JP2008008879A - Measuring instrument, measuring reference, and precision machine tool - Google Patents

Measuring instrument, measuring reference, and precision machine tool Download PDF

Info

Publication number
JP2008008879A
JP2008008879A JP2006231631A JP2006231631A JP2008008879A JP 2008008879 A JP2008008879 A JP 2008008879A JP 2006231631 A JP2006231631 A JP 2006231631A JP 2006231631 A JP2006231631 A JP 2006231631A JP 2008008879 A JP2008008879 A JP 2008008879A
Authority
JP
Japan
Prior art keywords
signal
displacement
measured
radius
displacement meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006231631A
Other languages
Japanese (ja)
Inventor
Satoshi Kiyono
慧 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006231631A priority Critical patent/JP2008008879A/en
Publication of JP2008008879A publication Critical patent/JP2008008879A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To carry out highly precise measurement for a plane shape by scan of displacement gages. <P>SOLUTION: This measuring instrument is provided with the four displacement gages as total of the displacement gage Da for detecting axial going-in-and-out under rotation, when measuring irregularity along a circle of radius r on a face by rotation scan of the displacement gage Db, and a displacement gage Dc and a displacement gage Dd for executing scan measurement along the circle of radius r, on a straight line connecting measuring points of the displacement gage Da and the displacement gage Db. The circle of radius r is formed into a shape concentric to a rotation scan shaft and located on a reference circular ring SC disposed to be rotated reversely also to a position rotated 180° relatively to the circle of radius r, and a rotation motion error of the reference circular ring SC for the scan, the circle of radius r and an irregular shape along the circle of radius r are separation-identified by selecting six as total to be used out of outputs from the four displacement gages in the rotation scan before and after an reversal operation of the reference circular ring SC. The irregular shape along the circle obtained as a result therein is combined mathematically with irregular shapes along the straight lines obtained the plurality of straight lines, using another method to constitute the plane correctly. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、装置は精密な真直形状,平面形状の測定技術と作製技術に関し、特に測定装置、測定基準及び精密工作機械に関するものである。   The present invention relates to a precise straight shape and planar shape measurement technique and fabrication technique, and more particularly to a measurement apparatus, a measurement standard, and a precision machine tool.

精密な塗布工具の長尺化,ウエハの大型化,液晶画面の大面積化等により,長尺の真直形状,大面積の平面形状を高精度に測定する必要が高まっているが,物理的に与えられる測定基準の確からしさはもはや限界が来ている。そこで,物理的基準に頼らない,数学的に与えられる基準での測定法が求められている。   The need to measure long straight shapes and large area planar shapes with high precision is increasing due to the increase in the length of precision coating tools, the enlargement of wafers, and the increase in the area of LCD screens. The certainty of the metrics given is no longer limited. Therefore, there is a need for a measurement method based on mathematically given standards that does not rely on physical standards.

現在,重力によるたわみの生じない垂直面内にある直線に沿う真直形状は,改良型反転法で,数学的厳密さで測定できることが知られており,既に実用されている(非特許文献1参照)。
艾暁庸,清水毅,小尾誠:改良型反転法による真直度測定,精密工学会誌,66-10(2000)1578-1602
At present, it is known that a straight shape along a straight line in a vertical plane where no deflection due to gravity occurs can be measured with mathematical precision by an improved inversion method, and has already been put into practical use (see Non-Patent Document 1). ).
Tsuji, Jun Shimizu, Makoto Ooo: Straightness measurement by the improved inversion method, Journal of the Japan Society for Precision Engineering, 66-10 (2000) 1578-1602

従来,知られていなかった円周に沿う高さ方向の凹凸形状(真直形状)を回転走査の運動誤差やその繰り返し誤差に影響されずに測定する方法が課題であった。また,従来,平面形状を数学的に正しく測定するには,直交する複数の直線形状と対角線の直線形状をそれぞれ,改良型反転法で求める方法しか知られておらず,現実的には適用の難しい方法で,大きな平面を正しく測定するための現実的な方法の構築が課題であった。さらに,従来知られている反転法が,重力によるたわみの影響を取り除けない方法であり,いかにして鉛直平面以外での高精度の平面形状測定が行うかが産業界の課題であった。   Conventionally, a method for measuring an uneven shape (straight shape) in the height direction along a circumference that has not been known has been a problem without being affected by a rotational scanning motion error or its repetition error. Conventionally, in order to measure the planar shape mathematically correctly, there is only known a method for obtaining a plurality of orthogonal linear shapes and diagonal linear shapes by an improved inversion method. The challenge was to build a realistic method for correctly measuring a large plane in a difficult way. Furthermore, the conventionally known reversal method is a method that cannot eliminate the influence of deflection due to gravity, and the issue for the industry is how to perform highly accurate planar shape measurement other than the vertical plane.

本発明は、数学的に正しい,真直形状測定を円周に沿う形で実現するとともに,さらに,従来直線に沿っての真直形状を走査運動誤差やその繰り返し誤差に影響されないで測定する,改良型反転法と組み合わせて,鉛直面内の平面形状を数学的に正しく測定する方法を提供する。さらに,補助試料の重力によるたわみさえなければ,改良型反転法が水平面内の面形状の測定にも適用できることに着目し,補助試料として,長軸の円筒端面や高さの十分高い板の端面を用いる方法を提供する。   The present invention realizes a straight shape measurement that is mathematically correct along a circumference, and further measures a straight shape along a conventional straight line without being affected by a scanning motion error or its repetition error. In combination with the inversion method, it provides a method for mathematically measuring the planar shape in the vertical plane. Furthermore, paying attention to the fact that the improved inversion method can be applied to the measurement of the surface shape in the horizontal plane as long as the auxiliary sample is not deflected due to gravity, and as the auxiliary sample, a long-axis cylindrical end surface or an end surface of a sufficiently high plate A method of using is provided.

請求項1に記載の測定装置は、被測定円板の表面形状を測定する測定装置において、
被測定円板を支持し、回転する回転テーブルと、
被測定円板に対して同心に配置され、前記回転テーブルとともに回転する基準円輪と、
被測定円板の表面上回転中心点aにおける表面垂直方向の変位を検出して第1の信号を出力する第1の変位計Aと、
被測定円板の表面上、回転中心点aから半径rの点bにおける表面垂直方向の変位を検出して第2の信号を出力する第2の変位計Bと,
回転中心点aと点bを通る線が前記基準円輪上の半径Rの円と交わる点cにおいて,表面垂直方向の変位を検出して第3の信号を出力する第3の変位計Cと、
回転中心点aに対し、点cから180度ずれた前記基準円輪上の半径Rの円と交わる点dにおいて,表面垂直方向の変位を検出して第4の信号を出力する第4の変位計Dと、を有し、
前記回転テーブルを回転させながら測定を行ったとき、前記第1の信号と前記第2の信号と前記第3の信号とに基づいて得られた出力値を第1群データとし、基準円輪を180度反転して,前記回転テーブルを回転させながら測定を行ったとき、前記第1の信号と前記第2の信号と前記第4の信号とに基づいて得られた出力値を第2データ群として,両データ群を使った計算から,軸の回転運動誤差と半径r及び半径Rに沿う表面形状を求めることを特徴とする。
The measuring apparatus according to claim 1, wherein the measuring apparatus measures the surface shape of the disk to be measured.
A rotating table that supports and rotates the disk to be measured;
A reference ring arranged concentrically with the disk to be measured and rotating together with the rotary table;
A first displacement meter A that detects a displacement in a surface vertical direction at a rotation center point a on the surface of the disk to be measured and outputs a first signal;
A second displacement meter B for detecting a displacement in a direction perpendicular to the surface from a rotation center point a to a point b having a radius r on the surface of the disk to be measured, and outputting a second signal;
A third displacement meter C for detecting a displacement in the direction perpendicular to the surface and outputting a third signal at a point c where a line passing through the rotation center points a and b intersects a circle of radius R on the reference ring; ,
A fourth displacement that detects a displacement in the direction perpendicular to the surface and outputs a fourth signal at a point d that intersects with a circle of radius R on the reference ring that is shifted from the point c by 180 degrees with respect to the rotation center point a. A total of D and
When the measurement is performed while rotating the rotary table, the output value obtained based on the first signal, the second signal, and the third signal is used as the first group data, When the measurement is performed while reversing 180 degrees and rotating the rotary table, an output value obtained based on the first signal, the second signal, and the fourth signal is used as the second data group. From the calculation using both data groups, the rotational motion error of the shaft and the surface shape along the radius r and radius R are obtained.

より具体的には、水平におかれた回転軸または回転テーブルに取り付けられた鉛直面内にある被測定円板と,前記被測定円板と同心でかつ一体となってと回転することのできる基準円輪を有し,かつ前記被測定円板に対して前記回転軸周りに相対的に180度回転した位置に前記基準円輪の形状に変化が生じないように配置することの出来る基準円輪固定治具を有して,前記被測定円板の中心点aの円板面垂直方向の変位を検出する変位計Aと,前記円板面で半径rの点bにおいて円板面垂直方向の変位を検出する変位計Bと,点aと点bを通る線が前記基準円輪上の半径Rの円と交わる点cにおいて,前記円板面垂直方向の変位を検出する変位計Cを有していて,回転軸が一回転する間の前記3個の変位計の出力を記録し,その後,基準円輪および変位計Cを被測定円板に対して相対的に180度反転した位置に配置してから,もう一度回転軸が一回転する間の前記3個の変位計の出力を得て,得られた変位計の合計6つの出力データから,それぞれの円周に沿った,被測定円板と基準円輪の形状と回転軸の回転中に生じる軸方向の変位,回転軸の回転中に生じる軸の傾斜による変位計出力成分を分離する計算をして,被測定円板の半径rの円周に沿う凹凸形状を正しく測定するとともに、基準円輪の半径Rの円周に沿う凹凸形状を校正して基準として用いることで,前記被測定円板の任意の半径の円周に沿う凹凸形状を測定する測定装置である。   More specifically, the disk to be measured can be rotated concentrically and integrally with the disk to be measured in the vertical plane attached to the horizontal rotating shaft or the rotating table. A reference circle which has a reference ring and can be arranged so as not to change in the shape of the reference ring at a position rotated 180 degrees around the rotation axis with respect to the disk to be measured. A displacement gauge A having a ring fixing jig for detecting a displacement of the center point a of the disk to be measured in a direction perpendicular to the disk surface, and a direction perpendicular to the disk surface at a point b having a radius r on the disk surface A displacement meter B that detects the displacement of the disk surface, and a displacement meter C that detects the displacement in the direction perpendicular to the disk surface at a point c where a line passing through points a and b intersects a circle of radius R on the reference ring. And recording the output of the three displacement meters during one rotation of the rotating shaft, and then the reference ring and displacement meter After placing C at a position that is inverted 180 degrees relative to the disk to be measured, obtain the output of the three displacement gauges during one rotation of the rotating shaft once again. From the total of six output data, the shape of the disk to be measured and the reference annulus, the axial displacement that occurs during the rotation of the rotating shaft, and the displacement due to the tilt of the shaft that occurs during the rotating shaft along each circumference Calculate the separation of the measured output component to correctly measure the uneven shape along the circumference of the radius r of the disk to be measured, and calibrate the uneven shape along the circumference of the radius R of the reference ring as a reference By using it, it is a measuring apparatus which measures the uneven | corrugated shape along the circumference of the arbitrary radii of the said to-be-measured disc.

更に、本発明は、端面が基準円輪となる円筒の軸を十分に長く取って反転のための回転と再固定の際に、重力の影響による円筒端面の変形が生じ難い構造にして、水平面内に置かれた平面円板形状を測定できる構造にした請求項1に記述されたと同様の原理の、円周に沿う凹凸形状を測定装置である。   Furthermore, the present invention provides a structure in which the end surface of the cylinder having a reference ring is sufficiently long to prevent deformation of the end surface of the cylinder due to the influence of gravity when rotating and re-fixing for reversal. 2. An uneven shape along the circumference of the same principle as described in claim 1, wherein the measuring device is a structure capable of measuring the shape of a flat disk placed inside.

更に、本発明は、被測定円板の直径に沿う真直形状を,改良型反転法と呼ばれる方法で測定するために,被測定円板面に垂直な方向に感度軸を揃えて,3本の変位センサを被測定円板の一つの直径を含む平面内で直径に垂直な直線に沿う方向に並べて3本一体として搭載して被測定円板の前記直径方向に移動するステージと,被測定円板の直径に平行な軸周りに反転できる基準直定規を有する真直度測定部と,請求項1に記載した円に沿う円板面垂直方向の凹凸形状測定部を有して,改良型反転法によって基準円輪と基準直定規の真直形状を校正して基準とするとともに、校正結果を基準にして測定した被測定円板の複数の直線に沿う真直形状と,複数の同心円に沿う真直形状から被測定円板の面形状を構成して,垂直面内にある平面形状を測定する測定装置である。   Furthermore, in the present invention, in order to measure a straight shape along the diameter of the disk to be measured by a method called an improved reversal method, the sensitivity axes are aligned in a direction perpendicular to the surface of the disk to be measured. A stage that moves in the diameter direction of the disk to be measured by mounting three displacement sensors in a plane that includes one diameter of the disk to be measured along a straight line perpendicular to the diameter and mounted as a unit, and a circle to be measured An improved reversal method comprising a straightness measuring unit having a reference straight ruler that can be reversed about an axis parallel to the diameter of the plate, and a concave / convex shape measuring unit in a direction perpendicular to the disk surface along the circle according to claim 1. Calibrate the straight shape of the reference ring and the reference straight ruler as a reference, and use the straight shape along multiple straight lines of the disk to be measured measured based on the calibration results, and the straight shape along multiple concentric circles. Configure the surface shape of the disk to be measured and change the planar shape in the vertical plane. A measuring device for constant for.

更に、本発明は、上述した測定装置に加えて、測定に許容される不確かさに比べて,端面のたわみが十分に小さくなる程度の高さを有する板の端面を基準直定規とする改良型反転法を水平面内の被測定円板直径上の直線形状を測定する測定部を有して、被測定円板の複数の直径と円周上の凹凸から、水平面内の被測定円板の平面形状を測定する構造にした、同様の原理の測定装置である。   Furthermore, in addition to the above-described measuring apparatus, the present invention is an improved type in which the end face of a plate having a height such that the deflection of the end face is sufficiently smaller than the uncertainty allowed for measurement is used as a reference straight ruler. A measuring unit that measures the linear shape on the diameter of the disk to be measured in the horizontal plane using the inversion method, and the plane of the disk to be measured in the horizontal plane from the plurality of diameters of the disk to be measured and the unevenness on the circumference This is a measuring device based on the same principle and having a structure for measuring the shape.

更に、本発明は、精密な平面や球面の加工を行う工作機械であって,前記基準円輪と前記基準直定規の一方又は両方を内蔵し,あるいは,必要に応じてそれらを取り付ける構造を有して,加工物の加工面,あるいは,加工物を固定する軸端面やそれと一体となって回転する加工物取り付け面を,前記被測定円板として測定出来る構造にして,上述した測定の結果から,前記加工面や軸端面や前記加工物取り付け面の精度あるいは,工作機械の運動精度を検査することの出来る,超精密工作機械である。   Furthermore, the present invention is a machine tool for processing a precise flat surface or spherical surface, and has a structure in which one or both of the reference ring and the reference straight ruler are built in or attached as necessary. Then, the work surface of the work piece, or the shaft end face that fixes the work piece or the work attachment surface that rotates integrally with the work piece is structured so that it can be measured as the disk to be measured. This is an ultra-precision machine tool that can inspect the accuracy of the machining surface, the shaft end surface, the workpiece mounting surface, or the movement accuracy of the machine tool.

更に、本発明は、精密な平面や球面の加工を行う工作機械であって,校正後の前記補助輪,前記基準直定規と同様に,測定の際に使用可能な基準を内蔵し、あるいは、必要なときに前記基準として使用可能な校正の済んだ前記補助輪や,前記基準直定規を着脱可能なジグ部を有して、加工物の加工面,あるいは,加工物を固定する軸端面やそれと一体となって回転する加工物取り付け面の形状精度あるいは工作機械の運動精度を測定できる,超精密工作機械である。   Furthermore, the present invention is a machine tool for processing a precise plane or spherical surface, and has a built-in reference that can be used for measurement, like the auxiliary wheel after calibration, the reference straight ruler, or The auxiliary wheel that has been calibrated that can be used as the reference when necessary, and a jig part that can be attached to and detached from the reference straight ruler, and a work surface of the work piece or a shaft end face for fixing the work piece, It is an ultra-precision machine tool that can measure the shape accuracy of the workpiece mounting surface that rotates together with it or the motion accuracy of the machine tool.

更に、本発明は、直交する2枚の板を直径の位置に内包する比較的長い中空円筒において,円筒両端の円周と直交する板の両端における円筒軸方向の凹凸が校正されている開園運動および直線運動測定基準又は真直形状,平面形状測定用比較基準である。   Furthermore, the present invention provides a relatively long hollow cylinder containing two orthogonal plates in a diameter position, and the opening and closing movement in which the irregularities in the cylindrical axis direction at both ends of the plate orthogonal to the circumference of both ends of the cylinder are calibrated. And a linear motion measurement standard or a comparison standard for measuring a straight shape and a planar shape.

更に、本発明は、二つの円筒が、直径と重なる複数の板で連結されている同軸の2重の比較的長い円筒であって、内部円筒は中空で回転軸などが挿入できる形になっており,円筒の端面と円筒を連結している板の端面の円筒軸方向の凹凸形状が校正されている、直線と平面の運動測定基準または,真直形状,平面形状測定用比較基準である。   Further, according to the present invention, the two cylinders are coaxial and relatively long cylinders connected by a plurality of plates overlapping the diameter, and the inner cylinder is hollow so that a rotating shaft or the like can be inserted. This is a linear and flat motion measurement standard or a straight and flat shape measurement comparison standard in which the cylindrical concavo-convex shape of the cylindrical end surface and the end surface of the plate connecting the cylinders is calibrated.

更に、本発明は、大きな平面の移動真直度を検査するために、回転軸と同軸にあって,回転しない基準円輪を有し,上記基準円輪の直径上で基準円輪の凹凸を検出する方向に1本,上記平面の凹凸を検出する方向に一本、回転軸上で上記平面を検出する方向に一本の合計3本、あるいは平面を測定する方向に設置した2本の変位計の並ぶ直線上のもう一本の変位計を含め,合計4本の変位計を回転軸とともに回転する変位計支持腕に取り付け、回転中心に置かれた上記変位計と基準円輪によって変位計回転時の回転軸の傾斜と軸方向出入りの運動誤差を検出補正しながら,前記平面上に描かれる2つの同心円周に沿う真直度をそれぞれの直線上の一つの変位計で測定し,さらに,直交2軸の3点法で平面の直交2軸の形状と移動真直度を分離測定し,円周上の真直形状と,直交2軸の真直形状を用いて,面形状を算出する測定装置である。   Furthermore, the present invention has a reference ring that is coaxial with the rotation axis and does not rotate in order to inspect the straightness of movement of a large plane, and detects irregularities of the reference ring on the diameter of the reference ring. 1 in the direction to detect, 1 in the direction to detect the unevenness of the plane, 3 in total in the direction to detect the plane on the rotation axis, or 2 displacement meters installed in the direction to measure the plane A total of four displacement meters, including another displacement meter on a straight line, are attached to a displacement meter support arm that rotates with the rotation axis, and the displacement meter is rotated by the displacement meter and the reference ring placed at the center of rotation. Measure the straightness along two concentric circles drawn on the plane with one displacement meter, while detecting and correcting the movement error of the rotation axis tilt and the axial movement. Two-axis three-point method separates the shape of two orthogonal planes and the straightness of movement It is a measuring device that calculates the surface shape using a straight shape on the circumference and a straight shape of two orthogonal axes.

更に、本発明は,基準円輪の代わりに,校正していない基準円輪を用い,前記基準円輪を回転軸に対して相対的に180度回転する反転走査の前後での計測をすることで,改良型反転法を実現し,基準円輪をその場で校正することの出来る測定装置である。   Furthermore, the present invention uses a non-calibrated reference ring instead of the reference ring, and performs measurement before and after reverse scanning in which the reference ring is rotated 180 degrees relative to the rotation axis. Therefore, it is a measuring device that realizes the improved inversion method and can calibrate the reference ring on the spot.

本発明によって、今まで知られていなかった平面形状の正しい測定法が提供される。さらに、工学的に満足のできる確からしさで、重力によるたわみの影響を含む断面直線形状、平面形状の測定ができるようになる。今後ますます需要の増える大きな平面の平面形状、その平面を作るための大きな工作機械の運動精度の測定ができるようになる。   The present invention provides a correct method for measuring a planar shape that has not been known so far. Furthermore, it is possible to measure a straight cross-sectional shape and a planar shape including the influence of deflection due to gravity with a certainty that is satisfactory from an engineering standpoint. In the future, it will be possible to measure the planar shape of large planes, which will be increasingly in demand, and the motion accuracy of large machine tools to create such planes.

請求項2に記載の測定装置は、請求項1に記載の発明において、前記第2の変位計Bを被測定円板の直径方向に移動させるステージを備え、前記ステージにより前記第2の変位計Bを被測定円板の直径方向に移動させながら、構成された前記基準円輪を用いて、前記第1,第3,第4の信号の内2つを使って前記第2の信号に含まれる回転運動誤差を補正して,前記第2の信号から円板上の希望する半径rでの形状データを得ることを特徴とする。   According to a second aspect of the present invention, there is provided a measuring apparatus according to the first aspect of the present invention, further comprising a stage for moving the second displacement meter B in the diameter direction of the disk to be measured, and the second displacement meter by the stage. Included in the second signal by using two of the first, third, and fourth signals using the reference circle constructed while moving B in the diameter direction of the disk to be measured. The rotational motion error is corrected, and shape data at a desired radius r on the disk is obtained from the second signal.

請求項3に記載の測定装置は、請求項1に記載の発明において、前記第2の変位計Bを被測定円板の直径方向に移動させるステージを備え、前記ステージにより前記第2の変位計Bを被測定円板の直径方向に移動させて半径の異なる円上での、前記第2の信号を得ることを特徴とする。なお,請求項1の装置で基準円輪の真直形状が巣での校正されているときは,変位計Aを取り除いても,請求項1に記載の変位計C,Dのみで回転運動中の軸方向の出入りと軸の傾斜誤差を補正することが出来る。   According to a third aspect of the present invention, there is provided a measuring apparatus according to the first aspect of the invention, further comprising a stage for moving the second displacement meter B in the diameter direction of the disk to be measured. B is moved in the diameter direction of the disk to be measured to obtain the second signal on circles having different radii. In addition, when the straight shape of the reference ring is calibrated at the nest in the device of claim 1, even if the displacement meter A is removed, only the displacement meters C and D of claim 1 are in rotation. Axial entry / exit and shaft tilt error can be corrected.

請求項4に記載の測定装置は、請求項3に記載の発明において、被測定円板と平行して、前記被測定円板に対向する表面と、その裏側の裏面とを有する基準直定規を配置し、更に前記変位計Bを搭載した前記ステージに、前記基準直定規の表面垂直方向の変位を検出する変位計Qと、前記基準直定規の裏面垂直方向の変位を検出する変位計Rとを取り付けて、前記ステージを被測定円板の直径方向に移動させながら、3つの前記変位計B、Q、Rから出力された信号を第1の信号群とし、次に、前記基準直定規の表裏面を逆にして、前記ステージを被測定円板の直径方向に移動させながら、3つの前記変位計B、Q、Rから出力された信号を第2の信号群としたときに、前記変位計Bの出力値を、前記第1の信号群における前記変位計Q又はRの信号と、前記第2の信号群における前記変位計R又はQの信号とに基づいて補償することによって、被測定円板の直径方向の形状を求めることを特徴とする。なお当然のことならがら,基準直定規が表裏の一方の面しか使えないときもこの方法は成り立つ。   According to a fourth aspect of the present invention, there is provided the measuring apparatus according to the third aspect, wherein a reference straight ruler having a surface facing the disk to be measured and a rear surface on the back side in parallel with the disk to be measured. A displacement meter Q for detecting displacement in the vertical direction of the front surface of the reference straight ruler, and a displacement meter R for detecting displacement in the reverse direction of the back surface of the reference straight ruler. And moving the stage in the diameter direction of the disk to be measured, the signals output from the three displacement meters B, Q, R are set as the first signal group, and then the reference straight ruler When the signals output from the three displacement meters B, Q, and R are used as the second signal group while moving the stage in the diameter direction of the disk to be measured with the front and back sides reversed, the displacement The output value of the meter B is the displacement meter Q or R in the first signal group. And the shape of the disk to be measured in the diametrical direction are obtained by performing compensation based on the above signal and the signal of the displacement meter R or Q in the second signal group. Of course, this method is also valid when the standard ruler can only be used on one side of the front and back.

請求項5に記載の測定装置は、請求項1〜4のいずれかに記載の発明において、前記基準円輪は、直径に対して軸線方向長が所定の割合以上であることを特徴とする。   According to a fifth aspect of the present invention, in the measurement apparatus according to any one of the first to fourth aspects, the reference ring has an axial length that is a predetermined ratio or more with respect to a diameter.

請求項6に記載の測定装置は、請求項4または5に記載の発明において、前記基準直定規は、表面及び裏面の長さに対して幅が所定の割合以上であることを特徴とする。   According to a sixth aspect of the present invention, in the invention according to the fourth or fifth aspect, the reference straight ruler has a width equal to or greater than a predetermined ratio with respect to the lengths of the front surface and the back surface.

請求項7に記載の測定装置は、被測定物の表面形状を測定する測定装置において、
被測定物の表面の法線回りに回転可能であって、且つ前記法線に直交する方向に移動可能な回転軸と、
前記回転軸の軸線と同心に配置され、被測定物に対して回転しないが前記回転軸と一体的に移動する基準円輪と、
前記被測定物と前記基準円輪との間に配置され、前記回転軸に取り付けられて回転する支持腕と、
前記支持腕に取り付けられており、被測定物の表面上、前記回転軸の回転軸線が交差する点aにおける表面垂直方向の変位を検出して第1の信号を出力する第1の変位計Aと、
前記支持腕に取り付けられており、前記基準円輪上の半径Rの円と交わる点cにおいて,表面垂直方向の変位を検出して第3の信号を出力する第3の変位計Cと、
点a及び点cとは異なる測定点の変位を測定して、測定信号を出力する第2の変位計とを有し、
前記回転軸と共に支持腕を回転させながら測定を行ったとき、前記第1の信号と前記測定信号と前記第3の信号とに基づいて得られた出力値を用いて計算することで、前記基準円輪の校正を行うようになっており、
前記第2の変位計は、前記支持腕に取り付けられており、被測定物の表面上、点aから半径rの点bにおける表面垂直方向の変位を検出して測定信号としての第2の信号を出力する変位計B,或いは前記支持腕に取り付けられており、前記回転軸の回転軸線に対し、点cから180度ずれた前記基準円輪上の半径Rの円と交わる点dにおいて,表面垂直方向の変位を検出して測定信号としての第5の信号を出力する変位計Dであることを特徴とするので、校正された基準円輪を用いて、精度良く被測定物の面形状を測定できる。
The measuring apparatus according to claim 7 is a measuring apparatus for measuring a surface shape of an object to be measured.
A rotation axis that is rotatable around the normal of the surface of the object to be measured and is movable in a direction perpendicular to the normal;
A reference ring arranged concentrically with the axis of the rotary shaft and not integrally rotating with the object to be measured but moving integrally with the rotary shaft;
A support arm that is disposed between the object to be measured and the reference ring and is attached to the rotation shaft and rotates;
A first displacement meter A, which is attached to the support arm, detects a displacement in the direction perpendicular to the surface at a point a where the rotation axis of the rotation axis intersects on the surface of the object to be measured, and outputs a first signal. When,
A third displacement meter C that is attached to the support arm and detects a displacement in the direction perpendicular to the surface and outputs a third signal at a point c intersecting with a circle of radius R on the reference ring;
A second displacement meter that measures a displacement at a measurement point different from the points a and c and outputs a measurement signal;
When the measurement is performed while rotating the support arm together with the rotating shaft, the reference value is calculated by using the output value obtained based on the first signal, the measurement signal, and the third signal. The circle is calibrated.
The second displacement meter is attached to the support arm, and detects a displacement in a direction perpendicular to the surface from a point a to a point b having a radius r on the surface of the object to be measured, thereby generating a second signal as a measurement signal. At a point d that intersects with a circle of radius R on the reference ring that is 180 degrees away from point c with respect to the axis of rotation of the axis of rotation. Since the displacement meter D detects the displacement in the vertical direction and outputs a fifth signal as a measurement signal, the surface shape of the object to be measured can be accurately determined using a calibrated reference ring. It can be measured.

ここで、3点法とは、被測定物の表面を3つの変位計を用いて複数箇所で測定することによって、その表面形状を求める測定法をいい、たとえば小尾誠、小林義之:逐次3点法を応用した円周上の変位測定(測定原理と測定誤差の考察)、機論(C)58,(1992)1278-1283;清野慧,高偉: 多点法によるソフトウエアデータムとその誤差評価,日本機械学会論文集(C),58 (1992),2262-2267;伊藤俊治,成清辰生,伊藤正美:2次元最小2乗逐次3点法による平面形状誤差の測定,精密会誌58-6(1992),1023-1028等に詳しく説明されている。   Here, the three-point method is a measurement method for determining the surface shape by measuring the surface of the object to be measured at a plurality of locations using three displacement meters. For example, Makoto Koo and Yoshiyuki Kobayashi: 3 points sequentially Displacement measurement on the circumference applying the method (consideration of measurement principle and measurement error), theory (C) 58, (1992) 1278-1283; Kiyono, Satoshi, Takawei: Software datum by multipoint method and its error Evaluation, Transactions of the Japan Society of Mechanical Engineers (C), 58 (1992), 2262-2267; Toshiharu Ito, Yayoi Narikiyo, Masami Ito: Measurement of planar shape error by two-dimensional least-squares sequential three-point method, Precision Journal 58- 6 (1992), 1023-1028 and the like.

請求項8に記載の測定装置は、請求項7に記載の発明において、前記支持腕に取り付けられており、被測定物の表面上、点aと点bとを結ぶ直線上であって点aから半径lの点eにおける表面垂直方向の変位を検出して第4の信号を出力する第4の変位計Eを有することを特徴とするので、より精度の高い測定ができる。   The measuring apparatus according to an eighth aspect is the invention according to the seventh aspect, wherein the measuring apparatus is attached to the support arm, is on a straight line connecting the point a and the point b on the surface of the object to be measured, and the point a Since the fourth displacement meter E that detects the displacement in the direction perpendicular to the surface at the point e having the radius l and outputs the fourth signal is provided, a more accurate measurement can be performed.

請求項9に記載の測定基準は、前記第4の測定装置により測定され、回転走査と直線走査の運動誤差測定に用いられ、互いに中央で直交する2枚の板材と、前記板材とを囲む中空円筒とからなり、前記中空円筒は軸線から半径rの位置に端面を有することを特徴とする。また,フィゾー型干渉計などの基準試料としても利用できる。   The measurement standard according to claim 9 is measured by the fourth measuring device, is used for measuring a movement error of rotational scanning and linear scanning, and is a hollow surrounding two plate members orthogonal to each other at the center and the plate member The hollow cylinder has an end surface at a radius r from the axis. It can also be used as a reference sample for Fizeau interferometers.

請求項10に記載の測定基準は、前記第4の測定装置により測定され、回転走査と直線走査の運動誤差測定に用いられ、互いに中央で直交する2枚の板材と、前記板材とを囲む内側中空円筒と、前記内側中空円筒を内包する外側中空円筒とからなり、前記内側中空円筒は軸線から半径lの位置に端面を有し、前記外側中空円筒は軸線から半径rの位置に端面を有することを特徴とする。また,フィゾー型干渉計などの基準試料としても利用できる。   The measurement reference according to claim 10 is measured by the fourth measurement device and is used for measuring a movement error in rotational scanning and linear scanning, and includes an inner side surrounding two plate members orthogonal to each other at the center and the plate member A hollow cylinder and an outer hollow cylinder that encloses the inner hollow cylinder, the inner hollow cylinder having an end face at a radius l from the axis, and the outer hollow cylinder having an end face at a radius r from the axis. It is characterized by that. It can also be used as a reference sample for Fizeau interferometers.

請求項11に記載の精密工作機械は、請求項1〜8のいずれかに記載の測定装置を有することを特徴とする。このような精密工作機械としては、たとえば特開2001-353643号公報に記載されているものを用いることができる。   A precision machine tool according to an eleventh aspect includes the measuring device according to any one of the first to eighth aspects. As such a precision machine tool, for example, the one described in JP 2001-353643 A can be used.

請求項12に記載の精密工作機械は、請求項9または10に記載の測定基準を有することを特徴とする。このような精密工作機械としては、たとえば特開2001-353643号公報に記載されているものを用いることができる。   A precision machine tool according to a twelfth aspect has the measurement standard according to the ninth or tenth aspect. As such a precision machine tool, for example, the one described in JP 2001-353643 A can be used.

以下、図面を参照して本発明の実施の形態について説明する。なお、以下の実施の形態において、変位計からの信号は不図示の演算回路に送信され、処理されるようになっている。変位計としては、いわゆる非接触式の変位計が好ましいが、プローブを被測定物に接触させることで、その変位を電気信号として出力する接触式の変位計であってもよい。   Embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, a signal from the displacement meter is transmitted to an arithmetic circuit (not shown) for processing. As the displacement meter, a so-called non-contact displacement meter is preferable, but a contact displacement meter that outputs the displacement as an electrical signal by bringing the probe into contact with the object to be measured may be used.

図1に従って,測定装置の原理を説明する。説明の都合上変位計は4本使った形を示す。図1に示す測定装置は、被測定円板CPを支持し、回転軸を水平として回転する回転テーブルRTと、被測定円板CPに対して同心に配置され、回転テーブルRTとともに回転する基準円輪SCと、被測定円板CPの表面上回転中心点aにおける表面垂直方向の変位を検出して第1の信号を出力する第1の変位計Daと、被測定円板CPの表面上、回転中心点aから半径rの点bにおける表面垂直方向の変位を検出して第2の信号を出力する第2の変位計Dbと,回転中心点aと点bを通る線が基準円輪SC上の半径Rの円と交わる点cにおいて,表面垂直方向の変位を検出して第3の信号を出力する第3の変位計Dcと、回転中心点aに対し、点cから180度ずれた前記基準円輪上の半径Rの円と交わる点dにおいて,表面垂直方向の変位を検出して第4の信号を出力する第4の変位計Dと、を有している。なお、変位計Da〜Ddは、不図示の剛体に固定されているものとする。また、基準円輪SCは、90度ごとに配置された保持治具HDにより、回転テーブルRTに固定されている。   The principle of the measuring apparatus will be described with reference to FIG. For convenience of explanation, four displacement gauges are shown. The measuring apparatus shown in FIG. 1 supports a disk CP to be measured and rotates with a rotation axis horizontal, and a reference circle that is arranged concentrically with the disk to be measured CP and rotates together with the rotation table RT. A ring SC, a first displacement meter Da that detects a displacement in the direction perpendicular to the surface at a rotation center point a on the surface of the disk CP to be measured, and outputs a first signal; on the surface of the disk CP to be measured; A second displacement meter Db that detects a displacement in the surface vertical direction from a rotation center point a to a point b having a radius r and outputs a second signal, and a line passing through the rotation center point a and the point b is a reference circle SC. A third displacement meter Dc that detects a displacement in the direction perpendicular to the surface and outputs a third signal at a point c that intersects the circle of radius R above, and a point 180 degrees away from the point c with respect to the rotation center point a Displacement in the direction perpendicular to the surface is detected at a point d that intersects the circle of radius R on the reference ring Te has fourth displacement meter and D for outputting a fourth signal. The displacement meters Da to Dd are fixed to a rigid body (not shown). In addition, the reference ring SC is fixed to the rotary table RT by a holding jig HD arranged every 90 degrees.

図1(a)に示す一回目の反転前の測定(θ=0°)では、4つの変位計Da〜Ddから出力される信号を、それぞれ第1の信号S1A(θ)、第2の信号S1B(θ)、第3の信号S1C(θ)、第4の信号S1D(θ)とあらわすと、以下の式(1)、(2)、(3)、(4)であたえられる。 In the measurement before the first reversal (θ = 0 °) shown in FIG. 1A , the signals output from the four displacement meters Da to Dd are respectively the first signal S 1A (θ) and the second signal. The signal S 1B (θ), the third signal S 1C (θ), and the fourth signal S 1D (θ) are expressed by the following equations (1), (2), (3), and (4). It is done.

Figure 2008008879
Figure 2008008879

ここで、φ1(θ)、z1(θ)、fr(θ)、gR(θ)はそれぞれ、回転角θにおける回転テーブルRTの回転軸の所定の方向の傾斜、回転中心点aの軸方向の変位、被測定円板面の半径rの円上での軸方向変位すなわち凹凸形状(真直形状)、および基準円輪SCの半径Rの円上での軸方向変位すなわち凹凸形状(真直形状)を表す。 Here, φ 1 (θ), z 1 (θ), f r (θ), and g R (θ) are the inclination of the rotation axis of the rotation table RT in a predetermined direction at the rotation angle θ, and the rotation center point a. , Axial displacement on the circle of radius r of the disk surface to be measured, that is, uneven shape (straight shape), and axial displacement on the circle of radius R of the reference ring SC, that is, uneven shape ( (Straight shape).

次に、図1(b)に示すように、回転テーブルを180度回転させた後に測定(θ=180°)を行ったとき、反転により追加された基準円輪SCの端面の傾斜の影響をCとして、3つの変位計Da、Db、Ddの出力は、それぞれを第1の信号S2A(θ)、第2の信号S2B(θ)、第4の信号S2C(θ)とあらわすと、式(5)、(6)、(7)であたえられる。 Next, as shown in FIG. 1B, when the measurement is performed after rotating the rotary table by 180 degrees (θ = 180 °), the influence of the inclination of the end surface of the reference ring SC added by the inversion is affected. As C, the outputs of the three displacement meters Da, Db, and Dd are expressed as a first signal S 2A (θ), a second signal S 2B (θ), and a fourth signal S 2C (θ), respectively. , (5), (6), and (7).

Figure 2008008879
Figure 2008008879

ここで、φ2(θ)、z2(θ)はそれぞれ、2回目の測定時の回転軸の傾斜と、回転中心点aの軸方向の変位を表す。またCsin(θ)は基準円輪SCの反転時の傾斜の変化を示すが、形状を考える場合には無視できるものであるため、ここでは0とする。 Here, φ 2 (θ) and z 2 (θ) represent the inclination of the rotation axis at the time of the second measurement and the axial displacement of the rotation center point a, respectively. Csin (θ) indicates a change in inclination when the reference ring SC is inverted, but is negligible when considering the shape, and is set to 0 here.

式(2)と式(6)の差および,式(3)と式(8)の差を整理すると式(9),(10)を得て,両式より,φ1(θ)、φ2(θ)が反転前後の2回の回転時の3本の変位計の出力だけで表せることが判る。言い換えると、回転テーブルRTを回転させながら測定を行ったとき、第2の信号とに基づいて得られた出力値を、第1の信号と第3の信号と第4の信号とに基づいて補償することによって、回転軸の傾斜、回転中心点aの軸方向の変位をキャンセルし、被測定円板CPの表面上半径rの位置の形状を精度よく求めることができるのである。第1と第3あるいは,第4の変位計の出力のみでは、チルトモーションの繰り返し性が必要になるが、本実施の形態ではそれが不要になり、測定精度が向上する。 If the difference between Expression (2) and Expression (6) and the difference between Expression (3) and Expression (8) are arranged, Expressions (9) and (10) are obtained. From both expressions, φ 1 (θ), φ 2 It can be seen that (θ) can be expressed only by the outputs of the three displacement meters during two rotations before and after inversion. In other words, when measurement is performed while rotating the turntable RT, the output value obtained based on the second signal is compensated based on the first signal, the third signal, and the fourth signal. By doing so, the inclination of the rotation axis and the axial displacement of the rotation center point a can be canceled, and the shape of the position of the radius r on the surface of the disk CP to be measured can be accurately obtained. Only the outputs of the first and third or fourth displacement meters require the repeatability of the tilt motion, but this embodiment makes it unnecessary and improves the measurement accuracy.

Figure 2008008879
Figure 2008008879

従って,被測定円板CPの半径rの円上での凹凸形状は式(11)で,変位計の出力だけから求められる。これが,請求項1で記述している被測定円板CPの半径rの円に沿う凹凸形状の測定方法の原理である。なお,上述のデータからは,基準円輪の形状 gR(θ)も同時に同定できるので,必要ならばその後はこれを基準にし,第3の信号と第1の信号のデータと共に用いて,半径の違うfr(θ)について特定することも出来る. Therefore, the concavo-convex shape on the circle of radius r of the disk to be measured CP can be obtained from the displacement meter output only by the equation (11). This is the principle of the method for measuring the concavo-convex shape along the circle of radius r of the disk CP to be measured described in claim 1. From the above data, the shape of the reference ring g R (θ) can also be identified at the same time. If necessary, the shape of the reference ring is then used as a reference and used together with the data of the third signal and the first signal to calculate the radius. It is possible to specify f r (θ) with different values.

Figure 2008008879
Figure 2008008879

なお、図では4本の変位計Da〜Ddを使った場合を示したが、変位計Dc、Ddは同時に使わなくてもよいので、回転テーブルRTの回転の際に、変位計Dcも同時に180度位置を変えることで共通の変位計として兼用でき、変位計Ddを省略することによりコストを低減できる。   Although the figure shows a case where four displacement meters Da to Dd are used, the displacement meters Dc and Dd do not have to be used at the same time. Therefore, when the rotary table RT is rotated, the displacement meter Dc is also 180 at the same time. By changing the position, it can be used as a common displacement meter, and the cost can be reduced by omitting the displacement meter Dd.

図1に示すように、回転軸を水平方向に沿うように配置した場合、被測定円板CP,基準円輪SCとも重力によるたわみの影響を受け難いが,軸を鉛直方向になるように配置すると重力によるたわみの影響を受けるので,式(1)〜(3),(5),(6),(8)は,式(12)〜(17)のように表される。なお,式(14),(17)におけるδ(θ)の項は,基準円輪SCの反転前後の支持の変化によるたわみ形状をあらわすもので,回転軸が水平面に配置された場合には無視されていたものである。また,被測定円板CPにも重力によるたわみが生じているが,基準円輪SCの反転前後で円板には形状変化がないと見なせるので,fr(θ)がたわみ形状も含んでいるものとしている。 As shown in FIG. 1, when the rotation axis is arranged along the horizontal direction, the disk CP to be measured and the reference ring SC are hardly affected by the deflection due to gravity, but the axis is arranged in the vertical direction. Then, since it receives the influence of the deflection | deviation by gravity, Formula (1)-(3), (5), (6), (8) is represented like Formula (12)-(17). The term δ (θ) in the equations (14) and (17) represents a deflection shape due to a change in support before and after the reference ring SC is reversed, and is ignored when the rotation axis is arranged on a horizontal plane. It has been done. In addition, although the measured disc CP is deflected due to gravity, it can be considered that there is no shape change in the disc before and after the reversal of the reference circle SC, and therefore, fr (θ) includes the deflection shape. It is supposed to be.

Figure 2008008879
Figure 2008008879

しかるに、式(19)に見られるように,反転前後の基準円輪SCのたわみ面形状が変化すると,φ1(θ)、φ2(θ)が3本の変位計の出力だけでは表せなくなることが判る。これは,重力によるたわみだけでなく,基準円輪SCを取り付けるときの力によって生じるたわみでも同様の影響が生じるので,請求項1で記述したように基準円輪SCを支持するための保持治具HDに、端面での形状gR(θ)のたわみによる変形を抑制する工夫を要することになる。 However, as can be seen from Equation (19), if the flexure surface shape of the reference ring SC before and after inversion changes, φ 1 (θ) and φ 2 (θ) cannot be expressed only by the outputs of the three displacement meters. I understand that. This is not only a deflection due to gravity but also a deflection caused by a force applied when the reference ring SC is attached, so that the holding jig for supporting the reference ring SC as described in claim 1 has the same effect. The HD needs to be devised to suppress deformation due to deflection of the shape g R (θ) at the end face.

これに対し、図2に示すように、被測定物を円筒状とし、基準円輪SCを細長い中空円筒状とし、さらに回転テーブルRTの回転軸線を鉛直方向に沿うようにすると、重力によるたわみの影響が少なくなり、特別な保持治具を用いる必要もなくなる。ただし、かかる場合には、基準円輪SCを細長く、たとえば、その直径に対して軸線方向長が所定の割合(たとえば1)以上であるようにすることが好ましい。   On the other hand, as shown in FIG. 2, when the object to be measured is cylindrical, the reference ring SC is elongated and hollow, and the rotation axis of the rotary table RT is along the vertical direction, the deflection due to gravity is reduced. The influence is reduced, and there is no need to use a special holding jig. However, in such a case, it is preferable that the reference ring SC is elongated and, for example, the axial length thereof is not less than a predetermined ratio (for example, 1) with respect to its diameter.

円周りではなく,座標xで表される直線(直径)に沿う真直度測定においては,重力の影響によるたわみは,反転前後で,基準直定規の形状に対して,正負が逆転するので,反転前後で変位計の出力は次式で与えられる。ここでz1(x)、fx(x)、gx(x)、δ1x(x)、δ2x(x)は,それぞれ,xに沿う走査時の高さ方向の移動の誤差,被測定円板の一つの直径方向の真直形状,基準直定規の真直形状誤差,基準直定規の反転前後のたわみ形状である。 In the straightness measurement along the straight line (diameter) represented by the coordinate x, not around the circle, the deflection due to the influence of gravity is reversed before and after the reversal, with respect to the shape of the standard straight ruler. The displacement meter output is given by the following equation. Wherein z 1 (x), f x (x), g x (x), δ 1x (x), δ 2x (x) , respectively, error in the movement in the height direction during the scan along the x, the It is the straight shape of one diameter direction of the measurement disk, the straight shape error of the reference straight ruler, and the deflection shape before and after the reference straight ruler is inverted.

Figure 2008008879
となり,反転前後の基準直定規のたわみが同じでも,その影響を免れないことになる。このため,重力や,あるいは支持力による変形の影響が,測定対象面でのたわみに生じにくい構造の基準直定規を用いる必要がある。
Figure 2008008879
Therefore, even if the deflection of the standard straight ruler before and after reversal is the same, the effect is unavoidable. For this reason, it is necessary to use a standard straight ruler having a structure in which the influence of deformation due to gravity or supporting force is unlikely to occur on the measurement target surface.

本実施の形態によれば、面上の半径rの円に沿う凹凸を変位計Dbの回転走査で測定するときに,回転中の軸方向の出入りを検出する変位計Daと,変位計Da,変位計Dbの測定点を結ぶ直径上の,半径Rの円に沿う走査測定をする変位計Dc,変位計Dd,合計4本を用意して,半径Rの円が描かれる面が回転走査軸と同心で,前記半径rの円に対して相対的に180度回転した位置にも反転設置できる基準円輪SC上にある形にし,基準円輪SCの反転操作の前後の回転走査における4本の変位計の出力から,合計6つを選んで用いることで,走査のための回転運動誤差と半径rの円と半径Rの円に沿う凹凸形状を分離同定する。この結果得られた円に沿う凹凸形状と,別の方法を用いて複数の直径上で得られた直線に沿う凹凸形状とを数学的に合成すると平面を正しく構成することが可能となる。   According to the present embodiment, when the irregularities along the circle of radius r on the surface are measured by the rotational scanning of the displacement meter Db, the displacement meter Da for detecting the entering and exiting in the axial direction during rotation, the displacement meter Da, A total of four displacement gauges Dc and displacement gauges Dd for scanning measurement along a circle of radius R on the diameter connecting the measurement points of displacement gauge Db are prepared, and the surface on which the circle of radius R is drawn is the rotational scanning axis Concentric with the circle r of the radius r, the shape is on the reference ring SC that can be reversed and installed at a position rotated 180 degrees relative to the circle of the radius r. By selecting and using a total of six from the output of the displacement meter, the rotational motion error for scanning and the uneven shape along the circle with radius r and the circle with radius R are separated and identified. When the uneven shape along the circle obtained as a result of this and the uneven shape along the straight line obtained on a plurality of diameters using another method are mathematically combined, the plane can be correctly configured.

次に、別な実施の形態にかかる測定装置について説明する。図3において、被測定円板CPは、不図示の回転テーブルに取り付けられ回転可能となっている。被測定円板CPの表面に対して平行に、角柱状の基準直定規SLが配置されている。基準直定規SLに沿って、移動可能なステージとしての支持部材SMが移動可能に配置されている。支持部材SMには、被測定円板CPの表面の変位を測定する変位計(第2の変位計)Dbと、基準直定規SLの一方の面(表面)SM1を測定する変位計Dqと、基準直定規SLの対向する面(裏面)SM2を測定する変位計Drとが取り付けられている。基準直定規SLに沿って、支持部材SMが移動するとき、変位計Dbは、被測定円板CPの回転軸を通る直線上の軸方向変位を測定できるようになっている。   Next, a measuring apparatus according to another embodiment will be described. In FIG. 3, the disk to be measured CP is attached to a rotary table (not shown) and is rotatable. A prismatic reference straight ruler SL is arranged in parallel to the surface of the disk CP to be measured. A support member SM as a movable stage is movably disposed along the reference straight ruler SL. The support member SM includes a displacement meter (second displacement meter) Db that measures the displacement of the surface of the disk CP to be measured, a displacement meter Dq that measures one surface (surface) SM1 of the reference straight ruler SL, A displacement meter Dr for measuring the opposing surface (back surface) SM2 of the reference straight ruler SL is attached. When the support member SM moves along the reference straight ruler SL, the displacement meter Db can measure axial displacement on a straight line passing through the rotation axis of the disk CP to be measured.

まず、図3(a)に示す状態で、被測定円板CPの回転軸線を原点とし、ここからの距離をxとしたときに、移動部材SMを移動させながら3つの変位計Db〜Drから出力される信号(第1の信号群)を、それぞれ信号m1(x)、信号m2(x)、信号m3(x)とあらわすと、以下の式(26)、(27)、(28)であたえられる。 First, in the state shown in FIG. 3A, when the rotation axis of the disk CP to be measured is the origin and the distance from this is x, the three displacement meters Db to Dr are moved while moving the moving member SM. When the output signals (first signal group) are expressed as signal m 1 (x), signal m 2 (x), and signal m 3 (x), respectively, the following equations (26), (27), ( 28).

Figure 2008008879
Figure 2008008879

続いて、図3(b)に示すように、基準直定規SLを180度回転させる。これにより、基準直定規SLの表裏面が逆となるため、一方の面SM1は変位計Drで測定し、基準直定規SLの対向する面SM2は変位計Drで測定することとなる。かかる状態で、移動部材SMを移動させながら3つの変位計Db〜Drから出力される信号(第2の信号群)を、それぞれ信号m1(x)、信号m2(x)、信号m3(x)とあらわすと、以下の式(29)、(30)、(31)であたえられる。 Subsequently, as shown in FIG. 3B, the reference straight ruler SL is rotated by 180 degrees. Accordingly, since the front and back surfaces of the reference straight ruler SL are reversed, one surface SM1 is measured by the displacement meter Dr, and the opposite surface SM2 of the reference straight ruler SL is measured by the displacement meter Dr. In this state, the signals (second signal group) output from the three displacement meters Db to Dr while moving the moving member SM are signal m 1 (x), signal m 2 (x), and signal m 3, respectively. When expressed as (x), the following expressions (29), (30), and (31) are given.

Figure 2008008879
Figure 2008008879

ここで、信号の差分をとることにより、以下の式(32)、(33)を得る。これにより運動誤差をキャンセルすることができ、被測定円板CPの直径方向における精度のよい形状測定を行える。   Here, the following equations (32) and (33) are obtained by calculating the difference between the signals. As a result, the motion error can be canceled and the shape of the disk CP to be measured can be accurately measured in the diameter direction.

Figure 2008008879
Figure 2008008879

以上においては、よく知られた改良型反転法を用いて基準直定規と円板直径に沿う真直形状の測定を行う例を示したが、既に記述したように,円板面上の円に沿う形状も必要な半径rで求めることが出来るので,この結果と2本以上の直径に沿う真直形状と組み合わせると,円板の面形状が校正できることになる.   In the above, an example of measuring the straight shape along the standard straight ruler and the disc diameter using the well-known improved inversion method has been shown, but as described above, along the circle on the disc surface Since the shape can also be obtained with the required radius r, combining this result with a straight shape along two or more diameters, the surface shape of the disk can be calibrated.

なお、基準直定規SLのたわみが測定精度に与える影響は少なからずある。そこで、測定面が重力によるたわみの影響を受ける形に配置する必要があるときには,図4に示すように、剛体に対して回転可能に支持された、表面及び裏面の長さLに対して幅Wが所定の割合(たとえば1:1)以上である基準直定規SLを用いて、変位計Dq、Drで、基準直定規SLの側縁を測定するようにすると、さらに測定精度が向上する。図3に示す移動可能な変位計Dbを、図2に示す変位計Dbに置き換えることができる。すなわち、図2に示すように鉛直方向の円板と組み合わせると好ましい。水平面におかれた円板面と組み合わせて用いてもよい。   Note that the deflection of the reference straight ruler SL has a considerable influence on the measurement accuracy. Therefore, when it is necessary to arrange the measurement surface in a shape that is affected by the deflection due to gravity, as shown in FIG. 4, the width relative to the length L of the front surface and the back surface is supported so as to be rotatable with respect to the rigid body. The measurement accuracy is further improved by measuring the side edge of the reference straight ruler SL with the displacement meters Dq and Dr using the reference straight ruler SL having W equal to or higher than a predetermined ratio (for example, 1: 1). The movable displacement meter Db shown in FIG. 3 can be replaced with the displacement meter Db shown in FIG. That is, it is preferable to combine with a vertical disk as shown in FIG. It may be used in combination with a disk surface placed on a horizontal plane.

次に、さらに別な実施の形態にかかる測定装置について説明する。図5において、大面積の被測定板P上で、その法線に沿った軸線回りに回転する回転軸RSの下端には、支持腕SAが固定されている。回転軸RSの周囲には、それと同軸に基準円輪SCが配置されている。回転軸RSと基準円輪SCは、不図示のステージに載置され、被測定板Pの表面に沿った方向に移動可能となっているが、基準円輪SCは被測定板Pに対して回転しない。   Next, a measuring apparatus according to still another embodiment will be described. In FIG. 5, the support arm SA is fixed to the lower end of the rotation axis RS that rotates about the axis along the normal line on the measurement target plate P having a large area. A reference ring SC is arranged around the rotation axis RS coaxially therewith. The rotation axis RS and the reference ring SC are placed on a stage (not shown) and can move in a direction along the surface of the plate to be measured P. Does not rotate.

更に、それぞれ支持腕SAに取り付けられた4つの変位計であって、被測定面Pの表面上、回転軸RSの回転軸線が交差する点aにおける表面垂直方向の変位を検出して第1の信号を出力する第1の変位計Daと、被測定面Pの表面上、点aから半径rの点bにおける表面垂直方向の変位を検出して第2の信号を出力する第2の変位計Dbと,被測定面Pの表面上、点aと点bとを結ぶ直線L上であって点aから半径lの点eにおける表面垂直方向の変位を検出して第4の信号を出力する第4の変位計Deと,基準円輪SC上の半径Rの円と交わる点cにおいて,表面垂直方向の変位を検出して第3の信号を出力する第3の変位計Dcと、が設けられている。ここで、第1の信号と、第2の信号と、第3の信号とを用いて、上述の実施の形態のようにして基準円輪SCの校正を行うことができる。尚、第2の変位計Dbの代わりに、回転軸RSの回転軸線に対し、点cから180度ずれた基準円輪SC上の半径Rの円と交わる点dにおいて,表面垂直方向の変位を検出して第5の信号を出力する第5の変位計Ddを設けることができる。かかる場合、第5の信号と変位計Dcからの第3の信号の差分から、基準円輪SCの傾きを求めることができ、すなわち校正を行える。   Further, each of the four displacement meters attached to the support arm SA detects a displacement in the surface vertical direction at a point a on the surface of the measurement surface P where the rotation axis of the rotation axis RS intersects. A first displacement meter Da for outputting a signal, and a second displacement meter for detecting a displacement in a surface vertical direction from a point a to a point b having a radius r on the surface of the surface P to be measured and outputting a second signal. A displacement in the direction perpendicular to the surface at a point e having a radius l from the point a on the surface L of the surface to be measured Pb and on the surface L of the surface P to be measured is output. A fourth displacement meter De and a third displacement meter Dc that detects a displacement in the direction perpendicular to the surface and outputs a third signal at a point c intersecting with a circle of radius R on the reference ring SC are provided. It has been. Here, using the first signal, the second signal, and the third signal, the reference ring SC can be calibrated as in the above-described embodiment. Instead of the second displacement meter Db, the displacement in the direction perpendicular to the surface is detected at a point d that intersects a circle with a radius R on the reference ring SC that is shifted 180 degrees from the point c with respect to the rotation axis of the rotation axis RS. A fifth displacement meter Dd that detects and outputs a fifth signal can be provided. In such a case, the inclination of the reference ring SC can be obtained from the difference between the fifth signal and the third signal from the displacement meter Dc, that is, calibration can be performed.

上述した実施の形態と同様に、校正した基準円輪SCを用いて、回転軸RSを回転させながら測定を行ったとき、第2の信号と第4の信号とに基づいて得られた出力値を、第1の信号と第3の信号とに基づいて補償することによって、被測定面Pの表面上半径lまたはrの位置の円形状を求めることができる。更に、支持腕SAを、点aと点bとを結ぶ直線Lに沿って移動させながら測定を行ったとき、第1の信号と、第2の信号と、第4の信号とを用いることで、上述した3点法を利用して被測定面Pの表面の直線L上の形状を求めることができる。ただし、本実施の形態における3点法については、半径Rの円とその中心の3点の高さが前記円形状として関連づけられているので、これら3点の形状高さを3つの変位計による出力として扱うことで3点法と同じ出力が得られる。これらを用いることで、(26)〜(31)式と同様に誤差をキャンセルできるものである。   Similar to the above-described embodiment, when measurement is performed using the calibrated reference ring SC while rotating the rotation axis RS, an output value obtained based on the second signal and the fourth signal is obtained. Is compensated based on the first signal and the third signal, the circular shape at the position of the radius l or r on the surface of the measurement surface P can be obtained. Furthermore, when the measurement is performed while moving the support arm SA along the straight line L connecting the points a and b, the first signal, the second signal, and the fourth signal are used. By using the above-described three-point method, the shape on the straight line L of the surface of the measurement surface P can be obtained. However, in the three-point method in the present embodiment, since the circle of radius R and the height of the three points at the center are associated as the circular shape, the shape height of these three points is determined by three displacement meters. By treating it as an output, the same output as the three-point method can be obtained. By using these, the error can be canceled in the same manner as the equations (26) to (31).

このようにして、測定装置を、被測定面の上を移動させながら測定することで、被測定面Pの表面の半径lまたはrの位置の円形状と、その直径方向の直線L状の形状を測定できるので、図6に示すように、複数の円と直線とを重ね合わせて測定することによって、理論上、いかなる大面積の面であっても形状を精度よく測定できることとなる。   In this way, by measuring while moving the measuring device over the surface to be measured, the circular shape at the position of the radius l or r of the surface of the surface to be measured P and the shape of the straight line L in the diameter direction thereof. Therefore, as shown in FIG. 6, it is theoretically possible to accurately measure the shape of any large area by superimposing a plurality of circles and straight lines.

図7、8は、測定基準MSの他の形の例を示す斜視図である。図7の測定基準MSでは、互いに中央で直交するようにクロスさせた2枚の板材P1,P2と、板材P1,P2とを囲む中空円筒CLとからなり、中空円筒CLはその軸線から半径rの位置に端面を有している。   7 and 8 are perspective views showing other examples of the measurement standard MS. 7 includes two plate materials P1 and P2 crossed so as to be orthogonal to each other at the center, and a hollow cylinder CL surrounding the plate materials P1 and P2. The hollow cylinder CL has a radius r from its axis. It has an end face at the position.

更に、図8の測定基準MSでは、互いに中央で直交するようにクロスさせた2枚の板材P1,P2と、板材P1,P2とを囲む内側中空円筒CL1と、内側中空円筒CL1を内包する外側中空円筒CL2とからなり、内側中空円筒CL1は軸線から半径lの位置に端面を有し、外側中空円筒CL2は軸線から半径rの位置に端面を有している。   Further, in the measurement standard MS of FIG. 8, two plate materials P1, P2 crossed so as to be orthogonal to each other at the center, an inner hollow cylinder CL1 surrounding the plate materials P1, P2, and an outer side containing the inner hollow cylinder CL1. The inner hollow cylinder CL1 has an end face at a radius 1 from the axis, and the outer hollow cylinder CL2 has an end face at a radius r from the axis.

校正が終了した図7,8の測定基準を用いて、図5の測定装置において、変位計Da、Db、Deのゼロ点調整を行っても良い。   The zero point adjustment of the displacement meters Da, Db, De may be performed in the measurement apparatus of FIG. 5 using the measurement standard of FIGS.

このような測定基準MSは、フィゾー干渉計の校正に用いることができる。ここでは、被測定面Pを有する板材をアクリルなどの光透過材で形成している。測定基準MSの端面は、上述したようにして予め校正してある。図9に示すフィゾー干渉計において、点光源OSからの放射状に出射される光をレンズLSにより平行光にして照射し、その被測定面Pからの反射光と、被測定面Pを通過した後の測定基準MSの端面からの反射光とにより、細い多光束から成る等厚の干渉縞を作り、かかる干渉縞から被測定面Pの形状を求めることができる。   Such a measurement standard MS can be used for calibration of the Fizeau interferometer. Here, the plate material having the measurement surface P is formed of a light transmitting material such as acrylic. The end face of the measurement standard MS is calibrated in advance as described above. In the Fizeau interferometer shown in FIG. 9, the light emitted radially from the point light source OS is irradiated as parallel light by the lens LS, and the reflected light from the measured surface P and after passing through the measured surface P By using the reflected light from the end face of the measurement reference MS, an interference fringe of equal thickness composed of thin multi-beams can be formed, and the shape of the measurement surface P can be obtained from the interference fringe.

以上述べた測定装置および測定基準は、種々の精密工作機械に用いることができる。精密な平面や球面の加工を行う工作機械において,基準円輪と基準直定規の一方又は両方を内蔵し,あるいは,必要に応じてそれらを取り付ける構造を有して,加工物の加工面,あるいは,加工物を固定する軸端面やそれと一体となって回転する加工物取り付け面を,被測定円板として測定出来る構造にして,上述した測定の結果から,加工面や軸端面や加工物取り付け面の精度あるいは,工作機械の運動精度を検査することが出来る。   The measurement apparatus and measurement standard described above can be used for various precision machine tools. In machine tools that process precision planes and spheres, either or both of the reference ring and the reference straight ruler are built in, or have a structure to attach them as necessary, so that the work surface of the workpiece or The shaft end surface that fixes the workpiece and the workpiece attachment surface that rotates integrally with the workpiece are structured so that it can be measured as a disk to be measured. From the above measurement results, the machining surface, shaft end surface, and workpiece attachment surface It is possible to check the accuracy of the machine tool or the motion accuracy of the machine tool.

更に、精密な平面や球面の加工を行う工作機械において,校正後の補助輪,基準直定規と同様に,測定の際に使用可能な測定基準を内蔵し、あるいは、必要なときに測定基準として使用可能な校正の済んだ補助輪や,基準直定規を着脱可能なジグ部を有して、加工物の加工面,あるいは,加工物を固定する軸端面やそれと一体となって回転する加工物取り付け面の形状精度あるいは工作機械の運動精度を測定できる。   Furthermore, in machine tools that process precision planes and spherical surfaces, built-in measurement standards that can be used for measurement, as well as calibrated auxiliary wheels and standard straight rulers, or as measurement standards when necessary Workable surface of work piece, shaft end face to fix work piece, or work piece that rotates together with work piece with calibrated auxiliary wheel that can be used and jig part to which standard straight ruler can be attached and detached The mounting surface shape accuracy or machine tool motion accuracy can be measured.

第1の実施の形態にかかる測定装置の原理を示す斜視図である。It is a perspective view which shows the principle of the measuring apparatus concerning 1st Embodiment. 本実施の形態の変形例にかかる測定装置を示す斜視図である。It is a perspective view which shows the measuring apparatus concerning the modification of this Embodiment. 第2の実施の形態にかかる測定装置の原理を示す斜視図であり、直線形状の測定のための改良型反転法の原理を示す図であり、これを図1の円周に沿う真直形状測定装置と組み合わせることで、平面形状測定装置になる。また、この図を90度回転して、水平面内にあるの直線形状を測定できるようにしたものを、更に測定装置として使用可能である。ただしそのときは、基準円輪は板の高さが十分に高いものを使うと好ましい。It is a perspective view which shows the principle of the measuring apparatus concerning 2nd Embodiment, and is a figure which shows the principle of the improved inversion method for the measurement of a linear shape, This is a straight shape measurement along the circumference of FIG. By combining with an apparatus, it becomes a planar shape measuring apparatus. Further, a device that is rotated 90 degrees so that a linear shape in a horizontal plane can be measured can be used as a measuring device. However, in that case, it is preferable to use a reference ring having a sufficiently high plate height. 基準直定規SLの変形例を示す図である。It is a figure which shows the modification of reference | standard straight ruler SL. 第3の実施の形態にかかる測定装置の原理を示す斜視図である。It is a perspective view which shows the principle of the measuring apparatus concerning 3rd Embodiment. 図5の測定装置の測定対象とする大型平面上に、逐次、円周に沿う真直度を測定していくときに円周の軌跡の一例を示す図であり、2方向にそれぞれ逐次3点法が成立する形になっている。It is a figure which shows an example of the locus | trajectory of a circumference when measuring the straightness along a circumference sequentially on the large plane made into the measuring object of the measuring device of FIG. Is formed. 本実施の形態の測定装置に用いることが測定基準MSの例を示す斜視図である。It is a perspective view which shows the example of the measurement reference | standard MS used for the measuring apparatus of this Embodiment. 本実施の形態の測定装置に用いることが測定基準MSの例を示す斜視図である。It is a perspective view which shows the example of the measurement reference | standard MS used for the measuring apparatus of this Embodiment. 本実施の形態の測定基準を用いたフィゾー干渉計の例を示す斜視図である。It is a perspective view which shows the example of the Fizeau interferometer using the measurement reference | standard of this Embodiment.

符号の説明Explanation of symbols

CL 中空円筒
CL1 内側中空円筒
CL2 外側中空円筒
CP 被測定円板
Da 変位計
Db 変位計
Dc 変位計
Dd 変位計
De 変位計
Dq 変位計
Dr 変位計
HD 保持治具
LS レンズ
L 直線
MS 測定基準
OS 点光源
P1,P2 板材
RS 回転軸
RT 回転テーブル
SA 支持腕
SC 基準円輪
SL 基準直定規
SM 支持部材
CL hollow cylinder CL1 inner hollow cylinder CL2 outer hollow cylinder CP disk to be measured Da displacement meter Db displacement meter Dc displacement meter Dd displacement meter De displacement meter Dq displacement meter Dr displacement meter HD holding jig LS lens L linear MS measurement reference OS point Light source P1, P2 Plate material RS Rotating shaft RT Rotating table SA Support arm SC Reference ring SL Reference straight ruler SM Support member

Claims (12)

被測定円板の表面形状を測定する測定装置において、
被測定円板を支持し、回転する回転テーブルと、
被測定円板に対して同心に配置され、前記回転テーブルとともに回転する基準円輪と、
被測定円板の表面上回転中心点aにおける表面垂直方向の変位を検出して第1の信号を出力する第1の変位計Aと、
被測定円板の表面上、回転中心点aから半径rの点bにおける表面垂直方向の変位を検出して第2の信号を出力する第2の変位計Bと,
回転中心点aと点bを通る線が前記基準円輪上の半径Rの円と交わる点cにおいて,表面垂直方向の変位を検出して第3の信号を出力する第3の変位計Cと、
回転中心点aに対し、点cから180度ずれた前記基準円輪上の半径Rの円と交わる点dにおいて,表面垂直方向の変位を検出して第4の信号を出力する第4の変位計Dと、を有し、
前記回転テーブルを回転させながら測定を行ったとき、前記第1の信号と前記第2の信号と前記第3の信号とに基づいて得られた出力値を第1群データとし、基準円輪を180度反転して,前記回転テーブルを回転させながら測定を行ったとき、前記第1の信号と前記第2の信号と前記第4の信号とに基づいて得られた出力値を第2データ群として,両データ群を使った計算から,軸の回転運動誤差と半径r及び半径Rに沿う表面形状を求めることを特徴とする測定装置。
In the measuring device that measures the surface shape of the disk to be measured,
A rotating table that supports and rotates the disk to be measured;
A reference ring arranged concentrically with the disk to be measured and rotating together with the rotary table;
A first displacement meter A that detects a displacement in a surface vertical direction at a rotation center point a on the surface of the disk to be measured and outputs a first signal;
A second displacement meter B for detecting a displacement in a direction perpendicular to the surface from a rotation center point a to a point b having a radius r on the surface of the disk to be measured, and outputting a second signal;
A third displacement meter C for detecting a displacement in the direction perpendicular to the surface and outputting a third signal at a point c where a line passing through the rotation center points a and b intersects a circle of radius R on the reference ring; ,
A fourth displacement that detects a displacement in the direction perpendicular to the surface and outputs a fourth signal at a point d that intersects with a circle of radius R on the reference ring that is shifted from the point c by 180 degrees with respect to the rotation center point a. A total of D and
When the measurement is performed while rotating the rotary table, the output value obtained based on the first signal, the second signal, and the third signal is used as the first group data, When the measurement is performed while reversing 180 degrees and rotating the rotary table, an output value obtained based on the first signal, the second signal, and the fourth signal is used as the second data group. As a measuring device, the rotational motion error of the shaft and the radius r and the surface shape along the radius R are obtained from the calculation using both data groups.
前記第3の変位計Cと前記第4の変位計Dとして共通の変位計を用いるときは、被測定円板と前記基準円輪とを所定の位相に配置したときに、前記共通の変位計から出力された信号を第3の信号とし、被測定円板と前記基準円輪とを所定の位相から180度ずらせて配置したときに、前記共通の変位計から出力された信号を第4の信号とすることを特徴とする請求項1に記載の測定装置。   When a common displacement meter is used as the third displacement meter C and the fourth displacement meter D, the common displacement meter is used when the disk to be measured and the reference ring are arranged in a predetermined phase. The signal output from the common displacement meter is the fourth signal when the measured disk and the reference ring are shifted 180 degrees from a predetermined phase. The measurement apparatus according to claim 1, wherein the measurement apparatus is a signal. 前記第2の変位計Bを被測定円板の直径方向に移動させるステージを備え、前記ステージにより前記第2の変位計Bを被測定円板の直径方向に移動させながら、構成された前記基準円輪を用いて、前記第1,第3,第4の信号の内2つを使って前記第2の信号に含まれる回転運動誤差を補正して,前記第2の信号から円板上の希望する半径rでの形状データを得ることを特徴とする請求項1または2に記載の測定装置。   A stage for moving the second displacement meter B in the diameter direction of the disk to be measured, and the reference being configured while moving the second displacement meter B in the diameter direction of the disk to be measured by the stage; Using a circle, two of the first, third and fourth signals are used to correct the rotational motion error contained in the second signal, and the second signal 3. The measuring apparatus according to claim 1, wherein shape data at a desired radius r is obtained. 被測定円板と平行して、前記被測定円板に対向する表面と、その裏側の裏面とを有する基準直定規を配置し、更に前記変位計Bを搭載した前記ステージに、前記基準直定規の表面垂直方向の変位を検出する変位計Qと、前記基準直定規の裏面垂直方向の変位を検出する変位計Rとを取り付けて、前記ステージを被測定円板の直径方向に移動させながら、3つの前記変位計B、Q、Rから出力された信号を第1の信号群とし、次に、前記基準直定規の表裏面を逆にして、前記ステージを被測定円板の直径方向に移動させながら、3つの前記変位計B、Q、Rから出力された信号を第2の信号群としたときに、前記変位計Pの出力値を、前記第1の信号群における前記変位計Q又はRの信号と、前記第2の信号群における前記変位計R又はQの信号とに基づいて補償することによって、被測定円板の直径方向の形状を求めることを特徴とする請求項3に記載の測定装置。   A reference straight ruler having a surface facing the disk to be measured and a back surface on the back side thereof is arranged in parallel with the disk to be measured, and the reference straight ruler is mounted on the stage on which the displacement meter B is mounted. A displacement meter Q for detecting the displacement in the vertical direction of the surface and a displacement meter R for detecting the displacement in the vertical direction on the back surface of the reference straight ruler, and moving the stage in the diameter direction of the disk to be measured, The signals output from the three displacement gauges B, Q, and R are used as the first signal group, and then the stage is moved in the diameter direction of the disk to be measured with the front and back surfaces of the reference straight ruler reversed. When the signals output from the three displacement meters B, Q, and R are used as the second signal group, the output value of the displacement meter P is changed to the displacement meter Q or the first signal group. R signal and the displacement meter R or Q signal in the second signal group The measuring apparatus according by compensating, in claim 3, wherein the determination of the diameter direction of the profile of the measurement disc based on. 前記基準円輪は、直径に対して軸線方向長が所定の割合以上であることを特徴とする請求項1〜4のいずれかに記載の測定装置。   The measuring apparatus according to claim 1, wherein the reference ring has an axial length that is equal to or greater than a predetermined ratio with respect to a diameter. 前記基準直定規は、表面及び裏面の長さに対して幅が所定の割合以上であることを特徴とする請求項4または5に記載の測定装置。   The measuring apparatus according to claim 4 or 5, wherein the reference straight ruler has a width equal to or greater than a predetermined ratio with respect to the length of the front surface and the back surface. 被測定物の表面形状を測定する測定装置において、
被測定物の表面の法線回りに回転可能であって、且つ前記法線に直交する方向に移動可能な回転軸と、
前記回転軸の軸線と同心に配置され、被測定物に対して回転しないが前記回転軸と一体的に移動する基準円輪と、
前記被測定物と前記基準円輪との間に配置され、前記回転軸に取り付けられて回転する支持腕と、
前記支持腕に取り付けられており、被測定物の表面上、前記回転軸の回転軸線が交差する点aにおける表面垂直方向の変位を検出して第1の信号を出力する第1の変位計Aと、
前記支持腕に取り付けられており、前記基準円輪上の半径Rの円と交わる点cにおいて,表面垂直方向の変位を検出して第3の信号を出力する第3の変位計Cと、
点a及び点cとは異なる測定点の変位を測定して、測定信号を出力する第2の変位計とを有し、
前記回転軸と共に支持腕を回転させながら測定を行ったとき、前記第1の信号と前記測定信号と前記第3の信号とに基づいて得られた出力値を用いて計算することで、前記基準円輪の校正を行うようになっており、
前記第2の変位計は、前記支持腕に取り付けられており、被測定物の表面上、点aから半径rの点bにおける表面垂直方向の変位を検出して測定信号としての第2の信号を出力する変位計B,或いは前記支持腕に取り付けられており、前記回転軸の回転軸線に対し、点cから180度ずれた前記基準円輪上の半径Rの円と交わる点dにおいて,表面垂直方向の変位を検出して測定信号としての第5の信号を出力する変位計Dであることを特徴とする測定装置。
In a measuring device that measures the surface shape of an object to be measured,
A rotation axis that is rotatable around the normal of the surface of the object to be measured and is movable in a direction perpendicular to the normal;
A reference ring arranged concentrically with the axis of the rotary shaft and not integrally rotating with the object to be measured but moving integrally with the rotary shaft;
A support arm that is disposed between the object to be measured and the reference ring and is attached to the rotation shaft and rotates;
A first displacement meter A, which is attached to the support arm, detects a displacement in the direction perpendicular to the surface at a point a where the rotation axis of the rotation axis intersects on the surface of the object to be measured, and outputs a first signal. When,
A third displacement meter C that is attached to the support arm and detects a displacement in the direction perpendicular to the surface and outputs a third signal at a point c intersecting with a circle of radius R on the reference ring;
A second displacement meter that measures a displacement at a measurement point different from the points a and c and outputs a measurement signal;
When the measurement is performed while rotating the support arm together with the rotating shaft, the reference value is calculated by using the output value obtained based on the first signal, the measurement signal, and the third signal. The circle is calibrated.
The second displacement meter is attached to the support arm, and detects a displacement in a direction perpendicular to the surface from a point a to a point b having a radius r on the surface of the object to be measured, thereby generating a second signal as a measurement signal. At a point d that intersects with a circle of radius R on the reference ring that is 180 degrees away from point c with respect to the axis of rotation of the axis of rotation. A measuring device which is a displacement meter D which detects a displacement in the vertical direction and outputs a fifth signal as a measurement signal.
前記支持腕に取り付けられており、被測定物の表面上、点aと点bとを結ぶ直線上であって点aから半径lの点eにおける表面垂直方向の変位を検出して第4の信号を出力する第4の変位計Eを有することを特徴とする請求項7に記載の測定装置。   It is attached to the support arm, detects a displacement in a direction perpendicular to the surface at a point e having a radius l from the point a on the surface of the object to be measured, on a straight line connecting the point a and the point b. The measuring apparatus according to claim 7, further comprising a fourth displacement meter E that outputs a signal. 互いに中央で直交する2枚の板材と、前記板材とを囲む中空円筒とからなり、前記中空円筒は軸線から半径rの位置に端面を有することを特徴とする請求項4に記載の測定装置で校正された,比較測定に用いることを特徴とする測定基準。   The measuring apparatus according to claim 4, comprising two plate members orthogonal to each other at the center and a hollow cylinder surrounding the plate member, the hollow cylinder having an end surface at a radius r from the axis. A calibrated metric characterized in that it is used for comparative measurements. 互いに中央で直交する2枚の板材と、前記板材とを囲む内側中空円筒と、前記内側中空円筒を内包する外側中空円筒とからなり、前記内側中空円筒は軸線から半径lの位置に端面を有し、前記外側中空円筒は軸線から半径rの位置に端面を有することを特徴とする請求項4に記載の測定装置で校正された,比較測定に用いることを特徴とする測定基準。   It consists of two plate members orthogonal to each other at the center, an inner hollow cylinder that surrounds the plate member, and an outer hollow cylinder that encloses the inner hollow cylinder, and the inner hollow cylinder has an end face at a radius 1 from the axis. 5. The measurement standard calibrated by the measurement apparatus according to claim 4, wherein the outer hollow cylinder has an end face at a radius r from the axis. 請求項1〜8のいずれかに記載の測定装置を有することを特徴とする精密工作機械。   A precision machine tool comprising the measuring device according to claim 1. 請求項9または10に記載の測定基準を有することを特徴とする精密工作機械。   A precision machine tool having the measurement standard according to claim 9 or 10.
JP2006231631A 2006-05-29 2006-08-29 Measuring instrument, measuring reference, and precision machine tool Pending JP2008008879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231631A JP2008008879A (en) 2006-05-29 2006-08-29 Measuring instrument, measuring reference, and precision machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006147780 2006-05-29
JP2006231631A JP2008008879A (en) 2006-05-29 2006-08-29 Measuring instrument, measuring reference, and precision machine tool

Publications (1)

Publication Number Publication Date
JP2008008879A true JP2008008879A (en) 2008-01-17

Family

ID=39067207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231631A Pending JP2008008879A (en) 2006-05-29 2006-08-29 Measuring instrument, measuring reference, and precision machine tool

Country Status (1)

Country Link
JP (1) JP2008008879A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089541A (en) * 2006-10-05 2008-04-17 Satoshi Kiyono Reference for measuring motion error and motion error measuring device
JP2009031170A (en) * 2007-07-30 2009-02-12 Okamoto Machine Tool Works Ltd Surface shape calibrating device and method
JP2010197350A (en) * 2009-02-27 2010-09-09 Nagase Integrex Co Ltd Sensor holder and sensor support device
KR20100106010A (en) * 2009-03-23 2010-10-01 엘지이노텍 주식회사 System for measuring tilt and performance of cellular phone's camera
JP2014153341A (en) * 2013-02-14 2014-08-25 Satoshi Kiyono Coordinate measuring machine
CN110514165A (en) * 2017-12-17 2019-11-29 胡长悦 Based on moving synchronously formula roundness error separation device
CN113137917A (en) * 2021-04-13 2021-07-20 重庆市和鑫达电子有限公司 PCB hole position detection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089541A (en) * 2006-10-05 2008-04-17 Satoshi Kiyono Reference for measuring motion error and motion error measuring device
JP2009031170A (en) * 2007-07-30 2009-02-12 Okamoto Machine Tool Works Ltd Surface shape calibrating device and method
JP2010197350A (en) * 2009-02-27 2010-09-09 Nagase Integrex Co Ltd Sensor holder and sensor support device
KR20100106010A (en) * 2009-03-23 2010-10-01 엘지이노텍 주식회사 System for measuring tilt and performance of cellular phone's camera
KR101630731B1 (en) * 2009-03-23 2016-06-16 엘지이노텍 주식회사 System for measuring tilt and performance of cellular phone's camera
JP2014153341A (en) * 2013-02-14 2014-08-25 Satoshi Kiyono Coordinate measuring machine
CN110514165A (en) * 2017-12-17 2019-11-29 胡长悦 Based on moving synchronously formula roundness error separation device
CN110514165B (en) * 2017-12-17 2021-01-08 蔡银花 Roundness error separating device based on synchronous motion
CN113137917A (en) * 2021-04-13 2021-07-20 重庆市和鑫达电子有限公司 PCB hole position detection device
CN113137917B (en) * 2021-04-13 2023-01-13 重庆市和鑫达电子有限公司 PCB hole position detection device

Similar Documents

Publication Publication Date Title
JP5539865B2 (en) Scan head calibration apparatus and method
EP2449336B1 (en) Method and apparatus for probe tip diameter calibration
JP6149337B1 (en) Surface shape measuring device
JP2007071852A (en) Apparatus and method for measuring deep hole
JP2018179958A (en) Optical spindle multiple degrees-of-freedom error measurement device and method
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
US7328125B2 (en) Measuring method of cylindrical body
JP2012145494A (en) Circularity measuring apparatus and misalignment quantity correction method of the same
JP5297906B2 (en) Image probe calibration method and shape measuring machine
JP5652631B2 (en) Method of calculating the amount of misalignment in a roundness measuring device
JP6657552B2 (en) Flatness measurement method
JP4964691B2 (en) Measuring method of measured surface
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
JP5716427B2 (en) Roundness measuring device and method of correcting misalignment
JP4897951B2 (en) Tubular deflection measurement method and apparatus
JP5489017B2 (en) Method of calculating the amount of misalignment in a roundness measuring device
JP2009180700A (en) Cylindrical shape measuring device and cylindrical surface shape measuring method
JP2018165688A (en) Shape measurement device and shape measurement method
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JP4866807B2 (en) Surface shape calibration apparatus and surface shape calibration method
JP2009145152A (en) Measuring device
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
JP6181935B2 (en) Coordinate measuring machine
JP7201208B2 (en) Calibration gauge and calibration method
JP5460427B2 (en) Measuring method and shape measuring device