JP2007263819A - Thickness measuring method - Google Patents

Thickness measuring method Download PDF

Info

Publication number
JP2007263819A
JP2007263819A JP2006090570A JP2006090570A JP2007263819A JP 2007263819 A JP2007263819 A JP 2007263819A JP 2006090570 A JP2006090570 A JP 2006090570A JP 2006090570 A JP2006090570 A JP 2006090570A JP 2007263819 A JP2007263819 A JP 2007263819A
Authority
JP
Japan
Prior art keywords
measurement
thickness
measurement object
distance
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090570A
Other languages
Japanese (ja)
Other versions
JP2007263819A5 (en
JP5013730B2 (en
Inventor
Koichi Tezuka
浩一 手塚
Yoshiki Fukutaka
善己 福▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Denki Corp
Original Assignee
JFE Steel Corp
JFE Denki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Denki Corp filed Critical JFE Steel Corp
Priority to JP2006090570A priority Critical patent/JP5013730B2/en
Publication of JP2007263819A publication Critical patent/JP2007263819A/en
Publication of JP2007263819A5 publication Critical patent/JP2007263819A5/ja
Application granted granted Critical
Publication of JP5013730B2 publication Critical patent/JP5013730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thickness measuring method capable of correcting diagonal measurement errors and accurately measuring thickness, in the thickness measurement of a measuring object by laser type thickness gauge. <P>SOLUTION: This thickness measuring method for measuring the thickness of the measuring object, transported on a line by an oppositely arranged laser range finder arranged, calculates displacements from estimated surface and reverse-face positions, when the measuring object is passed through a measuring point, based on the measured value by the laser range finder, estimates warpage, sagging or deflection shape of the measuring object, when it passes through the measuring point, and corrects the thickness value measured, based on the estimated result thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、搬送ライン上を搬送される計測対象物を挟んで、対向して配置された複数のレーザ距離計により構成される搬送される計測対象物の厚さを計測する厚さ計(寸法計)による厚さ計測方法に関するものであり、特に、厚鋼板や薄鋼板などの精整ラインや検査ライン等の搬送ライン上を搬送される鋼板等の計測対象物の板厚を計測する際の搬送、計測される計測対象物(鋼板)の反り、垂れ、撓みにより発生する厚さの斜め計測による誤差を推定・補正し、正確な計測対象物の厚さを計測する技術に関する。   The present invention relates to a thickness meter (dimensions) for measuring the thickness of a measurement object to be conveyed, which is composed of a plurality of laser distance meters arranged opposite to each other with the measurement object conveyed on the conveyance line interposed therebetween. In particular, when measuring the thickness of a measurement object such as a steel plate conveyed on a finishing line such as a thick steel plate or thin steel plate or on a conveyance line such as an inspection line. The present invention relates to a technique for accurately measuring the thickness of an object to be measured by estimating and correcting an error due to an oblique measurement of the thickness caused by warping, sagging, and bending of the object to be measured (steel plate) conveyed and measured.

厚板、薄板ラインにおいては、連続して通板される鋼板の寸法(板厚)を連続して計測し、板厚の保証を行う必要があり、従来、γ線透過方式の板厚計が適用されている。このγ線方式板厚計は、放射線源から対象鋼板に対してγ線を投射し、透過するγ線を検出器により検出し、対象鋼板を透過する際のγ線減衰量を計測する事により、対象鋼板の板厚の算出、計測を行うものであり、γ線の減衰量を計測するものである事から対象鋼板の性状、線源及び検出器との位置関係等によらず、高精度、安定した板厚計測が可能である。しかし、透過γ線の変化を計測する為のγ線検出器の応答性が悪く、対象鋼板がライン上を搬送される場合(移動する場合)には、鋼板の先尾端部等に不感帯が発生する。また、定常部に関しても、応答性の悪さから鋼板の細かい板厚変化を計測する事が困難である。   For thick plate and thin plate lines, it is necessary to continuously measure the dimensions (thickness) of the steel plates that are continuously passed through to guarantee the plate thickness. Has been applied. This γ-ray system thickness gauge projects γ-rays from the radiation source to the target steel sheet, detects the transmitted γ-rays with a detector, and measures the amount of γ-ray attenuation when passing through the target steel sheet. The thickness of the target steel sheet is calculated and measured, and the amount of attenuation of γ rays is measured. Therefore, it is highly accurate regardless of the properties of the target steel sheet and the positional relationship with the radiation source and detector. Stable plate thickness measurement is possible. However, when the response of the γ-ray detector for measuring the change in transmitted γ-ray is poor and the target steel plate is transported (moved) on the line, there is a dead zone at the leading edge of the steel plate. appear. In addition, it is difficult to measure a small change in the thickness of the steel plate because of its poor response.

これに対して、計測応答性の高いレーザ距離計を適用し、高応答性での板厚計測を可能とするレーザ方式板厚計が実用化されている。また、その改良技術として、被測定対象物の振動や測定位置のずれによる厚さ測定誤差を低減するために、上下のレーザ光源を同時にパルス放射させる装置も提案されている(例えば、特許文献1など)。
特開平6−66525号公報
On the other hand, a laser type thickness meter that enables measurement of plate thickness with high response by applying a laser distance meter with high measurement response has been put into practical use. Further, as an improved technique, there has been proposed an apparatus that simultaneously emits pulses of upper and lower laser light sources in order to reduce thickness measurement errors due to vibration of a measurement object or measurement position shift (for example, Patent Document 1). Such).
JP-A-6-66525

レーザ方式厚さ計は上下に対向して設置されたレーザ距離計により計測対象物の上下面までの距離を計測し、上下距離計の間の距離と計測距離から計測対象物の厚さを計測する。使用されるレーザ距離計は、三角測量の原理を利用したもので、レーザ光を計測対象物対象表面に投光し、表面での乱反射光を光学系(レンズ+CCDセンサ)により斜め方向から検出することにより対象面までの距離を高精度、高応答性で計測する。レーザ距離計を用いた厚さ計では、上下距離計から対象表面までの距離を計測し、上下距離計間の間隔と計測距離から計測対象物の厚さを算出する。この時、計測対象物の表面が距離計の距離計測方向に対して垂直な面であれば(計測すべき厚さ方向と距離計の距離計測方向が一致していれば)、正確な厚さ計測が可能であるが、計測対象物が傾斜している場合には、傾斜角に応じた斜め計測誤差が発生する。   The laser type thickness meter measures the distance to the upper and lower surfaces of the object to be measured by the laser distance meter installed facing up and down, and measures the thickness of the object to be measured from the distance between the distance meter and the measurement distance. To do. The laser distance meter used is based on the principle of triangulation, and laser light is projected onto the surface of the object to be measured, and irregularly reflected light on the surface is detected from an oblique direction by an optical system (lens + CCD sensor). Thus, the distance to the target surface is measured with high accuracy and high responsiveness. In a thickness meter using a laser distance meter, the distance from the vertical distance meter to the target surface is measured, and the thickness of the measurement object is calculated from the interval between the vertical distance meters and the measured distance. At this time, if the surface of the object to be measured is a plane perpendicular to the distance measurement direction of the distance meter (if the thickness direction to be measured matches the distance measurement direction of the distance meter), the accurate thickness Measurement is possible, but when the measurement object is tilted, an oblique measurement error corresponding to the tilt angle occurs.

たとえば、搬送ライン上を搬送される鋼板を計測対象物とする厚さ計測では、鋼板を常に水平に保持出来れば、斜め計測誤差は発生しないが、図1に示されるように、実際の計測においては鋼板は、等間隔に配置されたロール、エプロン等により構成される搬送ライン上を移動しており、特に先端部及び尾端部においては、鋼板応力による反りや、自重による撓み(垂れ)が発生し、斜め計測による誤差が発生する。   For example, in thickness measurement using a steel plate conveyed on the conveyance line as a measurement object, if the steel plate can always be held horizontally, an oblique measurement error will not occur. However, as shown in FIG. The steel plate is moving on a conveyance line composed of rolls, apron, etc., arranged at equal intervals. Especially at the tip and tail ends, warpage due to steel plate stress and deflection (dripping) due to its own weight. Occurs, and errors due to oblique measurement occur.

ここで、鋼板の厚さをt、鋼板の反り、撓み(垂れ)による変位角度をθとすると、計測される板厚t’は次式で表され、角度によっては大きな誤差が発生する。
t’=t/cosθ
また、レーザ距離計は計測対象物対象表面上のポイント(レーザ投光点)までの距離を計測しているのみであり、計測対象物表面の傾斜の有無は判別できないため、これまでのレーザ方式厚さ計では板の傾斜による斜め計測誤差を補正する事は出来なかった。
Here, if the thickness of the steel sheet is t, the displacement angle due to warpage of the steel sheet and the deflection (sagging) is θ, the measured thickness t ′ is expressed by the following equation, and a large error occurs depending on the angle.
t ′ = t / cos θ
In addition, the laser rangefinder only measures the distance to the point (laser projection point) on the surface of the measurement object and cannot determine whether the measurement object surface is inclined. The thickness gauge could not correct the oblique measurement error due to the inclination of the plate.

本発明は、上記のような問題点を解決するためになされたものであり、レーザ方式厚さ計による計測対象物の厚さ計測において、斜め計測誤差を補正し正確な厚さ計測を行うことを可能にした厚さ計測方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and corrects an oblique measurement error and performs an accurate thickness measurement in the thickness measurement of a measurement object using a laser type thickness meter. It is an object of the present invention to provide a thickness measuring method that enables the above.

本発明に係る厚さ計測方法は、対向して配置されたレーザ距離計により、搬送ライン上を搬送される計測対象物の厚さを計測する厚さ計測方法において、前記レーザ距離計の計測値から計測対象物の計測点通過時に想定される計測対象物の表裏面の位置からの変位量を算出し、計測点通過時の計測対象物の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて厚さ計測値の補正を行う。なお、本発明において、厚さ計測値とは、対向して配置されたレーザ距離計から計測対象物の表面までの距離を計測し、上下距離計間の間隔と計測距離から算出された計測対象物の厚さをいうものとする。   The thickness measurement method according to the present invention is a thickness measurement method in which the thickness of a measurement object conveyed on a conveyance line is measured by a laser distance meter arranged opposite to the measurement value of the laser distance meter. The amount of displacement from the position of the front and back surfaces of the measurement object assumed when the measurement object passes through the measurement point is calculated, and the warpage, sagging or bending shape of the measurement object when passing through the measurement point is estimated, and the estimation result The thickness measurement value is corrected based on the above. In the present invention, the thickness measurement value refers to the measurement target calculated from the distance between the upper and lower distance meters and the measurement distance by measuring the distance from the laser distance meter disposed opposite to the surface of the measurement object. The thickness of an object shall be said.

また、本発明に係る厚さ計測方法は、対向して配置されたレーザ距離計により、一定間隔に配置された搬送ロールにより構成される搬送ライン上を搬送される計測対象物の厚さを計測する厚さ計測方法において、前記搬送ライン下側又は上側に設置された前記レーザ距離計により計測される計測対象物の下面又は上面までの距離と、搬送ライン上のパスライン位置(ロールトップ位置)との差から、計測対象物の下面又は上面のパスラインからの変位量を算出することにより計測対象物の反り、撓み又は垂れ量を推定し、その推定結果に基づいて厚さ計測値の補正を行う。   In addition, the thickness measuring method according to the present invention measures the thickness of a measurement object conveyed on a conveyance line composed of conveyance rolls arranged at regular intervals by a laser distance meter arranged oppositely. In the thickness measuring method, the distance to the lower surface or the upper surface of the measurement object measured by the laser distance meter installed below or above the conveyance line, and the pass line position (roll top position) on the conveyance line The amount of warpage, deflection, or sagging of the measurement object is estimated by calculating the amount of displacement from the lower or upper surface pass line of the measurement object, and the thickness measurement value is corrected based on the estimation result. I do.

また、本発明に係る厚さ計測方法は、搬送される計測対象物の下面又は上面までの距離を先端部又は尾端部から一定搬送距離分について、前記搬送ライン下側又は上側に設置された前記レーザ距離計によって計測してその計測値を記録し、記録された計測値と搬送ライン上のパスライン位置との差から、前記先端部又は尾端部の計測位置通過時の計測対象物の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定して厚さ計測値を補正し、計測対象物の厚さを計測する。   In the thickness measuring method according to the present invention, the distance to the lower surface or upper surface of the measurement object to be conveyed is set below or above the conveying line for a certain conveying distance from the tip or tail. The measurement value is recorded by measuring with the laser distance meter, and from the difference between the recorded measurement value and the pass line position on the transport line, the measurement object at the time of passing the measurement position of the tip or tail end is measured. The warp, sagging or bending shape is estimated, the angle of the measurement object at the measurement position is estimated based on the estimation result, the thickness measurement value is corrected, and the thickness of the measurement object is measured.

また、本発明に係る板厚計測方法は、搬送される計測対象物の下面又は上面までの距離を一定搬送距離間隔で、前記搬送ライン下側又は上側に設置された前記レーザ距離計により計測してその計測値を記録し、該記録された計測値から計測対象物の先端部又は尾端部及び定常部に対応する計測値をそれぞれ求め、前記定常部の計測値と前記先端部又は尾端部の計測値との差に基づいて前記先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定することにより厚さ計測値を補正し、計測対象物の厚さを計測する。   Further, the plate thickness measuring method according to the present invention measures the distance to the lower surface or upper surface of the object to be transported at a constant transport distance interval by the laser distance meter installed below or above the transport line. The measured values are recorded, and the measured values corresponding to the tip or tail end and the stationary part of the measurement object are obtained from the recorded measured values, respectively, and the measured value of the stationary part and the tip or tail edge are obtained. Based on the difference from the measured value of the part, the warp, sagging or bending shape at the time of passing the measurement position of the tip or tail end is estimated, and the angle of the measurement object at the measurement position is estimated based on the estimation result Thus, the thickness measurement value is corrected, and the thickness of the measurement object is measured.

本発明によれば、対向して配置されたレーザ距離計により搬送ライン上を搬送される計測対象物の厚さを計測する厚さ計測方法において、対象となる計測対象物の反り、垂れ又は撓み形状を推定し、それによる厚さの斜め計測誤差を補正することが可能となり、正確な厚さを計測することができる。   According to the present invention, in a thickness measurement method for measuring the thickness of a measurement object conveyed on a conveyance line by a laser distance meter disposed oppositely, warping, sagging, or bending of the measurement object to be measured. It is possible to estimate the shape and correct an oblique measurement error of the thickness, thereby measuring an accurate thickness.

実施形態1.
本発明の実施形態1による厚さ計測方法では、対向して配置されたレーザ距離計により、搬送ライン上を搬送される鋼板の厚さを計測する板厚計測方法について説明する。ここで、対象鋼板等の通過位置は搬送ラインの搬送機構により一定であり、対象鋼板等の推定(目標)板厚も既知であるという前提のもとで、鋼板の推定板厚からの偏差を計測することを目的としている。このとき、搬送ラインの上側または下側のレーザ距離計の計測距離は、ほぼ一定であり、下側の距離計の場合は距離計から搬送機構により決まる鋼板下面までの距離、上側距離計の場合には距離計から鋼板上面までの距離(搬送機構により決まる鋼板下面位置までの距離から鋼板の推定厚を差し引いた距離)となる。鋼板の搬送(移動)に伴い計測位置が変化すると、鋼板の厚み変動により上下の各距離計の計測値は変動し、各距離計の計測値と上下距離計間の距離から対象鋼板の板厚が算出される。
Embodiment 1. FIG.
In the thickness measurement method according to the first embodiment of the present invention, a plate thickness measurement method will be described in which the thickness of a steel plate conveyed on a conveyance line is measured by a laser distance meter arranged oppositely. Here, on the assumption that the passing position of the target steel plate is constant by the transport mechanism of the transport line and the estimated (target) plate thickness of the target steel plate is also known, the deviation from the estimated plate thickness of the steel plate is calculated. The purpose is to measure. At this time, the measurement distance of the laser rangefinder on the upper or lower side of the transfer line is almost constant. In the case of the lower rangefinder, the distance from the rangefinder to the bottom surface of the steel plate determined by the transfer mechanism, in the case of the upper rangefinder Is the distance from the distance meter to the upper surface of the steel sheet (the distance obtained by subtracting the estimated thickness of the steel sheet from the distance to the lower surface position of the steel sheet determined by the transport mechanism). When the measurement position changes as the steel sheet is transported (moved), the measured values of the upper and lower distance meters vary due to the variation in the thickness of the steel sheet, and the thickness of the target steel sheet is determined from the distance between the measured values and the distance between the upper and lower distance meters. Is calculated.

ここで、各距離計の計測距離における鋼板の板厚変動による変化は通常は非常に小さい(板厚の変動は数+〜数百μm)が、鋼板に反り、垂れ等の変形部分がある場合には、鋼板の上下面は搬送機構により決まる位置(パスライン)に対してズレた位置を通過し各距離計による計測距離は大きく変化する(板変形による通過位置の変動はmm単位)ため、距離計の計測距離から鋼板上面又は下面の通過位置を算出する事が可能となる。   Here, the change due to the thickness variation of the steel plate at the measurement distance of each rangefinder is usually very small (the variation of the plate thickness is several + to several hundred μm), but there is a deformed part such as warpage and sagging In this case, the upper and lower surfaces of the steel plate pass through a position shifted from the position (pass line) determined by the transport mechanism, and the distance measured by each distance meter changes greatly (the variation of the passing position due to plate deformation is in mm). The passing position of the upper surface or the lower surface of the steel sheet can be calculated from the distance measured by the distance meter.

ここで、一定間隔に配置された搬送ロールにより鋼板を搬送するライン上の鋼板の板厚をロール間に設置されたレーザ距離計により構成される板厚計により計測する場合には、鋼板自体に歪、変形が無い場合でも、先尾端部に関しては、ロール間を通過する際に自重により先尾端部の垂れが発生し、鋼板の上下面は通常の通過位置に対して変位する。   Here, when measuring the plate thickness of the steel plate on the line that conveys the steel plate by the transport rolls arranged at regular intervals with a plate thickness meter constituted by a laser distance meter installed between the rolls, Even when there is no distortion or deformation, the leading end portion droops due to its own weight when passing between rolls, and the upper and lower surfaces of the steel plate are displaced with respect to the normal passing position.

図2は鋼板の斜め計測誤差の補正方法を説明する図である。本実施形態1による厚さ計測方法では、図2に示されるように板端部の変形(垂れ)の始点をロールとの接触位置と仮定(鋼板が始点位置で屈曲していると仮定)し、始点位置と板厚計計測位置との間距離をLとし、板厚計計測位置における鋼板上面又は下面の通常通過位置に対する変位Δdをレーザ距離計の計測距離から算出することにより、次式で表される板厚計計測位置における鋼板の傾斜角度θを算出する。
θ=tan-1(Δd/L)
FIG. 2 is a diagram for explaining a correction method for the oblique measurement error of the steel sheet. In the thickness measurement method according to the first embodiment, as shown in FIG. 2, it is assumed that the starting point of deformation (sagging) of the plate end is the contact position with the roll (assuming that the steel plate is bent at the starting point position). By calculating the displacement Δd with respect to the normal passing position of the upper surface or the lower surface of the steel plate at the plate thickness meter measurement position from the measured distance of the laser distance meter, the distance between the start point position and the plate thickness measurement position is L, The inclination angle θ of the steel plate at the plate thickness meter measurement position is calculated.
θ = tan −1 (Δd / L)

本実施形態1による厚さ計測方法では、鋼板の板厚をT、板厚計により計測された板厚計測値をtとし、算出した計測位置における鋼板の角度θを用いて、板厚計による板厚計測値tから鋼板の垂れによる斜め計測の誤差を補正し、次式で表される鋼板の板厚を算出する。
T=cos(θ)・t
In the thickness measurement method according to the first embodiment, the thickness of the steel plate is T, the thickness measurement value measured by the thickness meter is t, and the angle θ of the steel plate at the calculated measurement position is used. The error of the oblique measurement due to the sagging of the steel plate is corrected from the plate thickness measurement value t, and the thickness of the steel plate represented by the following formula is calculated.
T = cos (θ) · t

以上のように本実施形態1においては、レーザ距離計により計測される計測対象物の下面又は上面までの距離と、搬送ライン上のパスライン位置との差から、計測対象物の下面又は上面のパスラインからの変位量を算出することにより計測対象物の反り、撓み又は垂れ量を推定し、その推定結果に基づいて厚さ計測値の補正を行うようにしたので、計測対象物の反り、垂れ、撓みによる計測対象物厚さの斜め計測誤差を補正することが可能となり、正確な厚さを計測することできる。   As described above, in the first embodiment, the difference between the distance to the lower surface or the upper surface of the measurement object measured by the laser distance meter and the pass line position on the transport line is calculated based on the lower surface or the upper surface of the measurement object. By calculating the amount of displacement from the pass line, the warpage, deflection or sagging amount of the measurement object is estimated, and the thickness measurement value is corrected based on the estimation result. It is possible to correct an oblique measurement error of the thickness of the measurement object due to sagging or bending, and an accurate thickness can be measured.

実施形態2.
本発明の実施形態2による厚さ計測方法でも、実施形態1と同様に搬送ライン上を搬送される鋼板を計測対象物とする板厚計測方法を例に説明する。図3は鋼板の斜め計測誤差の他の補正方法を説明する図である。図3に示されるように、鋼板がロールとの接触位置を始点とした屈曲形状ではなく、任意の円弧状に変形していると仮定した場合には、前記の方法では板厚計計測位置における鋼板の角度を算出できない。本実施形態2による板厚計測方法では次のような処理を行う。
(1)まず、予め鋼板の搬送に伴い板厚計を構成するレーザ距離計により鋼板の上下面までの計測距離を一定間隔(一定時間間隔又は一定鋼板長間隔)で計測し、データを記録する。
(2)次に、記録された一定間隔毎の計測距離データの変化に対して近似曲線の計算或いは、平滑化(移動平均処理等)を行う事により、計測距離変化の全体プロファイルを求める。算出されたプロファイルは鋼板の変形に対応している。したがって、本実施形態2においては、図3のプロファイルから定常部(2個の搬送ロールにより支持されている部分)の計測値と、先端部又は尾端部の計測値とを識別し(例えば移動距離又は時間に応じて識別する)、両者を識別した後に、定常部(2個の搬送ロールにより支持されている部分)の計測値と、先端部又は尾端部の計測値との差を求めることにより、先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定する。そして、その推定結果に基づいて計測位置における鋼板の角度を推定することにより板厚計測値を補正し、鋼板の板表面に鉛直な方向の板厚を計測する。
Embodiment 2. FIG.
Also in the thickness measurement method according to the second embodiment of the present invention, a plate thickness measurement method using a steel plate conveyed on the conveyance line as a measurement object as in the first embodiment will be described as an example. FIG. 3 is a diagram for explaining another correction method for the oblique measurement error of the steel sheet. As shown in FIG. 3, when it is assumed that the steel sheet is deformed in an arbitrary arc shape instead of a bent shape starting from the contact position with the roll, the above method is used at the thickness gauge measurement position. The angle of the steel sheet cannot be calculated. In the plate thickness measuring method according to the second embodiment, the following processing is performed.
(1) First, the measurement distance to the upper and lower surfaces of the steel plate is measured at a constant interval (a constant time interval or a constant steel plate length interval) with a laser distance meter that constitutes a plate thickness meter with the conveyance of the steel plate, and data is recorded. .
(2) Next, an approximate curve is calculated or smoothed (moving average processing, etc.) with respect to the recorded change in the measured distance data at regular intervals, thereby obtaining an overall profile of the measured distance change. The calculated profile corresponds to the deformation of the steel plate. Therefore, in the second embodiment, the measurement value of the stationary part (the part supported by the two transport rolls) and the measurement value of the tip part or the tail part are identified from the profile of FIG. After identifying both, the difference between the measured value of the stationary part (the part supported by the two transport rolls) and the measured value of the tip part or tail part is obtained. Accordingly, the warp, sagging or bending shape at the time of passing the measurement position of the tip or tail is estimated. Then, the plate thickness measurement value is corrected by estimating the angle of the steel plate at the measurement position based on the estimation result, and the plate thickness in the direction perpendicular to the plate surface of the steel plate is measured.

なお、上記の例では鋼板の上下面までの計測距離を求める例について説明したが、板厚(目標板厚)が判っているので下部又は上部の距離計の計測データによっても同様の補正を行う事が出来る。   In the above example, the example of obtaining the measurement distance to the upper and lower surfaces of the steel plate has been described. However, since the plate thickness (target plate thickness) is known, the same correction is performed using the measurement data of the lower or upper distance meter. I can do it.

以上のように本実施形態2においては、搬送される計測対象物の下面又は上面までの距離を一定搬送距離間隔で、レーザ距離計によって計測してその計測値を記録し、その記録された計測値から計測対象物の先端部又は尾端部及び定常部に対応する計測値をそれぞれ求め、前記定常部の計測値と前記先端部又は尾端部の計測値との差に基づいて先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定することにより計測対象物厚さ計測値を補正するようにしたので、計測対象物の反り、垂れ又は撓みによる厚さの斜め計測誤差を補正することが可能となり、正確な厚さを計測することできる。   As described above, in the second embodiment, the distance to the lower surface or the upper surface of the measurement object to be conveyed is measured by the laser distance meter at a certain conveyance distance interval, and the measured value is recorded. The measurement values corresponding to the tip or tail end and the stationary part of the measurement object are respectively obtained from the values, and based on the difference between the measurement value of the stationary part and the measurement value of the tip or tail end, Estimate warpage, sagging or deflection shape when passing the measurement position of the tail end, and correct the measurement object thickness measurement value by estimating the angle of the measurement object at the measurement position based on the estimation result Therefore, it becomes possible to correct an oblique measurement error of the thickness due to warping, sagging or bending of the measurement object, and an accurate thickness can be measured.

図4は本発明の実施例を示した図である。図において、1a,1bはレーザ距離計、2はCフレーム、3は信号処理装置、4は搬送ロール、5はPLG(パルス発生器)、6は計測対象物である鋼板、7は上位計算機を示す。レーザ距離計1a,1bはCフレーム2の上下に対向して設置され、相対的な位置、距離が変動しないように固定されCフレーム2ごと移動する。レーザ距離計1a,1bの出力は信号処理装置3に入力され、信号処理装置3において板厚算出処理を行う。信号処理装置3には搬送ロール4に取付けられたPLG5の出力も入力している。Cフレーム2は上下の対向したレーザ距離計1a,1bの間に、搬送ライン上の鋼板6が来るように移動し、信号処理装置3において各レーザ距離計1a,1bの計測距離と距離計間の距離から鋼板6の板厚を算出し、搬送ラインのPLG5からの入力をカウントし、鋼板6の搬送長さを算出する。   FIG. 4 shows an embodiment of the present invention. In the figure, 1a and 1b are laser distance meters, 2 is a C frame, 3 is a signal processing device, 4 is a transport roll, 5 is a PLG (pulse generator), 6 is a steel plate as a measurement object, and 7 is a host computer. Show. The laser distance meters 1a and 1b are installed facing the top and bottom of the C frame 2, fixed so that the relative position and distance do not fluctuate, and move together with the C frame 2. The outputs of the laser distance meters 1a and 1b are input to the signal processing device 3, and the signal processing device 3 performs a plate thickness calculation process. The output of the PLG 5 attached to the transport roll 4 is also input to the signal processing device 3. The C frame 2 moves so that the steel plate 6 on the conveyance line is between the upper and lower laser distance meters 1a and 1b. In the signal processing device 3, the distance between the measurement distances of the laser distance meters 1a and 1b and the distance meters. The plate thickness of the steel plate 6 is calculated from the above distance, the input from the PLG 5 of the transfer line is counted, and the transfer length of the steel plate 6 is calculated.

信号処理装置3では上位計算機7から鋼板の板厚(目標/仕様板厚)情報を受信し、計測した鋼板板厚の目標板厚からの偏差を計算し、上位計算機7に計測実績として伝送する。上位計算機7では板厚計測実績から板厚(偏差)が製品公差範囲に入っているかの判定を行い、鋼板の合否判定を行う。   The signal processing device 3 receives the plate thickness (target / specification plate thickness) information of the steel plate from the host computer 7, calculates the deviation of the measured steel plate thickness from the target plate thickness, and transmits it to the host computer 7 as a measurement result. . The host computer 7 determines whether the sheet thickness (deviation) is within the product tolerance range from the sheet thickness measurement results, and performs pass / fail determination of the steel sheet.

本実施例において、信号処理装置3では鋼板6が搬送されレーザ距離計1a,1bの板厚計測位置に鋼板先端部が挿入された時点を鋼板の端面として、板厚計測とラインPLG5の出力のカウントを開始し、一定時間間隔或いは一定距離間隔(PLGカウント)ごとに板厚計測を行う。板厚の算出は次式により行う。
t=L0−L1−L2
L0:上下距離計間の距離
L1:上部距離計計測値
L2:下部距離計計測値
t:板厚
In this embodiment, the signal processing device 3 uses the time when the steel plate 6 is conveyed and the front end of the steel plate is inserted at the plate thickness measurement position of the laser distance meters 1a and 1b as the end surface of the steel plate, and the plate thickness measurement and the output of the line PLG5 are output. Counting is started, and plate thickness measurement is performed at regular time intervals or regular distance intervals (PLG count). The plate thickness is calculated by the following formula.
t = L0-L1-L2
L0: Distance between upper and lower distance meters L1: Upper distance meter measurement values L2: Lower distance meter measurement values t: Plate thickness

本実施例においては、先端部及び尾端部の予め設定された範囲に関しては、反り、垂れ撓み形状の補正計測処理を行う。本実施例において搬送ロール間隔を1mとし、板厚計の計測位置が搬送ロールの中間位置の場合、補正範囲は鋼板端部から500〜600mm程度にしている。(鋼板端部が計測位置を通過後600mm以上では計測位置の後半は両側の搬送ロール上に反り、垂れ、撓み形状が殆ど発生しないと仮定)。   In the present embodiment, the correction measurement processing of the warp and sagging deflection shape is performed for the preset ranges of the tip and tail ends. In this embodiment, when the conveyance roll interval is 1 m and the measurement position of the plate thickness meter is the intermediate position of the conveyance roll, the correction range is about 500 to 600 mm from the end of the steel plate. (Assuming that the end of the steel plate is 600 mm or more after passing through the measurement position, the latter half of the measurement position is warped on the conveying rolls on both sides, and drooping or bending is hardly generated).

また、本実施例では、信号処理装置3において下部距離計1bに関して、計測距離データの基準距離からの偏差を計算する。ここで、基準距離は下部距離計1bからパスライン(搬送ロールの頂点部を結ぶ直線)までの距離であり、搬送される鋼板が平面であれば、パスラインと鋼板下面位置は一致する。下部距離計1bの計測距離データと基準距離(パスライン)間に偏差がある場合には、鋼板に反り、垂れ、撓み形状が発生している。信号処理装置3では板端部から一定距離間隔で下部距離計1bによる計測距離と基準距離の偏差の変化を計算し、鋼板の反り、垂れ、撓み形状に伴う鋼板の傾斜角度を次式により算出する。
θ=tan-1(Δd/L)
θ:鋼板傾斜角度
Δd=L2−Lu0:距離偏差
Lu0:距離計〜パスライン距離
L2:下部距離計測距離
L:計測位置前方のロール〜板厚計測位置までの距離(本実施例では500mm)
In this embodiment, the signal processing device 3 calculates the deviation of the measured distance data from the reference distance for the lower distance meter 1b. Here, the reference distance is a distance from the lower distance meter 1b to the pass line (a straight line connecting the apex portions of the transport rolls). If the steel plate to be transported is a flat surface, the pass line and the steel plate lower surface position coincide. When there is a deviation between the measurement distance data of the lower distance meter 1b and the reference distance (pass line), the steel plate is warped, drooped, and bent. The signal processing device 3 calculates the change in the deviation between the distance measured by the lower distance meter 1b and the reference distance at a constant distance from the edge of the plate, and calculates the inclination angle of the steel plate due to the warpage, sagging, and bending shape of the steel plate by the following equation: To do.
θ = tan −1 (Δd / L)
θ: Steel plate inclination angle Δd = L2−Lu0: Distance deviation Lu0: Distance meter to pass line distance L2: Lower distance measurement distance L: Distance from roll in front of measurement position to plate thickness measurement position (500 mm in this embodiment)

次に、各計測位置における板厚計測値を次式により補正する。
T=cos(θ)・t
t:板厚計測値
T:補正板厚
Next, the plate thickness measurement value at each measurement position is corrected by the following equation.
T = cos (θ) · t
t: Plate thickness measurement value T: Correction plate thickness

また、本発明の他の実施例では、先端部及び尾端部の予め設定された範囲に関して、信号処理装置3において下部距離計の計測距離と基準距離(パスライン)からの偏差を一旦すべて記憶する。信号処理装置3では記憶された一連の偏差データから近似曲線を算出し、計測位置における鋼板角度を近似曲線から算出し、その近似曲線から鋼板の反り、垂れ、撓み形状に伴う鋼板の傾斜角度を算出し、その傾斜角度により板厚計測値の補正を行う。   In another embodiment of the present invention, the signal processing device 3 once stores all deviations from the measurement distance of the lower distance meter and the reference distance (pass line) with respect to the preset ranges of the tip and tail ends. To do. The signal processing device 3 calculates an approximate curve from the series of stored deviation data, calculates the steel plate angle at the measurement position from the approximate curve, and calculates the inclination angle of the steel plate accompanying the warpage, sagging, and bending shape of the steel plate from the approximate curve. The thickness measurement value is corrected based on the calculated inclination angle.

なお、上記の実施例では、下部距離計の計測距離データによる補正を行ったが、板厚(目標板厚)が判っているので上部距離計の計測データによっても同様の補正を行う事が出来る。上部距離計1aの計測距離データを用いる場合には、基準距離は上部距離計からパスラインまでの距離から板厚を差し引いた値となる。基準距離から差し引く板厚は目標板厚となるため実際の板厚との差が発生するが、板厚の目標板厚からの偏差が小さければ誤差は無視することが可能となる。また、上部距離計1a及び下部距離計1bの距離計計測データと基準距離からの偏差データの両者を使用し、角度算出精度を向上させることも可能である。   In the above embodiment, correction is performed using the measurement distance data of the lower distance meter. However, since the plate thickness (target plate thickness) is known, the same correction can be performed using the measurement data of the upper distance meter. . When the measurement distance data of the upper distance meter 1a is used, the reference distance is a value obtained by subtracting the plate thickness from the distance from the upper distance meter to the pass line. Since the plate thickness subtracted from the reference distance is the target plate thickness, a difference from the actual plate thickness occurs. However, if the deviation of the plate thickness from the target plate thickness is small, the error can be ignored. In addition, it is possible to improve the angle calculation accuracy by using both the distance meter measurement data of the upper distance meter 1a and the lower distance meter 1b and the deviation data from the reference distance.

レーザ方式板厚計による板厚計測時の斜め計測誤差を説明する図。The figure explaining the diagonal measurement error at the time of plate | board thickness measurement by a laser system thickness gauge. 鋼板の斜め計測誤差の補正方法を説明する図。The figure explaining the correction method of the diagonal measurement error of a steel plate. 鋼板の斜め計測誤差の他の補正方法を説明する図。The figure explaining the other correction method of the diagonal measurement error of a steel plate. 本発明の実施例を示す図。The figure which shows the Example of this invention.

符号の説明Explanation of symbols

1a,1b レーザ距離計、2 Cフレーム、3 信号処理装置、4 搬送ロール、6 鋼板、7 上位計算機。
1a, 1b Laser distance meter, 2 C frame, 3 signal processing device, 4 transport roll, 6 steel plate, 7 host computer.

Claims (4)

対向して配置されたレーザ距離計により、搬送ライン上を搬送される計測対象物の厚さを計測する厚さ計測方法において、
前記レーザ距離計の計測値から計測対象物の計測点通過時に想定される計測対象物の表裏面の位置からの変位量を算出し、計測点通過時の計測対象物の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて厚さ計測値の補正を行うことを特徴とする厚さ計測方法。
In the thickness measurement method for measuring the thickness of the measurement object conveyed on the conveyance line by the laser distance meter arranged oppositely,
The amount of displacement from the front and back positions of the measurement object assumed when the measurement object passes through the measurement point of the laser distance meter is calculated, and the measurement object warps, droops or bends when passing through the measurement point , And the thickness measurement value is corrected based on the estimation result.
対向して配置されたレーザ距離計により、一定間隔に配置された搬送ロールにより構成される搬送ライン上を搬送される計測対象物の厚さを計測する厚さ計測方法において、
前記搬送ライン下側又は上側に設置された前記レーザ距離計により計測される計測対象物の下面又は上面までの距離と、搬送ライン上のパスライン位置との差から、計測対象物の下面又は上面のパスラインからの変位量を算出することにより計測対象物の反り、撓み又は垂れ量を推定し、その推定結果に基づいて厚さ計測値の補正を行うことを特徴とする厚さ計測方法。
In a thickness measurement method for measuring the thickness of a measurement object conveyed on a conveyance line composed of conveyance rolls arranged at regular intervals by a laser distance meter arranged oppositely,
The lower surface or upper surface of the measurement object is determined from the difference between the distance to the lower surface or upper surface of the measurement object measured by the laser distance meter installed below or above the conveyance line and the pass line position on the conveyance line. A thickness measurement method characterized by estimating the amount of warping, bending or sagging of a measurement object by calculating the amount of displacement from the pass line, and correcting the thickness measurement value based on the estimation result.
搬送される計測対象物の下面又は上面までの距離を先端部又は尾端部から一定搬送距離分について、前記搬送ライン下側又は上側に設置された前記レーザ距離計によって計測してその計測値を記録し、記録された計測値と搬送ライン上のパスライン位置との差から、前記先端部又は尾端部の計測位置通過時の計測対象物の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定して厚さ計測値を補正し、計測対象物の厚さを計測することを特徴とする請求項2記載の厚さ計測方法。   The distance to the lower surface or upper surface of the measurement object to be conveyed is measured by the laser distance meter installed at the lower side or upper side of the conveyance line for a certain conveyance distance from the tip or tail end, and the measured value is obtained. Record, estimate from the difference between the recorded measurement value and the pass line position on the transport line, the warping, sagging or bending shape of the measurement object when passing the measurement position of the tip or tail, and the estimation The thickness measurement method according to claim 2, wherein the thickness of the measurement object is measured by estimating the angle of the measurement object at the measurement position based on the result and correcting the thickness measurement value. 搬送される計測対象物の下面又は上面までの距離を一定搬送距離間隔で、前記搬送ライン下側又は上側に設置された前記レーザ距離計により計測してその計測値を記録し、
該記録された計測値から計測対象物の先端部又は尾端部及び定常部に対応する計測値をそれぞれ求め、
前記定常部の計測値と前記先端部又は尾端部の計測値との差に基づいて前記先端部又は尾端部の計測位置の通過時の反り、垂れ又は撓み形状を推定し、その推定結果に基づいて計測位置における計測対象物の角度を推定することにより厚さ計測値を補正し、計測対象物の厚さを計測することを特徴とする請求項2記載の厚さ計測方法。
The distance to the lower surface or the upper surface of the measurement object to be conveyed is measured at a certain conveyance distance interval by the laser distance meter installed on the lower side or upper side of the conveyance line, and the measured value is recorded.
From the recorded measurement values, respectively, the measurement values corresponding to the front end portion or the tail end portion and the stationary portion of the measurement object are obtained,
Based on the difference between the measured value of the stationary part and the measured value of the tip part or the tail part, the warp, sagging or bending shape when passing the measurement position of the tip part or the tail part is estimated, and the estimation result The thickness measurement method according to claim 2, wherein the thickness measurement value is corrected by estimating the angle of the measurement object at the measurement position based on the measurement position, and the thickness of the measurement object is measured.
JP2006090570A 2006-03-29 2006-03-29 Thickness measuring method and thickness measuring apparatus Active JP5013730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090570A JP5013730B2 (en) 2006-03-29 2006-03-29 Thickness measuring method and thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090570A JP5013730B2 (en) 2006-03-29 2006-03-29 Thickness measuring method and thickness measuring apparatus

Publications (3)

Publication Number Publication Date
JP2007263819A true JP2007263819A (en) 2007-10-11
JP2007263819A5 JP2007263819A5 (en) 2009-03-05
JP5013730B2 JP5013730B2 (en) 2012-08-29

Family

ID=38636949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090570A Active JP5013730B2 (en) 2006-03-29 2006-03-29 Thickness measuring method and thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JP5013730B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044900A1 (en) 2009-09-11 2011-04-07 Kabushiki Kaisha Toshiba Radiation thickness gauge for steel plate, calculates output difference of detectors by selecting and multiplying correction count when object moves to to-be-measured optical axis direction perpendicular to pass-line plane
CN103438811A (en) * 2013-08-29 2013-12-11 昆山达功电子有限公司 Coil thickness testing device
JP2015179046A (en) * 2014-03-19 2015-10-08 東京応化工業株式会社 Thickness measurement tool and method of measuring thickness

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210025404A (en) 2019-08-27 2021-03-09 주식회사 엘지화학 Thickness measurement apparatus and thickness measurement apparatus for unit cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123231A (en) * 1997-06-30 1999-01-29 Eiwa Denki Kk Non-contacting thickness measuring instrument
JP2002202108A (en) * 2000-12-28 2002-07-19 Hitachi Electronics Eng Co Ltd Plate thickness measuring device
JP2003227707A (en) * 2003-03-04 2003-08-15 Toshiba Corp Thickness gauge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123231A (en) * 1997-06-30 1999-01-29 Eiwa Denki Kk Non-contacting thickness measuring instrument
JP2002202108A (en) * 2000-12-28 2002-07-19 Hitachi Electronics Eng Co Ltd Plate thickness measuring device
JP2003227707A (en) * 2003-03-04 2003-08-15 Toshiba Corp Thickness gauge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044900A1 (en) 2009-09-11 2011-04-07 Kabushiki Kaisha Toshiba Radiation thickness gauge for steel plate, calculates output difference of detectors by selecting and multiplying correction count when object moves to to-be-measured optical axis direction perpendicular to pass-line plane
CN103438811A (en) * 2013-08-29 2013-12-11 昆山达功电子有限公司 Coil thickness testing device
JP2015179046A (en) * 2014-03-19 2015-10-08 東京応化工業株式会社 Thickness measurement tool and method of measuring thickness

Also Published As

Publication number Publication date
JP5013730B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US9062963B2 (en) Thickness measurement system and thickness measurement method
TW425472B (en) Method and apparatus of measuring thin plate thickness and bend
US20100111367A1 (en) Apparatus and method for measuring three-dimensional shape of wood block
JP6733379B2 (en) Steel piece cross-sectional shape measuring device and steel piece cross-sectional shape measuring method
JP5013730B2 (en) Thickness measuring method and thickness measuring apparatus
US11192158B2 (en) Apparatus for detecting relative positioning information between rolls, and method for measurement roll alignment state by using same
JP5030699B2 (en) Method and apparatus for adjusting thickness measuring apparatus
TW200829854A (en) Optical device for sensing distance
JP4131843B2 (en) Chatter mark detector
KR100983095B1 (en) System and method of measuring the size and figure of metal plate
JP2011196755A (en) Radiation measuring instrument
JP3940327B2 (en) Metal plate thickness measurement method
JP5599335B2 (en) Thickness measuring device
JPH06273162A (en) Flatness measuring device
JP2834638B2 (en) Automatic thickness gauge
KR100660224B1 (en) Method for on-line measuring camber of strip
JP2003254722A (en) Method and instrument for measuring thickness
JP2000234908A (en) Rangefinder
JP2020148738A (en) Plate position detection method, plate data correction method, and plate position detection device
KR102566740B1 (en) System and method for measuring flatness of steel plate
JP7286479B2 (en) Length measuring device
JP6730683B2 (en) Edge-width measuring method and edge-width measuring device for angle steel
KR20240030619A (en) Method and system for measuring flatness of conveying steel plate
KR101294912B1 (en) Apparatus of tracking head and tail of plate and plate cooling system using the same
JPH0560532A (en) Optical shape measurement instrument

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250