JP5601699B2 - Calibration device - Google Patents

Calibration device Download PDF

Info

Publication number
JP5601699B2
JP5601699B2 JP2010035065A JP2010035065A JP5601699B2 JP 5601699 B2 JP5601699 B2 JP 5601699B2 JP 2010035065 A JP2010035065 A JP 2010035065A JP 2010035065 A JP2010035065 A JP 2010035065A JP 5601699 B2 JP5601699 B2 JP 5601699B2
Authority
JP
Japan
Prior art keywords
angle
mirror
axial
calibrated
measurement value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010035065A
Other languages
Japanese (ja)
Other versions
JP2011169815A (en
Inventor
尚一 島田
豊 宇田
慧 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Integrex Co Ltd
Original Assignee
Nagase Integrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Integrex Co Ltd filed Critical Nagase Integrex Co Ltd
Priority to JP2010035065A priority Critical patent/JP5601699B2/en
Publication of JP2011169815A publication Critical patent/JP2011169815A/en
Application granted granted Critical
Publication of JP5601699B2 publication Critical patent/JP5601699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、真直形状および真直運動姿勢誤差を測定するための角度2点法プローブのゼロ点校正技術に関する。   The present invention relates to a zero point calibration technique of a two-point angle method probe for measuring a straight shape and a straight movement posture error.

2つの角度センサを用いた角度2点法プローブにより被測定対象形状を精度良く測定をするためには、2つの角度センサのゼロ点のずれ(ゼロ点誤差)による放物線誤差を取り除く必要があり、そのために、ゼロ点誤差を校正する必要がある。また、運動の姿勢誤差の測定では、ゼロ点誤差があると姿勢の一様な変化と区別がつかないため、ここでもゼロ点の校正が必要になる。ここで、そのゼロ点誤差を校正する手法として、既知の直線に沿う角度変化(以下角度形状とよぶ)を基準にする方法、角度2点法による測定と改良型反転法による測定を併用してゼロ点誤差を求める方法、既知の角度形状の角度幅を基準にして、その角度幅を構成する2本の直線を、角度2点法プローブを反転させることで2回測定して得られる角度幅の長手方向の変化形状を得て、既知の角度幅と比較してゼロ点を決める方法がある。これらは、別の方法で得た直線の角度形状や角度幅の基準を用いている。   In order to accurately measure the shape of the object to be measured using the two-point angle probe using two angle sensors, it is necessary to remove the parabolic error caused by the zero point deviation (zero point error) of the two angle sensors. Therefore, it is necessary to calibrate the zero point error. Also, in measuring the posture error of movement, if there is a zero point error, it cannot be distinguished from a uniform change in posture, so here also the zero point calibration is required. Here, as a method for calibrating the zero point error, a method based on a known angle change along the straight line (hereinafter referred to as an angle shape), a measurement by the angle two-point method and a measurement by the improved inversion method are used in combination. A method for obtaining a zero point error, an angle width obtained by measuring two straight lines constituting the angle width by inverting the angle two-point method probe with reference to the angle width of a known angle shape There is a method of obtaining a change shape in the longitudinal direction and determining a zero point in comparison with a known angular width. These use the standard of the angle shape and angle width of a straight line obtained by another method.

上記の既知の角度幅基準を用いる方法で、被測定面と対向させてダミーの面を設置しその場で角度幅を測定しながら、プローブを反転して角度2点法で角度幅を構成する両側の直線母線を測定する方法もあり、これは準リアルタイムのゼロ点調整方法といえる。   By using the above-mentioned known angular width reference, a dummy surface is placed opposite to the surface to be measured and the angular width is measured on the spot, and the probe is inverted to form the angular width by the angle two-point method. There is also a method of measuring the straight bus bars on both sides, which can be said to be a near real-time zero adjustment method.

その他に,水準器を用いて、走査運動軌跡の両端の傾斜の差を測定して、角度2点法で得た走査運動軌跡の両端での傾斜の差と比較して、ゼロ点を算出する方法も知られている。水準器の代わりにオートコリメータと反射鏡を用いて走査運動の軌跡の両端の傾斜の差を測定する方法も成立する。   In addition, using a spirit level, the difference in inclination at both ends of the scanning motion trajectory is measured, and compared with the difference in inclination at both ends of the scanning motion trajectory obtained by the angle two-point method, a zero point is calculated. Methods are also known. A method of measuring the difference in inclination at both ends of the trajectory of the scanning motion by using an autocollimator and a reflecting mirror instead of the level is also established.

清夫慧、「3点法及び角度2点法のゼロ点誤差補正方法」、精密工学会北海道支部講演会(2006年9月札幌)の前刷りKiyoo Satoshi, “Zero point error correction method of 3 point method and angle 2 point method”, Preprint of Precision Engineering Society Hokkaido Branch Lecture Meeting (September 2006, Sapporo) 清野慧、奥山栄樹、「角度センサの利用による精密測定の高度化」、精密工学会講演論文集(2007年3月東京)Satoshi Seino and Eiki Okuyama, "Advanced precision measurement using angle sensors", Precision Engineering Society Proceedings (March 2007, Tokyo)

ここで、既知の基準を用いてゼロ点誤差を校正する方法では、校正後に被測定対象を測定する場所にプローブを移動して実際の測定を行うまでのゼロ点の変化が問題になる。角度幅を基準にしてプローブを反転させる方法でも、反転前後の角度2点法での測定中のゼロ点変化が影響して正確なゼロ点が決め難い。   Here, in the method of calibrating the zero point error using a known reference, there is a problem of a change in the zero point until the probe is moved to the place where the measurement target is measured after the calibration and the actual measurement is performed. Even in the method of inverting the probe based on the angle width, it is difficult to determine an accurate zero point due to the influence of the zero point change during the measurement by the two-point angle method before and after the inversion.

さらに、角度2点法でローリング運動を測定する目的では、既知のローリング角度形状を有する基準鏡を得ることは極めて面倒になる。   Further, for the purpose of measuring the rolling motion by the two-point angle method, it is extremely troublesome to obtain a reference mirror having a known rolling angle shape.

これに対し、走査運動軌跡の両端の傾斜を補正する方法は環境が整えば精度の高い方法となる。また、水準器の使える環境では、ローリング測定用の角度2点法のプローブのゼロ点も校正できる。しかし、水準器では、角度2点法プロープでは除去できる機械的な外乱振動が測定誤差になり、オートコリメータでは空気の揺らぎが誤差要因になるなど、角度2点法の要求する以外の環境の整備がゼロ点検出のために必要になるという難点がある。   On the other hand, the method of correcting the inclinations at both ends of the scanning motion locus is a highly accurate method if the environment is prepared. Also, in an environment where a level can be used, the zero point of a two-point probe for rolling measurement can be calibrated. However, with a spirit level, mechanical disturbance vibration that can be removed with the two-point angle probe becomes a measurement error, and with an autocollimator, air fluctuations cause an error. Is necessary for zero point detection.

発明は、このような従来法の問題に鑑みなされたもので、角度2点法プローブのゼロ点校正を角度2点法の環境に対するロバスト性を維持しながら、迅速に、精度よく、かつ簡便に実現できる校正装置及び真直形状測定装置を提供する目的でなされたものである。また、ピッチングやヨーイングだけでなくローリングをも測定する2次元の角度2点法プローブの校正にも資する目的もある。   The present invention has been made in view of such problems of the conventional method. The zero point calibration of the angle two-point method probe can be performed quickly, accurately and easily while maintaining robustness with respect to the environment of the angle two-point method. This is made for the purpose of providing a calibration device and a straight shape measuring device that can be realized. It also has the purpose of contributing to the calibration of two-dimensional angle and two-point probes that measure rolling as well as pitching and yawing.

本発明の校正装置は、
校正対象となる2つの角度センサを保持するベースと、
中心を挟む2点の軸方向の傾斜角度幅(軸方向平行度)が所定の一か所以上の回転角位置で校正されている2つ以上の多面鏡と、
前記ベースに対して回転可能に支持され、所望の間隔で前記多面鏡を取り付けた回転軸と、を有し、
校正対象となる2つの角度センサを前記多面鏡に対して相対的に固定し、前記所定の回転角位置において前記2つ以上の多面鏡の軸方向傾斜角を、各角度センサを用いて測定して第1の測定値を求め、且つ前記所定の回転角位置から180度回転させた回転角位置において前記2つ以上の多面鏡の軸方向傾斜角を、各角度センサを用いて測定して第2の測定値を求め、前記第1の測定値と前記第2の測定値とに基づいて、前記角度センサのゼロ点を校正できることを特徴とする。
The calibration apparatus of the present invention is
A base holding two angle sensors to be calibrated;
Two or more polygonal mirrors in which two axial tilt angle widths (axial parallelism) sandwiching the center are calibrated at one or more predetermined rotational angle positions;
A rotating shaft that is rotatably supported with respect to the base and has the polygon mirror attached at a desired interval;
Two angle sensors to be calibrated are fixed relative to the polygonal mirror, and the tilt angles in the axial direction of the two or more polygonal mirrors are measured using the angle sensors at the predetermined rotation angle position. The first measurement value is obtained, and the axial tilt angles of the two or more polygon mirrors are measured by using each angle sensor at the rotation angle position rotated 180 degrees from the predetermined rotation angle position. The second measurement value is obtained, and the zero point of the angle sensor can be calibrated based on the first measurement value and the second measurement value.

本発明の装置に必要な多面鏡鏡面の軸方向の傾斜角の対向する2点での和の測定原理について説明する。図1の例のように、外周面が鏡面になっている多面鏡CPでは、中心を挟んで対向する2面の軸方向の傾斜角の和を軸方向の平行度として定義することができる。   The principle of measuring the sum at two opposing points of the inclination angle in the axial direction of the polygonal mirror surface necessary for the apparatus of the present invention will be described. As in the example of FIG. 1, in the polygonal mirror CP whose outer peripheral surface is a mirror surface, the sum of the inclination angles in the axial direction of the two surfaces facing each other across the center can be defined as the parallelism in the axial direction.

図2に、回転可能に支持された回転軸SHに並列に同軸になるよう取り付けた多面鏡CP1,CP2の中心を挟む2点の軸方向の傾斜角を、3つの角度センサA,Bを用いて測定する状態を示す。ここでは、多面鏡CP1,CP2を同じ矩形状の鏡面を6つ備えた六面鏡を例として示すが、これに限られない。回転軸SHの中心を含む平面による断面における軸方向の接線の傾斜は、図1のように右向きに内側に傾斜する場合を正として表す。測定点の傾斜を測定する一つの角度センサの出力は、多面鏡CP1の鏡面の軸方向傾斜角の和と、多面鏡CP1の剛体的な傾斜角α(θ)の和となる。対向する測定点では剛体的な傾斜角α(θ)の符号が正負逆になる。対向する測定点での2つの角度センサA,Bの出力の和は、剛体的な傾斜角α(θ)が相殺され、θが変化しても、多面鏡CP1の鏡面の対向する2点での傾斜角の和の変化分だけが現れる。対向する2つの角度センサA,Bのゼロ点は必ずしも一致しないが、この2つの角度センサA,Bが校正中は変化しないとすると回転中の回転軸SHの振れの影響も受けずに、対向する2点での形状としての軸方向の傾斜角の和の変化だけを取り出せる。   In FIG. 2, three angle sensors A and B are used to indicate two axial tilt angles sandwiching the center of the polygonal mirrors CP1 and CP2 that are coaxially mounted in parallel with the rotation shaft SH that is rotatably supported. Shows the state to be measured. Here, a hexagonal mirror having six polygonal mirrors CP1 and CP2 having the same rectangular shape is shown as an example, but the present invention is not limited to this. The inclination of the tangent line in the axial direction in the cross section by the plane including the center of the rotation axis SH is expressed as positive when it is inclined inward to the right as shown in FIG. The output of one angle sensor that measures the tilt of the measurement point is the sum of the axial tilt angles of the mirror surface of the polygon mirror CP1 and the rigid tilt angle α (θ) of the polygon mirror CP1. At opposite measurement points, the sign of the rigid tilt angle α (θ) is reversed. The sum of the outputs of the two angle sensors A and B at the opposing measurement points cancels out the rigid inclination angle α (θ), and even if θ changes, the two opposite points on the mirror surface of the polygonal mirror CP1. Only the change in the sum of the tilt angles appears. The zero points of the two opposing angle sensors A and B do not necessarily coincide with each other. However, if the two angle sensors A and B do not change during calibration, they are opposed to each other without being affected by the shake of the rotating rotating shaft SH. Only the change in the sum of the tilt angles in the axial direction as the shape at two points can be extracted.

図2に点線で示すように、一対の角度センサA,Bの相互関係を維持しつつ、多面鏡CP1,CP2を相対移動させ、他の多面鏡CP2の軸方向傾斜角を測定することによっても、多面鏡CP1,CP2相互の前記対向する2点での軸方向傾斜角の和の多面鏡間の差を検出できることになる。ちょうどこれは、円板の直径の変化を調べるときに対向する2点に対峙する2つのセンサの出力の和の変化をみるときと同様の関係になる。なお、図2では2個の多面鏡CP1,CP2が一つの回転軸SHに固定されている状態を示しているが、回転軸SHに固定される前の独立した多面鏡CP1,CP2を回転テーブル(不図示)上に重ねて配置したり、次々に取り換えて配置して測定することも可能である。   As shown by the dotted line in FIG. 2, the polygon mirrors CP1 and CP2 are moved relative to each other while the mutual relationship between the pair of angle sensors A and B is maintained, and the axial inclination angle of the other polygon mirror CP2 is measured. The difference between the polygon mirrors in the sum of the axial tilt angles at the two opposing points of the polygon mirrors CP1 and CP2 can be detected. This is exactly the same relationship as when looking at the change in the sum of the outputs of the two sensors facing two opposite points when examining the change in the diameter of the disc. FIG. 2 shows a state in which two polygon mirrors CP1 and CP2 are fixed to one rotation axis SH. However, independent polygon mirrors CP1 and CP2 before being fixed to the rotation axis SH are replaced with a rotary table. It is also possible to perform measurement by placing them on top of each other (not shown) or by replacing them one after another.

また、円周に沿う方向の傾斜は、軸方向の傾斜角が上記の手段で校正されている多面鏡が取り付けられている、ゼロ点校正用冶具について校正する。図7に示す装置では、多面鏡CP1,CP2を取り付けた回転軸SHが、ベースBSに対して多面鏡軸受SPHで回転自在に支持されている。又、ベースBSには、回転軸SHの回転角位置を検出する回転角センサ(不図示)が固定され、円周方向の傾斜を検出するローリング方向角度センサSS3が独立固定された可動センサホルダMSHにより支持されており、角度センサSS3をベースBSに対して相対的に移動することで、角度センサSS3の検出ターゲットとなる多面鏡CP1とCP2を切り替えることができるようになっている。可動センサホルダMSH移動の際のローリング角を、可動センサホルダMSHに取り付けられた電子水準器ELで検出して補正することで、回転軸SHの同一回転位置における2個の多面鏡CP1、CP2の相対的な回転角をローリング方向角度センサSS3の読みから知ることで校正する。なお、ベースに水準器を搭載して、ベースのローリング角を検出しながら、角度センサのターゲットとなる多面鏡を替えることも同様の効果を持つ。   Further, the inclination in the direction along the circumference is calibrated with respect to a zero point calibration jig to which a polygon mirror whose axial inclination angle is calibrated by the above-described means is attached. In the apparatus shown in FIG. 7, the rotation shaft SH to which the polygonal mirrors CP1 and CP2 are attached is rotatably supported by the polygonal mirror bearing SPH with respect to the base BS. In addition, a rotation angle sensor (not shown) for detecting the rotation angle position of the rotation shaft SH is fixed to the base BS, and a rolling direction angle sensor SS3 for detecting a circumferential inclination is independently fixed. The polygon mirrors CP1 and CP2 that are detection targets of the angle sensor SS3 can be switched by moving the angle sensor SS3 relative to the base BS. By detecting and correcting the rolling angle when moving the movable sensor holder MSH with the electronic level EL attached to the movable sensor holder MSH, the two polygon mirrors CP1 and CP2 at the same rotational position of the rotary shaft SH Calibration is performed by knowing the relative rotation angle from the reading of the rolling direction angle sensor SS3. It is to be noted that the same effect can be obtained by mounting a level on the base and changing the polygon mirror as the target of the angle sensor while detecting the rolling angle of the base.

本発明の原理について説明する。図3は本発明の数学的原理を説明するための図である。180度で対向する2点の傾斜角の和の相対差が既知の2つの多面鏡CP1、CP2が、センサホルダHL上に角度2点法プローブのセンサSS1、SS2の間隔と等しい間隔で固定配置されており、センサSS1、SS2は多面鏡CP1、CP2の鏡面にそれぞれ対峙して、その軸方向傾斜角を測定可能となっている。多面鏡CP1、CP2は、その軸方向平行度の変化が所定の回転角位置で予め校正されている。不図示の回転角センサが、回転軸SHの回転角位置を測定可能となっている。   The principle of the present invention will be described. FIG. 3 is a diagram for explaining the mathematical principle of the present invention. Two polygonal mirrors CP1 and CP2 whose relative difference of the sum of the inclination angles of two points facing each other at 180 degrees are fixedly arranged on the sensor holder HL at an interval equal to the interval between the sensors SS1 and SS2 of the angle two-point probe. Thus, the sensors SS1 and SS2 face the mirror surfaces of the polygon mirrors CP1 and CP2, respectively, and can measure the tilt angle in the axial direction. In the polygon mirrors CP1 and CP2, the change in the parallelism in the axial direction is calibrated in advance at a predetermined rotational angle position. A rotation angle sensor (not shown) can measure the rotation angle position of the rotation shaft SH.

回転軸SHが、第1の測定を行う回転角θ=0度の位置にある状態を図3(a)に、これと対向する第2の測定を行う回転角θ=180度の位置に回転した状態を図3(b)に示す。図3(a)、(b)では、角度センサSS1、SS2のプローブの感度軸方向は水平面内にあり、回転軸SHの重力の影響によるたわみの影響は図では現れていない。   FIG. 3A shows a state in which the rotation axis SH is at the position of the rotation angle θ = 0 degree for performing the first measurement, and the rotation axis SH is rotated to a position of the rotation angle θ = 180 degrees for performing the second measurement opposite thereto. This state is shown in FIG. 3A and 3B, the sensitivity axis directions of the probes of the angle sensors SS1 and SS2 are in a horizontal plane, and the influence of the deflection due to the gravity of the rotation axis SH does not appear in the figure.

以下、角度センサのゼロ点校正について説明する。ここで、回転軸SHに対する多面鏡CP1、CP2の取り付けの誤差により、多面鏡CP2の軸線が多面鏡CP1の軸線に対して角度Δφだけ、図3(a)で互いに近寄り側に傾斜し、図3(b)では同じ量だけ互いに遠ざかる側に傾斜しているものとする。また、角度センサSS2のゼロ点位置が角度センサSS1のゼロ点位置に対して、角度αだけ傾いているものとする。このとき,回転軸SHの回転角度位置をθとして、2つの角度センサSS1、SS2の出力を、それぞれμA(θ),μB(θ)とする。   Hereinafter, the zero point calibration of the angle sensor will be described. Here, due to an error in attaching the polygonal mirrors CP1 and CP2 with respect to the rotation axis SH, the axis of the polygonal mirror CP2 is inclined closer to each other in FIG. 3A by an angle Δφ with respect to the axis of the polygonal mirror CP1. In 3 (b), it is assumed that they are inclined to the side away from each other by the same amount. Further, it is assumed that the zero point position of the angle sensor SS2 is inclined by the angle α with respect to the zero point position of the angle sensor SS1. At this time, the rotation angle position of the rotation shaft SH is θ, and the outputs of the two angle sensors SS1 and SS2 are μA (θ) and μB (θ), respectively.

まず、図3(a)に示す状態では,2つの角度センサSS1、SS2による角度2点法プローブの差動出力(第1の測定値)をμ(0)とすると、幾何学的関係より、
μ(0)=μA(0)−μB(0)=Δφ+α (1)
と表せる。ただし、多面鏡CP1、CP2の当該測定面の傾斜角度差は、校正値を用いて補正するものとして、式では省略している。
First, in the state shown in FIG. 3A, if the differential output (first measurement value) of the angle two-point probe by the two angle sensors SS1 and SS2 is μ (0), the geometric relationship
μ (0) = μA (0) −μB (0) = Δφ + α (1)
It can be expressed. However, the inclination angle difference between the measurement surfaces of the polygon mirrors CP1 and CP2 is corrected by using a calibration value, and is omitted in the equation.

次に、図3(a)に示す状態から回転軸SHが180度回転した図3(b)に示す状態では,2つの角度センサSS1、SS2による角度2点法プローブの差動出力(第2の測定値)をμ(π)とすると、幾何学的関係より、
μ(π)=μA(π)−μB(π)=−Δφ+α (2)
と表せる。
Next, in the state shown in FIG. 3B in which the rotation shaft SH has rotated 180 degrees from the state shown in FIG. 3A, the differential output of the angle two-point method probe by the two angle sensors SS1 and SS2 (second) (Measured value of) is μ (π),
μ (π) = μA (π) −μB (π) = − Δφ + α (2)
It can be expressed.

P0が両者の平均値であるから、(1)、(2)式よりΔφを消去すると、以下の式でP0(位置ズレ)を求めることができる。
α={μ(0)+μ(π)}/2 (3)
Since P0 is the average value of both, if Δφ is eliminated from the equations (1) and (2), P0 (position shift) can be obtained by the following equation.
α = {μ (0) + μ (π)} / 2 (3)

求められたαだけ、角度センサSS2を移動させることで、両側の角度センサSS1、SS2のゼロ点位置を一致させることができる。このように、ズレ量αを求めて角度センサの姿勢ズレを補正することを、角度2点プローブのゼロ点調整という。   By moving the angle sensor SS2 by the obtained α, the zero point positions of the angle sensors SS1 and SS2 on both sides can be matched. In this way, obtaining the deviation amount α and correcting the attitude deviation of the angle sensor is called zero point adjustment of the angle two-point probe.

次に、角度センサSS1、SS2の感度軸が、鉛直方向に向いている場合について検討する。この場合は重力の影響で軸がたわみ、このたわみによって、円板CP1に対して円板CP2が角度βだけ傾く。   Next, a case where the sensitivity axes of the angle sensors SS1, SS2 are oriented in the vertical direction will be considered. In this case, the axis bends due to the influence of gravity, and this deflection causes the disc CP2 to be tilted by an angle β with respect to the disc CP1.

まず、図4(a)に示す状態と図4(b)に示す状態では、多面鏡CP1,CP2は180度回転しているが、取り付けによる傾斜と異なり、重力による回転軸Sのたわみは回転前後で同じ姿勢になるので、多面鏡CP1,CP2の相互傾斜角のたわみによる影響は反転前後の出力の和からは取り除けず2倍に現れる。角度センサの感度軸が水平方向にある場合に対して鉛直方向にある場合の見かけのゼロ点の差が重力による軸のたわみの影響を示しており、これを予め測定しておけば、後のゼロ点調整においても補正に用いることができる。   First, in the state shown in FIG. 4 (a) and the state shown in FIG. 4 (b), the polygon mirrors CP1 and CP2 are rotated by 180 degrees, but unlike the inclination due to attachment, the deflection of the rotation axis S due to gravity is rotated. Since the posture is the same before and after, the influence of the deflection of the mutual inclination angles of the polygon mirrors CP1 and CP2 cannot be removed from the sum of the outputs before and after the inversion, and appears twice. The difference in the apparent zero point when the sensitivity axis of the angle sensor is in the horizontal direction versus the vertical direction indicates the influence of the deflection of the axis due to gravity, and if this is measured in advance, It can also be used for correction in zero point adjustment.

以上の説明では、一つの角度位置にある、2つの多面鏡におけるそれぞれの対向する鏡面の軸方向平行度の相互差が校正済みという条件で原理を説明したが、複数の回転角度位置での軸方向平行度の相互差が校正されていれば、複数の前記回転角度位置での軸方向平行度の校正値を使って角度センサ間のゼロ点の校正結果の平均値を校正値とすることもできる。その時、例えば式(3)の一対の鏡面に対応する2か所の回転角度位置でのセンサの読みの代わりに前記複数の回転角度位置での読みの平均値を用いる。前記軸方向平行度の相互差が校正されている回転角度位置が十分に多くて、一回転にわたる平均の軸方向平行度の2つの多面鏡における相互差が校正されていれば、角度センサ間のゼロ点誤差の調整には、その平均的な軸方向平行度差(傾斜角の和の平均値)を用いることもできる。   In the above description, the principle has been explained on the condition that the mutual difference in axial parallelism between the opposing mirror surfaces of two polygonal mirrors at one angular position has been calibrated. If the mutual difference in directional parallelism is calibrated, the average value of the zero point calibration results between the angle sensors may be used as the calibration value using the calibration values of the axial parallelism at the plurality of rotational angle positions. it can. At that time, for example, instead of the sensor readings at the two rotation angle positions corresponding to the pair of mirror surfaces of the formula (3), the average value of the readings at the plurality of rotation angle positions is used. If the rotational angle positions where the mutual difference in the axial parallelism is calibrated are sufficiently large and the mutual difference in the two polygon mirrors with the average axial parallelism over one rotation is calibrated, the angle sensor For the adjustment of the zero point error, the average axial parallelism difference (the average value of the sum of the tilt angles) can also be used.

従って、一つの角度センサで多面鏡の傾斜角を測定する方法で得た平均傾斜角を多面鏡の対向する2面の傾斜角の和の代わりの校正値に用いても、同様の校正装置が構成できることは言うまでもない。なお、これらのいずれの方法を用いるときも多面鏡の傾斜角の校正の際の傾斜角度読み取り位置と同じ回転角度位置を再現して同じ位置でのゼロ点を校正すべき角度センサの読みをとる方が精度の観点からは好ましい。   Therefore, even if the average tilt angle obtained by the method of measuring the tilt angle of the polygon mirror with one angle sensor is used as a calibration value instead of the sum of the tilt angles of the two opposing surfaces of the polygon mirror, a similar calibration device can be used. Needless to say, it can be configured. When using any of these methods, the same rotation angle position as the inclination angle reading position at the time of correcting the inclination angle of the polygon mirror is reproduced, and the zero sensor at the same position is read by the angle sensor. This is preferable from the viewpoint of accuracy.

本発明によれば、測定の際に特別の基準を必要としない、対向する鏡面のなす角度の差だけを用いるので、精度の高い安定した角度2点法プローブのゼロ点校正装置が構成できる。また、本発明によれば、一つの角度センサによる多面鏡一回転分の傾斜角度の平均傾斜角の差を対向する鏡面のなす傾斜角度平均値の差に代用できるので、簡便に角度2点法プローブのゼロ点校正装置が構成できる。   According to the present invention, since only the difference in angle between the opposing mirror surfaces that does not require a special reference in measurement is used, a highly accurate and stable zero point calibration apparatus for the angle two-point probe can be configured. Further, according to the present invention, since the difference in average inclination angle of the inclination angle for one rotation of the polygon mirror by one angle sensor can be substituted for the difference in inclination angle average value formed by the opposing mirror surfaces, the angle two-point method can be simply used. A zero-point calibration device for the probe can be configured.

本発明によれば、軸方向傾斜を検出するための角度センサの感度軸が水平面内にあるゼロ点を基準に、その感度軸を鉛直方向に設置した場合のゼロ点の移動(回転軸の撓みによる傾斜)δの影響を補正することができる。   According to the present invention, the movement of the zero point when the sensitivity axis of the angle sensor for detecting the tilt in the axial direction is set in the vertical direction with respect to the zero point in the horizontal plane (the deflection of the rotation axis). The influence of δ) can be corrected.

更に本発明の校正装置は、前記回転軸は2点で支持されており、重力により前記回転軸のたわみが生じたときに、重力方向のたわみによる傾斜角が等しくなる2か所に前記多面鏡をそれぞれ取り付けたことを特徴とする。   Furthermore, in the calibration apparatus of the present invention, the rotary shaft is supported at two points, and when the deflection of the rotary shaft is caused by gravity, the polygon mirror is provided at two places where the inclination angles due to the deflection in the direction of gravity are equal. Each is attached.

更に図3(a)〜(b)に示すようにして、本発明の校正装置は、校正対象となる2つの角度センサを感度軸が水平方向に向くように前記多面鏡に対して相対的に固定し、前記所定の回転角位置において前記2つ以上の多面鏡の円周を、各角度センサを用いて測定して第1の測定値を求め、且つ前記所定の回転角位置に対して180度回転させた前記2つ以上の多面鏡の鏡面の軸方向傾斜を、各角度センサを用いて測定して第2の測定値を求め、前記第1の測定値と前記第2の測定値とに基づいて、1つの角度センサの姿勢ズレを求めるのを基本とする。   Further, as shown in FIGS. 3A to 3B, the calibration device of the present invention is configured so that the two angle sensors to be calibrated are relatively positioned with respect to the polygon mirror so that the sensitivity axis is in the horizontal direction. The circumference of the two or more polygonal mirrors is fixed at the predetermined rotation angle position by using each angle sensor to obtain a first measurement value, and 180 degrees with respect to the predetermined rotation angle position. A second measured value is obtained by measuring the axial inclination of the mirror surfaces of the two or more polygon mirrors rotated by a degree using each angle sensor, and the first measured value and the second measured value Based on the above, it is fundamental to obtain the attitude deviation of one angle sensor.

更に校正対象となる2つの角度センサを感度軸が鉛直方向に向くように前記多面鏡に対して相対的に固定し、前記所定の回転角位置において前記2つ以上の多面鏡の軸方向傾斜角を、各角度センサを用いて測定して第3の測定値を求め、且つ前記所定の回転角位置に対して180度回転させた前記2つ以上の多面鏡の軸方向傾斜角を、各角度センサを用いて測定して第4の測定値を求め、前記第3の測定値と前記第4の測定値と、前記1つの角度センサの傾斜角出力のズレに基づいて、前記回転軸の撓みによる傾斜角量を求めることができることを特徴とする。尚、「感度軸」とは、角度センサならそのセンサが検出する点を通り、そのセンサが検出する傾斜角の方向を指す軸を言う。   Further, two angle sensors to be calibrated are fixed relative to the polygon mirror so that the sensitivity axis is in the vertical direction, and the two or more polygon mirrors are tilted in the axial direction at the predetermined rotation angle position. Is measured using each angle sensor to obtain a third measurement value, and the axial tilt angles of the two or more polygon mirrors rotated 180 degrees with respect to the predetermined rotation angle position are A fourth measurement value is obtained by measurement using a sensor, and the deflection of the rotating shaft is determined based on the deviation between the third measurement value, the fourth measurement value, and the tilt angle output of the one angle sensor. It is characterized in that the amount of inclination angle can be obtained. The “sensitivity axis” refers to an axis that passes through a point detected by the sensor in the case of an angle sensor and indicates a direction of an inclination angle detected by the sensor.

また、多面鏡の円周方向の鏡面の傾斜を検出する方向の角度センサに関しては、軸のたわみの影響は生じない。   In addition, with respect to the angle sensor in the direction for detecting the inclination of the mirror surface in the circumferential direction of the polygon mirror, there is no influence of shaft deflection.

本発明の真直形状測定装置は、上述の校正装置によって構成された角度センサを用いていることを特徴とする。   The straight shape measuring apparatus according to the present invention is characterized by using an angle sensor constituted by the calibration apparatus described above.

本発明では、経時的な、あるいは環境変化による角度変化が小さい2個の多面鏡,あるいは一個の長い棒状の多面鏡の軸方向の定められた2箇所の傾斜角を角度幅基準として用いることができる。必要なセンサの数を増やさないため2つの多面鏡あるいは棒状多面鏡の2か所の円断面の傾斜角差を予め校正して用いると好ましい。本発明では、校正に用いる多面鏡の軸方向への走査はせず、必要最小限の長さの校正用回転軸を利用することができる。角度2点法プローブが校正用回転軸に簡単に迅速にアクセスできるように,プローブの近傍へ校正装置を設置できる構造とすると好ましい。   In the present invention, it is possible to use two inclined angles defined in the axial direction of two polygonal mirrors having a small angle change over time or due to environmental changes, or one long rod-shaped polygonal mirror, as an angle width reference. it can. In order not to increase the number of necessary sensors, it is preferable to calibrate the tilt angle difference between two circular sections of two polygon mirrors or rod-shaped polygon mirrors in advance. In the present invention, the polygonal mirror used for calibration is not scanned in the axial direction, and a calibration rotary shaft having a minimum length can be used. It is preferable to have a structure in which a calibration device can be installed in the vicinity of the probe so that the two-point angle method probe can easily and quickly access the calibration rotary shaft.

本発明は、熱膨張係数が十分小さい素材で作られていて、その傾斜角が所定の一か所以上の回転角位置で校正されている多面鏡と、所望の間隔で2個以上の前記多面鏡が取り付けられる一つの回転軸と、前記回転軸の前記所定の回転角位置を検知することのできる信号発生部とを備えていると好ましい。   The present invention is a polygon mirror which is made of a material having a sufficiently small coefficient of thermal expansion and whose inclination angle is calibrated at a predetermined rotational angle position, and two or more polygons at a desired interval. It is preferable that the apparatus includes a single rotation shaft to which a mirror is attached and a signal generation unit that can detect the predetermined rotation angle position of the rotation shaft.

本発明は、回転軸を2点支持し、そのとき重力によるたわみに伴う傾斜が等しくなる軸上の2か所に前記多面鏡を取り付けることで重力によるたわみの影響を極小にすると好ましい。   In the present invention, it is preferable to minimize the influence of the deflection due to gravity by supporting the rotating shaft at two points and attaching the polygonal mirrors at two positions on the axis where the inclination due to the deflection due to gravity is equal.

本発明は、前記回転軸の回転中に生じる軸のたわみ変形の再現誤差を検出するために前記多面鏡に向けて固定された一個以上の角度センサを備えると好ましい。又、角度センサが、多面鏡の軸方向の傾斜に加えて、円周方向の傾斜角を検出できる2次元角度センサであって、軸方向の傾斜角のゼロ点を求める操作の際に、同時に円周方向の角度を検出して、それぞれの円周方向傾斜角の角度センサ出力の一回転分の平均値の差から、円周方向傾斜角の角度センサのゼロ点のズレを校正することができるものであると好ましい。更に、角度センサが、多面鏡の軸方向の傾斜に加えて、円周方向の傾斜角を検出できる2次元角度センサであって、この円周方向の角度から、前記所定の回転角位置を定めるものであると好ましい。   The present invention preferably includes one or more angle sensors fixed toward the polygon mirror in order to detect a reproduction error of the deflection deformation of the shaft that occurs during rotation of the rotating shaft. The angle sensor is a two-dimensional angle sensor that can detect the tilt angle in the circumferential direction in addition to the tilt in the axial direction of the polygonal mirror, and at the same time when performing the operation for obtaining the zero point of the tilt angle in the axial direction. It is possible to detect the angle in the circumferential direction and calibrate the deviation of the zero point of the angle sensor of the circumferential inclination angle from the difference of the average value of one rotation of the angle sensor output of each circumferential inclination angle. It is preferable that it is possible. Furthermore, the angle sensor is a two-dimensional angle sensor that can detect a tilt angle in the circumferential direction in addition to the tilt in the axial direction of the polygon mirror, and determines the predetermined rotation angle position from the angle in the circumferential direction. It is preferable that it is.

本発明は、前記2個の多面鏡を回転軸に取り付けた状態で対向する2つの角度センサで軸方向の傾斜角を測定する際に180度回転した2か所で測定して平均を出す方法で、鉛直方向と水平方向の見かけの直径の違いを校正しておき,角度2点法プローブのゼロ点校正の際のプローブの感度方向における重力によるたわみに伴う傾斜の影響を計算で補正することができると好ましい。   In the present invention, when measuring the tilt angle in the axial direction with the two angle sensors facing each other with the two polygon mirrors attached to the rotation shaft, the average is obtained by measuring at two positions rotated by 180 degrees. Then, calibrate the difference in apparent diameter between the vertical and horizontal directions, and correct the influence of tilt due to the deflection due to gravity in the sensitivity direction of the probe when calibrating the zero point of the angle two-point probe. Is preferable.

本発明は、被測定物の搭載されたテーブルと相対的に移動する角度2点法プローブを保持するコラムに取り付けられ、前記テーブルに対してプローブと一体的に相対移動すると好ましい。   The present invention is preferably attached to a column holding an angle two-point method probe that moves relative to a table on which an object to be measured is mounted, and moves relative to the table integrally with the probe.

本発明ではプローブが、重力によるたわみの影響を受けない水平面内に感度軸のある場合には、角度2点法プローブで180度対向した2か所で得た読みの角度2点法としての差動出力の平均値を用い、予め校正された2か所の傾斜角の差から決まる理論上の前記差動出力を基準にしてゼロ点を校正するので校正中の角度センサ出力のドリフトの影響は受け難い技術を提供できる。   In the present invention, when the probe has a sensitivity axis in a horizontal plane that is not affected by the deflection due to gravity, the difference between the two-point angle readings obtained by the two-point angle probe of 180 degrees is obtained. The zero point is calibrated based on the theoretical differential output determined from the difference between two pre-calibrated tilt angles using the average value of the dynamic output, so the influence of drift of the angle sensor output during calibration is Can provide technology that is difficult to receive.

本発明では、水平方向以外にプローブの感度軸を置いた場合の重力による回転軸のたわみ量を水平方向で得たゼロ点との違いから検出しておきプローブ感度軸の方向の違いによる見かけの直径差の変化を修正して任意の方向でのゼロ点を校正することができる。   In the present invention, the deflection amount of the rotation axis due to gravity when the sensitivity axis of the probe is placed in a direction other than the horizontal direction is detected from the difference from the zero point obtained in the horizontal direction, and the apparent difference due to the difference in the direction of the probe sensitivity axis is detected. The change in diameter difference can be corrected to calibrate the zero point in any direction.

本発明では角度2点法プローブのゼロ点校正において、水準器やオートコリメータを必要としないので、外乱振動や空気の揺らぎの影響を受け難い角度2点法本来のロバスト性を保持できる。   In the present invention, since a level or an autocollimator is not required for zero-point calibration of the two-point angle method probe, the robustness inherent to the two-point method that is hardly affected by disturbance vibration or air fluctuation can be maintained.

本発明では被測定対象をゼロ点校正に用いないので、任意の形をした回転できない被測定対象にも角度2点法が適用でき、その形状を測定出来る。   In the present invention, since the object to be measured is not used for zero point calibration, the angle two-point method can be applied to an object to be measured which has an arbitrary shape and cannot be rotated, and its shape can be measured.

本発明では、ゼロ点校正用の回転軸を角度2点法プローブの傍に比較的簡易に保持して用いることができるため、測定作業中でも必要に応じて迅速にゼロ点校正を繰り返すことができる。   In the present invention, the rotation axis for zero point calibration can be relatively easily held and used beside the two-point angle method probe, so that the zero point calibration can be repeated quickly as necessary even during the measurement operation. .

本発明の多面鏡の軸方向の平行度を説明するための図である。It is a figure for demonstrating the parallelism of the axial direction of the polygonal mirror of this invention. 本発明に用いる多面鏡の軸方向平行度の変化を測定する方法を説明する図である。It is a figure explaining the method to measure the change of the axial parallelism of the polygon mirror used for this invention. 本発明の実施形態にかかる校正装置を示す図である。It is a figure which shows the calibration apparatus concerning embodiment of this invention. 重力による軸のたわみの影響の仕方について説明する図である。It is a figure explaining the method of the influence of the deflection of the axis | shaft by gravity. 本発明の実施形態にかかる校正装置を示す図である。It is a figure which shows the calibration apparatus concerning embodiment of this invention. 校正された角度センサSS1〜SS2を用いた真直形状測定装置を示す図である。It is a figure which shows the straight shape measuring apparatus using calibrated angle sensor SS1-SS2. 本発明に用いる複数の多面鏡間の円周方向の傾斜角の差を校正するときの原理的な構造を示す図である。It is a figure which shows the fundamental structure when calibrating the difference of the inclination angle of the circumferential direction between the some polygonal mirrors used for this invention.

以下、図面を参照して、本発明にかかる実施の形態を説明する。図5は本発明の実施形態にかかる校正装置を示す図である。図5において、ベースBS上に、平行に離間するようにして板状の支持台SP1,SP2の下端が固定されている。支持台SP1,SP2は上縁にV字状の切欠VL1,VL2を有しており、これが軸受の役目をする。切欠VL1,VL2内には回転軸SHが載置され、これにより回転軸SHは支持台SP1,SP2により2点で水平に回転可能に支持されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 is a diagram showing a calibration apparatus according to an embodiment of the present invention. In FIG. 5, the lower ends of the plate-like supporters SP1 and SP2 are fixed on the base BS so as to be spaced apart in parallel. The support bases SP1 and SP2 have V-shaped cutouts VL1 and VL2 at their upper edges, which serve as bearings. A rotation shaft SH is placed in the notches VL1 and VL2, and the rotation shaft SH is supported by the support bases SP1 and SP2 so as to be horizontally rotatable at two points.

回転軸SHの外周には、2つの多面鏡CP1、CP2が同軸に固定されている。尚、切欠VL1、VL2の間隔及び位置は、2つの多面鏡CP1、CP2の固定点における回転軸SHの重力による傾斜角が等しくなる(つまり2つの固定点を結ぶと水平線になる)ように、回転軸の支持位置の外側に重りを付けることも可能である。   Two polygonal mirrors CP1 and CP2 are coaxially fixed to the outer periphery of the rotation shaft SH. Note that the intervals and positions of the notches VL1 and VL2 are such that the inclination angles due to the gravity of the rotation axis SH at the fixed points of the two polygonal mirrors CP1 and CP2 are equal (that is, when the two fixed points are connected, they become a horizontal line). It is also possible to attach a weight to the outside of the support position of the rotating shaft.

更にベースBS上には、センサホルダHLが多面鏡CP1、CP2に沿って保持されている。センサホルダHLは、2つの角度センサSS1、SS2を保持している。2つの角度センサSS1、SS2は、それぞれ2つの多面鏡CP1、CP2の外周に対向するように配置されている。図示していないが、回転軸SHの回転角位置を検出する回転角センサを設けても良い。角度センサSS1、SS2の感度軸を鉛直方向とするには、センサホルダHLを回転軸真上に移動してセンサ軸を鉛直方向に向ければよい。角度センサSS1、SS2は、例えば光束を被測定面に出射して、その反射光を入射することで、出射光と反射光のズレから被測定面の角度を検出できる光学式のものであると良いが、それに限られない。   Further, on the base BS, a sensor holder HL is held along the polygonal mirrors CP1 and CP2. The sensor holder HL holds two angle sensors SS1, SS2. The two angle sensors SS1, SS2 are arranged so as to face the outer peripheries of the two polygonal mirrors CP1, CP2, respectively. Although not shown, a rotation angle sensor for detecting the rotation angle position of the rotation shaft SH may be provided. In order to set the sensitivity axes of the angle sensors SS1, SS2 in the vertical direction, the sensor holder HL may be moved right above the rotation axis and the sensor axis may be directed in the vertical direction. The angle sensors SS1 and SS2 are, for example, optical sensors that can detect the angle of the surface to be measured from the deviation between the emitted light and the reflected light by emitting a light beam to the surface to be measured and entering the reflected light. Good but not limited to it.

本実施の形態によれば、図3を参照して説明した校正方法にて、2つの角度センサSS1、SS2について相互のゼロ点の差の校正を行える。   According to the present embodiment, the calibration of the difference between the zero points of the two angle sensors SS1, SS2 can be performed by the calibration method described with reference to FIG.

回転軸SHに回転を与えるための手段は手動でも、電動モータでも有効である。電動の場合連続的に回転する方式でも、所定の回転角度間隔でステップ上に回転と停止を繰り返す方式でもよい。前者ではデータ収録のタイミングを決めるトリガ信号を別途発生する必要があるが、後者では静止時にサンプリングをするようにプログラムされていればよい。   Means for giving rotation to the rotating shaft SH can be effective manually or by an electric motor. In the case of electric drive, it may be a continuous rotation method or a method of repeating rotation and stop on a step at a predetermined rotation angle interval. In the former case, it is necessary to separately generate a trigger signal for determining the timing of data recording. In the latter case, it is only necessary to be programmed so as to perform sampling at rest.

なお、多面鏡2個の代わりに必要な長さの多面鏡や、2つ以上の円板を用いて軸方向の所定の2か所の相互の軸方向平行度差を校正して用いてもよいのは言うまでもない。多面鏡は2つ以上あれば足りる。更に、回転軸上に多面鏡を軸線方向に移動可能に取り付けて、隣接する多面鏡の間にスペーサを挿入し、多面鏡の間隔を任意に設定するようにしても良い。   It should be noted that, instead of using two polygon mirrors, a necessary length of polygon mirror or two or more disks may be used to calibrate the difference in axial parallelism between two predetermined axial positions. Needless to say, it is good. Two or more polygon mirrors are enough. Furthermore, a polygon mirror may be mounted on the rotation axis so as to be movable in the axial direction, and a spacer may be inserted between adjacent polygon mirrors to arbitrarily set the interval between the polygon mirrors.

図6は、このようにして校正された角度センサSS1、SS2を用いた真直形状測定装置を示す図である。図6に示すように、コラムCLに対して直進する移動ステージSTXに被測定試料SPを設置し、同時に、この被測定試料SPの水平面内にある面に、校正した角度2点法プローブ(センサホルダHLによりコラムCLに対して並列に取り付けられた2本のセンサSS1、SS2)を対向させて、被測定試料SPの表面形状を、移動ステージSTXを移動させながら角度測定を行う。センサSS1、SS2は上述した方法で構成されているので、被測定試料SPの表面形状と、移動ステージSTXの移動の際のピッチングの移動の際のピッチングを精度良く測定することができる。なお、2つのセンサSS1、SS2がx軸回りの微小傾斜角を検出する機能を有するときは、運動のローリングをも測定することができ、又ヨーイングも測定できるから結果として被測定試料SPの真直形状を測定できることとなる。   FIG. 6 is a view showing a straight shape measuring apparatus using the angle sensors SS1 and SS2 calibrated in this way. As shown in FIG. 6, a sample SP to be measured is placed on a moving stage STX that goes straight with respect to a column CL, and at the same time, a calibrated angle two-point probe (sensor) is placed on a surface within the horizontal plane of the sample SP to be measured. The two sensors SS1 and SS2) attached in parallel to the column CL by the holder HL are opposed to each other, and the surface shape of the sample SP to be measured is measured while moving the moving stage STX. Since the sensors SS1 and SS2 are configured by the above-described method, the surface shape of the sample SP to be measured and the pitching when the moving stage STX moves can be accurately measured. When the two sensors SS1 and SS2 have a function of detecting a minute inclination angle around the x axis, it is possible to measure the rolling of the movement and also measure the yawing. As a result, the straightness of the sample SP to be measured is obtained. The shape can be measured.

BS ベース
CL コラム
CP1、CP2 多面鏡
SH センサホルダ
MSH 可動センサホルダ
SC 直定規
SH 回転軸
SP1,SP2 支持台
SS1〜SS2 角度センサ
STX 移動ステージ
VL1、VL2 切欠
BS Base CL Column CP1, CP2 Polyhedral mirror
SH Sensor holder
MSH Movable sensor holder SC Straight ruler SH Rotating shaft SP1, SP2 Support base SS1-SS2 Angle sensor STX Moving stage VL1, VL2 Notch

Claims (6)

校正対象となる2つの角度センサを保持するベースと、
中心を挟んで対向する鏡面上の2点の軸方向傾斜角の和(軸方向平行度)が所定の回転角位置で校正されている2つ以上の多面鏡と、
前記ベースに対して回転可能に支持され、所望の間隔で前記多面鏡を取り付けた回転軸と、を有し、
校正対象となる2つの角度センサを前記多面鏡に対して相対的に固定し、前記所定の回転角位置において前記2つ以上の多面鏡の鏡面の軸方向傾斜角を、各角度センサを用いて測定して第1の測定値を求め、且つ前記所定の回転角位置から180度回転させた回転角位置において前記2つ以上の多面鏡の鏡面の軸方向傾斜角を、各角度センサを用いて測定して第2の測定値を求め、前記第1の測定値と前記第2の測定値とに基づいて、前記角度センサの相互のゼロ点位置を校正できることを特徴とする校正装置。
A base holding two angle sensors to be calibrated;
Two or more polygon mirrors in which the sum of the axial tilt angles (axial parallelism) of two points on the mirror surfaces facing each other across the center is calibrated at a predetermined rotational angle position;
A rotating shaft that is rotatably supported with respect to the base and has the polygon mirror attached at a desired interval;
Two angle sensors to be calibrated are fixed relative to the polygonal mirror, and the axial inclination angles of the mirror surfaces of the two or more polygonal mirrors at the predetermined rotation angle position are determined using the angle sensors. A first measurement value is obtained by measurement, and the tilt angles in the axial direction of the mirror surfaces of the two or more polygon mirrors at the rotation angle position rotated 180 degrees from the predetermined rotation angle position are measured using each angle sensor. A calibration apparatus characterized in that a second measurement value is obtained by measurement, and the mutual zero point positions of the angle sensors can be calibrated based on the first measurement value and the second measurement value.
前記2つ以上の多面鏡の鏡面の前記対向する2点での軸方向傾斜角の和(軸方向平行度)の一周に渡る平均値の相互差が校正されていて、前記2つのセンサの相互のゼロ点位置を前記傾斜角の和の平均直を用いて校正することを特徴とする請求項1に記載の校正装置   The mutual difference between the average values over one turn of the sum of the axial tilt angles (axial parallelism) at the two opposing points of the mirror surfaces of the two or more polygon mirrors is calibrated, and the two sensors 2. The calibration apparatus according to claim 1, wherein the zero point position is calibrated using an average of the sum of the inclination angles. 前記回転軸は2点で支持されており、重力により前記回転軸のたわみが生じたときに、たわみによる軸方向傾斜角が等しくなる2か所に前記多面鏡をそれぞれ取り付けたことを特徴とする請求項1又は2に記載の校正装置。   The rotating shaft is supported at two points, and when the deflection of the rotating shaft occurs due to gravity, the polygon mirrors are respectively attached at two locations where the axial inclination angles due to the deflection are equal. The calibration apparatus according to claim 1 or 2. 校正対象となる2つの角度センサを感度軸が水平面内にあるように前記多面鏡に対して相対的に固定し、前記所定の回転角位置において前記2つ以上の多面鏡の鏡面の軸方向傾斜角を、各角度センサを用いて測定して第1の測定値を求め、且つ前記所定の回転角位置に対して180度回転させた前記2つ以上の多面鏡の鏡面の軸方向傾斜角を、各角度センサを用いて測定して第2の測定値を求め、前記第1の測定値と前記第2の測定値とに基づいて、角度センサの相互のゼロ点のズレを求め、
更に校正対象となる2つの角度センサを感度軸が鉛直方向に向くように前記多面鏡に対して相対的に固定し、前記所定の回転角位置において前記2つ以上の多面鏡の鏡面の軸方向傾斜角を、各角度センサを用いて測定して第3の測定値を求め、且つ前記所定の回転角位置に対して180度回転させた前記2つ以上の多面鏡の鏡面の軸方向傾斜角を、各角度センサを用いて測定して第4の測定値を求め、前記第3の測定値と前記第4の測定値と、前記2の角度センサ相互のゼロ点のズレとに基づいて、前記回転軸の撓みによる前記多面鏡の軸方向傾斜角を求めることができることを特徴とする請求項1ないし3のいずれかに記載の校正装置。
Two angle sensors to be calibrated are fixed relative to the polygon mirror so that the sensitivity axis is in a horizontal plane, and the mirror surfaces of the two or more polygon mirrors are inclined in the axial direction at the predetermined rotation angle position. An angle is measured using each angle sensor to obtain a first measurement value, and an axial inclination angle of the mirror surface of the two or more polygon mirrors rotated by 180 degrees with respect to the predetermined rotation angle position is determined. , Using each angle sensor to obtain a second measurement value, and based on the first measurement value and the second measurement value, obtain a shift of the zero point of the angle sensor from each other,
Furthermore, two angle sensors to be calibrated are fixed relative to the polygon mirror so that the sensitivity axis is in the vertical direction, and the axial direction of the mirror surfaces of the two or more polygon mirrors at the predetermined rotation angle position A tilt angle is measured using each angle sensor to obtain a third measurement value, and an axial tilt angle of the mirror surface of the two or more polygon mirrors rotated 180 degrees with respect to the predetermined rotation angle position Is measured using each angle sensor to obtain a fourth measurement value, and based on the third measurement value, the fourth measurement value, and the deviation of the zero point between the two angle sensors, The calibration apparatus according to claim 1, wherein an axial inclination angle of the polygonal mirror due to the deflection of the rotation shaft can be obtained.
前記角度センサが、前記多面鏡の軸方向の傾斜に加えて、円周方向の傾斜角を検出できる2次元角度センサであって、前記軸方向の傾斜角のゼロ点を求める操作の際に、同時に円周方向の角度を検出して、予め校正されているそれぞれの円周方向傾斜角の角度センサ出力の一回転分の平均値の差から、円周方向傾斜角の角度センサのゼロ点のズレを校正することができる請求項4に記載の校正装置。   The angle sensor is a two-dimensional angle sensor capable of detecting a tilt angle in the circumferential direction in addition to the tilt in the axial direction of the polygonal mirror, and in an operation for obtaining a zero point of the tilt angle in the axial direction, At the same time, the angle in the circumferential direction is detected, and the zero point of the angle sensor in the circumferential direction is determined from the difference in the average value for one rotation of the angle sensor output in each circumferential direction that has been calibrated in advance. The calibration apparatus according to claim 4, wherein the deviation can be calibrated. 前記角度センサが、前記多面鏡の軸方向の傾斜に加えて、円周方向の傾斜角を検出できる2次元角度センサであって、この円周方向の角度から、前記所定の回転角位置を定めることを特徴とする請求項1〜5のいずれかに記載の校正装置。   The angle sensor is a two-dimensional angle sensor capable of detecting a tilt angle in the circumferential direction in addition to the tilt in the axial direction of the polygon mirror, and determines the predetermined rotation angle position from the angle in the circumferential direction. The calibration apparatus according to claim 1, wherein
JP2010035065A 2010-02-19 2010-02-19 Calibration device Active JP5601699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035065A JP5601699B2 (en) 2010-02-19 2010-02-19 Calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035065A JP5601699B2 (en) 2010-02-19 2010-02-19 Calibration device

Publications (2)

Publication Number Publication Date
JP2011169815A JP2011169815A (en) 2011-09-01
JP5601699B2 true JP5601699B2 (en) 2014-10-08

Family

ID=44684085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035065A Active JP5601699B2 (en) 2010-02-19 2010-02-19 Calibration device

Country Status (1)

Country Link
JP (1) JP5601699B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6416983B1 (en) * 2017-05-22 2018-10-31 ファナック株式会社 Rotation axis angle calibration method and angle calibration program
CN116618479B (en) * 2023-07-19 2023-09-22 常州三协电机股份有限公司 Screw rod straightening device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790961B2 (en) * 2001-11-26 2006-06-28 株式会社東北テクノアーチ Surface shape measuring device
JP4964691B2 (en) * 2007-06-27 2012-07-04 慧 清野 Measuring method of measured surface
JP5158791B2 (en) * 2008-05-20 2013-03-06 慧 清野 measuring device

Also Published As

Publication number Publication date
JP2011169815A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5546677B2 (en) Measuring method for surface measuring measuring machine
JP4992078B2 (en) Inclination angle measuring device, machine tool equipped with the same, and inclination angle calibration method for machine tool
JP2007071852A (en) Apparatus and method for measuring deep hole
CN111580072B (en) Surveying instrument and method of calibrating a surveying instrument
JP2008505328A (en) Measuring device having a plurality of distance sensors, calibration means for the measuring device and method for determining the shape of the surface
JP6657552B2 (en) Flatness measurement method
JP5030699B2 (en) Method and apparatus for adjusting thickness measuring apparatus
JP5252649B2 (en) Calibration device and straight shape measuring device
JP5601699B2 (en) Calibration device
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP2009122065A (en) Calibration tool and calibration method
US11940274B2 (en) Tilt detecting device and surveying instrument
JP6924953B2 (en) Shape measuring device and shape measuring method
JP2008089541A (en) Reference for measuring motion error and motion error measuring device
JP6765710B2 (en) All angle measuring instrument
JP5290038B2 (en) Measuring apparatus and measuring method
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
JP5460427B2 (en) Measuring method and shape measuring device
JP4980817B2 (en) Multipoint probe zero error related value recording device
JP6401618B2 (en) Measuring method and measuring device
JP2005127805A (en) Planar shape measuring method and system
JP2005308703A (en) Offset error calibration method for detector
JP4494189B2 (en) Accuracy measurement method and calibration method of non-contact image measuring machine
WO2022070439A1 (en) Tilt measurement device and tilt measurement method
JP5280890B2 (en) Sensor holder and sensor support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20130214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5601699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250