偏光板及び液晶表示装置
US7667801B2 (en) Liquid crystal display device
JP5061066B2 (ja) ポリマーフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
JP2006096023A (ja) セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板、及び液晶表示装置
JP2007009181A (ja) セルロースアシレートフィルム、偏光板および液晶表示装置
JP2006241306A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、偏光板および液晶表示装置
JP2007017958A (ja) 液晶表示装置
JP4383435B2 (ja) 液晶表示装置
JP4686351B2 (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、並びにそれを用いた偏光板及び液晶表示装置
US20090213311A1 (en) Liquid Crystal Display Device
JP5140520B2 (ja) セルロースエステルフィルムの製造方法、位相差フィルム、それを用いた偏光板、及び液晶表示装置
JP4330410B2 (ja) セルロースフィルム、偏光板および液晶表示装置
TWI407156B (zh) 醯化纖維素薄膜、偏光板保護薄膜、偏光板及液晶顯示裝置
JP2005349616A (ja) セルロースアシレートフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
JP2008233814A (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
JP2007293266A (ja) ポリマーフィルム、偏光板保護フィルム、偏光板および液晶表示装置
JP2006235483A (ja) セルロースアシレートフィルム、その製造方法、それを用いた偏光板、並びにその偏光板を用いた液晶表示装置
JP4530144B2 (ja) セルロースアセテートフィルム、偏光板及び液晶表示装置
JP2007119737A (ja) セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板、及び液晶表示装置
JP2005309348A (ja) 偏光板保護フィルム、その製造方法、偏光板および液晶表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5016788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees