JP5013730B2 - Thickness measuring method and thickness measuring apparatus - Google Patents
Thickness measuring method and thickness measuring apparatus Download PDFInfo
- Publication number
- JP5013730B2 JP5013730B2 JP2006090570A JP2006090570A JP5013730B2 JP 5013730 B2 JP5013730 B2 JP 5013730B2 JP 2006090570 A JP2006090570 A JP 2006090570A JP 2006090570 A JP2006090570 A JP 2006090570A JP 5013730 B2 JP5013730 B2 JP 5013730B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- thickness
- distance
- measurement object
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title description 10
- 238000005259 measurement Methods 0.000 claims description 148
- 238000007665 sagging Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 17
- 238000005452 bending Methods 0.000 claims description 12
- 238000000691 measurement method Methods 0.000 claims description 12
- 229910000831 Steel Inorganic materials 0.000 description 77
- 239000010959 steel Substances 0.000 description 77
- 238000012937 correction Methods 0.000 description 10
- 230000005251 gamma ray Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000007723 transport mechanism Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
本発明は、搬送ライン上を搬送される計測対象物を挟んで、対向して配置された複数のレーザ距離計により構成される搬送される計測対象物の厚さを計測する厚さ計(寸法計)による厚さ計測方法及び厚さ計測装置に関するものであり、特に、厚鋼板や薄鋼板などの精整ラインや検査ライン等の搬送ライン上を搬送される鋼板等の計測対象物の板厚を計測する際の搬送、計測される計測対象物(鋼板)の反り、垂れ、撓みにより発生する厚さの斜め計測による誤差を推定・補正し、正確な計測対象物の厚さを計測する技術に関する。 The present invention relates to a thickness meter (dimensions) for measuring the thickness of a measurement object to be conveyed, which is composed of a plurality of laser distance meters arranged opposite to each other with the measurement object conveyed on the conveyance line interposed therebetween. total) relates due to the thickness measurement method and the thickness measuring device, in particular, the thickness of the measurement object such as a steel plate being conveyed on the conveying line, such as a finishing line lines and inspection lines such as thick steel plate or thin steel sheet Technology for measuring the thickness of an accurate measurement object by estimating and correcting errors due to oblique measurement of thickness caused by warping, sagging, and bending of the measurement object (steel plate) being measured About.
厚板、薄板ラインにおいては、連続して通板される鋼板の寸法(板厚)を連続して計測し、板厚の保証を行う必要があり、従来、γ線透過方式の板厚計が適用されている。このγ線方式板厚計は、放射線源から対象鋼板に対してγ線を投射し、透過するγ線を検出器により検出し、対象鋼板を透過する際のγ線減衰量を計測する事により、対象鋼板の板厚の算出、計測を行うものであり、γ線の減衰量を計測するものである事から対象鋼板の性状、線源及び検出器との位置関係等によらず、高精度、安定した板厚計測が可能である。しかし、透過γ線の変化を計測する為のγ線検出器の応答性が悪く、対象鋼板がライン上を搬送される場合(移動する場合)には、鋼板の先尾端部等に不感帯が発生する。また、定常部に関しても、応答性の悪さから鋼板の細かい板厚変化を計測する事が困難である。 For thick plate and thin plate lines, it is necessary to continuously measure the dimensions (thickness) of the steel plates that are continuously passed through to guarantee the plate thickness. Has been applied. This γ-ray system thickness gauge projects γ-rays from the radiation source to the target steel sheet, detects the transmitted γ-rays with a detector, and measures the amount of γ-ray attenuation when passing through the target steel sheet. The thickness of the target steel sheet is calculated and measured, and the amount of attenuation of γ rays is measured. Therefore, it is highly accurate regardless of the properties of the target steel sheet and the positional relationship with the radiation source and detector. Stable plate thickness measurement is possible. However, when the response of the γ-ray detector for measuring the change in transmitted γ-ray is poor and the target steel plate is transported (moved) on the line, there is a dead zone at the leading edge of the steel plate. appear. In addition, it is difficult to measure a small change in the thickness of the steel plate because of its poor response.
これに対して、計測応答性の高いレーザ距離計を適用し、高応答性での板厚計測を可能とするレーザ方式板厚計が実用化されている。また、その改良技術として、被測定対象物の振動や測定位置のずれによる厚さ測定誤差を低減するために、上下のレーザ光源を同時にパルス放射させる装置も提案されている(例えば、特許文献1など)。
レーザ方式厚さ計は上下に対向して設置されたレーザ距離計により計測対象物の上下面までの距離を計測し、上下距離計の間の距離と計測距離から計測対象物の厚さを計測する。使用されるレーザ距離計は、三角測量の原理を利用したもので、レーザ光を計測対象物対象表面に投光し、表面での乱反射光を光学系(レンズ+CCDセンサ)により斜め方向から検出することにより対象面までの距離を高精度、高応答性で計測する。レーザ距離計を用いた厚さ計では、上下距離計から対象表面までの距離を計測し、上下距離計間の間隔と計測距離から計測対象物の厚さを算出する。この時、計測対象物の表面が距離計の距離計測方向に対して垂直な面であれば(計測すべき厚さ方向と距離計の距離計測方向が一致していれば)、正確な厚さ計測が可能であるが、計測対象物が傾斜している場合には、傾斜角に応じた斜め計測誤差が発生する。 The laser type thickness meter measures the distance to the upper and lower surfaces of the object to be measured by the laser distance meter installed facing up and down, and measures the thickness of the object to be measured from the distance between the distance meter and the measurement distance. To do. The laser distance meter used is based on the principle of triangulation, and laser light is projected onto the surface of the object to be measured, and irregularly reflected light on the surface is detected from an oblique direction by an optical system (lens + CCD sensor). Thus, the distance to the target surface is measured with high accuracy and high responsiveness. In a thickness meter using a laser distance meter, the distance from the vertical distance meter to the target surface is measured, and the thickness of the measurement object is calculated from the interval between the vertical distance meters and the measured distance. At this time, if the surface of the object to be measured is a plane perpendicular to the distance measurement direction of the distance meter (if the thickness direction to be measured matches the distance measurement direction of the distance meter), the accurate thickness Measurement is possible, but when the measurement object is tilted, an oblique measurement error corresponding to the tilt angle occurs.
たとえば、搬送ライン上を搬送される鋼板を計測対象物とする厚さ計測では、鋼板を常に水平に保持出来れば、斜め計測誤差は発生しないが、図1に示されるように、実際の計測においては鋼板は、等間隔に配置されたロール、エプロン等により構成される搬送ライン上を移動しており、特に先端部及び尾端部においては、鋼板応力による反りや、自重による撓み(垂れ)が発生し、斜め計測による誤差が発生する。 For example, in thickness measurement using a steel plate conveyed on the conveyance line as a measurement object, if the steel plate can always be held horizontally, an oblique measurement error will not occur. However, as shown in FIG. The steel plate is moving on a conveyance line composed of rolls, apron, etc., arranged at equal intervals. Especially at the tip and tail ends, warpage due to steel plate stress and deflection (dripping) due to its own weight. Occurs, and errors due to oblique measurement occur.
ここで、鋼板の厚さをt、鋼板の反り、撓み(垂れ)による変位角度をθとすると、計測される板厚t’は次式で表され、角度によっては大きな誤差が発生する。
t’=t/cosθ
また、レーザ距離計は計測対象物対象表面上のポイント(レーザ投光点)までの距離を計測しているのみであり、計測対象物表面の傾斜の有無は判別できないため、これまでのレーザ方式厚さ計では板の傾斜による斜め計測誤差を補正する事は出来なかった。
Here, if the thickness of the steel sheet is t, the displacement angle due to warpage of the steel sheet and the deflection (sagging) is θ, the measured thickness t ′ is expressed by the following equation, and a large error occurs depending on the angle.
t ′ = t / cos θ
In addition, the laser rangefinder only measures the distance to the point (laser projection point) on the surface of the measurement object and cannot determine whether the measurement object surface is inclined. The thickness gauge could not correct the oblique measurement error due to the inclination of the plate.
本発明は、上記のような問題点を解決するためになされたものであり、レーザ方式厚さ計による計測対象物の厚さ計測において、斜め計測誤差を補正し正確な厚さ計測を行うことを可能にした厚さ計測方法及び厚さ計測装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and corrects an oblique measurement error and performs an accurate thickness measurement in the thickness measurement of a measurement object using a laser type thickness meter. It is an object of the present invention to provide a thickness measuring method and a thickness measuring apparatus that enable the above.
本発明に係る厚さ計測方法は、対向して配置されたレーザ距離計により、一定間隔に配置された搬送ロールにより構成される搬送ライン上を搬送される計測対象物の厚さを計測する厚さ計測方法において、搬送される計測対象物の下面又は上面までの距離を一定搬送距離間隔で、前記搬送ライン下側又は上側に設置された前記レーザ距離計により計測してその計測値を記録し、該記録された計測値から計測対象物の先端部又は尾端部及び定常部に対応する計測値をそれぞれ求め、前記定常部の計測値と前記先端部又は尾端部の計測値との差に基づいて前記先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定することにより厚さ計測値を補正し、計測対象物の厚さを計測する。
また、本発明に係る厚さ計測装置は、搬送ライン上を搬送される計測対象物をはさんで、該計測対象物の表裏面の位置を計測するレーザ距離計と、搬送される計測対象物の下面又は上面までの距離を一定搬送距離間隔で、前記レーザ距離計により計測してその計測値を記録し、該記録された計測値から計測対象物の先端部又は尾端部及び定常部に対応する計測値をそれぞれ求め、前記定常部の計測値と前記先端部又は尾端部の計測値との差に基づいて前記先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定することにより厚さ計測値を補正し、計測対象物の厚さを計測する信号処理装置とを備えたものである。
The thickness measurement method according to the present invention is a thickness for measuring the thickness of a measurement object conveyed on a conveyance line constituted by conveyance rolls arranged at regular intervals by a laser distance meter arranged oppositely. In the measurement method, the distance to the lower surface or the upper surface of the measurement object to be conveyed is measured by the laser distance meter installed below or above the conveyance line at a certain conveyance distance interval, and the measured value is recorded. The measurement values corresponding to the tip or tail end and the stationary part of the measurement object are respectively obtained from the recorded measurement values, and the difference between the measurement value of the stationary part and the measurement value of the tip or tail end is obtained. The thickness measurement value is estimated by estimating the warp, sagging or bending shape at the time of passing the measurement position of the tip or tail based on the angle, and estimating the angle of the measurement object at the measurement position based on the estimation result To compensate for measurement To measure the thickness of the object.
In addition, the thickness measuring apparatus according to the present invention includes a laser distance meter for measuring the positions of the front and back surfaces of the measurement object across the measurement object conveyed on the conveyance line, and the measurement object to be conveyed. The distance to the lower surface or the upper surface is measured with the laser distance meter at a constant conveyance distance interval, and the measured value is recorded. From the recorded measured value, the tip or tail end portion and the stationary portion of the measurement object are recorded. Corresponding measurement values are obtained, respectively, and warping, sagging or bending when passing the measurement position of the tip or tail end based on the difference between the measurement value of the stationary part and the measurement value of the tip or tail end. A signal processing device that estimates the shape, corrects the thickness measurement value by estimating the angle of the measurement object at the measurement position based on the estimation result, and measures the thickness of the measurement object. is there.
本発明によれば、対向して配置されたレーザ距離計により搬送ライン上を搬送される計測対象物の厚さを計測する厚さ計測方法において、対象となる計測対象物の反り、垂れ又は撓み形状を推定し、それによる厚さの斜め計測誤差を補正することが可能となり、正確な厚さを計測することができる。 According to the present invention, in a thickness measurement method for measuring the thickness of a measurement object conveyed on a conveyance line by a laser distance meter disposed oppositely, warping, sagging, or bending of the measurement object to be measured. It is possible to estimate the shape and correct an oblique measurement error of the thickness, thereby measuring an accurate thickness.
実施形態1.
本発明の実施形態1による厚さ計測方法では、対向して配置されたレーザ距離計により、搬送ライン上を搬送される鋼板の厚さを計測する板厚計測方法について説明する。ここで、対象鋼板等の通過位置は搬送ラインの搬送機構により一定であり、対象鋼板等の推定(目標)板厚も既知であるという前提のもとで、鋼板の推定板厚からの偏差を計測することを目的としている。このとき、搬送ラインの上側または下側のレーザ距離計の計測距離は、ほぼ一定であり、下側の距離計の場合は距離計から搬送機構により決まる鋼板下面までの距離、上側距離計の場合には距離計から鋼板上面までの距離(搬送機構により決まる鋼板下面位置までの距離から鋼板の推定厚を差し引いた距離)となる。鋼板の搬送(移動)に伴い計測位置が変化すると、鋼板の厚み変動により上下の各距離計の計測値は変動し、各距離計の計測値と上下距離計間の距離から対象鋼板の板厚が算出される。
Embodiment 1. FIG.
In the thickness measurement method according to the first embodiment of the present invention, a plate thickness measurement method will be described in which the thickness of a steel plate conveyed on a conveyance line is measured by a laser distance meter arranged oppositely. Here, on the assumption that the passing position of the target steel plate is constant by the transport mechanism of the transport line and the estimated (target) plate thickness of the target steel plate is also known, the deviation from the estimated plate thickness of the steel plate is calculated. The purpose is to measure. At this time, the measurement distance of the laser rangefinder on the upper or lower side of the transfer line is almost constant. In the case of the lower rangefinder, the distance from the rangefinder to the bottom surface of the steel plate determined by the transfer mechanism, in the case of the upper rangefinder Is the distance from the distance meter to the upper surface of the steel sheet (the distance obtained by subtracting the estimated thickness of the steel sheet from the distance to the lower surface position of the steel sheet determined by the transport mechanism). When the measurement position changes as the steel sheet is transported (moved), the measured values of the upper and lower distance meters vary due to the variation in the thickness of the steel sheet. Is calculated.
ここで、各距離計の計測距離における鋼板の板厚変動による変化は通常は非常に小さい(板厚の変動は数+〜数百μm)が、鋼板に反り、垂れ等の変形部分がある場合には、鋼板の上下面は搬送機構により決まる位置(パスライン)に対してズレた位置を通過し各距離計による計測距離は大きく変化する(板変形による通過位置の変動はmm単位)ため、距離計の計測距離から鋼板上面又は下面の通過位置を算出する事が可能となる。 Here, the change due to the thickness variation of the steel plate at the measurement distance of each rangefinder is usually very small (the variation of the plate thickness is several + to several hundred μm), but there is a deformed part such as warpage and sagging In this case, the upper and lower surfaces of the steel plate pass through a position shifted from the position (pass line) determined by the transport mechanism, and the distance measured by each distance meter changes greatly (the variation of the passing position due to plate deformation is in mm). The passing position of the upper surface or the lower surface of the steel sheet can be calculated from the distance measured by the distance meter.
ここで、一定間隔に配置された搬送ロールにより鋼板を搬送するライン上の鋼板の板厚をロール間に設置されたレーザ距離計により構成される板厚計により計測する場合には、鋼板自体に歪、変形が無い場合でも、先尾端部に関しては、ロール間を通過する際に自重により先尾端部の垂れが発生し、鋼板の上下面は通常の通過位置に対して変位する。 Here, when measuring the plate thickness of the steel plate on the line that conveys the steel plate by the transport rolls arranged at regular intervals with a plate thickness meter constituted by a laser distance meter installed between the rolls, Even when there is no distortion or deformation, the leading end portion droops due to its own weight when passing between rolls, and the upper and lower surfaces of the steel plate are displaced with respect to the normal passing position.
図2は鋼板の斜め計測誤差の補正方法を説明する図である。本実施形態1による厚さ計測方法では、図2に示されるように板端部の変形(垂れ)の始点をロールとの接触位置と仮定(鋼板が始点位置で屈曲していると仮定)し、始点位置と板厚計計測位置との間距離をLとし、板厚計計測位置における鋼板上面又は下面の通常通過位置に対する変位Δdをレーザ距離計の計測距離から算出することにより、次式で表される板厚計計測位置における鋼板の傾斜角度θを算出する。
θ=tan-1(Δd/L)
FIG. 2 is a diagram for explaining a correction method for the oblique measurement error of the steel sheet. In the thickness measurement method according to the first embodiment, as shown in FIG. 2, it is assumed that the starting point of deformation (sagging) of the plate end is the contact position with the roll (assuming that the steel plate is bent at the starting point position). By calculating the displacement Δd with respect to the normal passing position of the upper surface or the lower surface of the steel plate at the plate thickness meter measurement position from the measured distance of the laser distance meter, the distance between the start point position and the plate thickness measurement position is L, The inclination angle θ of the steel plate at the plate thickness meter measurement position is calculated.
θ = tan −1 (Δd / L)
本実施形態1による厚さ計測方法では、鋼板の板厚をT、板厚計により計測された板厚計測値をtとし、算出した計測位置における鋼板の角度θを用いて、板厚計による板厚計測値tから鋼板の垂れによる斜め計測の誤差を補正し、次式で表される鋼板の板厚を算出する。
T=cos(θ)・t
In the thickness measurement method according to the first embodiment, the thickness of the steel plate is T, the thickness measurement value measured by the thickness meter is t, and the angle θ of the steel plate at the calculated measurement position is used. The error of the oblique measurement due to the sagging of the steel plate is corrected from the plate thickness measurement value t, and the thickness of the steel plate represented by the following formula is calculated.
T = cos (θ) · t
以上のように本実施形態1においては、レーザ距離計により計測される計測対象物の下面又は上面までの距離と、搬送ライン上のパスライン位置との差から、計測対象物の下面又は上面のパスラインからの変位量を算出することにより計測対象物の反り、撓み又は垂れ量を推定し、その推定結果に基づいて厚さ計測値の補正を行うようにしたので、計測対象物の反り、垂れ、撓みによる計測対象物厚さの斜め計測誤差を補正することが可能となり、正確な厚さを計測することできる。 As described above, in the first embodiment, the difference between the distance to the lower surface or the upper surface of the measurement object measured by the laser distance meter and the pass line position on the transport line is calculated based on the lower surface or the upper surface of the measurement object. By calculating the amount of displacement from the pass line, the warpage, deflection or sagging amount of the measurement object is estimated, and the thickness measurement value is corrected based on the estimation result. It is possible to correct an oblique measurement error of the thickness of the measurement object due to sagging or bending, and an accurate thickness can be measured.
実施形態2.
本発明の実施形態2による厚さ計測方法でも、実施形態1と同様に搬送ライン上を搬送される鋼板を計測対象物とする板厚計測方法を例に説明する。図3は鋼板の斜め計測誤差の他の補正方法を説明する図である。図3に示されるように、鋼板がロールとの接触位置を始点とした屈曲形状ではなく、任意の円弧状に変形していると仮定した場合には、前記の方法では板厚計計測位置における鋼板の角度を算出できない。本実施形態2による板厚計測方法では次のような処理を行う。
(1)まず、予め鋼板の搬送に伴い板厚計を構成するレーザ距離計により鋼板の上下面までの計測距離を一定間隔(一定時間間隔又は一定鋼板長間隔)で計測し、データを記録する。
(2)次に、記録された一定間隔毎の計測距離データの変化に対して近似曲線の計算或いは、平滑化(移動平均処理等)を行う事により、計測距離変化の全体プロファイルを求める。算出されたプロファイルは鋼板の変形に対応している。したがって、本実施形態2においては、図3のプロファイルから定常部(2個の搬送ロールにより支持されている部分)の計測値と、先端部又は尾端部の計測値とを識別し(例えば移動距離又は時間に応じて識別する)、両者を識別した後に、定常部(2個の搬送ロールにより支持されている部分)の計測値と、先端部又は尾端部の計測値との差を求めることにより、先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定する。そして、その推定結果に基づいて計測位置における鋼板の角度を推定することにより板厚計測値を補正し、鋼板の板表面に鉛直な方向の板厚を計測する。
Embodiment 2. FIG.
Also in the thickness measurement method according to the second embodiment of the present invention, a plate thickness measurement method using a steel plate conveyed on the conveyance line as a measurement object as in the first embodiment will be described as an example. FIG. 3 is a diagram for explaining another correction method for the oblique measurement error of the steel sheet. As shown in FIG. 3, when it is assumed that the steel sheet is deformed in an arbitrary arc shape instead of a bent shape starting from the contact position with the roll, the above method is used at the thickness gauge measurement position. The angle of the steel sheet cannot be calculated. In the plate thickness measuring method according to the second embodiment, the following processing is performed.
(1) First, the measurement distance to the upper and lower surfaces of the steel plate is measured at a constant interval (a constant time interval or a constant steel plate length interval) with a laser distance meter that constitutes a plate thickness meter with the conveyance of the steel plate, and data is recorded. .
(2) Next, an approximate curve is calculated or smoothed (moving average processing, etc.) with respect to the recorded change in the measured distance data at regular intervals, thereby obtaining an overall profile of the measured distance change. The calculated profile corresponds to the deformation of the steel plate. Therefore, in the second embodiment, the measurement value of the stationary part (the part supported by the two transport rolls) and the measurement value of the tip part or the tail part are identified from the profile of FIG. After identifying both, the difference between the measured value of the stationary part (the part supported by the two transport rolls) and the measured value of the tip part or tail part is obtained. Accordingly, the warp, sagging or bending shape at the time of passing the measurement position of the tip or tail is estimated. Then, the plate thickness measurement value is corrected by estimating the angle of the steel plate at the measurement position based on the estimation result, and the plate thickness in the direction perpendicular to the plate surface of the steel plate is measured.
なお、上記の例では鋼板の上下面までの計測距離を求める例について説明したが、板厚(目標板厚)が判っているので下部又は上部の距離計の計測データによっても同様の補正を行う事が出来る。 In the above example, the example of obtaining the measurement distance to the upper and lower surfaces of the steel plate has been described. However, since the plate thickness (target plate thickness) is known, the same correction is performed using the measurement data of the lower or upper distance meter. I can do it.
以上のように本実施形態2においては、搬送される計測対象物の下面又は上面までの距離を一定搬送距離間隔で、レーザ距離計によって計測してその計測値を記録し、その記録された計測値から計測対象物の先端部又は尾端部及び定常部に対応する計測値をそれぞれ求め、前記定常部の計測値と前記先端部又は尾端部の計測値との差に基づいて先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定することにより計測対象物厚さ計測値を補正するようにしたので、計測対象物の反り、垂れ又は撓みによる厚さの斜め計測誤差を補正することが可能となり、正確な厚さを計測することできる。 As described above, in the second embodiment, the distance to the lower surface or the upper surface of the measurement object to be conveyed is measured by the laser distance meter at a certain conveyance distance interval, and the measured value is recorded. The measurement values corresponding to the tip or tail end and the stationary part of the measurement object are respectively obtained from the values, and based on the difference between the measurement value of the stationary part and the measurement value of the tip or tail end, Estimate warpage, sagging or deflection shape when passing the measurement position of the tail end, and correct the measurement object thickness measurement value by estimating the angle of the measurement object at the measurement position based on the estimation result Therefore, it becomes possible to correct an oblique measurement error of the thickness due to warping, sagging or bending of the measurement object, and an accurate thickness can be measured.
図4は本発明の実施例を示した図である。図において、1a,1bはレーザ距離計、2はCフレーム、3は信号処理装置、4は搬送ロール、5はPLG(パルス発生器)、6は計測対象物である鋼板、7は上位計算機を示す。レーザ距離計1a,1bはCフレーム2の上下に対向して設置され、相対的な位置、距離が変動しないように固定されCフレーム2ごと移動する。レーザ距離計1a,1bの出力は信号処理装置3に入力され、信号処理装置3において板厚算出処理を行う。信号処理装置3には搬送ロール4に取付けられたPLG5の出力も入力している。Cフレーム2は上下の対向したレーザ距離計1a,1bの間に、搬送ライン上の鋼板6が来るように移動し、信号処理装置3において各レーザ距離計1a,1bの計測距離と距離計間の距離から鋼板6の板厚を算出し、搬送ラインのPLG5からの入力をカウントし、鋼板6の搬送長さを算出する。
FIG. 4 shows an embodiment of the present invention. In the figure, 1a and 1b are laser distance meters, 2 is a C frame, 3 is a signal processing device, 4 is a transport roll, 5 is a PLG (pulse generator), 6 is a steel plate as a measurement object, and 7 is a host computer. Show. The
信号処理装置3では上位計算機7から鋼板の板厚(目標/仕様板厚)情報を受信し、計測した鋼板板厚の目標板厚からの偏差を計算し、上位計算機7に計測実績として伝送する。上位計算機7では板厚計測実績から板厚(偏差)が製品公差範囲に入っているかの判定を行い、鋼板の合否判定を行う。
The
本実施例において、信号処理装置3では鋼板6が搬送されレーザ距離計1a,1bの板厚計測位置に鋼板先端部が挿入された時点を鋼板の端面として、板厚計測とラインPLG5の出力のカウントを開始し、一定時間間隔或いは一定距離間隔(PLGカウント)ごとに板厚計測を行う。板厚の算出は次式により行う。
t=L0−L1−L2
L0:上下距離計間の距離
L1:上部距離計計測値
L2:下部距離計計測値
t:板厚
In this embodiment, in the
t = L0-L1-L2
L0: Distance between upper and lower distance meters L1: Upper distance meter measurement values L2: Lower distance meter measurement values t: Plate thickness
本実施例においては、先端部及び尾端部の予め設定された範囲に関しては、反り、垂れ撓み形状の補正計測処理を行う。本実施例において搬送ロール間隔を1mとし、板厚計の計測位置が搬送ロールの中間位置の場合、補正範囲は鋼板端部から500〜600mm程度にしている。(鋼板端部が計測位置を通過後600mm以上では計測位置の後半は両側の搬送ロール上に反り、垂れ、撓み形状が殆ど発生しないと仮定)。 In the present embodiment, the correction measurement processing of the warp and sagging deflection shape is performed for the preset ranges of the tip and tail ends. In this embodiment, when the conveyance roll interval is 1 m and the measurement position of the plate thickness meter is the intermediate position of the conveyance roll, the correction range is about 500 to 600 mm from the end of the steel plate. (Assuming that the end of the steel plate is 600 mm or more after passing through the measurement position, the latter half of the measurement position is warped on the conveying rolls on both sides, and drooping or bending is hardly generated).
また、本実施例では、信号処理装置3において下部距離計1bに関して、計測距離データの基準距離からの偏差を計算する。ここで、基準距離は下部距離計1bからパスライン(搬送ロールの頂点部を結ぶ直線)までの距離であり、搬送される鋼板が平面であれば、パスラインと鋼板下面位置は一致する。下部距離計1bの計測距離データと基準距離(パスライン)間に偏差がある場合には、鋼板に反り、垂れ、撓み形状が発生している。信号処理装置3では板端部から一定距離間隔で下部距離計1bによる計測距離と基準距離の偏差の変化を計算し、鋼板の反り、垂れ、撓み形状に伴う鋼板の傾斜角度を次式により算出する。
θ=tan-1(Δd/L)
θ:鋼板傾斜角度
Δd=L2−Lu0:距離偏差
Lu0:距離計〜パスライン距離
L2:下部距離計測距離
L:計測位置前方のロール〜板厚計測位置までの距離(本実施例では500mm)
In this embodiment, the
θ = tan −1 (Δd / L)
θ: Steel plate inclination angle Δd = L2−Lu0: Distance deviation Lu0: Distance meter to pass line distance L2: Lower distance measurement distance L: Distance from roll in front of measurement position to plate thickness measurement position (500 mm in this embodiment)
次に、各計測位置における板厚計測値を次式により補正する。
T=cos(θ)・t
t:板厚計測値
T:補正板厚
Next, the plate thickness measurement value at each measurement position is corrected by the following equation.
T = cos (θ) · t
t: Plate thickness measurement value T: Correction plate thickness
また、本発明の他の実施例では、先端部及び尾端部の予め設定された範囲に関して、信号処理装置3において下部距離計の計測距離と基準距離(パスライン)からの偏差を一旦すべて記憶する。信号処理装置3では記憶された一連の偏差データから近似曲線を算出し、計測位置における鋼板角度を近似曲線から算出し、その近似曲線から鋼板の反り、垂れ、撓み形状に伴う鋼板の傾斜角度を算出し、その傾斜角度により板厚計測値の補正を行う。
In another embodiment of the present invention, the
なお、上記の実施例では、下部距離計の計測距離データによる補正を行ったが、板厚(目標板厚)が判っているので上部距離計の計測データによっても同様の補正を行う事が出来る。上部距離計1aの計測距離データを用いる場合には、基準距離は上部距離計からパスラインまでの距離から板厚を差し引いた値となる。基準距離から差し引く板厚は目標板厚となるため実際の板厚との差が発生するが、板厚の目標板厚からの偏差が小さければ誤差は無視することが可能となる。また、上部距離計1a及び下部距離計1bの距離計計測データと基準距離からの偏差データの両者を使用し、角度算出精度を向上させることも可能である。
In the above embodiment, correction is performed using the measurement distance data of the lower distance meter. However, since the plate thickness (target plate thickness) is known, the same correction can be performed using the measurement data of the upper distance meter. . When the measurement distance data of the upper distance meter 1a is used, the reference distance is a value obtained by subtracting the plate thickness from the distance from the upper distance meter to the pass line. Since the plate thickness subtracted from the reference distance is the target plate thickness, a difference from the actual plate thickness occurs. However, if the deviation of the plate thickness from the target plate thickness is small, the error can be ignored. In addition, it is possible to improve the angle calculation accuracy by using both the distance meter measurement data of the upper distance meter 1a and the
1a,1b レーザ距離計、2 Cフレーム、3 信号処理装置、4 搬送ロール、6 鋼板、7 上位計算機。
1a, 1b Laser distance meter, 2 C frame, 3 signal processing device, 4 transport roll, 6 steel plate, 7 host computer.
Claims (2)
搬送される計測対象物の下面又は上面までの距離を一定搬送距離間隔で、前記搬送ライン下側又は上側に設置された前記レーザ距離計により計測してその計測値を記録し、
該記録された計測値から計測対象物の先端部又は尾端部及び定常部に対応する計測値をそれぞれ求め、
前記定常部の計測値と前記先端部又は尾端部の計測値との差に基づいて前記先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定することにより厚さ計測値を補正し、計測対象物の厚さを計測することを特徴とする厚さ計測方法。 In a thickness measurement method for measuring the thickness of a measurement object conveyed on a conveyance line composed of conveyance rolls arranged at regular intervals by a laser distance meter arranged oppositely,
The distance to the lower surface or the upper surface of the measurement object to be conveyed is measured at a certain conveyance distance interval by the laser distance meter installed on the lower side or upper side of the conveyance line, and the measured value is recorded.
From the recorded measurement values, respectively, the measurement values corresponding to the front end portion or the tail end portion and the stationary portion of the measurement object are obtained,
Based on the difference between the measured value of the stationary part and the measured value of the tip part or the tail part, the warp, sagging or bending shape when passing the measurement position of the tip part or the tail part is estimated, and the estimation result A thickness measurement method comprising correcting a thickness measurement value by estimating an angle of a measurement object at a measurement position based on the measurement position and measuring a thickness of the measurement object.
搬送される計測対象物の下面又は上面までの距離を一定搬送距離間隔で、前記搬送ライン下側又は上側に設置された前記レーザ距離計により計測してその計測値を記録し、該記録された計測値から計測対象物の先端部又は尾端部及び定常部に対応する計測値をそれぞれ求め、前記定常部の計測値と前記先端部又は尾端部の計測値との差に基づいて前記先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定することにより厚さ計測値を補正し、計測対象物の厚さを計測する信号処理装置と
を備えたことを特徴とする厚さ計測装置。 A laser distance meter that measures the positions of the front and back surfaces of the measurement object across the measurement object conveyed on the conveyance line;
The distance to the lower surface or the upper surface of the measurement object to be conveyed is measured by the laser distance meter installed at the lower or upper side of the conveyance line at a certain conveyance distance interval, and the measured value is recorded, and the recorded value is recorded. Measurement values corresponding to the distal end portion or tail end portion and the stationary portion of the measurement object are obtained from the measured values, respectively, and based on the difference between the measured value of the stationary portion and the measured value of the distal end portion or the tail end portion, Estimate warpage, sagging or bending shape when passing the measurement position of the head or tail, and correct the thickness measurement value by estimating the angle of the measurement object at the measurement position based on the estimation result. A thickness measuring device comprising a signal processing device for measuring the thickness of an object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006090570A JP5013730B2 (en) | 2006-03-29 | 2006-03-29 | Thickness measuring method and thickness measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006090570A JP5013730B2 (en) | 2006-03-29 | 2006-03-29 | Thickness measuring method and thickness measuring apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007263819A JP2007263819A (en) | 2007-10-11 |
JP2007263819A5 JP2007263819A5 (en) | 2009-03-05 |
JP5013730B2 true JP5013730B2 (en) | 2012-08-29 |
Family
ID=38636949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006090570A Active JP5013730B2 (en) | 2006-03-29 | 2006-03-29 | Thickness measuring method and thickness measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5013730B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12038269B2 (en) | 2019-08-27 | 2024-07-16 | Lg Energy Solution, Ltd. | Apparatus and method for measuring thickness of unit cell |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011059000A (en) | 2009-09-11 | 2011-03-24 | Toshiba Corp | Radiation thickness meter |
CN103438811A (en) * | 2013-08-29 | 2013-12-11 | 昆山达功电子有限公司 | Coil thickness testing device |
JP6352014B2 (en) * | 2014-03-19 | 2018-07-04 | 東京応化工業株式会社 | Thickness measuring instrument |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1123231A (en) * | 1997-06-30 | 1999-01-29 | Eiwa Denki Kk | Non-contacting thickness measuring instrument |
JP2002202108A (en) * | 2000-12-28 | 2002-07-19 | Hitachi Electronics Eng Co Ltd | Plate thickness measuring device |
JP3625465B2 (en) * | 2003-03-04 | 2005-03-02 | 株式会社東芝 | Thickness gauge |
-
2006
- 2006-03-29 JP JP2006090570A patent/JP5013730B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12038269B2 (en) | 2019-08-27 | 2024-07-16 | Lg Energy Solution, Ltd. | Apparatus and method for measuring thickness of unit cell |
Also Published As
Publication number | Publication date |
---|---|
JP2007263819A (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW425472B (en) | Method and apparatus of measuring thin plate thickness and bend | |
US9062963B2 (en) | Thickness measurement system and thickness measurement method | |
US8805052B2 (en) | Apparatus and method for measuring three-dimensional shape of wood block | |
US10081041B2 (en) | Flatness measuring and measuring of residual stresses for a metallic flat product | |
JP6733379B2 (en) | Steel piece cross-sectional shape measuring device and steel piece cross-sectional shape measuring method | |
JP5013730B2 (en) | Thickness measuring method and thickness measuring apparatus | |
JP2007263818A (en) | Adjusting method for thickness measuring instrument, and device therefor | |
EP3819587A1 (en) | Apparatus for detecting relative positioning information between rolls, and method for measuring roll alignment state by using same | |
JP5030699B2 (en) | Method and apparatus for adjusting thickness measuring apparatus | |
TW200829854A (en) | Optical device for sensing distance | |
KR100983095B1 (en) | System and method of measuring the size and figure of metal plate | |
JP2011196755A (en) | Radiation measuring instrument | |
JP3940327B2 (en) | Metal plate thickness measurement method | |
JP5599335B2 (en) | Thickness measuring device | |
JP2834638B2 (en) | Automatic thickness gauge | |
JP2000234908A (en) | Rangefinder | |
KR20240030619A (en) | Method and system for measuring flatness of conveying steel plate | |
JP7286479B2 (en) | Length measuring device | |
KR102566740B1 (en) | System and method for measuring flatness of steel plate | |
JP6730683B2 (en) | Edge-width measuring method and edge-width measuring device for angle steel | |
JPH0560532A (en) | Optical shape measurement instrument | |
KR20240030614A (en) | Method and system for measuring flatness of noncontact steel plate using vibration component correction | |
KR101294912B1 (en) | Apparatus of tracking head and tail of plate and plate cooling system using the same | |
JP2010048686A (en) | Distance measuring apparatus and method for measuring distance | |
JPS5988610A (en) | Thickness gauge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090121 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120605 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5013730 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |