JP5460427B2 - Measuring method and shape measuring device - Google Patents

Measuring method and shape measuring device Download PDF

Info

Publication number
JP5460427B2
JP5460427B2 JP2010085894A JP2010085894A JP5460427B2 JP 5460427 B2 JP5460427 B2 JP 5460427B2 JP 2010085894 A JP2010085894 A JP 2010085894A JP 2010085894 A JP2010085894 A JP 2010085894A JP 5460427 B2 JP5460427 B2 JP 5460427B2
Authority
JP
Japan
Prior art keywords
measurement
shape
scanning
displacement sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010085894A
Other languages
Japanese (ja)
Other versions
JP2011215108A (en
Inventor
慧 清野
Original Assignee
株式会社 大菱計器製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 大菱計器製作所 filed Critical 株式会社 大菱計器製作所
Priority to JP2010085894A priority Critical patent/JP5460427B2/en
Publication of JP2011215108A publication Critical patent/JP2011215108A/en
Application granted granted Critical
Publication of JP5460427B2 publication Critical patent/JP5460427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、センサを被測定面に対して相対的に走査して形状を求める精密測定技術に関する。   The present invention relates to a precision measurement technique for obtaining a shape by scanning a sensor relative to a surface to be measured.

大型加工物の加工精度向上に対する要求の高まりと共に、工作機械の移動真直度や加工面の真直形状の測定精度に対してもその向上が求められている。機械の移動真直度測定には直定規が基準として用いられる。加工物の形状測定には、機械の高精度の移動真直性が基準に用いられる。それらの基準の精度が不足するときには、反転法や多点法が用いられる。反転法については、非特許文献1に開示されており、多点法については、特許文献1に開示されている。   Along with the increasing demands for improving the machining accuracy of large workpieces, there is also a need to improve the measurement accuracy of the machine tool straightness and the straight shape of the machined surface. A straight ruler is used as a reference for measuring the straightness of the machine. In measuring the shape of a workpiece, the machine's high-precision movement straightness is used as a reference. When the accuracy of these standards is insufficient, an inversion method or a multipoint method is used. The inversion method is disclosed in Non-Patent Document 1, and the multipoint method is disclosed in Patent Document 1.

オズワルド・ホリカワ,佐藤海二,下河辺明、「改良型反転法による真円度および絶対回転運動精度の評価」,精密会誌57-12(1991)2231-2236Oswald Horikawa, Kaji Sato, Akira Shimokawabe, "Evaluation of roundness and absolute rotational motion accuracy by improved inversion method", Journal of Precision, 57-12 (1991) 2231-2236

特開2007-178296号公報JP 2007-178296 A

ところで、高精度の回転運動性能を具備した真円形状測定機が市販されているが、その測定機に搭載できる試料の大きさに制限があり、また加工物を工作機械から取り外して測定機まで運ぶ手間が掛けられない場合も多い。   By the way, there is a commercially available round shape measuring machine with high-precision rotational motion performance, but there is a limit to the size of the sample that can be mounted on the measuring machine, and the workpiece can be removed from the machine tool until the measuring machine. In many cases, it is difficult to carry.

特に反転法では、被測定試料とセンサの両方を180度反転する必要があり、適用可能範囲に制限がある。一方、3点法はセンサを少なくとも3本必要とし、これはセンサの価格の問題からも、センサの安定性を確保するための環境整備にも困難をもたらす。   In particular, in the inversion method, it is necessary to invert both the sample to be measured and the sensor by 180 degrees, and the applicable range is limited. On the other hand, the three-point method requires at least three sensors, which causes difficulties in improving the environment for ensuring the stability of the sensor from the problem of sensor price.

3本のセンサの代わりに3か所の回転角位置にセンサを順次回転シフトして、走査測定を繰り返す、繰返し走査型の3点法もある。この場合は、センサのドリフトに対する許容値が一層厳しくなるという難点がある。   There is also a repetitive scanning type three-point method in which scanning measurement is repeated by sequentially rotating and shifting the sensor to three rotational angle positions instead of three sensors. In this case, there is a problem that the tolerance for the drift of the sensor becomes more severe.

本発明は、掛かる問題に鑑み、センサ1本だけを用いた繰返し走査型の2点法で高い測定精度を実現する新しい測定原理を提案し、またその原理に従った測定方法及び可搬式とできる回転走査型の形状測定装置を提供することを目的とする。   In view of the problems involved, the present invention proposes a new measurement principle that realizes high measurement accuracy by a repetitive scanning two-point method using only one sensor, and can be a measurement method and a portable type according to the principle. An object of the present invention is to provide a rotary scanning type shape measuring apparatus.

本発明の測定方法は、 変位センサを用いて被測定対象の形状を測定する測定方法において、
前記被測定対象と前記変位センサのうち一方を固定して、他方を回転させることにより、前記被測定対象の形状を走査しつつ測定する第1の測定ステップと、
回転中心と前記変位センサとの相対位置関係を維持したまま、前記被測定対象と前記変位センサとを、前記回転中心回りに所望の角度だけ走査方向にシフトするシフトステップと、
前記一方を固定して、前記他方を回転させることにより、前記被測定対象の形状を走査しつつ測定する第2の測定ステップと、
前記第1の測定ステップによる測定結果と、前記第2の測定ステップによる測定ステップの測定結果とに基づいて、運動誤差を排除するステップとを有することを特徴とする。
The measuring method of the present invention is a measuring method for measuring the shape of an object to be measured using a displacement sensor.
A first measurement step of measuring one of the measurement object and the displacement sensor while scanning the shape of the measurement object by rotating the other and fixing the other;
A shift step of shifting the object to be measured and the displacement sensor in a scanning direction by a desired angle around the rotation center while maintaining a relative positional relationship between the rotation center and the displacement sensor;
A second measuring step of measuring the shape of the object to be measured while scanning by fixing the one and rotating the other;
And a step of eliminating a motion error based on the measurement result of the first measurement step and the measurement result of the measurement step of the second measurement step.

本発明では、反転法と同様に変位センサを1本だけ用いて、被測定対象と変位センサの両方の反転(180度の回転シフト)の代わりに、回転運動をする側の一方だけを高々30°程度回転シフトするだけで、逐次2点法による形状測定を実現することができる。   In the present invention, only one displacement sensor is used as in the reversal method, and instead of reversing both the object to be measured and the displacement sensor (180 degree rotation shift), only one of the rotational movement side is at most 30. It is possible to realize shape measurement by the sequential two-point method only by rotationally shifting by about 0 °.

また、本発明では、被測定対象を測定機に搭載するのではなく、測定装置を被測定対象上に搭載するか、被測定対象の近傍へ設置して測定を実施することができる。以下、図面を参照して本発明の原理について説明する。   Further, in the present invention, the measurement target can be measured by mounting the measurement device on the measurement target or installing it in the vicinity of the measurement target, instead of mounting the measurement target on the measuring machine. The principle of the present invention will be described below with reference to the drawings.

図1(a)は、従来技術による変位センサを2本用いた2点法を説明するための図であり、図1(b)は、従来技術による1本の変位センサをシフトさせた方法を説明するための図であり、図2は、変位センサを回転シフトして、回転シフト前後の2回の回転走査測定を行う本発明を説明するための図である。図1,2において、回転中心O回りに回転可能なテーブルTB上に、円盤状の被測定対象OBが載置されており、矢印で示す変位センサS1(S2)が、被測定対象OBの外周面に感度軸を向けて固定配置されている。変位センサは、その感度軸に交差する被測定対象の形状を測定できるものであれば、特に限定されない。尚、テーブルTBと被測定対象物OBとの相対回転を示すため、マークMKをそれぞれに付している。   FIG. 1 (a) is a diagram for explaining a two-point method using two displacement sensors according to the prior art, and FIG. 1 (b) shows a method of shifting one displacement sensor according to the prior art. FIG. 2 is a diagram for explaining the present invention in which a displacement sensor is rotationally shifted and two rotational scanning measurements before and after the rotational shift are performed. 1 and 2, a disk-shaped object OB to be measured is placed on a table TB that can rotate around the rotation center O, and a displacement sensor S1 (S2) indicated by an arrow is arranged on the outer periphery of the object OB to be measured. Fixed with the sensitivity axis facing the surface. The displacement sensor is not particularly limited as long as it can measure the shape of the measurement target that intersects the sensitivity axis. In addition, in order to show relative rotation with table TB and to-be-measured object OB, the mark MK is attached | subjected to each.

図1において、角度θの位置における被測定対象の形状をf(θ)とし、角度θの位置におけるx方向の運動誤差をex(θ)、角度θの位置におけるy方向の運動誤差をey(θ)とする。ここで、従来型の2点法では、走査方向に角度φだけ離れて配置された2本のセンサS1,S2(図1(a)参照)、あるいは測定前後に走査方向に角度φだけ離れた2か所の位置に配置されるセンサS1の出力m1(θ)、m2(θ)は、次式の関係になる。
m1(θ)=f(θ) +ex(θ) (1)
m2(θ)=f(θ+φ) +ex(θ)cos(φ)+ey(θ)sin(φ) (2)
In FIG. 1, the shape of the object to be measured at the position of the angle θ is f (θ), the motion error in the x direction at the position of the angle θ is ex (θ), and the motion error in the y direction at the position of the angle θ is ey ( θ). Here, in the conventional two-point method, two sensors S1 and S2 (see FIG. 1 (a)) arranged apart by an angle φ in the scanning direction, or separated by an angle φ in the scanning direction before and after the measurement. The outputs m1 (θ) and m2 (θ) of the sensor S1 arranged at the two positions have the following relationship.
m1 (θ) = f (θ) + ex (θ) (1)
m2 (θ) = f (θ + φ) + ex (θ) cos (φ) + ey (θ) sin (φ) (2)

ここで、(1)、(2)式からex(θ)を消去すると、
m2(θ)/ cos(φ)−m1(θ)= f(θ+φ)−f(θ)+ey(θ)tan(φ) (3)
となり、ey(θ)の影響が残ってしまう。すなわち、従来の2点法では回転軸の半径方向の振れの成分がセンサ出力に含まれるため、高い精度の測定が難しいといえる。
Here, ex (θ) is deleted from the equations (1) and (2).
m2 (θ) / cos (φ) −m1 (θ) = f (θ + φ) −f (θ) + ey (θ) tan (φ) (3)
Thus, the effect of ey (θ) remains. That is, with the conventional two-point method, the component of the shake in the radial direction of the rotating shaft is included in the sensor output, so it can be said that it is difficult to measure with high accuracy.

これに対して、図2に示した本発明の測定方法では、不図示の回転ガイドにより、テーブルTBの回転中心O回りに被測定対象OBが回転シフト可能となっている。ここで、図2(a)に示すように、1本の固定された変位センサS1を用いて、テーブルTBを回転させながら、テーブルTB上で固定された被測定対象OBの形状を測定して(4)式を得る(第1の測定ステップ)。次いで、図2(b)に示すように、テーブルTBの回転中心O回りに、被測定対象OBを測定方向(走査方向)に角度φだけ相対回転させる(シフトステップ)。この状態では、回転中心Oと変位センサS1との相対位置関係を維持したままである。かかる関係を維持したまま、同じ変位センサS1を用いて、テーブルTBを回転させながら、被測定対象OBの形状を測定して(5)式を得る(第2の測定ステップ)。
m1(θ)=f(θ)+ex(θ) (4)
m2(θ)=f(θ+φ)+ex(θ) (5)
On the other hand, in the measurement method of the present invention shown in FIG. 2, the object to be measured OB can be rotationally shifted around the rotation center O of the table TB by a rotation guide (not shown). Here, as shown in FIG. 2A, the shape of the measurement target OB fixed on the table TB is measured while rotating the table TB using one fixed displacement sensor S1. (4) Equation (first measurement step) is obtained. Next, as shown in FIG. 2B, the object to be measured OB is relatively rotated by the angle φ in the measurement direction (scanning direction) around the rotation center O of the table TB (shift step). In this state, the relative positional relationship between the rotation center O and the displacement sensor S1 is maintained. While maintaining this relationship, the same displacement sensor S1 is used to measure the shape of the object OB to be measured while rotating the table TB to obtain equation (5) (second measurement step).
m1 (θ) = f (θ) + ex (θ) (4)
m2 (θ) = f (θ + φ) + ex (θ) (5)

本発明によれば、被測定対象OBに回転シフトを与えるため、2回の走査でセンサ出力に含まれる運動誤差は同じ方向の成分のみになる。従って、反転法と同様、運動誤差の繰返し性があれば、回転シフト前後2回の測定値((4)、(5)式)の差分から、(6)式のように変位センサの感度軸方向の運動誤差ex(θ)を取り除けて、正しい形状の差分が得られる。
m2(θ)−m1(θ)=f(θ+φ)−f(θ) (6)
According to the present invention, since a rotational shift is given to the object OB to be measured, the motion error included in the sensor output is only the component in the same direction in two scans. Accordingly, as with the inversion method, if the motion error is repeatable, the sensitivity axis of the displacement sensor is obtained from the difference between the two measured values before and after the rotation shift (equations (4) and (5)) as shown in equation (6). By removing the motion error ex (θ) in the direction, a correct shape difference can be obtained.
m2 (θ) −m1 (θ) = f (θ + φ) −f (θ) (6)

これを逐次加えると、被測定対象OBの求める形状が得られる。なお、図2では、被測定対象OBがテーブルTBの回転中心回りに回転シフトする構造として、被測定対象OBを回転シフトしているが、走査のために変位センサが回転する構造の場合は、変位センサを含む変位検出部全体を回転シフトしてもよいことなる。重要なことは、回転軸に固有の半径方向運動誤差の同じ方向成分が、回転シフトの前後で変位センサに検出される形態になっていることである。   When this is sequentially added, the shape required for the measurement target OB is obtained. In FIG. 2, the measurement target OB is rotationally shifted as the structure in which the measurement target OB rotates around the rotation center of the table TB. However, in the case of the structure in which the displacement sensor rotates for scanning, The entire displacement detector including the displacement sensor may be rotationally shifted. What is important is that the same direction component of the radial motion error inherent to the rotation axis is detected by the displacement sensor before and after the rotation shift.

なお、図1,2では被測定対象OBが円盤状になっているが、被測定対象が円弧状のものであっても、半球状のものであっても、回転走査で測定できるものであれば、特に360度の円周を有する必要が無いことは言うまでもない。また、円板面などの平面の凹凸を円に沿って走査測定する場合にも適用できる。   In FIGS. 1 and 2, the object OB to be measured has a disk shape, but the object to be measured can be measured by rotational scanning regardless of whether it is an arc or hemisphere. Needless to say, it is not necessary to have a 360 degree circumference. Further, the present invention can also be applied to the case where plane unevenness such as a disk surface is scanned along a circle.

本発明の形状測定装置は、回転ガイドと、前記変位センサの感度軸を走査円に対して垂直な方向に保ちながら前記回転ガイドの回りに回転するセンサホルダと、前記回転ガイドと前記センサホルダを一体にして、走査円に沿う方向に回転シフトするシフト機構とを有すると好ましい。   The shape measuring apparatus of the present invention includes a rotation guide, a sensor holder that rotates around the rotation guide while maintaining a sensitivity axis of the displacement sensor in a direction perpendicular to a scanning circle, and the rotation guide and the sensor holder. It is preferable to have a shift mechanism that integrally rotates in a direction along the scanning circle.

本発明の形状測定装置は、少なくとも前記センサホルダ(又は形状測定装置全体)を移動させて、前記変位センサを回転走査円の軸線に直交する方向に相対移動することができ、その移動前後の姿勢変化を、傾斜姿勢検出装置(例えば水準器やオートコリメータ等)で測定して、移動に伴う姿勢変化を補正することができると好ましい。変位センサと被測定対象の回転シフトのために、被測定対象を回転可能な台を介して設置する構造も有効である。   The shape measuring apparatus of the present invention can move at least the sensor holder (or the entire shape measuring apparatus) to relatively move the displacement sensor in a direction perpendicular to the axis of the rotational scanning circle, and the posture before and after the movement. Preferably, the change can be measured by an inclination posture detection device (for example, a level or an autocollimator) to correct the posture change accompanying the movement. In order to rotationally shift the displacement sensor and the measurement target, a structure in which the measurement target is installed via a rotatable table is also effective.

本発明の形状測定装置は、同心円に沿って変位を検出できるように複数の変位センサを配置して、一度の走査で複数の位置の形状を測定できると好ましい。その複数の変位センサのゼロ点の相対高さを予め校正しておいて、得られた複数の同心円に沿う形状が相互に関連付けられる形態も好ましい。円板面測定の形態において、走査円の中心にも変位センサを配置して、回転走査の際の回転軸の軸方向の運動の繰返し誤差を検出して取り除く構造も好ましい。複数の変位センサを一体で保持して、回転腕に沿って移動することで変位センサ間隔内の形状に関する内挿値が得られる構造も好ましい。この際、移動における姿勢変化を水準器やオートコリメータ等で検出し、補正することも好ましい。   In the shape measuring apparatus of the present invention, it is preferable that a plurality of displacement sensors are arranged so that displacement can be detected along concentric circles, and the shapes of a plurality of positions can be measured by one scan. A form in which the relative heights of the zero points of the plurality of displacement sensors are calibrated in advance and the obtained shapes along the plurality of concentric circles are associated with each other is also preferable. In the form of disk surface measurement, a structure in which a displacement sensor is also arranged at the center of the scanning circle to detect and remove a repetitive error in the axial movement of the rotating shaft during rotational scanning is preferable. A structure in which a plurality of displacement sensors are integrally held and an interpolation value related to a shape within the displacement sensor interval can be obtained by moving along the rotating arm is also preferable. At this time, it is also preferable to detect and correct a change in posture during movement with a level or an autocollimator.

本発明によれば、変位センサを1本しか必要とせず、走査運動誤差の繰返し性の範囲で、回転走査誤差を取り除いた正しい形状が測定できる。   According to the present invention, only one displacement sensor is required, and a correct shape from which the rotational scanning error is removed can be measured within the range of repeatability of the scanning motion error.

本発明によれば、大きな被測定対象を工作機械から移動することなく、回転シフトを実施して反転法と同程度の高精度の形状測定を実現できる。   According to the present invention, it is possible to realize a shape measurement with high accuracy similar to the inversion method by performing a rotation shift without moving a large object to be measured from the machine tool.

本発明によれば、真円形状だけでなく、部分的な回転シフトで円弧や非球面の形状の測定も可能になる。   According to the present invention, it is possible to measure not only a perfect circular shape but also a circular arc shape or an aspherical shape with a partial rotational shift.

本発明によれば、単独の変位センサの安定性に配慮すれば測定精度が維持できるので、多点法のような変位センサ間の特性の微妙な違いに対する配慮が不要になる。   According to the present invention, since the measurement accuracy can be maintained if the stability of a single displacement sensor is taken into consideration, it is not necessary to consider a subtle difference in characteristics between displacement sensors as in the multipoint method.

本発明によれば、反転がし難いような大きな被測定対象でも、変位検出部の回転シフトで運動誤差を取り除くことができる。   According to the present invention, even for a large object to be measured that is difficult to reverse, a motion error can be removed by the rotational shift of the displacement detector.

尚、変位センサ又はテーブル等にエンコーダを内蔵して、被測定対象と変位センサとの相対回転角度を測定し、与えた指令に応じた走査間隔での変位センサの読みの平均値を出力することも好ましい。   The displacement sensor or table has a built-in encoder, measures the relative rotation angle between the object to be measured and the displacement sensor, and outputs the average value of the displacement sensor reading at the scanning interval according to the given command. Is also preferable.

又、所望の回転シフト量を与える際に、それを確認できる指標(マークMK)等を、被測定対象やテーブル(又は変位センサ側)に備えていることも好ましい。   It is also preferable that an index (mark MK) or the like that can be used to confirm the desired rotational shift amount is provided on the measurement target or the table (or the displacement sensor side).

重力に対する姿勢で生じる移動誤差を補正する構造も好ましい。   A structure for correcting a movement error caused by a posture with respect to gravity is also preferable.

回転走査しながら、変位センサの出力を一定に保つように感度軸方向に変位センサを制御する方式の変位検出部を採用するのも好ましい。   It is also preferable to employ a displacement detection unit that controls the displacement sensor in the sensitivity axis direction so as to keep the output of the displacement sensor constant while performing rotational scanning.

(a)は、従来技術による変位センサを2本用いた2点法を説明するための図であり、図1(b)は、従来技術による1本の変位センサをシフトさせた方法を説明するための図である。(A) is a figure for demonstrating the two-point method using two displacement sensors by a prior art, and FIG.1 (b) demonstrates the method of shifting one displacement sensor by a prior art. FIG. 変位センサを回転シフトして、回転シフト前後の2回の回転走査測定を行う本発明を説明するための図である。It is a figure for demonstrating this invention which rotationally shifts a displacement sensor and performs two rotational scanning measurement before and behind a rotation shift. 第1の実施の形態にかかる測定装置を示す斜視図である。It is a perspective view which shows the measuring apparatus concerning 1st Embodiment. 第2の実施の形態にかかる測定装置を示す斜視図である。It is a perspective view which shows the measuring apparatus concerning 2nd Embodiment. 第3の実施の形態にかかる測定装置を示す斜視図である。It is a perspective view which shows the measuring apparatus concerning 3rd Embodiment. 水準器の読みから測定結果を補正する状態を示す図である。It is a figure which shows the state which correct | amends a measurement result from the reading of a spirit level.

以下、図面を使って本発明の実施の形態にかかる測定装置について説明する。図3は、第1の実施の形態にかかる形状測定装置を示す斜視図である。図3(a)において、円盤状の被測定対象OBの外周形状を測定する形状測定装置は、被測定対象OBに設置される検出部保持台BSと、検出部保持台BSに植設された回転ガイド(軸)RGと、回転ガイドRGに嵌合し回転軸線X回りに相対回転する円筒状の走査用回転部SRと、走査用回転部SRから鈎状に延在するセンサホルダSHと、センサホルダSHの端部に取り付けられ、感度軸を被測定対象OBに向けた変位センサS1とを有する。検出部保持台BSは、回転ガイドRGとセンサホルダSHを一体にして、被測定対象OBに対して走査円に沿う方向に相対的に回転シフトするシフト機構である。尚、被測定対象OBと、検出部保持台BSと、走査用回転部SRには、回転シフト位置表示マークMKが形成されている。   Hereinafter, a measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a perspective view showing the shape measuring apparatus according to the first embodiment. In FIG. 3 (a), the shape measuring device for measuring the outer peripheral shape of the disk-shaped object OB to be measured is installed in the detection unit holding base BS installed in the measurement target OB and the detection unit holding base BS. A rotation guide (shaft) RG, a cylindrical scanning rotation portion SR that is fitted to the rotation guide RG and relatively rotates about the rotation axis X, and a sensor holder SH that extends in a bowl shape from the scanning rotation portion SR; A displacement sensor S1 attached to the end of the sensor holder SH and having a sensitivity axis directed toward the measurement target OB. The detection unit holding base BS is a shift mechanism that integrally rotates the rotation guide RG and the sensor holder SH, and rotates and shifts relative to the measurement target OB in the direction along the scanning circle. A rotation shift position display mark MK is formed on the measurement target OB, the detection unit holding base BS, and the scanning rotation unit SR.

形状測定装置を用いた測定方法に付いて説明する。まず、図3(a)の状態で、回転ガイドRGの周囲を、走査用回転部SRを相対回転させると、それと共にセンサS1が被測定対象OBの周囲を回転し、外周の凹凸を検出するので、変位センサS1の出力が不図示のエンコーダ(走査用回転部SRの相対回転角度を検出する)の信号に同期して出力される。その出力を取得することで(4)式の測定結果が得られる。   A measuring method using the shape measuring apparatus will be described. First, in the state of FIG. 3A, when the scanning rotation unit SR is relatively rotated around the rotation guide RG, the sensor S1 simultaneously rotates around the measurement target OB and detects the unevenness on the outer periphery. Therefore, the output of the displacement sensor S1 is output in synchronization with a signal of an encoder (not shown) (detecting the relative rotation angle of the scanning rotation unit SR). By obtaining the output, the measurement result of equation (4) can be obtained.

次いで、回転軸線Xの交差位置を変えずに被測定対象OBと検出部保持台BSとを、走査方向に所定の角度だけ回転変位(シフト)させると、図3(b)に示す状態になる。その後、回転ガイドRGの周囲を、走査用回転部SRを相対回転させると、それと共にセンサS1が被測定対象OBの周囲を回転し、その出力を取得することで(5)式の測定結果が得られる。(4)、(5)式から、(6)式が求められ、被測定対象OBの形状だけを求める差分が得られる。なお、被測定対象OBと、回転ガイドRGとの偏心状態が回転シフト前後で変わるが、偏心の影響は回転周期に一致する成分として真円形状から除外される。   Next, when the object to be measured OB and the detection unit holding base BS are rotationally displaced (shifted) by a predetermined angle in the scanning direction without changing the crossing position of the rotation axis X, the state shown in FIG. . Thereafter, when the scanning rotation unit SR is relatively rotated around the rotation guide RG, the sensor S1 rotates around the object to be measured OB and acquires the output thereof, whereby the measurement result of the equation (5) is obtained. can get. From equations (4) and (5), equation (6) is obtained, and a difference for obtaining only the shape of the object OB to be measured is obtained. Note that the eccentric state between the object to be measured OB and the rotation guide RG changes before and after the rotation shift, but the influence of the eccentricity is excluded from the perfect circle shape as a component that coincides with the rotation period.

図4は、第2の実施の形態にかかる形状測定装置を示す斜視図である。本実施の形態においては、センサホルダSHに対して変位センサS1が、被測定対象OBの上面の形状を測定するように、感度軸が回転ガイドRGと平行に設けられている点のみが異なる。測定方法は、図3に示す形状測定装置と同様である。回転軸線XからセンサS1の感度軸までの半径を任意に変えることができるように、センサホルダSHのアーム長を可変とすれば、検出部保持台BSと干渉しない限り、被測定対象OBの上面形状を測定することができる。   FIG. 4 is a perspective view showing a shape measuring apparatus according to the second embodiment. The present embodiment is different from the sensor holder SH only in that the sensitivity axis is provided in parallel with the rotation guide RG so that the displacement sensor S1 measures the shape of the upper surface of the measurement target OB. The measuring method is the same as that of the shape measuring apparatus shown in FIG. If the arm length of the sensor holder SH is variable so that the radius from the rotation axis X to the sensitivity axis of the sensor S1 can be arbitrarily changed, the upper surface of the object OB to be measured can be used as long as it does not interfere with the detection unit holding base BS. The shape can be measured.

図5(a)に、水準器を姿勢検出に使った形状測定装置の斜視図を示す。かかる形状測定装置は、回転半径(r1,r2)の異なる2個の変位センサS1,S2を、センサホルダSHに取り付けて同時に回転走査し、同心円上に異なる位置で形状測定を行う例である。より具体的には、被測定対象OBの被測定面上に、門型の検出部保持台BSの一対の脚部がスライド可能に載置されている。検出部保持台BSの水平梁部中央には、傾斜姿勢検出装置である水準器LVと、回転ガイドRGが固定配置され、回転ガイドRGは走査用回転軸SRを回転可能に支持している。走査用回転軸SRの下端には、水平バー状のセンサホルダSHの中央が取り付けられている。センサホルダSHには、被測定面を向くようにして変位センサS1,S2が回転半径(r1,r2)を異ならせて取り付けられている。上述したように、走査用回転軸SRを回転させることで、被測定面上の同心円上における異なる位置を形状測定できる。   FIG. 5 (a) shows a perspective view of a shape measuring apparatus using a spirit level for posture detection. This shape measuring apparatus is an example in which two displacement sensors S1, S2 having different rotation radii (r1, r2) are attached to a sensor holder SH and simultaneously scanned for rotation, and shape measurement is performed at different positions on concentric circles. More specifically, the pair of leg portions of the gate-shaped detection unit holding base BS is slidably mounted on the measurement surface of the measurement target OB. In the center of the horizontal beam portion of the detection unit holding base BS, a level LV that is an inclination posture detection device and a rotation guide RG are fixedly arranged, and the rotation guide RG rotatably supports the scanning rotation shaft SR. The center of a horizontal bar-shaped sensor holder SH is attached to the lower end of the scanning rotating shaft SR. Displacement sensors S1 and S2 are attached to the sensor holder SH with different radii of rotation (r1, r2) so as to face the surface to be measured. As described above, by rotating the scanning rotation axis SR, different positions on the concentric circles on the surface to be measured can be measured.

図5(b)は、被測定対象OBの被測定面上を(回転走査円の軸線に直交する方向に沿って)、検出部保持台BSがセンサホルダSH毎、dだけ移動して2か所で回転走査をして、上述した方法で形状を測定する例を示す。2か所での走査円が重なる点では同じ測定面上の点なので高さを合わせることはできるが、交点を結ぶ交点軸cの周りの回転は拘束できないので形状が定まらない。そこで検出部保持台BSを、dだけ移動した前後の検出部保持台BSの傾斜を補正する必要がある。そのために、本実施形態では水準器LVの読みを利用する。この水準器LVの読みにより検出部保持台BSの姿勢検出を行うことができ、かかる姿勢変化分を補正することで精度の良い形状測定を行うことができる。水準器LVの代わりにオートコリメータと反射鏡の組み合わせを用いても良いことは言うまでもない。また、変位センサは2本だけを示したが、より多くのセンサを用いて、同心円の密度を上げてもよいし、また、センサホルダを半径方向にシフトして変位センサの回転半径を変化させて回転走査を繰り返す構造にしてもよい。また、図5(a)では検出部保持台BSが被測定面上に置かれているが、図5(a)の被測定対象OBをまたぐような構造でもよい。   FIG. 5 (b) shows whether the detection unit holding base BS moves by d for each sensor holder SH on the surface to be measured OB (along the direction orthogonal to the axis of the rotational scanning circle). An example in which the shape is measured by the above-described method by performing rotational scanning at a point will be described. The points where the scanning circles at the two points overlap are points on the same measurement plane, so the height can be matched, but the rotation around the intersection axis c connecting the intersections cannot be constrained, so the shape is not fixed. Therefore, it is necessary to correct the inclination of the detector holding base BS before and after the detector holding base BS is moved by d. For this purpose, the reading of the level LV is used in this embodiment. By detecting the level LV, it is possible to detect the posture of the detection unit holding base BS, and it is possible to perform accurate shape measurement by correcting the posture change. Needless to say, a combination of an autocollimator and a reflecting mirror may be used instead of the level LV. Although only two displacement sensors are shown, the density of concentric circles may be increased by using more sensors, or the rotation radius of the displacement sensor is changed by shifting the sensor holder in the radial direction. Thus, the structure may be such that the rotational scanning is repeated. Further, in FIG. 5 (a), the detection unit holding base BS is placed on the surface to be measured, but it may be structured so as to straddle the object to be measured OB in FIG. 5 (a).

図6によって本発明の水準器の役割について説明する。図5の実施形態で回転走査測定装置全体を移動して回転走査をすると、移動に伴う回転軸の傾斜によって、移動前の走査基準円CL1に対し、移動後の走査基準円CL2が図6(a)のように傾いてしまう。ここで、移動軸回りの傾斜(ローリング)については、被測定面の同一点での高さが等しいとして、移動前後の走査円の交叉点の高さを揃えることで補正ができる。しかし、移動方向の傾斜(ピッチングθp)は交叉点を結ぶ直線周りに生じるため、高さを揃えるだけでは補正しきれない。そこで、この傾斜を外部の基準によって補正する必要がある。本発明のように移動前後の装置全体の傾斜を水準器LVで測定すればその差が、走査基準円CL1.CL2の傾斜θpに相当するので、図6(b)のようにこの傾斜を補正して正しい形状を得ることができる。   The role of the level of the present invention will be described with reference to FIG. In the embodiment of FIG. 5, when the rotational scanning measuring device is moved and rotationally scanned, the scanning reference circle CL2 after the movement is different from the scanning reference circle CL1 before the movement due to the inclination of the rotation axis accompanying the movement in FIG. It tilts like a). Here, the inclination (rolling) around the movement axis can be corrected by making the heights of the intersections of the scanning circles before and after the movement equal, assuming that the heights at the same point on the surface to be measured are the same. However, since the inclination in the moving direction (pitching θp) occurs around a straight line connecting the crossing points, it cannot be corrected by just aligning the heights. Therefore, it is necessary to correct this inclination by an external reference. If the inclination of the entire apparatus before and after the movement is measured with a level LV as in the present invention, the difference is determined by the scanning reference circle CL1. Since this corresponds to the inclination θp of CL2, the correct shape can be obtained by correcting this inclination as shown in FIG. 6 (b).

また、図には示さないが、図3に示すように円筒外周を測定する形状測定装置では、変位センサを円筒軸方向に複数個並べたり、あるいはセンサホルダを円筒軸方向に移動させて複数の軸直角断面での真円形状を得る形態も好ましい。   Although not shown in the figure, in the shape measuring apparatus for measuring the outer circumference of the cylinder as shown in FIG. 3, a plurality of displacement sensors are arranged in the cylinder axis direction, or a plurality of sensor holders are moved in the cylinder axis direction. A form that obtains a perfect circle shape in a cross section perpendicular to the axis is also preferable.

BS 検出部保持台
MK 回転シフト位置表示マーク
OB 被測定対象
RG 回転ガイド
S1 変位センサ
SH センサホルダ
SR 走査用回転部
X 回転軸線
BS Detection unit holding base MK Rotation shift position display mark OB Object to be measured RG Rotation guide S1 Displacement sensor SH Sensor holder SR Scanning rotation unit X Rotation axis

Claims (3)

変位センサを用いて被測定対象の形状を測定する測定方法において、
前記被測定対象と前記変位センサのうち一方を固定して、他方を回転させることにより、前記被測定対象の形状を走査しつつ測定する第1の測定ステップと、
回転中心と前記変位センサとの相対位置関係を維持したまま、前記被測定対象と前記変位センサとを、前記回転中心回りに所望の角度だけ走査方向にシフトするシフトステップと、
前記一方を固定して、前記他方を回転させることにより、前記被測定対象の形状を走査しつつ測定する第2の測定ステップと、
前記第1の測定ステップによる測定結果と、前記第2の測定ステップによる測定ステップの測定結果とに基づいて、運動誤差を排除するステップとを有することを特徴とする測定方法。
In a measurement method for measuring the shape of a measurement object using a displacement sensor,
A first measurement step of measuring one of the measurement object and the displacement sensor while scanning the shape of the measurement object by rotating the other and fixing the other;
A shift step of shifting the object to be measured and the displacement sensor in a scanning direction by a desired angle around the rotation center while maintaining a relative positional relationship between the rotation center and the displacement sensor;
A second measuring step of measuring the shape of the object to be measured while scanning by fixing the one and rotating the other;
A measurement method comprising the step of eliminating a motion error based on a measurement result of the first measurement step and a measurement result of the measurement step of the second measurement step.
請求項1に記載の測定方法を用いた形状測定装置であって、
回転ガイドと、
前記変位センサの感度軸を走査円に対して垂直な方向に保ちながら前記回転ガイドの回りに回転するセンサホルダと、
前記回転ガイドと前記センサホルダを一体にして、走査円に沿う方向に回転シフトするシフト機構とを有することを特徴とする形状測定装置。
A shape measuring device using the measuring method according to claim 1,
A rotation guide,
A sensor holder that rotates around the rotation guide while maintaining a sensitivity axis of the displacement sensor in a direction perpendicular to a scanning circle;
A shape measuring apparatus comprising: a shift mechanism that integrally rotates the rotation guide and the sensor holder and that shifts in a direction along a scanning circle.
少なくとも前記センサホルダを移動させて、前記変位センサを回転走査円の軸線に直交する方向に相対移動することができ、その移動前後の姿勢変化を、傾斜姿勢検出装置で測定して、移動に伴う姿勢変化を補正することができることを特徴とする請求項2に記載の形状測定装置。   By moving at least the sensor holder, the displacement sensor can be relatively moved in a direction perpendicular to the axis of the rotational scanning circle, and a change in posture before and after the movement is measured by an inclination posture detecting device, and accompanying the movement 3. The shape measuring apparatus according to claim 2, wherein the posture change can be corrected.
JP2010085894A 2010-04-02 2010-04-02 Measuring method and shape measuring device Expired - Fee Related JP5460427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085894A JP5460427B2 (en) 2010-04-02 2010-04-02 Measuring method and shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085894A JP5460427B2 (en) 2010-04-02 2010-04-02 Measuring method and shape measuring device

Publications (2)

Publication Number Publication Date
JP2011215108A JP2011215108A (en) 2011-10-27
JP5460427B2 true JP5460427B2 (en) 2014-04-02

Family

ID=44944971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085894A Expired - Fee Related JP5460427B2 (en) 2010-04-02 2010-04-02 Measuring method and shape measuring device

Country Status (1)

Country Link
JP (1) JP5460427B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438807B2 (en) * 2015-03-13 2018-12-19 大成建設株式会社 Measuring object dimension measuring apparatus, measuring object dimension measuring system, and measuring object dimension measuring method
JP7219108B2 (en) * 2019-02-13 2023-02-07 株式会社ブリヂストン Sector mold inspection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396733B2 (en) * 2000-08-30 2003-04-14 独立行政法人産業技術総合研究所 Separation measuring method and measuring device of circumferential shape and motion accuracy of rotating body by combination of goniometer and displacement meter
JP4848513B2 (en) * 2005-12-28 2011-12-28 国立大学法人弘前大学 Rotating body measuring method and apparatus

Also Published As

Publication number Publication date
JP2011215108A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
US8336219B2 (en) Apparatus and method for calibrating a scanning head
US20160195389A1 (en) Reduction of errors of a rotating device used during the determination of coordinates of a workpiece or during the machining of a workpiece
JP2007071852A (en) Apparatus and method for measuring deep hole
JP6692658B2 (en) Inner wall measuring device and offset amount calculating method
JP2019532281A (en) Measurement of toothed articles using multiple sensors
JP6657552B2 (en) Flatness measurement method
JP5270138B2 (en) Calibration jig and calibration method
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP4964691B2 (en) Measuring method of measured surface
JP5460427B2 (en) Measuring method and shape measuring device
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
JP2009281768A (en) Measuring apparatus
JP4690276B2 (en) Calibration method for roundness measuring apparatus
JP6765710B2 (en) All angle measuring instrument
JP5252649B2 (en) Calibration device and straight shape measuring device
JP2009145152A (en) Measuring device
JP5032741B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP2000249540A (en) Device and method for measuring shape of cylindrical object
TWI558978B (en) Roundness measurement method and roundness measurement device
JP6757391B2 (en) Measuring method
JP4529664B2 (en) Tool shape measuring apparatus and method
JP2007183145A (en) Method and instrument for measuring tubular bore
JP5601699B2 (en) Calibration device
JP2010085341A (en) Spherical shape measuring device and spherical shape measuring method
JP2010253604A (en) Scanning motion error measuring method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5460427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees