JP5030699B2 - Method and apparatus for adjusting thickness measuring apparatus - Google Patents

Method and apparatus for adjusting thickness measuring apparatus Download PDF

Info

Publication number
JP5030699B2
JP5030699B2 JP2007195397A JP2007195397A JP5030699B2 JP 5030699 B2 JP5030699 B2 JP 5030699B2 JP 2007195397 A JP2007195397 A JP 2007195397A JP 2007195397 A JP2007195397 A JP 2007195397A JP 5030699 B2 JP5030699 B2 JP 5030699B2
Authority
JP
Japan
Prior art keywords
calibration
measurement
calibration plate
laser distance
distance meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007195397A
Other languages
Japanese (ja)
Other versions
JP2009031120A (en
Inventor
浩一 手塚
善己 福▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007195397A priority Critical patent/JP5030699B2/en
Publication of JP2009031120A publication Critical patent/JP2009031120A/en
Application granted granted Critical
Publication of JP5030699B2 publication Critical patent/JP5030699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、計測対象物の厚さを、複数の対向するレーザ距離計によって計測する厚さ計測装置、たとえば厚鋼板や薄鋼板の精整ラインや検査ライン等へ適用される、複数の対向するレーザ距離計で構成される厚さ計測装置の調整方法及びその装置に関するものであり、特に、板厚(寸法)の計測上の誤差要因となる、対向するレーザ距離計の相対的な位置関係のズレを正確に検出し、調整・構成する技術に関するものである。   The present invention is applied to a thickness measuring device that measures the thickness of an object to be measured with a plurality of opposed laser distance meters, for example, a finishing line or an inspection line of a thick steel plate or a thin steel plate. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adjustment method and apparatus for a thickness measuring apparatus including a laser distance meter, and in particular, a relative positional relationship between opposed laser distance meters that causes an error in measuring a plate thickness (dimension). The present invention relates to a technique for accurately detecting, adjusting, and configuring a deviation.

厚板、薄板ラインにおいては、連続して搬送、通板される鋼板の板厚を連続して計測し、板厚の制御、保証を行う必要があり、従来よりγ線、X線等を利用した板厚計が使用されている。
γ線、X線方式の板厚計は、対象物(鋼板)透過時のγ線、X線の減衰量から、対象物の厚さを計測するもので、外乱等の影響を受けにくく、高精度な厚さ計測が可能な技術として確立されている。
For thick plate and thin plate lines, it is necessary to continuously measure the plate thickness of steel plates that are continuously conveyed and passed, and to control and guarantee the plate thickness. Conventionally, γ rays, X-rays, etc. are used. A thickness gauge is used.
The γ-ray and X-ray thickness gauge measures the thickness of an object from the amount of attenuation of γ-rays and X-rays that pass through the object (steel plate), and is not easily affected by disturbances. It has been established as a technology that enables accurate thickness measurement.

これらのγ線、X線方式板厚計では、γ線、X線のビーム形状を絞り込むことができないため、一定面積(ビーム断面積)の平均板厚しか計測できない。さらに、γ線、X線の検出器の応答性が低く、高速で進入する対象物(鋼板)に関しては先端部の板厚を正確に計測できず、不感帯が発生するという課題もあった。   With these γ-ray and X-ray system thickness gauges, the beam shape of γ-rays and X-rays cannot be narrowed down, so only an average plate thickness with a certain area (beam cross-sectional area) can be measured. Furthermore, the responsiveness of the γ-ray and X-ray detectors is low, and with respect to an object (steel plate) that enters at high speed, the thickness of the tip portion cannot be measured accurately, resulting in a dead zone.

これに対して、三角測量の原理を利用した、高精度で応答性の高いレーザ距離計を使用した板厚計が実用化されている。これは、対向して設置されたレーザ距離計間に対象物を挿入し、距離計による対象物表面までの距離の計測結果と距離計間の距離から対象物の厚さを計測するもので、応答性が高く、計測スポット(レーザビーム径)も細い事から、高速で搬送される対象物に関しても全長に渡って正確な板厚を計測する事が可能となっている。   On the other hand, a thickness gauge using a laser distance meter with high accuracy and high responsiveness utilizing the principle of triangulation has been put into practical use. This is to insert the object between the laser distance meters installed facing each other, and measure the thickness of the object from the distance between the distance meter and the measurement result of the distance to the object surface, Since the responsiveness is high and the measurement spot (laser beam diameter) is thin, it is possible to accurately measure the plate thickness over the entire length of the object to be conveyed at high speed.

また、その改良技術として、被測定対象物の振動や測定位置のズレによる厚さ測定誤差を低減するために、『レーザ距離計のレーザ発生器からパルス状のレーザを照射するパルス変調器と、測定対象物の厚さを演出する演算器と、イメージセンサに送信する読出しスタートパルス,変調器に送信するレーザ発振パルス及び演算器に送信する演算スタートパルスを作成するパルス発生回路と、を設けた事を特徴とする。』という技術も開示されている(特許文献1)。   In addition, as an improvement technique, in order to reduce the thickness measurement error due to the vibration of the object to be measured and the deviation of the measurement position, a `` pulse modulator that emits a pulsed laser from the laser generator of the laser rangefinder, and An arithmetic unit that produces the thickness of the object to be measured, and a pulse generation circuit that generates a read start pulse to be transmitted to the image sensor, a laser oscillation pulse to be transmitted to the modulator, and an arithmetic start pulse to be transmitted to the arithmetic unit are provided. It is characterized by things. Is also disclosed (Patent Document 1).

特開平6−66525号公報(要約)JP-A-6-66525 (summary)

レーザ方式板厚計では、対向して設置されたレーザ距離計による距離計間に挿入された対象物(鋼板)表面までの距離計測結果と、対向する距離計間の距離から対象物(鋼板)の厚さを算出する。このため、対向する距離計の計測軸は完全に一致していることが必要であり、さらにその状態が計測中維持される必要がある。
対向する距離計の計測軸が一致していない場合や変動が発生した場合には、距離計測値に誤差が発生し、正確な対象物の厚さを計測する事ができなくなる。
In the laser type thickness gauge, the object (steel plate) is calculated from the distance measurement result to the surface of the object (steel plate) inserted between the distance meters by the laser distance meter installed opposite to the distance between the opposing distance meters. Calculate the thickness. For this reason, it is necessary that the measurement axes of the distance meters facing each other are completely coincident with each other, and that state needs to be maintained during measurement.
If the measurement axes of the distance meters facing each other do not match or change occurs, an error occurs in the distance measurement value, and it becomes impossible to accurately measure the thickness of the object.

実際の装置においては、距離計を固定し対向させるためのフレーム、架台を製作し、計測軸(光軸)が一致するように、レーザ距離計の位置関係を正確に調整する必要があるが、現状では、目視等による計測点の確認とフレーム、筐体の角度(水平、垂直)調整によって行っているため、高精度の調整は困難であり、計測時の誤差要因となっている。
また、一旦設置調整された状態が維持されているかの確認も困難であり、長期間の使用に伴う変動、誤差の増加を評価し、再調整を行うことも困難である。
In an actual device, it is necessary to manufacture a frame and a pedestal for fixing and facing the distance meter, and to precisely adjust the positional relationship of the laser distance meter so that the measurement axis (optical axis) matches. At present, since the measurement points are confirmed by visual observation or the like and the angles of the frame and the case (horizontal and vertical) are adjusted, it is difficult to adjust with high accuracy, which is an error factor at the time of measurement.
In addition, it is difficult to confirm whether or not the installation and adjustment state is maintained, and it is difficult to perform readjustment by evaluating fluctuations and increase in errors associated with long-term use.

本発明は、上記のような課題を解決するためになされたものであり、対向配置されたレーザ距離計で構成される厚さ計測装置において、レーザ距離計の計測軸の角度、位置のズレを評価し、調整して誤差要因を無くし、正確な厚さ計測を可能にするための、厚さ計測装置の調整方法及びその装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and in a thickness measurement apparatus including laser distance meters arranged opposite to each other, the angle and the position of the measurement axis of the laser distance meter are shifted. It is an object of the present invention to provide a method and apparatus for adjusting a thickness measuring device that can be evaluated and adjusted to eliminate an error factor and enable accurate thickness measurement.

本発明に係る厚さ計測装置の調整方法は、複数の対向配置されたレーザ距離計で構成される厚さ計測装置の調整方法であって、前記レーザ距離計の計測方向に対する角度と、前記レーザ距離計からの距離とを固定した複数の校正板と、円筒状であり、円筒側面に沿って円環状に前記複数の校正板を固着し、円筒状の回転軸を中心として回転可能である校正片支持部と、各前記校正板を前記レーザ距離計の計測範囲内に移動させるとき、前記校正片支持部を移動させるとともに、所定の角度で回転させる移動機構と、前記レーザ距離計の計測値を演算処理する演算手段と、を設け、各前記校正板の板厚をあらかじめ測定しておき、前記校正板から2つを選び(以後、それぞれ第1校正板、第2校正板と呼ぶ)、前記第1校正板を前記レーザ距離計の計測範囲内に移動させて距離を計測する第1計測工程と、前記第2校正板を前記レーザ距離計の計測範囲内に移動させて距離を計測する第2計測工程と、前記第1計測工程で計測される距離と前記第2計測工程で計測される距離の差分を求める工程と、前記第1校正板と前記第2校正板の間の距離、及び前記レーザ距離計の計測方向に対する角度に基づき、前記差分を演算予測する工程と、前記差分、前記演算予測した差分、及び前記角度に基づき、前記レーザ距離計の計測軸の角度偏差を求める工程と、前記角度偏差に基づき、前記レーザ距離計の計測軸を調整する工程と、を有するものである。 An adjustment method for a thickness measuring apparatus according to the present invention is an adjustment method for a thickness measuring apparatus including a plurality of opposed laser distance meters, the angle of the laser distance meter with respect to the measurement direction, and the laser A plurality of calibration plates fixed at a distance from the distance meter and a cylindrical shape, and a plurality of calibration plates fixed in an annular shape along the cylindrical side surface, and can be rotated around a cylindrical rotation axis A single support part, a moving mechanism for moving the calibration piece support part and rotating it at a predetermined angle when moving each calibration plate within the measurement range of the laser rangefinder, and a measurement value of the laser rangefinder And calculating means for calculating and processing the thickness of each calibration plate in advance, and selecting two from the calibration plates (hereinafter referred to as the first calibration plate and the second calibration plate, respectively) The first calibration plate is moved to the laser distance A first measurement step of measuring the distance by moving the first calibration plate, a second measurement step of measuring the distance by moving the second calibration plate into the measurement range of the laser rangefinder, and the first measurement Based on the step of obtaining the difference between the distance measured in the step and the distance measured in the second measurement step, the distance between the first calibration plate and the second calibration plate, and the angle of the laser rangefinder with respect to the measurement direction. A step of calculating and predicting the difference, a step of obtaining an angle deviation of a measurement axis of the laser distance meter based on the difference, the difference calculated and calculated, and the angle, and the laser distance meter based on the angle deviation. Adjusting the measurement axis.

また、本発明に係る厚さ計測装置の調整方法は、前記校正板から1つを選び(以後、第3校正板と呼ぶ)、前記第3校正板を前記レーザ距離計の計測範囲内に移動させて、対向配置された夫々のレーザ距離計からの距離を計測し、その計測値に基づいて前記第3校正板の板厚を計測する第3計測工程と、前記第3校正板の板厚、及び前記角度に基づき、前記第3計測工程における前記第3校正板の板厚の計測値を演算予測する工程と、前記第3校正板の板厚の計測値、前記演算予測した板厚、及び前記角度に基づき、前記レーザ距離計の計測軸の位置偏差を求める工程と、前記位置偏差に基づき、前記レーザ距離計の計測軸を調整する工程と、を有するものである。   Also, the thickness measuring device adjusting method according to the present invention selects one of the calibration plates (hereinafter referred to as a third calibration plate), and moves the third calibration plate within the measurement range of the laser distance meter. A third measuring step of measuring a distance from each of the opposed laser distance meters and measuring a thickness of the third calibration plate based on the measured value; and a thickness of the third calibration plate And a step of calculating and predicting a measured value of the thickness of the third calibration plate in the third measuring step based on the angle, a measured value of the thickness of the third calibration plate, the thickness of the calculated and predicted plate, And a step of obtaining a position deviation of the measurement axis of the laser distance meter based on the angle, and a step of adjusting the measurement axis of the laser distance meter based on the position deviation.

また、本発明に係る厚さ計測装置の調整方法は、前記各工程を、各前記校正板について繰り返し実行し、各繰り返し毎の前記レーザ距離計による計測値を平均し、又は、各繰り返し毎の前記偏差を平均して、その平均値に基づき前記レーザ距離計の計測軸を調整するものである。   Further, in the adjustment method of the thickness measuring apparatus according to the present invention, the respective steps are repeatedly executed for each calibration plate, and the measurement values by the laser distance meter at each repetition are averaged, or at each repetition. The deviation is averaged, and the measurement axis of the laser distance meter is adjusted based on the average value.

また、本発明に係る厚さ計測装置の調整装置は、複数の対向配置されたレーザ距離計で構成される厚さ計測装置の調整装置であって、あらかじめ板厚を測定し、前記レーザ距離計の計測方向に対する角度と、前記レーザ距離計からの距離とを固定した複数の校正板と、円筒状であり、円筒側面に沿って円環状に前記複数の校正板を固着し、円筒状の回転軸を中心として回転可能である校正片支持部と、各前記校正板を前記レーザ距離計の計測範囲内に移動させるとき、前記校正片支持部を移動させるとともに、所定の角度で回転させる移動機構と、前記レーザ距離計の計測値を演算処理する演算手段と、を備え、前記移動機構は、前記校正板から2つを選び(以後、それぞれ第1校正板、第2校正板と呼ぶ)、前記第1校正板及び前記第2校正板を、順次前記レーザ距離計の計測範囲内に移動させ、前記レーザ距離計は、前記第1校正板及び前記第2校正板が当該レーザ距離計の計測範囲内に移動する毎に距離を計測し、前記演算手段は、前記レーザ距離計が計測した、前記第1校正板の距離と前記第2校正板の距離との差分を求め、前記第1校正板と前記第2校正板の間の距離、及び前記レーザ距離計の計測方向に対する角度に基づき、前記差分を演算予測し、前記差分、前記演算予測した差分、及び前記角度に基づき、前記レーザ距離計の計測軸の角度偏差を求めるものである。
Further, the adjusting device of the thickness measuring device according to the present invention is an adjusting device of a thickness measuring device composed of a plurality of opposed laser distance meters, and measures the plate thickness in advance, and the laser distance meter A plurality of calibration plates that fix an angle with respect to the measurement direction and a distance from the laser rangefinder, and a cylindrical shape, and the plurality of calibration plates are fixed in an annular shape along the cylindrical side surface, and the cylindrical rotation A calibration piece support that is rotatable about an axis, and a moving mechanism that moves the calibration piece support when the calibration plates are moved within the measurement range of the laser rangefinder and rotates them at a predetermined angle. And a calculation means for calculating the measurement value of the laser distance meter, and the moving mechanism selects two of the calibration plates (hereinafter referred to as a first calibration plate and a second calibration plate, respectively) The first calibration plate and the second school The plate is sequentially moved within the measurement range of the laser distance meter, and the laser distance meter measures the distance each time the first calibration plate and the second calibration plate move within the measurement range of the laser distance meter. The calculating means obtains a difference between the distance between the first calibration plate and the distance between the second calibration plate and the distance between the first calibration plate and the second calibration plate measured by the laser distance meter, And calculating and predicting the difference based on the angle of the laser rangefinder with respect to the measurement direction , and obtaining an angle deviation of the measurement axis of the laser rangefinder based on the difference, the calculated and predicted difference, and the angle. .

また、本発明に係る厚さ計測装置の調整装置において、前記移動機構は、前記校正板から1つを選び(以後、第3校正板と呼ぶ)、前記第3校正板を前記レーザ距離計の計測範囲内に移動させ、前記レーザ距離計は、対向配置された夫々のレーザ距離計から、前記第3校正板の距離を計測し、その計測値に基づいて前記第3校正板の板厚を計測し、前記演算手段は、前記第3校正板の板厚、及び前記角度に基づき、前記第3校正板の板厚の前記レーザ距離計による計測値を演算予測し、前記第3校正板の板厚の計測値、前記演算予測した板厚、及び前記角度に基づき、前記レーザ距離計の計測軸の位置偏差を求めるものである。   In the thickness measuring device adjusting apparatus according to the present invention, the moving mechanism selects one of the calibration plates (hereinafter referred to as a third calibration plate), and the third calibration plate is used as the laser distance meter. The laser distance meter is moved into a measurement range, and the laser distance meter measures the distance of the third calibration plate from each of the laser distance meters arranged opposite to each other, and the thickness of the third calibration plate is determined based on the measured value. The calculation means calculates and predicts a measurement value of the thickness of the third calibration plate by the laser distance meter based on the plate thickness of the third calibration plate and the angle, and The position deviation of the measurement axis of the laser rangefinder is obtained based on the measured value of the plate thickness, the plate thickness calculated and predicted, and the angle.

また、本発明に係る厚さ計測装置の調整装置において、前記移動機構は、前記回転軸を移動させるとともに、前記回転軸を回転させて、各前記校正板を前記レーザ距離計の計測範囲内に順次移動させるものである。
Further, the adjuster thickness measuring apparatus according to the present invention, before Symbol moving mechanism, the moves the rotary shaft, said rotary shaft is rotated, the measurement range of the laser rangefinder each said calibration plate Are moved sequentially.

また、本発明に係る厚さ計測装置の調整装置において、各前記校正板は、直線上に配置されており、前記移動機構は、前記各前記校正板を前記レーザ距離計の計測範囲内に順次往復移動させるものである。   Further, in the adjusting device of the thickness measuring apparatus according to the present invention, each calibration plate is arranged on a straight line, and the moving mechanism sequentially moves each calibration plate within the measurement range of the laser distance meter. It is intended to reciprocate.

また、本発明に係る厚さ計測装置の調整装置において、前記レーザ距離計は、前記移動機構が当該レーザ距離計の計測範囲内に各前記校正板を移動させる毎に距離を計測し、前記演算手段は、各前記校正板についての前記レーザ距離計による計測値を各繰り返し毎に平均して、その平均値を前記レーザ距離計の計測結果とし、又は、各繰り返し毎の前記偏差を平均して、その平均値を前記偏差とするものである。   Further, in the adjustment device of the thickness measuring apparatus according to the present invention, the laser distance meter measures the distance each time the moving mechanism moves each calibration plate within the measurement range of the laser distance meter, and performs the calculation. The means averages the measurement value by the laser distance meter for each calibration plate for each repetition, and the average value is used as the measurement result of the laser distance meter, or the deviation for each repetition is averaged. The average value is the deviation.

本発明によれば、レーザ距離計を用いた厚さ計測装置において、対向配置されたレーザ距離計の計測軸の相対的な位置、方向ズレを検出することが可能であり、検出結果に応じてレーザ距離計の位置、方向を調整することによりレーザ距離計の計測軸を高精度に一致させることが可能となり、レーザ距離計間の計測軸のズレ(計測位置ズレ、計測方向ズレ)に起因する誤差要因を無くし、正確な計測が可能となる。
また、本発明によれば、対向配置されたレーザ距離計の計測軸の相対的な位置関係を定期的に検出、確認し、必要に応じて調整(校正)を行う事により、機械的な変形、歪等に起因するレーザ距離計の相対的な位置関係のズレを補正し、誤差要因を低減した高精度な計測条件を維持する事が可能となる。
According to the present invention, in the thickness measuring device using a laser distance meter, it is possible to detect the relative position and direction deviation of the measurement axes of the laser distance meters arranged opposite to each other, and according to the detection result. By adjusting the position and direction of the laser rangefinder, it becomes possible to match the measurement axis of the laser rangefinder with high accuracy, which is caused by deviations in the measurement axis between the laser rangefinders (measurement position deviation, measurement direction deviation). The error factor is eliminated and accurate measurement is possible.
In addition, according to the present invention, mechanical deformation can be achieved by periodically detecting and confirming the relative positional relationship between the measurement axes of the laser distance meters arranged opposite to each other, and performing adjustment (calibration) as necessary. It is possible to correct the relative positional relationship of the laser rangefinder caused by distortion or the like and maintain highly accurate measurement conditions with reduced error factors.

実施の形態1.
本発明の実施の形態1に係る厚さ計測装置の調整方法では、対向配置されたレーザ距離計で構成される厚さ計測装置において、レーザ距離計の計測方向に対する角度と、レーザ距離計からの距離とを固定した校正板を複数設けるとともに、これらの校正板をレーザ距離計の計測範囲内に移動させる移動機構を設け、各校正板に対する距離計測を順次実施する。
レーザ距離計の計測軸にズレが生じている場合は、各校正板に対する距離計測の実測値と演算予測値の間にズレが生じるので、これによって計測軸のズレを検出することが可能となる。
以下では、各校正板に対する距離計測の実測値と演算予測値の間のズレについて、図面を交えて説明する。
Embodiment 1 FIG.
In the thickness measuring device adjustment method according to the first embodiment of the present invention, in the thickness measuring device configured by the laser distance meters arranged opposite to each other, the angle with respect to the measurement direction of the laser distance meter and the distance from the laser distance meter A plurality of calibration plates each having a fixed distance are provided, and a moving mechanism for moving these calibration plates into the measurement range of the laser rangefinder is provided, and distance measurement for each calibration plate is sequentially performed.
If there is a deviation in the measurement axis of the laser rangefinder, a deviation will occur between the measured value of the distance measurement with respect to each calibration plate and the predicted operation value. This makes it possible to detect the deviation of the measurement axis. .
In the following, the deviation between the measured value of the distance measurement for each calibration plate and the calculated predicted value will be described with reference to the drawings.

図1は、レーザ距離計による厚さ計測時に、計測軸の方向ズレにより計測誤差が生じる理由を説明する図である。
板厚の異なる2枚の校正板(それぞれの板厚はL1及びL2、L1>L2)をレーザ距離計の計測範囲内に順次挿入し、校正板の表面までの距離を測定する。このとき、距離計測を行わない側の面の位置を揃えておく。
図1(a)のように、計測軸の方向にズレがない場合は、2枚の校正板に対する測定結果の差ΔL1は、板厚の差に等しくなる。即ち、次式(1)が成り立つ。
ΔL1=L1−L2 ・・・(1)
一方、図1(b)のように計測軸の方向に角度θのズレが生じている場合は、測定結果の差ΔL2は次式(2)で求められる。
ΔL2=(L1−L2)/cos(θ) ・・・(2)
L1とL2は既知の値であるので、ΔL1とΔL2の差が小さくなるようにレーザ距離計の計測軸の方向を調整することができ、これにより計測ズレを修正することができる。しかし、L1とL2の差やθが小さい場合には、式(1)と式(2)の左辺の差も小さくなるので、調整可能な方向ズレの大きさに限度がある。
FIG. 1 is a diagram for explaining the reason why a measurement error occurs due to a deviation in the direction of a measurement axis during thickness measurement by a laser distance meter.
Two calibration plates (thicknesses are L1 and L2, L1> L2) with different thicknesses are sequentially inserted into the measurement range of the laser rangefinder, and the distance to the surface of the calibration plate is measured. At this time, the positions of the surfaces on which distance measurement is not performed are aligned.
As shown in FIG. 1A, when there is no deviation in the direction of the measurement axis, the difference ΔL1 between the measurement results for the two calibration plates is equal to the difference in plate thickness. That is, the following formula (1) is established.
ΔL1 = L1-L2 (1)
On the other hand, when there is a deviation of the angle θ in the direction of the measurement axis as shown in FIG. 1B, the difference ΔL2 in the measurement result is obtained by the following equation (2).
ΔL2 = (L1−L2) / cos (θ) (2)
Since L1 and L2 are known values, the direction of the measurement axis of the laser rangefinder can be adjusted so that the difference between ΔL1 and ΔL2 becomes small, and thereby the measurement deviation can be corrected. However, when the difference between L1 and L2 or θ is small, the difference between the left sides of Equation (1) and Equation (2) is also small, so there is a limit to the size of the adjustable direction deviation.

図2は、図1において校正板を計測軸に対し角度α傾けた状態で距離計測を実施する場合の計測誤差を説明する図である。2枚の校正板の距離計測を行う際に、距離計測を行わない側の面の位置を揃えておく。
図2(a)のように、計測軸の方向にズレがない場合は、2枚の校正板に対する測定結果の差ΔL1は、次式(3)で求められる。
ΔL1=(L1−L2)/cos(α) ・・・(3)
一方、図2(b)のように計測軸の方向に角度θのズレが生じている場合は、測定結果の差ΔL2は次式で求められる。
ΔL2=(L1−L2)/cos(α)+
(L1−L2)tan(θ)tan(α)/{1−tan(θ)tan(α)}
さらに、θが十分に小さい場合には、次式(4)のように近似することができる。
ΔL2≒(L1−L2)/cos(α)+
(L1−L2)tan(θ)tan(α) ・・・(4)
L1、L2、及びαは既知の値であるので、ΔL1とΔL2の差が小さくなるようにレーザ距離計の計測軸の方向を調整することができ、これにより計測ズレを修正することができる。この場合、図1とL1及びL2の値は同じであるにも関わらず、図1の場合よりもΔL1とΔL2の差が大きくなるので、計測軸の方向ズレに対する検出感度が増し、より正確に計測軸の方向ズレを検出できる。
FIG. 2 is a diagram for explaining a measurement error when the distance measurement is performed in a state where the calibration plate is inclined at an angle α with respect to the measurement axis in FIG. When measuring the distance between the two calibration plates, the positions of the surfaces on which the distance measurement is not performed are aligned.
As shown in FIG. 2A, when there is no deviation in the direction of the measurement axis, the difference ΔL1 between the measurement results for the two calibration plates is obtained by the following equation (3).
ΔL1 = (L1−L2) / cos (α) (3)
On the other hand, when there is a deviation of the angle θ in the direction of the measurement axis as shown in FIG. 2B, the difference ΔL2 in the measurement result is obtained by the following equation.
ΔL2 = (L1−L2) / cos (α) +
(L1-L2) tan (θ) tan (α) / {1-tan (θ) tan (α)}
Furthermore, when θ is sufficiently small, it can be approximated as the following equation (4).
ΔL2≈ (L1-L2) / cos (α) +
(L1-L2) tan (θ) tan (α) (4)
Since L1, L2, and α are known values, the direction of the measurement axis of the laser rangefinder can be adjusted so that the difference between ΔL1 and ΔL2 becomes small, and thereby the measurement deviation can be corrected. In this case, although the values of L1 and L2 are the same as those in FIG. 1, the difference between ΔL1 and ΔL2 is larger than that in FIG. 1, so that the detection sensitivity to the direction deviation of the measurement axis is increased and more accurately. The direction deviation of the measurement axis can be detected.

また、距離を計測する面を反対側にするとともに、距離計測を行わない側の面を反対側に揃えて計測を行うことにより、反対側のレーザ距離計の方向ズレを検出することができる。
さらには、図2で説明した方法により行った計測を、その直交方向に対して同様に実行することにより、直交する2軸方向の計測軸の方向ズレを検出できるので、対向するレーザ距離計の計測軸の方向を正確に調整することができる。
In addition, the measurement of the direction of the laser distance meter on the opposite side can be detected by making the surface on which the distance is measured the opposite side and making the surface on which the distance measurement is not performed the opposite side.
Furthermore, by performing the measurement performed by the method described with reference to FIG. 2 in the same manner in the orthogonal direction, it is possible to detect the direction deviation of the measurement axes in the two orthogonal directions. The direction of the measurement axis can be adjusted accurately.

上述の説明では、板厚の異なる2枚の校正板に対し、計測軸に対する傾斜角度、及び距離計測を行わない側の面の位置を同一に揃えて距離計測を行う例を説明した。
計測方法はこれに限られるものではなく、板厚、及び計測軸に対する傾斜角度が同一の2枚の校正板を、計測方向に対して異なる既知の間隔で配置することにより、同様の手順で各レーザ距離計の計測軸の方向ズレを同時に検出することができる。
In the above description, an example has been described in which distance measurement is performed with the same inclination angle with respect to the measurement axis and the position of the surface on which distance measurement is not performed for two calibration plates having different plate thicknesses.
The measurement method is not limited to this, and two calibration plates having the same plate thickness and the same inclination angle with respect to the measurement axis are arranged at different known intervals with respect to the measurement direction. It is possible to simultaneously detect a deviation in the direction of the measurement axis of the laser distance meter.

なお、2枚の校正板をレーザ距離計の計測範囲内に順次挿入させる際に、人手によりこれを行うと誤差が生じるおそれがあるため、あらかじめ校正板のレーザ距離計の計測軸に対する角度、及びレーザ距離計からの距離を決定し、フレーム等の移動機構に校正板をその角度及び距離で固定して、順次レーザ距離計の計測範囲内に挿入できるように、調整装置を構成することが望ましい。   When inserting the two calibration plates into the measurement range of the laser rangefinder sequentially, there is a risk of error if this is done manually, so the angle of the calibration plate with respect to the measurement axis of the laser rangefinder, and It is desirable to configure the adjustment device so that the distance from the laser distance meter is determined, the calibration plate is fixed to the moving mechanism such as the frame at the angle and distance, and can be sequentially inserted into the measurement range of the laser distance meter. .

以上のように、本実施の形態1によれば、対向するレーザ距離計それぞれの計測軸の方向ズレを検出することができる。また、定期的に検出、確認を実行し、必要に応じて調整(校正)を行う事により、機械的な変形、歪等に起因するレーザ距離計の相対的な位置関係のズレを補正し、誤差要因を低減した高精度な計測条件を維持する事が可能となる。   As described above, according to the first embodiment, it is possible to detect the direction deviation of the measurement axes of the laser distance meters facing each other. In addition, by periodically performing detection and confirmation, and adjusting (calibrating) as necessary, the deviation of the relative positional relationship of the laser rangefinder caused by mechanical deformation, distortion, etc. is corrected, It is possible to maintain highly accurate measurement conditions with reduced error factors.

さらには、複数の校正板を使用して計測軸の方向ズレを検出するので、単一の校正板を移動させながら方向ズレを検出する方法と異なり、校正板自体の挿入条件(傾斜角度や挿入位置)を都度変更する必要がない。
そのため、校正板をレーザ距離計の計測範囲内に移動させる機構を簡素化することができるとともに、校正板の挿入条件の変更に伴う機械誤差や設定誤差の影響を受けることなく、高精度の検出を行うことが可能となる。
Furthermore, since the direction deviation of the measurement axis is detected using multiple calibration plates, unlike the method of detecting the direction deviation while moving a single calibration plate, the insertion conditions (tilt angle and insertion) of the calibration plate itself are different. It is not necessary to change the position) each time.
Therefore, it is possible to simplify the mechanism for moving the calibration plate within the measurement range of the laser rangefinder, and to detect with high accuracy without being affected by mechanical errors and setting errors caused by changes in the calibration plate insertion conditions. Can be performed.

実施の形態2.
上述の実施の形態1では、レーザ距離計の計測軸の方向ズレを検出する方法について説明した。
本発明の実施の形態2では、レーザ距離計の計測軸の位置ズレ、即ち光軸の不一致を検出する方法について説明する。
Embodiment 2. FIG.
In the above-described first embodiment, the method of detecting the direction deviation of the measurement axis of the laser distance meter has been described.
In the second embodiment of the present invention, a method for detecting the positional deviation of the measurement axis of the laser distance meter, that is, the mismatch of the optical axes will be described.

図3は、レーザ距離計による厚さ計測時に、計測軸の位置ズレにより計測誤差が生じる理由を説明する図である。図3では、実施の形態1で説明した方法により、あらかじめ計測軸の方向ズレは調整されているものとする。また、校正板の板厚dは既知であるものとする。   FIG. 3 is a diagram for explaining the reason why a measurement error occurs due to the displacement of the measurement axis when the thickness is measured by the laser distance meter. In FIG. 3, it is assumed that the direction deviation of the measurement axis is adjusted in advance by the method described in the first embodiment. The plate thickness d of the calibration plate is assumed to be known.

図3(a)に示すように、板厚dの校正板を、対向するレーザ距離計の計測範囲の間に挿入する。このとき、板厚の計測値と実際の板厚dは一致している。
次に、図3(b)に示すように、校正板を計測軸に対して角度α傾けると、校正板の板厚の計測値L1は図3(a)の状態から変化する。このL1の値は、次式(5)で表される。
L1=d/cos(α) ・・・(5)
ここで、図3(c)に示すように、下側のレーザ距離計の計測軸において、対向する光軸に対して距離hのズレが生じている場合には、校正板の板厚の計測値L2は次式(6)で表される。
L2=d/cos(α)+h・tan(α) ・・・(6)
校正板の板厚dと角度αは既知であるので、計測値L2及びこれらの値からズレhの値を算出することができる。
As shown in FIG. 3A, a calibration plate having a thickness d is inserted between the measurement ranges of the opposing laser distance meters. At this time, the measured value of the plate thickness matches the actual plate thickness d.
Next, as shown in FIG. 3B, when the calibration plate is tilted at an angle α with respect to the measurement axis, the measurement value L1 of the thickness of the calibration plate changes from the state of FIG. The value of L1 is expressed by the following equation (5).
L1 = d / cos (α) (5)
Here, as shown in FIG. 3 (c), in the measurement axis of the lower laser rangefinder, when the deviation of the distance h occurs with respect to the opposite optical axis, the thickness of the calibration plate is measured. The value L2 is expressed by the following formula (6).
L2 = d / cos (α) + h · tan (α) (6)
Since the thickness d and the angle α of the calibration plate are known, the value of the deviation h can be calculated from the measured value L2 and these values.

ところで、図3(c)の(※)に記している方向に計測軸がずれている場合も考えられるが、この場合はL1とL2の大小関係が逆になるため、このことを利用して、校正板の傾斜方向を変更して計測を行うことにより、計測軸の位置ズレの方向と校正板の傾きを容易に把握することができる。
同様のことは、実施の形態1の図2(b)においても言える。
By the way, there may be a case where the measurement axis is deviated in the direction indicated by (*) in FIG. 3C. In this case, the magnitude relationship between L1 and L2 is reversed. By performing measurement while changing the inclination direction of the calibration plate, it is possible to easily grasp the direction of displacement of the measurement axis and the inclination of the calibration plate.
The same applies to FIG. 2B of the first embodiment.

また、上記で説明した計測を、直交する方向に対してそれぞれ同様に実行することにより、直交する2軸方向の計測軸の位置ズレを検出できるので、対向するレーザ距離計の計測軸の光軸を正確に一致させることができる。   In addition, by performing the above-described measurement in the same manner in the orthogonal directions, it is possible to detect the positional deviation of the measurement axes in the two orthogonal directions, so the optical axis of the measurement axis of the opposing laser distance meter Can be matched exactly.

なお、傾斜角度を0(計測軸に対して直角)にして校正板の距離計測を行い、続いて計測軸に対し角度αに傾けた校正板の距離計測を行って、両者の差を比較することにより、以後の計測では計測方向位置変動誤差を相殺し、容易に計測位置のズレを算出することもできる。   Note that the distance of the calibration plate is measured with an inclination angle of 0 (perpendicular to the measurement axis), and then the distance of the calibration plate tilted at an angle α with respect to the measurement axis is measured, and the difference between the two is compared. Thus, in the subsequent measurement, the measurement direction position variation error can be canceled and the deviation of the measurement position can be easily calculated.

以上のように、本実施の形態2によれば、実施の形態1で説明した方法で、レーザ距離計の計測軸の方向ズレを調整した後に、更に計測軸の位置ズレを調整して一致させることができるので、対向配置されたレーザ距離計の光軸を高精度に一致させることができ、板厚(寸法)計測の誤差要因を低減した高精度な計測条件を維持する事が可能となる。   As described above, according to the second embodiment, after adjusting the direction deviation of the measurement axis of the laser distance meter by the method described in the first embodiment, the position deviation of the measurement axis is further adjusted to be matched. As a result, the optical axes of the laser distance meters arranged opposite to each other can be made to coincide with each other with high accuracy, and it is possible to maintain highly accurate measurement conditions with reduced factors of plate thickness (dimension) measurement. .

実施例1.
図4は、本発明の実施例1に係る厚さ計測装置の調整装置の構成を示す図である。図4(a)は側面図、図4(b)は平面図を表す。
同図中、1はレーザ距離計、2はレーザ距離計1を保持するためのCフレーム、3はフレームを移動するためのガイド、4は校正機構部、5は校正板部、6は校正部移動機構、7は信号処理装置、8は計測対象である鋼板(対象材)である。
Example 1.
FIG. 4 is a diagram illustrating the configuration of the adjusting device of the thickness measuring device according to the first embodiment of the present invention. 4A is a side view, and FIG. 4B is a plan view.
In the figure, 1 is a laser distance meter, 2 is a C frame for holding the laser distance meter 1, 3 is a guide for moving the frame, 4 is a calibration mechanism section, 5 is a calibration plate section, and 6 is a calibration section. A moving mechanism, 7 is a signal processing device, and 8 is a steel plate (target material) to be measured.

本実施例1では、Cフレーム2はガイド3に沿って図4中の横方向に移動可能とし、対象材8を計測する位置と、校正・調整を行う位置との間で移動可能としている。
校正部移動機構6によってCフレーム2が図4(a)中の「計測位置」に移動すると、後述の図5で説明するように、レーザ距離計1により対象材8の板厚を計測する。
また、校正・調整を行う場合には、図4(a)中の「校正・調整位置」にレーザ距離計1が来るように、校正部移動機構6によってCフレーム2が図4の横方向に移動し、レーザ距離計1間に校正板5が来るように、校正機構部4により校正板部5周辺の機構全体が図4(b)の縦方向に移動する。
なお、Cフレーム2が「計測位置」に移動する際には、移動の障害にならないように、校正板5周辺の機構は退避する構造となっている。
In the first embodiment, the C frame 2 is movable in the lateral direction in FIG. 4 along the guide 3 and is movable between a position where the target material 8 is measured and a position where calibration / adjustment is performed.
When the C frame 2 is moved to the “measurement position” in FIG. 4A by the calibration unit moving mechanism 6, the plate thickness of the target material 8 is measured by the laser distance meter 1 as described later with reference to FIG. 5.
When calibration / adjustment is performed, the C frame 2 is moved in the horizontal direction of FIG. 4 by the calibration unit moving mechanism 6 so that the laser rangefinder 1 is positioned at the “calibration / adjustment position” in FIG. The entire mechanism around the calibration plate 5 is moved in the vertical direction of FIG. 4B by the calibration mechanism 4 so that the calibration plate 5 comes between the laser distance meters 1.
Note that when the C frame 2 moves to the “measurement position”, the mechanism around the calibration plate 5 is retracted so as not to obstruct the movement.

本実施例1における「移動機構」は、校正機構部4、校正部移動機構6がこれに相当する。
また、「演算手段」は、信号処理装置7がこれに相当する。信号処理装置7は、CPU等の演算装置を備えたコンピュータ等で構成することができる。
The “movement mechanism” in the first embodiment corresponds to the calibration mechanism unit 4 and the calibration unit movement mechanism 6.
Further, the “calculation means” corresponds to the signal processing device 7. The signal processing device 7 can be configured by a computer or the like provided with an arithmetic device such as a CPU.

図5は、Cフレーム2が「計測位置」に移動した際の側面図である。
Cフレーム2が校正部移動機構6によって図4(a)中の「計測位置」に移動し、レーザ距離計1の計測範囲内に対象材8が挿入されると、対向する上下のレーザ距離計1から対象材8の表面(表裏)までのそれぞれの計測距離(L1、L2)と、レーザ距離計1間の間隔(L0=640mm)から、対象材8の寸法(板厚)が分かる。
なお、レーザ距離計1は計測値を信号処理装置7に出力し、実際の算出処理は信号処理装置7が行う。
FIG. 5 is a side view when the C frame 2 is moved to the “measurement position”.
When the C frame 2 is moved to the “measurement position” in FIG. 4A by the calibration unit moving mechanism 6 and the target material 8 is inserted into the measurement range of the laser rangefinder 1, the upper and lower laser rangefinders facing each other. From the respective measurement distances (L1, L2) from 1 to the surface (front and back) of the target material 8 and the distance between the laser distance meters 1 (L0 = 640 mm), the dimension (plate thickness) of the target material 8 can be known.
The laser distance meter 1 outputs the measurement value to the signal processing device 7, and the signal processing device 7 performs the actual calculation process.

図6は、レーザ距離計1の原理を説明するものである。
レーザ距離計1は、対象物にレーザ光を投光し、対象物表面での反射散乱光をレンズとCCDラインセンサにより検出し、三角測量の原理で対象物までの距離を算出するものであり、レーザ光の投光軸(光軸)が距離計測方向となる。
FIG. 6 illustrates the principle of the laser distance meter 1.
The laser rangefinder 1 projects laser light onto an object, detects reflected / scattered light on the surface of the object with a lens and a CCD line sensor, and calculates the distance to the object based on the principle of triangulation. The projection axis (optical axis) of the laser beam is the distance measurement direction.

図7は、レーザ距離計1の角度・位置調整を行う様子を示す図である。
本実施例1におけるレーザ距離計1は、計測基準距離270mm、計測レンジ150mmであり、(計測レンジをラップさせ)対向するレーザ距離計間の距離L0=640mmとなるように、Cフレーム2に固定されている。
Cフレーム2は、固定されたレーザ距離計のCフレームに対する固定位置、角度を調整する機構(図示せず)を備えており、各レーザ距離計を水平面内の直交水平面内の直交2方向(X軸方向、Y軸方向)に±2mmの位置調整、鉛直方向に対して±1°の角度調整がそれぞれ可能となっている。
FIG. 7 is a diagram illustrating how the angle / position adjustment of the laser rangefinder 1 is performed.
The laser distance meter 1 in the first embodiment has a measurement reference distance of 270 mm and a measurement range of 150 mm, and is fixed to the C frame 2 so that the distance L0 = 640 mm between the laser distance meters facing each other (wrapping the measurement range). Has been.
The C frame 2 includes a mechanism (not shown) for adjusting a fixed position and angle of the fixed laser distance meter with respect to the C frame, and each laser distance meter is arranged in two orthogonal directions (X (Axial direction, Y-axis direction) can be adjusted in position by ± 2 mm, and angle adjustment by ± 1 ° with respect to the vertical direction.

図8は、校正板部5の構成を示す図である。
校正板部5は、円筒状の校正片支持部10が、中心軸11を中心として回転可能な構成になっている。また、校正片支持部10の円筒側面には、複数の板状の校正片9が円周に沿って円環状に固着されている。
各校正片は、水平面に対して一定の角度で傾いて固着されており、全ての校正片の傾斜角は同一に保たれている。また、各校正片の固着位置には段差が設けられており、各校正片の底部からの高さはそれぞれ異なっている。
本実施例1では、幅25mm、長さ30mmの校正片9を、板厚5mm、25mm、50mmの3種類設け、これらを直径250mmの円筒の側面に、上述のように固着している。また、各校正片の傾きは、円筒外周側に向けて低くなるように傾斜させ、その傾斜角は水平面に対して25°になるようにしている。
FIG. 8 is a diagram illustrating the configuration of the calibration plate unit 5.
The calibration plate portion 5 is configured such that the cylindrical calibration piece support portion 10 can rotate around the central axis 11. A plurality of plate-like calibration pieces 9 are fixed to the cylindrical side surface of the calibration piece support 10 in an annular shape along the circumference.
Each calibration piece is fixed at an angle with respect to the horizontal plane, and the inclination angles of all the calibration pieces are kept the same. Further, a level difference is provided at the fixing position of each calibration piece, and the height from the bottom of each calibration piece is different.
In the first embodiment, three kinds of calibration pieces 9 having a width of 25 mm and a length of 30 mm are provided with plate thicknesses of 5 mm, 25 mm, and 50 mm, and these are fixed to the side surface of a cylinder having a diameter of 250 mm as described above. The inclination of each calibration piece is inclined so as to become lower toward the outer peripheral side of the cylinder, and the inclination angle is set to 25 ° with respect to the horizontal plane.

図9は、校正片9の傾斜方向を調整する様子を示すものである。
各校正片9は、傾斜方向が同一に保たれて固着されているため、計測位置における傾斜方向を変更するためには、校正板部5全体を移動及び回転させる必要がある。
例えば、図9(a)において、レーザ距離計1の計測範囲内にある校正片9は、図9の左下方向を向いて傾いているが、同じ校正片を右下方向に傾けた状態で計測を行いたい場合は、図9(b)のように、校正板部5全体を校正部移動機構6により左方向に移動させるとともに、中心軸11を中心に180°回転させる必要がある。
同様に、中心軸11を中心に90°回転させれば、図9に示す方向と直交する方向に傾いている校正片9に対して計測を行うことができる。縦方向の移動は、校正機構部4により行われる。あるいは、90°回転させる代わりに、90°回転させた位置にある校正片がレーザ距離計の計測範囲内に来るように、校正板部5全体を移動させてもよい。
FIG. 9 shows a state in which the inclination direction of the calibration piece 9 is adjusted.
Since each calibration piece 9 is fixed while maintaining the same inclination direction, it is necessary to move and rotate the entire calibration plate 5 in order to change the inclination direction at the measurement position.
For example, in FIG. 9A, the calibration piece 9 within the measurement range of the laser rangefinder 1 is tilted toward the lower left direction in FIG. 9, but is measured with the same calibration piece tilted in the lower right direction. 9B, it is necessary to move the entire calibration plate portion 5 to the left by the calibration portion moving mechanism 6 and to rotate it 180 ° about the central axis 11 as shown in FIG. 9B.
Similarly, if the center axis 11 is rotated by 90 °, measurement can be performed on the calibration piece 9 that is inclined in a direction orthogonal to the direction shown in FIG. The vertical movement is performed by the calibration mechanism unit 4. Alternatively, instead of rotating 90 °, the entire calibration plate 5 may be moved so that the calibration piece at the position rotated 90 ° is within the measurement range of the laser distance meter.

次に、本実施例1における計測軸の方向ズレの校正・調整の工程について、ステップを追って説明する。   Next, the calibration / adjustment process of the measurement axis direction deviation in the first embodiment will be described step by step.

(工程1)
校正部移動機構6により、Cフレーム2を、図4の「校正・調整位置」に移動させる。
(工程2)
校正機構部4により、校正板部5の(図4(b)における)縦方向の位置をレーザ距離計1の計測範囲内に移動させる。
(工程3)
回転軸11を中心に、校正板部5を回転させる。回転に伴い、各校正片9がレーザ距離計1の計測範囲内に順次挿入される。
(工程4)
上下のレーザ距離計1の計測を開始する。
(工程5)
上下のレーザ距離計1により、校正片9の表面までの距離を計測する。
以後、校正片の番号をnとし、上側のレーザ距離計による計測距離をLun、下側のレーザ距離計による計測距離をLdnとする(nは上述の校正片番号)。
(工程6)
校正片番号n=1、2の2つの校正片について順次計測を行い、1番目の校正片に対する計測値と、2番目の校正片に対する計測値との差を求める。算出処理は、信号処理装置7が行う。
上側レーザ距離計の計測値の差をΔLu1、下側レーザ距離計の計測値の差をΔLd1とすると、それぞれ次式で表すことができる。
ΔLu1=Lu2−Lu1
ΔLd1=Ld2−Ld1
(工程7)
レーザ距離計1による計測を中止し、校正片9の回転を停止させる。
次に、工程6で計測した校正片の傾斜方向と直交する方向に傾斜した校正片の計測を実行できるように、校正機構部4と校正部移動機構6により校正板部5の位置を移動させ、工程6で計測した校正片から90°回転した位置にある校正片が、レーザ距離計1の計測範囲内に来るようにする。
(工程8)
校正板部5の回転とレーザ距離計1による計測を開始し、工程6と同一の、校正片番号n=1、2の2つの校正片について順次計測を行う。次に、工程6と同様に、1番目の校正片に対する計測値と、2番目の校正片に対する計測値との差を求める。算出処理は、信号処理装置7が行う。
上側レーザ距離計の計測値の差をΔLu2、下側レーザ距離計の計測値の差をΔLd2とすると、それぞれ次式で表すことができる。
ΔLu2=Lu2−Lu1
ΔLd2=Ld2−Ld1
(工程9)
校正片の傾斜角、校正片の挿入位置(高さ)から、ΔLu1〜ΔLd2に相当する演算予測値ΔLを、次式により求める。算出処理は、信号処理装置7が行う。
ΔL=L/cos(α)
ΔL:1番目の校正片と2番目の校正片の計測値の差として予測される値
L:1番目の校正片と2番目の校正片の高さの差
α:校正片の傾斜角度
(工程10)
ΔL≠ΔLu1の場合、又はΔL≠ΔLu2の場合は、上側レーザ距離計の計測軸の方向がズレていることが分かる。
ΔL≠ΔLd1の場合、又はΔL≠ΔLd2の場合は、下側レーザ距離計の計測軸の方向がズレていることが分かる。
なお、計測軸のズレの方向と、それを検出するための校正片の傾斜方向との関係について、図10に示した。
図10(a)に示すように、レーザ距離計1の計測軸がX軸周りにズレていることを検出する場合には、Y軸に対して傾斜した校正片に対し計測を行う。また、図10(b)に示すように、レーザ距離計1の計測軸がY軸周りにズレていることを検出する場合には、X軸に対して傾斜した校正片に対し計測を行う。
(工程11)
各レーザ距離計の計測方向が平行になるように、取り付け角度を調整する。
(工程12)
工程1〜工程11を繰り返し、角度調整結果を確認する。
(Process 1)
The C frame 2 is moved to the “calibration / adjustment position” in FIG. 4 by the calibration unit moving mechanism 6.
(Process 2)
The position of the calibration plate unit 5 in the vertical direction (in FIG. 4B) is moved within the measurement range of the laser rangefinder 1 by the calibration mechanism unit 4.
(Process 3)
The calibration plate unit 5 is rotated around the rotation shaft 11. With the rotation, each calibration piece 9 is sequentially inserted into the measurement range of the laser rangefinder 1.
(Process 4)
The measurement of the upper and lower laser distance meters 1 is started.
(Process 5)
The distance to the surface of the calibration piece 9 is measured by the upper and lower laser distance meters 1.
Hereinafter, the calibration piece number is n, the measurement distance by the upper laser distance meter is Lun, and the measurement distance by the lower laser distance meter is Ldn (n is the calibration piece number described above).
(Step 6)
Measurement is sequentially performed on the two calibration pieces with the calibration piece numbers n = 1 and 2, and the difference between the measurement value for the first calibration piece and the measurement value for the second calibration piece is obtained. The calculation processing is performed by the signal processing device 7.
If the difference between the measurement values of the upper laser distance meter is ΔLu1, and the difference between the measurement values of the lower laser distance meter is ΔLd1, they can be expressed by the following equations, respectively.
ΔLu1 = Lu2−Lu1
ΔLd1 = Ld2−Ld1
(Step 7)
The measurement by the laser distance meter 1 is stopped, and the rotation of the calibration piece 9 is stopped.
Next, the position of the calibration plate part 5 is moved by the calibration mechanism part 4 and the calibration part moving mechanism 6 so that the measurement of the calibration piece inclined in the direction orthogonal to the inclination direction of the calibration piece measured in step 6 can be executed. The calibration piece at a position rotated by 90 ° from the calibration piece measured in step 6 is set within the measurement range of the laser distance meter 1.
(Process 8)
The rotation of the calibration plate 5 and the measurement by the laser distance meter 1 are started, and the measurement is performed sequentially for two calibration pieces with the same calibration piece number n = 1, 2 as in step 6. Next, as in step 6, the difference between the measured value for the first calibration piece and the measured value for the second calibration piece is obtained. The calculation processing is performed by the signal processing device 7.
If the difference between the measured values of the upper laser distance meter is ΔLu2, and the difference between the measured values of the lower laser distance meter is ΔLd2, they can be expressed by the following equations, respectively.
ΔLu2 = Lu2-Lu1
ΔLd2 = Ld2−Ld1
(Step 9)
Based on the inclination angle of the calibration piece and the insertion position (height) of the calibration piece, a predicted operation value ΔL corresponding to ΔLu1 to ΔLd2 is obtained by the following equation. The calculation processing is performed by the signal processing device 7.
ΔL = L / cos (α)
ΔL: a value predicted as a difference between measured values of the first calibration piece and the second calibration piece L: difference in height between the first calibration piece and the second calibration piece α: inclination angle of the calibration piece (process 10)
When ΔL ≠ ΔLu1 or ΔL ≠ ΔLu2, it can be seen that the direction of the measurement axis of the upper laser rangefinder is shifted.
When ΔL ≠ ΔLd1 or ΔL ≠ ΔLd2, it can be seen that the direction of the measurement axis of the lower laser rangefinder is shifted.
FIG. 10 shows the relationship between the direction of deviation of the measurement axis and the direction of inclination of the calibration piece for detecting it.
As shown in FIG. 10A, when it is detected that the measurement axis of the laser rangefinder 1 is shifted around the X axis, measurement is performed on a calibration piece inclined with respect to the Y axis. As shown in FIG. 10B, when detecting that the measurement axis of the laser rangefinder 1 is shifted around the Y axis, measurement is performed on a calibration piece inclined with respect to the X axis.
(Step 11)
The mounting angle is adjusted so that the measurement directions of the laser distance meters are parallel.
(Step 12)
Steps 1 to 11 are repeated to check the angle adjustment result.

以上のように、本実施例1によれば、複数の校正板を円筒側面に固着して計測軸の方向ズレを検出するので、単一の校正板を移動させながら方向ズレを検出する方法と異なり、校正板自体の挿入条件(傾斜角度や挿入位置)を都度変更する必要がない。
そのため、校正板の挿入条件の変更に伴う機械誤差や設定誤差の影響を受けることなく、高精度の検出を行うことが可能となる。
As described above, according to the first embodiment, a plurality of calibration plates are fixed to the cylindrical side surface to detect the direction deviation of the measurement axis. Therefore, the method of detecting the direction deviation while moving the single calibration plate, In contrast, it is not necessary to change the insertion conditions (inclination angle and insertion position) of the calibration plate itself.
Therefore, highly accurate detection can be performed without being affected by mechanical errors and setting errors associated with changes in the calibration plate insertion conditions.

実施例2.
本発明の実施例2では、計測軸の位置ズレの校正・調整の工程について、ステップを追って説明する。
Example 2
In the second embodiment of the present invention, the calibration / adjustment process of the positional deviation of the measurement axis will be described step by step.

(工程1)
実施例1で説明した、計測軸の方向ズレの校正・調整を実施する。
(工程2)〜(工程4)
実施例1で説明した工程2〜工程4と同様であるため、説明を省略する。
(工程5)
上下のレーザ距離計1により、校正片9の表面までの距離を計測する。上側のレーザ距離計による計測距離をLu、下側のレーザ距離計による計測距離をLdとする。
(工程6)
工程5の計測値から、校正片の板厚の計測値D1を算出する。算出処理は、信号処理装置7が行う。
D1=L0−Lu−Ld
L0:上下のレーザ距離計間の距離(=640mm)
(工程7)
実施例1で説明した工程7と同様であるため、説明を省略する。
(工程8)
校正板部5の回転とレーザ距離計1による計測を開始し、工程6と同一の校正片について計測を行う。次に、工程6と同様に、校正片の板厚の計測値D2を算出する。算出処理は、信号処理装置7が行う。
D2=L0−Lu−Ld
(工程9)
校正片の傾斜角、校正片の板厚から、D1及びD2に相当する演算予測値D0を、次式により求める。算出処理は、信号処理装置7が行う。
D0=d/cos(α)
D0:校正片の板厚の計測値として予測される値
d:校正片の板厚
α:校正片の傾斜角度
(工程10)
D0≠D1の場合、又はD0≠D2の場合は、上下のレーザ距離計の光軸が一致していないことが分かる。
なお、計測軸の位置ズレの方向と、それを検出するための校正片の傾斜方向との関係について、図11に示した。
図11(a)に示すように、レーザ距離計1の計測軸がY軸に沿った方向にズレていることを検出する場合には、Y軸に対して傾斜した校正片に対し計測を行う。また、図11(b)に示すように、レーザ距離計1の計測軸がX軸に沿った方向にズレていることを検出する場合には、X軸に対して傾斜した校正片に対し計測を行う。
(工程11)
各レーザ距離計の光軸が一致するように、Cフレーム2上の取り付け位置を調整する。
(工程12)
工程2〜工程11を繰り返し、位置調整結果を確認する。
(Process 1)
The calibration / adjustment of the measurement axis direction deviation described in the first embodiment is performed.
(Step 2) to (Step 4)
Since it is the same as the process 2 to the process 4 described in the first embodiment, the description is omitted.
(Process 5)
The distance to the surface of the calibration piece 9 is measured by the upper and lower laser distance meters 1. The distance measured by the upper laser distance meter is Lu, and the distance measured by the lower laser distance meter is Ld.
(Step 6)
From the measured value in step 5, the measured value D1 of the thickness of the calibration piece is calculated. The calculation processing is performed by the signal processing device 7.
D1 = L0-Lu-Ld
L0: Distance between upper and lower laser rangefinders (= 640 mm)
(Step 7)
Since it is the same as the process 7 demonstrated in Example 1, description is abbreviate | omitted.
(Process 8)
The rotation of the calibration plate 5 and the measurement by the laser distance meter 1 are started, and the same calibration piece as in the step 6 is measured. Next, as in step 6, a measurement value D2 of the plate thickness of the calibration piece is calculated. The calculation processing is performed by the signal processing device 7.
D2 = L0-Lu-Ld
(Step 9)
From the inclination angle of the calibration piece and the thickness of the calibration piece, a predicted operation value D0 corresponding to D1 and D2 is obtained by the following equation. The calculation processing is performed by the signal processing device 7.
D0 = d / cos (α)
D0: Value predicted as a measurement value of the thickness of the calibration piece d: Plate thickness of the calibration piece α: Inclination angle of the calibration piece (step 10)
When D0 ≠ D1 or D0 ≠ D2, it can be seen that the optical axes of the upper and lower laser distance meters do not coincide.
FIG. 11 shows the relationship between the direction of displacement of the measurement axis and the inclination direction of the calibration piece for detecting it.
As shown in FIG. 11A, when it is detected that the measurement axis of the laser rangefinder 1 is shifted in the direction along the Y axis, measurement is performed on a calibration piece inclined with respect to the Y axis. . Further, as shown in FIG. 11B, when detecting that the measurement axis of the laser rangefinder 1 is shifted in the direction along the X axis, the measurement is performed on the calibration piece inclined with respect to the X axis. I do.
(Step 11)
The mounting position on the C frame 2 is adjusted so that the optical axes of the laser distance meters coincide.
(Step 12)
Steps 2 to 11 are repeated, and the position adjustment result is confirmed.

以上のように、本実施例2によれば、複数の校正板を円筒側面に固着して計測軸の位置ズレを検出するので、単一の校正板を移動させながら位置ズレを検出する方法と異なり、校正板自体の挿入条件(傾斜角度や挿入位置)を都度変更する必要がない。
そのため、校正板の挿入条件の変更に伴う機械誤差や設定誤差の影響を受けることなく、高精度の検出を行うことが可能となる。
As described above, according to the second embodiment, a plurality of calibration plates are fixed to the side surface of the cylinder and the positional deviation of the measurement axis is detected. Therefore, the method of detecting the positional deviation while moving the single calibration plate, In contrast, it is not necessary to change the insertion conditions (inclination angle and insertion position) of the calibration plate itself.
Therefore, highly accurate detection can be performed without being affected by mechanical errors and setting errors associated with changes in the calibration plate insertion conditions.

なお、以上の実施例1〜2で説明した構成では、複数の校正片を円筒側面に取り付けて回転させることにより、連続して異なる計測条件(校正片の傾斜の方向、板厚、挿入位置)の校正片の計測を繰り返し行うことができるので、計測値の平均を行い、計測方向ズレや計測位置ズレの検出制度を向上させることができる。
計測値の平均を行う際には、同一の校正片についての各回の計測値を平均して、その校正片に対する検出精度を向上させることを図ってもよいし、異なる校正片について得られたズレ値を合算した上で平均し、最終的なズレ値の検出精度向上を図ってもよい。
In the configuration described in the first and second embodiments, a plurality of calibration pieces are attached to the side surface of the cylinder and rotated to continuously vary measurement conditions (direction of inclination of the calibration piece, plate thickness, insertion position). Since the measurement of the calibration piece can be repeated, the measurement values can be averaged, and the detection system for the measurement direction deviation and the measurement position deviation can be improved.
When averaging the measured values, the measured values for the same calibration piece may be averaged to improve the detection accuracy for the calibration piece, or the deviations obtained for different calibration pieces may be obtained. The sum of the values may be averaged to improve the detection accuracy of the final deviation value.

また、実施例1〜2では、校正片を円筒側面に配置したが、板厚及び傾斜方向の異なる複数の校正片を直線上に配置し、配列方向に直線的に往復運動させることにより、レーザ距離計の計測位置に校正片を順次挿入し、同様の校正・調整を行うことも可能である。   Moreover, in Examples 1-2, although the calibration piece was arrange | positioned on the cylindrical side surface, a plurality of calibration pieces with different plate thicknesses and inclination directions are arranged on a straight line, and a laser is reciprocated linearly in the arrangement direction. It is also possible to perform the same calibration / adjustment by sequentially inserting calibration pieces at the measurement position of the distance meter.

レーザ距離計による厚さ計測時に、計測軸の方向ズレにより計測誤差が生じる理由を説明する図である。It is a figure explaining the reason a measurement error arises by the direction shift of a measurement axis at the time of thickness measurement by a laser distance meter. 図1において校正板を計測軸に対し角度α傾けた状態で距離計測を実施する場合の計測誤差を説明する図である。It is a figure explaining the measurement error at the time of implementing distance measurement in the state which inclined the angle (alpha) with respect to the measurement axis | shaft in FIG. レーザ距離計による厚さ計測時に、計測軸の位置ズレにより計測誤差が生じる理由を説明する図である。It is a figure explaining the reason a measurement error arises by position shift of a measurement axis at the time of thickness measurement by a laser distance meter. 実施例1に係る厚さ計測装置の調整装置の構成を示す図である。It is a figure which shows the structure of the adjustment apparatus of the thickness measuring apparatus which concerns on Example 1. FIG. Cフレーム2が「計測位置」に移動した際の側面図である。It is a side view when the C frame 2 has moved to the “measurement position”. レーザ距離計1の原理を説明するものである。The principle of the laser distance meter 1 will be described. レーザ距離計1の角度・位置調整を行う様子を示す図である。It is a figure which shows a mode that angle / position adjustment of the laser distance meter 1 is performed. 校正板部5の構成を示す図である。It is a figure which shows the structure of the calibration board part. 校正片9の傾斜方向を調整する様子を示すものである。The state in which the inclination direction of the calibration piece 9 is adjusted is shown. 計測軸のズレの方向と、それを検出するための校正片の傾斜方向との関係を説明する図である。It is a figure explaining the relationship between the direction of the shift | offset | difference of a measurement axis | shaft, and the inclination direction of the calibration piece for detecting it. 計測軸の位置ズレの方向と、それを検出するための校正片の傾斜方向との関係を説明する図である。It is a figure explaining the relationship between the direction of the position shift of a measurement axis | shaft, and the inclination direction of the calibration piece for detecting it.

符号の説明Explanation of symbols

1 レーザ距離計、2 Cフレーム、3 ガイド、4 校正機構部、5 校正板部、6 校正部移動機構、7 信号処理装置、8 鋼板、9 校正片、10 校正片支持部、11 中心軸。   DESCRIPTION OF SYMBOLS 1 Laser distance meter, 2 C frame, 3 guide, 4 Calibration mechanism part, 5 Calibration board part, 6 Calibration part moving mechanism, 7 Signal processing apparatus, 8 Steel plate, 9 Calibration piece, 10 Calibration piece support part, 11 Central axis.

Claims (8)

複数の対向配置されたレーザ距離計で構成される厚さ計測装置の調整方法であって、
前記レーザ距離計の計測方向に対する角度と、前記レーザ距離計からの距離とを固定した複数の校正板と、
円筒状であり、円筒側面に沿って円環状に前記複数の校正板を固着し、円筒状の回転軸を中心として回転可能である校正片支持部と、
各前記校正板を前記レーザ距離計の計測範囲内に移動させるとき、前記校正片支持部を移動させるとともに、所定の角度で回転させる移動機構と、
前記レーザ距離計の計測値を演算処理する演算手段と、
を設け、
各前記校正板の板厚をあらかじめ測定しておき、
前記校正板から2つを選び(以後、それぞれ第1校正板、第2校正板と呼ぶ)、
前記第1校正板を前記レーザ距離計の計測範囲内に移動させて距離を計測する第1計測工程と、
前記第2校正板を前記レーザ距離計の計測範囲内に移動させて距離を計測する第2計測工程と、
前記第1計測工程で計測される距離と前記第2計測工程で計測される距離の差分を求める工程と、
前記第1校正板と前記第2校正板の間の距離、及び前記レーザ距離計の計測方向に対する角度に基づき、前記差分を演算予測する工程と、
前記差分、前記演算予測した差分、及び前記角度に基づき、前記レーザ距離計の計測軸の角度偏差を求める工程と、
前記角度偏差に基づき、前記レーザ距離計の計測軸を調整する工程と、
を有することを特徴とする厚さ計測装置の調整方法。
A method for adjusting a thickness measuring device composed of a plurality of laser distance meters arranged opposite to each other,
A plurality of calibration plates that fix the angle with respect to the measurement direction of the laser distance meter and the distance from the laser distance meter;
A calibration piece support that is cylindrical and has a plurality of calibration plates fixed in an annular shape along a cylindrical side surface, and is rotatable about a cylindrical rotation axis;
When moving each calibration plate within the measurement range of the laser distance meter, the moving mechanism for moving the calibration piece support and rotating it at a predetermined angle;
A computing means for computing the measured value of the laser distance meter;
Provided,
Measure the thickness of each calibration plate in advance,
Select two of the calibration plates (hereinafter referred to as the first calibration plate and the second calibration plate, respectively)
A first measurement step of measuring the distance by moving the first calibration plate within the measurement range of the laser distance meter;
A second measurement step of measuring the distance by moving the second calibration plate within the measurement range of the laser rangefinder;
Obtaining a difference between the distance measured in the first measurement step and the distance measured in the second measurement step;
Calculating and predicting the difference based on a distance between the first calibration plate and the second calibration plate and an angle with respect to a measurement direction of the laser rangefinder ;
Obtaining an angular deviation of the measurement axis of the laser rangefinder based on the difference, the calculated and predicted difference, and the angle;
Adjusting the measurement axis of the laser rangefinder based on the angular deviation;
A method for adjusting a thickness measuring apparatus, comprising:
前記校正板から1つを選び(以後、第3校正板と呼ぶ)、
前記第3校正板を前記レーザ距離計の計測範囲内に移動させて、対向配置された夫々のレーザ距離計からの距離を計測し、その計測値に基づいて前記第3校正板の板厚を計測する第3計測工程と、
前記第3校正板の板厚、及び前記角度に基づき、前記第3計測工程における前記第3校正板の板厚の計測値を演算予測する工程と、
前記第3校正板の板厚の計測値、前記演算予測した板厚、及び前記角度に基づき、前記レーザ距離計の計測軸の位置偏差を求める工程と、
前記位置偏差に基づき、前記レーザ距離計の計測軸を調整する工程と、
を有することを特徴とする請求項1に記載の厚さ計測装置の調整方法。
Select one of the calibration plates (hereinafter referred to as the third calibration plate),
The third calibration plate is moved within the measurement range of the laser distance meter, and the distance from each of the laser distance meters arranged opposite to each other is measured, and the thickness of the third calibration plate is determined based on the measured value. A third measuring step to measure,
Calculating and predicting the measured value of the thickness of the third calibration plate in the third measurement step based on the thickness of the third calibration plate and the angle; and
Obtaining a positional deviation of the measurement axis of the laser distance meter based on the measured value of the thickness of the third calibration plate, the calculated predicted thickness, and the angle;
Adjusting the measurement axis of the laser distance meter based on the position deviation;
The method of adjusting a thickness measuring apparatus according to claim 1, wherein:
前記各工程を、各前記校正板について繰り返し実行し、
各繰り返し毎の前記レーザ距離計による計測値を平均し、又は、各繰り返し毎の前記偏差を平均して、
その平均値に基づき前記レーザ距離計の計測軸を調整する
ことを特徴とする請求項1又は請求項2に記載の厚さ計測装置の調整方法。
Repeat each step for each calibration plate,
Average the measured values by the laser distance meter for each iteration, or average the deviation for each iteration,
The method for adjusting a thickness measuring apparatus according to claim 1 or 2, wherein the measuring axis of the laser distance meter is adjusted based on the average value.
複数の対向配置されたレーザ距離計で構成される厚さ計測装置の調整装置であって、
あらかじめ板厚を測定し、前記レーザ距離計の計測方向に対する角度と、前記レーザ距離計からの距離とを固定した複数の校正板と、
円筒状であり、円筒側面に沿って円環状に前記複数の校正板を固着し、円筒状の回転軸を中心として回転可能である校正片支持部と、
各前記校正板を前記レーザ距離計の計測範囲内に移動させるとき、前記校正片支持部を移動させるとともに、所定の角度で回転させる移動機構と、
前記レーザ距離計の計測値を演算処理する演算手段と、
を備え、
前記移動機構は、
前記校正板から2つを選び(以後、それぞれ第1校正板、第2校正板と呼ぶ)、前記第1校正板及び前記第2校正板を、順次前記レーザ距離計の計測範囲内に移動させ、
前記レーザ距離計は、
前記第1校正板及び前記第2校正板が当該レーザ距離計の計測範囲内に移動する毎に距離を計測し、
前記演算手段は、
前記レーザ距離計が計測した、前記第1校正板の距離と前記第2校正板の距離との差分を求め、
前記第1校正板と前記第2校正板の間の距離、及び前記レーザ距離計の計測方向に対する角度に基づき、前記差分を演算予測し、
前記差分、前記演算予測した差分、及び前記角度に基づき、前記レーザ距離計の計測軸の角度偏差を求める
ことを特徴とする厚さ計測装置の調整装置。
An adjustment device for a thickness measuring device composed of a plurality of opposed laser distance meters,
A plurality of calibration plates that measure the plate thickness in advance and fix the angle with respect to the measurement direction of the laser distance meter and the distance from the laser distance meter,
A calibration piece support that is cylindrical and has a plurality of calibration plates fixed in an annular shape along a cylindrical side surface, and is rotatable about a cylindrical rotation axis;
When moving each calibration plate within the measurement range of the laser distance meter, the moving mechanism for moving the calibration piece support and rotating it at a predetermined angle;
A computing means for computing the measured value of the laser distance meter;
With
The moving mechanism is
Two are selected from the calibration plates (hereinafter referred to as a first calibration plate and a second calibration plate, respectively), and the first calibration plate and the second calibration plate are sequentially moved into the measurement range of the laser rangefinder. ,
The laser distance meter
Measuring the distance each time the first calibration plate and the second calibration plate move within the measurement range of the laser rangefinder;
The computing means is
The difference between the distance of the first calibration plate and the distance of the second calibration plate measured by the laser distance meter is obtained,
Based on the distance between the first calibration plate and the second calibration plate and the angle with respect to the measurement direction of the laser rangefinder , the difference is calculated and predicted,
An adjustment device for a thickness measuring apparatus, wherein an angle deviation of a measurement axis of the laser distance meter is obtained based on the difference, the calculated and predicted difference, and the angle.
前記移動機構は、
前記校正板から1つを選び(以後、第3校正板と呼ぶ)、
前記第3校正板を前記レーザ距離計の計測範囲内に移動させ、
前記レーザ距離計は、
対向配置された夫々のレーザ距離計から、前記第3校正板の距離を計測し、その計測値に基づいて前記第3校正板の板厚を計測し、
前記演算手段は、
前記第3校正板の板厚、及び前記角度に基づき、前記第3校正板の板厚の前記レーザ距離計による計測値を演算予測し、
前記第3校正板の板厚の計測値、前記演算予測した板厚、及び前記角度に基づき、前記レーザ距離計の計測軸の位置偏差を求める
ことを特徴とする請求項4に記載の厚さ計測装置の調整装置。
The moving mechanism is
Select one of the calibration plates (hereinafter referred to as the third calibration plate),
Moving the third calibration plate within the measurement range of the laser distance meter;
The laser distance meter
Measure the distance of the third calibration plate from each of the laser distance meters arranged opposite to each other, measure the thickness of the third calibration plate based on the measured value,
The computing means is
Based on the plate thickness of the third calibration plate and the angle, the measurement value by the laser distance meter of the plate thickness of the third calibration plate is calculated and predicted,
5. The thickness according to claim 4, wherein a positional deviation of a measurement axis of the laser distance meter is obtained based on a measured value of the thickness of the third calibration plate, the calculated predicted thickness, and the angle. Measuring device adjustment device.
前記移動機構は、
前記回転軸を移動させるとともに、前記回転軸を回転させて、
各前記校正板を前記レーザ距離計の計測範囲内に順次移動させる
ことを特徴とする請求項4又は請求項5に記載の厚さ計測装置の調整装置。
The moving mechanism is
While moving the rotating shaft, rotating the rotating shaft,
Each of the said calibration plates is moved sequentially within the measurement range of the said laser distance meter. The adjustment apparatus of the thickness measuring device of Claim 4 or Claim 5 characterized by the above-mentioned.
各前記校正板は、直線上に配置されており、
前記移動機構は、
前記各前記校正板を前記レーザ距離計の計測範囲内に順次往復移動させる
ことを特徴とする請求項4又は請求項5に記載の厚さ計測装置の調整装置。
Each calibration plate is arranged on a straight line,
The moving mechanism is
The adjusting device for a thickness measuring apparatus according to claim 4 or 5, wherein the calibration plates are sequentially reciprocated within a measurement range of the laser distance meter.
前記レーザ距離計は、
前記移動機構が当該レーザ距離計の計測範囲内に各前記校正板を移動させる毎に距離を計測し、
前記演算手段は、
各前記校正板についての前記レーザ距離計による計測値を各繰り返し毎に平均して、その平均値を前記レーザ距離計の計測結果とし、
又は、
各繰り返し毎の前記偏差を平均して、その平均値を前記偏差とする
ことを特徴とする請求項4ないし請求項7のいずれかに記載の厚さ計測装置の調整装置。
The laser distance meter
Each time the moving mechanism moves each calibration plate within the measurement range of the laser distance meter, the distance is measured,
The computing means is
The measurement value by the laser distance meter for each calibration plate is averaged for each repetition, and the average value is the measurement result of the laser distance meter,
Or
The adjustment device for a thickness measuring device according to any one of claims 4 to 7, wherein the deviation for each repetition is averaged and the average value is used as the deviation.
JP2007195397A 2007-07-27 2007-07-27 Method and apparatus for adjusting thickness measuring apparatus Active JP5030699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195397A JP5030699B2 (en) 2007-07-27 2007-07-27 Method and apparatus for adjusting thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195397A JP5030699B2 (en) 2007-07-27 2007-07-27 Method and apparatus for adjusting thickness measuring apparatus

Publications (2)

Publication Number Publication Date
JP2009031120A JP2009031120A (en) 2009-02-12
JP5030699B2 true JP5030699B2 (en) 2012-09-19

Family

ID=40401783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195397A Active JP5030699B2 (en) 2007-07-27 2007-07-27 Method and apparatus for adjusting thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JP5030699B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696324B2 (en) * 2009-09-29 2015-04-08 富士通株式会社 Traveling body
KR101368267B1 (en) * 2011-09-29 2014-02-28 현대제철 주식회사 Apparatus for measuring shape of slab
JP6071302B2 (en) * 2012-07-26 2017-02-01 オリンパス株式会社 Calibration apparatus and program
JP6524441B2 (en) * 2015-08-25 2019-06-05 日本製鉄株式会社 Attitude correction method of inter-surface distance measuring device
JP6416983B1 (en) * 2017-05-22 2018-10-31 ファナック株式会社 Rotation axis angle calibration method and angle calibration program
NL2022874B1 (en) * 2019-04-05 2020-10-08 Vmi Holland Bv Calibration tool and method
JP7296334B2 (en) 2020-03-26 2023-06-22 住友重機械工業株式会社 Straightness measurement system, displacement sensor calibration method, and straightness measurement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603317B2 (en) * 1988-10-25 1997-04-23 川崎製鉄株式会社 Laser distance meter and calibration method for thickness gauge using laser distance meter
JPH08105715A (en) * 1994-10-06 1996-04-23 Murata Mfg Co Ltd Optical axis aligning method for laser thickness measuring instrument
JP2001264023A (en) * 2000-03-15 2001-09-26 Ngk Insulators Ltd Non contact continuous measurement method of film thickness for strip sheet material, and optical axis aligning method for reflection-type laser measuring means
JP3625465B2 (en) * 2003-03-04 2005-03-02 株式会社東芝 Thickness gauge
JP2007263818A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Adjusting method for thickness measuring instrument, and device therefor

Also Published As

Publication number Publication date
JP2009031120A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5030699B2 (en) Method and apparatus for adjusting thickness measuring apparatus
JP2007071852A (en) Apparatus and method for measuring deep hole
CN105705905B (en) The method measured to the thickness of measurement object and the equipment for application this method
CN111065947B (en) Device for determining the orientation of an optical device of a coherence tomography camera, coherence tomography camera and laser processing system
JP2008051696A (en) Optical axis deviation type laser interferometer, its calibration method, correction method, and measuring method
JP2007263818A (en) Adjusting method for thickness measuring instrument, and device therefor
JP2010512525A (en) Method and apparatus for thickness measurement
JP6607228B2 (en) Calibration piece, calibration method, shape measurement system, and shape measurement method
JP6657552B2 (en) Flatness measurement method
KR20140048824A (en) Calibration apparatus, calibration method, and measurement apparatus
TWI609171B (en) Shape measuring device, processing device, and shape measuring device calibration method
JP4970204B2 (en) Straightness measuring device, thickness variation measuring device, and orthogonality measuring device
JP2017519203A (en) Object geometric measurement apparatus and method
US11192158B2 (en) Apparatus for detecting relative positioning information between rolls, and method for measurement roll alignment state by using same
JP2016044970A (en) Thickness measuring apparatus using optical distance detector
JP6924953B2 (en) Shape measuring device and shape measuring method
JP5290038B2 (en) Measuring apparatus and measuring method
JP2009139176A (en) Measuring device and its method
CN105043280A (en) Rotating center measuring apparatus and spacing measuring method thereof
JP7296334B2 (en) Straightness measurement system, displacement sensor calibration method, and straightness measurement method
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
JP3245003B2 (en) Distance measuring apparatus and method
JP5601699B2 (en) Calibration device
JP2010085341A (en) Spherical shape measuring device and spherical shape measuring method
JP4980817B2 (en) Multipoint probe zero error related value recording device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250