JP2009145152A - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP2009145152A
JP2009145152A JP2007321704A JP2007321704A JP2009145152A JP 2009145152 A JP2009145152 A JP 2009145152A JP 2007321704 A JP2007321704 A JP 2007321704A JP 2007321704 A JP2007321704 A JP 2007321704A JP 2009145152 A JP2009145152 A JP 2009145152A
Authority
JP
Japan
Prior art keywords
sensor
measured
sensor holder
shape
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007321704A
Other languages
Japanese (ja)
Inventor
Satoshi Kiyono
慧 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007321704A priority Critical patent/JP2009145152A/en
Publication of JP2009145152A publication Critical patent/JP2009145152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor holder capable of scanning and moving on a surface to be measured, in order to achieve a multipoint method by combining a point in contact with the surface to be measured with a displacement sensor or an angle sensor, as a tool in place of a level vial for measuring a lengthy straight shape or a large-size plane shape. <P>SOLUTION: The sensor holder movable relatively to the surface to be measured has a shape having at least two contact points to the surface to be measured, and a differential output similar to a three-point method for straight shape measurement is acquired by three points, namely, the two contact points between the sensor holder and the surface to be measured and a measuring point of a sensor held by the sensor holder, and the shape is determined from the output. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、測定技術に関し、特に真直形状、面形状の測定を簡易に高精度に行う測定装置に関する。   The present invention relates to a measurement technique, and more particularly to a measurement apparatus that performs measurement of a straight shape and a surface shape easily and with high accuracy.

面形状や断面直線形状の測定をするためには、基準となる直定規との比較測定を実施することが多い。また、基準定規が使えないときには、水準器を用いて、水準器下面が被測定面に当接する点の間の傾斜を被測定面上の必要な箇所で測定し、その測定結果より直線形状あるいは面形状を算出する方法が用いられる。原理的には、重力の方向(水平面の法線方向)を基準にして2点間の傾斜を測定する接触式の2点法や多点法が主として用いられる。尚、測定方法の一例として、非特許文献1に示すような3点法が知られている。
小尾誠,古川進:逐次点測定法による真直度測定の考察(第1報,逐次点測定法の表現式と誤差の理論解析)日本機械学会論文集C,57,542,(1991)85−89
In order to measure a surface shape or a cross-sectional linear shape, a comparative measurement with a standard straight ruler is often performed. If the standard ruler cannot be used, use a spirit level to measure the slope between the points where the bottom surface of the spirit level contacts the surface to be measured at the required location on the surface to be measured. A method for calculating the surface shape is used. In principle, the contact-type two-point method or the multipoint method that measures the inclination between two points with respect to the direction of gravity (normal direction of the horizontal plane) is mainly used. As an example of the measuring method, a three-point method as shown in Non-Patent Document 1 is known.
Makoto Oo, Susumu Furukawa: Consideration of straightness measurement by sequential point measurement method (1st report, Expression analysis of sequential point measurement method and theoretical analysis of error) Transactions of the Japan Society of Mechanical Engineers C, 57, 542, (1991) 85-89

測定対象が大型化するのにともない、基準定規が長尺化し、基準直定規の作成が困難になるだけでなく、高精度の定規を運搬する際にも困難が生じ、また、大型の基準定規は使用時の弾性変形、熱変形が基準精度を低下させるなどの問題がある。   As the measuring object becomes larger, the standard ruler becomes longer, which makes it difficult to create a standard straight ruler, as well as difficulties when transporting a high-precision ruler. However, there are problems such as elastic deformation and thermal deformation at the time of use, which degrade the reference accuracy.

このことは、市販されている高級ストレートエッジ(直定規)JISA級のものでは、1m長で6μm、4m長で18μmまでしか真直度が保証されず、高精度の工作機械の測定基準には一桁以上の精度不足となっている現状にも表れている。   This means that, with high-grade straight edge (straight ruler) JISA class products that are commercially available, straightness is guaranteed only up to 6 μm at 4 m and 18 μm at 4 m, which is one of the measurement standards for high-precision machine tools. This is reflected in the current situation where the accuracy is more than a digit.

これに対して、水準器では、外乱振動の影響で感度が上げられないことと、高感度のものほど応答速度が遅くなり、大平面での多数の点の傾斜測定にかかる時間も長くなるという難点がある。   On the other hand, with a spirit level, the sensitivity cannot be increased due to the influence of disturbance vibrations, and the higher the sensitivity, the slower the response speed, and the longer it takes to measure the tilt of many points on a large plane. There are difficulties.

本発明は、かかる問題点に鑑み、断面直線形状や面形状の測定における水準器による多点法と類似の接触式多点法を、変位センサや角度センサを実現することを目的として、大面積の被測定面を迅速に高精度に実施する方法を提供することを目的とする。   In view of such problems, the present invention aims to realize a contact-type multipoint method similar to a multipoint method using a spirit level in the measurement of a cross-sectional linear shape and surface shape, and to realize a displacement sensor and an angle sensor. It is an object of the present invention to provide a method for quickly and accurately implementing a surface to be measured.

本発明は、被測定面に対してそれぞれが当接する当接点の間隔が既知である2個の凸部を有するセンサホルダと、前記センサホルダに取り付けられ、前記凸部の2つの当接点を結ぶ直線上の前記当接点から既知の距離にある被測定面の形状高さを測定する変位センサと、前記変位センサの出力に影響を及ぼすことなく前記センサホルダを所望の直線に沿って位置を検出しながら移動させるためのガイドとからなることを特徴とする。   The present invention relates to a sensor holder having two convex portions each having a known interval between the contact points with which the surface to be measured is in contact, and the two contact points of the convex portions that are attached to the sensor holder. A displacement sensor that measures the shape height of the measured surface at a known distance from the contact point on the straight line, and detects the position of the sensor holder along the desired straight line without affecting the output of the displacement sensor And a guide for moving while moving.

更に、本発明は、被測定面に対してそれぞれ当接する当接点の間隔が既知である2つの凸部と、その凸部が等接する点を結ぶ線上にある変位センサまたは角度センサにより接触式の多点法測定を実施するプローブを構成することを特徴とする。また、本発明は、被測定面に当接する3点と一つ以上の変位センサ又は角度センサによって、平面測定のための多点法プローブを構成することを特徴とする。   Furthermore, the present invention provides a contact-type sensor using a displacement sensor or an angle sensor on a line connecting two protrusions whose contact points are in contact with the surface to be measured and the points where the protrusions are in contact with each other. A probe for performing multipoint measurement is configured. In addition, the present invention is characterized in that a multipoint probe for plane measurement is constituted by three points in contact with the surface to be measured and one or more displacement sensors or angle sensors.

本発明は、真直形状や平面形状を測定するときの多点法プローブにおいて、必要とするセンサの一部を被測定面に当接する凸部によって代替することで、必要なセンサの数を低減することを特徴とする。   The present invention reduces the number of necessary sensors in a multipoint probe for measuring a straight shape or a planar shape by substituting a part of the required sensor with a convex part that abuts the surface to be measured. It is characterized by that.

本発明はまた、被測定面と当接する凸部が回転可能となっていて、被測定物と多点法プローブを被測定面に沿って移動する走査を容易にすることを特徴とする。   The present invention is also characterized in that the convex portion that comes into contact with the surface to be measured is rotatable, facilitating scanning that moves the object to be measured and the multipoint probe along the surface to be measured.

本発明のセンサホルダは、当接する2点を結ぶ直線が被測定面の2点の傾斜を示すので、その中間にある変位センサの読みが、前記傾斜直線からの被測定面の高さ方向の変位を示すことになる。これは、真直形状測定のための変位3点法の出力と等価な情報を与えることが出来る。また、センサが、角度センサであれば、角度2点法や、混合法と等価な情報を与えることになる。   In the sensor holder of the present invention, since the straight line connecting the two points in contact indicates the inclination of the two points of the measured surface, the displacement sensor in the middle reads the measured surface in the height direction of the measured surface from the inclined straight line. It will indicate displacement. This can provide information equivalent to the output of the displacement three-point method for straight shape measurement. If the sensor is an angle sensor, information equivalent to the angle two-point method or the mixing method is given.

前記センサホルダに取り付ける変位センサが2個であるか、2次元の角度センサであるか、あるいは角度センサと変位センサであり、2方向に走査移動することで、2次元の形状測定ができる。センサの被測定面に当接する点とセンサの配置が2次元的な広がりを持てば、センサの出力からは、面形状測定のための多点法出力と等価な情報が得られる。   Two displacement sensors attached to the sensor holder, a two-dimensional angle sensor, or an angle sensor and a displacement sensor, and two-dimensional shape measurement can be performed by scanning and moving in two directions. If the point of contact with the surface to be measured of the sensor and the arrangement of the sensor have a two-dimensional spread, information equivalent to the multipoint method output for surface shape measurement can be obtained from the output of the sensor.

以下、図と式を使って本発明について説明する。図1(a)は、本発明の基本となる3点法による真直形状測定用のセンサホルダSHの側面の模式的構造を示し、図1(b)は、センサホルダSHの裏側(被測定面に対向する側)の模式的構造を示すもので、凸部としての球(被測定面接触用球)SPが、細長い板状のセンサホルダSHの裏面にX軸方向に当接点(頂点)間隔Lxで2個配置され、更に両球SPの頂点を結ぶ、X軸に平行な直線上に被測定面の形状高さを検出する変位センサSNが配置されている。センサSNは電磁式、光学式などの非接触センサでも、電気マイクロメータなどと呼ばれる接触式のプローブにより、対向する被測定面の高さ変位を電気的に読み取るものでも、ダイヤルゲージのような機械式の接触式変位センサでもよい。   The present invention will be described below with reference to the drawings and formulas. FIG. 1A shows a schematic structure of a side surface of a sensor holder SH for straight shape measurement by a three-point method, which is the basis of the present invention, and FIG. 1B shows a back side (surface to be measured) of the sensor holder SH. The sphere (measurement surface contact sphere) SP as a convex portion is in contact with the back surface of the elongated plate-shaped sensor holder SH in the X-axis direction. Two displacement sensors SN for detecting the shape height of the surface to be measured are arranged on a straight line parallel to the X axis that connects two vertices Lx and connects the vertices of both spheres SP. The sensor SN may be a non-contact sensor such as an electromagnetic type or an optical type, or may be a device that electrically reads the height displacement of the surface to be measured by a contact type probe called an electric micrometer, or a machine such as a dial gauge. A contact displacement sensor of the type may be used.

簡単のために、Ls=Lx/2の場合を例にとると、間隔Lxである2個の球SPの頂点における座標で、(x−Ls)、(x+Ls)の2点を結ぶ直線は、両方の球SPの接点の(Z軸方向の)形状高さの差から決まる。この傾斜をもとに点xにあるセンサSNの原点の移動を評価して、センサ出力値ms(x)と断面直線形状f(x)との関係は次式のようになる。
ms(x)=f(x)−{f(x−Ls) +f(x+ Ls) }/2 (1)
For the sake of simplicity, taking the case of Ls = Lx / 2 as an example, the straight line connecting the two points (x−Ls) and (x + Ls) at the coordinates of the vertices of two spheres SP with an interval Lx is It is determined from the difference in shape height (in the Z-axis direction) of the contact points of both spheres SP. Based on this inclination, the movement of the origin of the sensor SN at the point x is evaluated, and the relationship between the sensor output value ms (x) and the cross-sectional linear shape f (x) is as follows.
ms (x) = f (x) − {f (x−Ls) + f (x + Ls)} / 2 (1)

このセンサの出力は、いわゆる3点法(非特許文献1参照)に従い、3本のセンサから走査運動誤差を取り除いて、形状に関する量だけで表現したときの差動出力と同じ形になる。   The output of this sensor has the same form as the differential output when the scanning motion error is removed from the three sensors according to the so-called three-point method (see Non-Patent Document 1) and expressed only by the amount related to the shape.

ただし、式(1)において、αは3点法におけるセンサ間のゼロ点誤差に相当し、形状既知の直線に沿ってセンサホルダSHの2点を当接させたときのセンサSNの読みから校正できる。図1(b)に示すように、直線状の剛体であるガイドGDに沿って、センサホルダSHを移動させながら、センサSNの値を読み取ってゆくことで、球SPの頂点を結ぶ直線に沿った被測定面の形状を精度良く測定することができる。このとき、例えばリニアエンコーダ等により、ガイドGDに対するセンサホルダSHの相対移動量を検出できると好ましい。   However, in equation (1), α corresponds to a zero point error between sensors in the three-point method, and is calibrated from readings of the sensor SN when the two points of the sensor holder SH are brought into contact with each other along a straight line whose shape is known. it can. As shown in FIG. 1B, along the straight line connecting the vertices of the sphere SP by reading the value of the sensor SN while moving the sensor holder SH along the guide GD that is a linear rigid body. The shape of the measured surface can be measured with high accuracy. At this time, it is preferable that the relative movement amount of the sensor holder SH with respect to the guide GD can be detected by, for example, a linear encoder.

なお、図1ではセンサSNは2つの接点の中間に置かれているが、センサSNの位置は両接点を結ぶ直線上にあれば、両接点の間にあっても、外側にあっても構わない。また、式を導くとき、2Ls=Lx、Ls=xsの条件を与えたが、Ls=xsが成立しないときは、逐次3点法でなく、一般的な3点法としてデータ処理をすればよい。より一般的な形としては、2Ls=Lxも必須の条件ではない。   In FIG. 1, the sensor SN is placed between the two contacts, but the sensor SN may be located between the two contacts or outside as long as it is on a straight line connecting the two contacts. Further, when the formula is derived, conditions of 2Ls = Lx and Ls = xs are given. However, when Ls = xs does not hold, data processing may be performed as a general three-point method instead of the sequential three-point method. . As a more general form, 2Ls = Lx is not an essential condition.

図2(a)は、請求項2の発明を具現化した形態のセンサホルダSHの側面の模式的構造を示し、図2(b)は、センサホルダSHの裏側(被測定面に対向する側)の模式的構造を示すもので、センサホルダSHがY軸方向に傾斜するのを防ぐために、球SP3による接点を一つ増やした形態である。これによりセンサホルダSHは、3点支持され自立でき、安定した測定を行える。なお、図2(a)では、X軸方向に沿った直線上を走査するために、三角板形状のセンサホルダSHの一辺(球SPの頂点を結ぶ直線に平行であると好ましい)を、直線状の剛体であるガイドGDに沿って摺動させれば、図1と同様の効果が得られる。尚、直線ガイドには位置決めの機能を持たせることも好ましい。直線ガイドの代わりに、複数の突起をセンサホルダSHに当接させてもよい。   FIG. 2A shows a schematic structure of the side surface of the sensor holder SH of the embodiment embodying the invention of claim 2, and FIG. 2B shows the back side of the sensor holder SH (the side facing the surface to be measured). ) In order to prevent the sensor holder SH from inclining in the Y-axis direction, the contact point by the ball SP3 is increased by one. As a result, the sensor holder SH is supported at three points and can stand on its own to perform stable measurement. In FIG. 2A, in order to scan on a straight line along the X-axis direction, one side of the triangular plate-shaped sensor holder SH (preferably parallel to a straight line connecting the vertices of the sphere SP) is linear. The same effect as in FIG. 1 can be obtained by sliding along the guide GD, which is a rigid body. It is also preferable that the linear guide has a positioning function. A plurality of protrusions may be brought into contact with the sensor holder SH instead of the linear guide.

図3は、別な形態にかかるセンサホルダSHの裏面を示すもので、Y軸方向に配置した2つの球SPの接点の中間の点P4と、第3の接点P3をむすぶ線上にセンサSNが配置されている。この配置では、Y軸方向に並ぶ2個の接点P1,P2における形状高さが既知で無い限り、X軸方向の厳密な断面直線形状は測定できない。しかし、Y軸方向への形状変化が少ない場合は、X軸方向の断面直線形状測定に関して、Y軸方向の2点P1,P2の形状高さの平均値と、センサSNおよび第3の接点P3が通過する直線の断面形状とが近似的に一致するとすれば、3点法が成立する。ここで、安定な形で、かつ2点P1,P2の間隔が狭いほうがよい。一つの接触点P3とセンサSNの測定点を結ぶ線方向にセンサホルダSHを移動してその移動方向の真直形状が測れるが、残りの2個の接触点P1,P2の間隔が狭いほど測定の確からしさが増す。尚、図3ではガイドを図示していないが、センサホルダSHの上面に、中間の点P4と、第3の接点P3をむすぶ線に平行な壁を設け、不図示のガイド(図1,2参照)に当接させながら、センサホルダSHをスライドさせると良い。   FIG. 3 shows the back surface of a sensor holder SH according to another embodiment. The sensor SN is placed on a line between the point P4 between the contacts of two spheres SP arranged in the Y-axis direction and the third contact P3. Has been placed. In this arrangement, an exact cross-sectional linear shape in the X-axis direction cannot be measured unless the shape heights at the two contacts P1, P2 arranged in the Y-axis direction are known. However, when the shape change in the Y-axis direction is small, regarding the cross-sectional linear shape measurement in the X-axis direction, the average value of the shape heights of the two points P1 and P2 in the Y-axis direction, the sensor SN and the third contact P3 If the cross-sectional shape of the straight line passing through is approximately the same, the three-point method is established. Here, it is preferable that the distance between the two points P1 and P2 is narrow with a stable shape. The sensor holder SH is moved in the direction of a line connecting one contact point P3 and the measurement point of the sensor SN, and the straight shape in the moving direction can be measured. However, the smaller the distance between the remaining two contact points P1 and P2, the more the measurement is performed. The certainty increases. Although a guide is not shown in FIG. 3, a wall parallel to a line connecting the intermediate point P4 and the third contact P3 is provided on the upper surface of the sensor holder SH, and a guide (not shown) (FIGS. 1 and 2) is provided. The sensor holder SH may be slid while being in contact with (see).

図4は、別な形態にかかるセンサホルダSHの裏面を示すもので、Y軸方向に配置した2つの接点P1,P2の中間点2個と、変位センサSNをむすぶ、X軸方向に沿う直線の断面形状に関して、図3と同様の理由で近似的な3点法が成立する。もちろんこの配置では、Y軸方向に並ぶ2個の接点P1,P2における形状高さが既知で無い限り、X軸方向の厳密な断面直線形状は測定できない。しかし、Y軸方向への形状変化が少ない場合は、X軸方向の断面直線形状測定に関して、Y軸方向に配置した一組の2点の接点P1,P2の形状高さの平均値とセンサSN、および、もう一組のY軸方向に配置した2点の接点P1,P2の形状高さの平均値とで3点法が成立する。   FIG. 4 shows a back surface of a sensor holder SH according to another embodiment, and a straight line along the X-axis direction that connects two intermediate points of two contacts P1, P2 arranged in the Y-axis direction and the displacement sensor SN. As for the cross-sectional shape, an approximate three-point method is established for the same reason as in FIG. Of course, in this arrangement, the exact cross-sectional linear shape in the X-axis direction cannot be measured unless the shape heights at the two contacts P1, P2 arranged in the Y-axis direction are known. However, when the shape change in the Y-axis direction is small, with respect to the measurement of the cross-sectional linear shape in the X-axis direction, the average value of the shape height of the pair of two contact points P1 and P2 arranged in the Y-axis direction and the sensor SN And the three-point method is established with the average value of the shape heights of the two contact points P1, P2 arranged in the other Y-axis direction.

図5に請求項4を具現化するためのセンサホルダSHを示す。図5の形態では、図3と図4のセンサホルダの機能を併せ持たせた形になっている。より具体的には、Y軸方向の2つの接点P1,P2の中間に第1センサSN1を配置し、Y軸方向における3点法を実現し、もうひとつの第2センサSN2を、第3の接点P3と第1センサSN1を結ぶ線上の点で、かつY軸方向の3点法で既知となった点の形状高さとで、X軸に沿う断面直線形状測定の3点法が成立する構造になっている。これによって2次元の面形状を測定することができる。センサホルダSHのガイドについては、図3の態様と同様である。   FIG. 5 shows a sensor holder SH for embodying claim 4. In the form of FIG. 5, the sensor holder functions of FIGS. 3 and 4 are combined. More specifically, the first sensor SN1 is arranged in the middle of the two contacts P1 and P2 in the Y-axis direction to realize the three-point method in the Y-axis direction, and the second sensor SN2 is connected to the third sensor A structure in which the three-point method of measuring the cross-sectional linear shape along the X-axis is established by the point on the line connecting the contact P3 and the first sensor SN1 and the shape height of the point known by the three-point method in the Y-axis direction It has become. Thereby, a two-dimensional surface shape can be measured. About the guide of sensor holder SH, it is the same as that of the aspect of FIG.

図6は、図1と類似の目的で用いることができるセンサホルダの斜視図であり、球の代わりに被測定面に当接する2つの円筒CYを用いる形態を示す。円筒CYは、固定されていても良いが、センサホルダSHに対して軸受(不図示)を介して回転可能とすることが望ましく、円筒CYが回転することで、センサホルダSHは、別体のガイドを設けなくても被測定面に対して一方向(例えばX軸方向)に変位することができる。即ち、円筒CYがガイドの機能を果たすことになる。本実施の形態によれば、球の代わりに円筒CYを用いることで接点があいまいになり、厳密な意味での断面直線が定義出来なくなるが、Y軸方向の形状変化が少ないときには接点があいまいになるという影響は小さく、センサホルダSHのY軸方向の傾きを抑制して安定して支持する上では有効である。   FIG. 6 is a perspective view of a sensor holder that can be used for the same purpose as in FIG. 1, and shows a form in which two cylinders CY that abut against a surface to be measured are used instead of a sphere. Although the cylinder CY may be fixed, it is desirable that the cylinder CY be rotatable via a bearing (not shown) with respect to the sensor holder SH. By rotating the cylinder CY, the sensor holder SH is a separate body. Even if a guide is not provided, it can be displaced in one direction (for example, the X-axis direction) with respect to the surface to be measured. That is, the cylinder CY serves as a guide. According to the present embodiment, the contact point becomes ambiguous by using the cylinder CY instead of the sphere, and the cross-sectional straight line in the strict sense cannot be defined. However, when the shape change in the Y-axis direction is small, the contact point is ambiguous. This is effective in suppressing the inclination of the sensor holder SH in the Y-axis direction and supporting it stably.

また、図6に示した2次元走査用のセンサホルダSHの接点構成のために円筒CYを用いるときは、円筒CYの回転軸を走査方向に合わせて変更できる構造にすることが好ましい。例えば、円筒CYの回転軸を90度変更すれば、ガイドを用いずにY軸方向にセンサホルダSHを変位させることができる。   Further, when the cylinder CY is used for the contact configuration of the sensor holder SH for two-dimensional scanning shown in FIG. 6, it is preferable to have a structure in which the rotation axis of the cylinder CY can be changed in accordance with the scanning direction. For example, if the rotation axis of the cylinder CY is changed by 90 degrees, the sensor holder SH can be displaced in the Y-axis direction without using a guide.

また、図8(a)に示す例は、円筒の代わりに直径のそろった複数個の球SPを直線上に並べる構造で、センサSNを保持するセンサホルダSH側の一対のV溝VGにはめ込まれたそれぞれ4個の球SPが被測定面(不図示)の直線上の点で接することで、円筒と類似の接点構成となる。V溝VGは球SPを直線上に保持すると共に、センサホルダSHを被測定面上で滑らせるときに滑らかに球が回転できる構造とするのに有効である。もちろん、図6の円筒をこのようなV溝VGで受けても良い。同様に、単独の球SPであれば、図8(b)のように、センサホルダSHに三角錐状の穴TAを開けて球SPを保持するようにすれば、センサSNを保持するセンサホルダSHの被測定面上における移動が滑らかに行えて好ましい。   Further, the example shown in FIG. 8A has a structure in which a plurality of spheres SP having the same diameter are arranged in a straight line instead of a cylinder, and is fitted into a pair of V grooves VG on the sensor holder SH side holding the sensor SN. Each of the four spheres SP touches at a point on a straight line of a surface to be measured (not shown), thereby forming a contact configuration similar to a cylinder. The V-groove VG is effective to hold the sphere SP on a straight line and to make a structure that allows the sphere to rotate smoothly when the sensor holder SH is slid on the surface to be measured. Of course, the cylinder of FIG. 6 may be received by such a V groove VG. Similarly, in the case of a single sphere SP, as shown in FIG. 8 (b), if the ball SP is held by opening a triangular pyramid-shaped hole TA in the sensor holder SH, the sensor holder holding the sensor SN. It is preferable that the movement of SH on the surface to be measured can be performed smoothly.

このように、センサホルダの凸部をセンサホルダに対して固定するだけでなく、請求項3に記載のように被測定面との接点を構成する凸部である球や円筒を、センサホルダにおける球面軸受けや円筒ころ軸受けの軸受け部で保持することにより、センサホルダを走査方向移動させながら被測定面に転がり接触する形式も好ましい。   In this way, not only the convex portion of the sensor holder is fixed to the sensor holder, but also the sphere or cylinder that is the convex portion constituting the contact point with the surface to be measured is attached to the sensor holder as described in claim 3. It is also preferable that the sensor holder is held in contact with the surface to be measured while being moved in the scanning direction by being held by a spherical bearing or a cylindrical roller bearing.

この場合、球や円筒の真球度や真円度が形状測定結果に影響するが、球や円筒のおよそ一回転あるいは数回転の間のセンサの出力を平均することで、その間に被測定面上を操作移動した範囲の形状の移動平均値を用いて、前記真円度の影響を低減させることも出来る。   In this case, the sphericity or roundness of the sphere or cylinder affects the shape measurement results. By averaging the sensor output during approximately one or several revolutions of the sphere or cylinder, The influence of the roundness can also be reduced by using the moving average value of the shape in the range in which the top is moved.

尚、センサホルダに球または円筒が所定の量だけ回転したことを検出する装置(例えばエンコーダ)を設け、球または円筒が所定の量を回転する間(即ちセンサホルダが例えばX軸方向に所定距離変位する間)に採取された変位センサの出力の平均をとることで、球または円筒の真円形状誤差の影響を平均効果で低減することができる。   The sensor holder is provided with a device (for example, an encoder) for detecting that the sphere or cylinder has been rotated by a predetermined amount, and while the sphere or cylinder is rotated by a predetermined amount (that is, the sensor holder has a predetermined distance in the X-axis direction, for example). By taking the average of the output of the displacement sensor collected during the displacement), it is possible to reduce the influence of the round shape error of the sphere or cylinder by the average effect.

なお、真直形状測定用多点法として、変位計を3つ用いる3点法のほかに、角度センサを2つ用いる角度2点法や角度センサと変位センサを同時に用いる方法も知られているが、図1でセンサSNをX軸方向の傾斜を計測する角度センサとすれば、2接点の傾斜と角度センサによる傾斜測定結果を用いて次式のような一種の角度2点法が成立する。センサSNを角度と変位を同時に測定する混合センサとしても真直形状測定用混合法が成立する。   In addition to the three-point method using three displacement meters, a two-angle method using two angle sensors and a method using both an angle sensor and a displacement sensor are also known as multipoint methods for measuring a straight shape. If the sensor SN in FIG. 1 is an angle sensor that measures the inclination in the X-axis direction, a kind of angle two-point method such as the following equation is established using the inclination of the two contacts and the inclination measurement result by the angle sensor. The straight shape measurement mixing method is also established when the sensor SN is a mixed sensor that simultaneously measures the angle and displacement.

また、図3におけるセンサSNを2次元角度センサとすれば、平面形状測定のための多点法が成立する。センサSNを、Y軸方向の傾斜を検出する角度センサと、高さ方向を検出する変位センサにすれば2次元測定のための混合法が成立する。   If the sensor SN in FIG. 3 is a two-dimensional angle sensor, a multipoint method for measuring a planar shape is established. If the sensor SN is an angle sensor that detects the inclination in the Y-axis direction and a displacement sensor that detects the height direction, a mixing method for two-dimensional measurement is established.

また、2つの接点と変位センサよりなる3点法のゼロ点誤差を校正方法の一例を図7に示す。図7(a)では、面形状が既知となっている回転円板RDの中心に、図1に示すセンサホルダSHの一方の接点P1を成す球SPを置き、他方の接点P2を成す球SPを両接点P1,P2間隔に等しい半径2Rの円周上に置く。かかる状態で、回転円板RDを回転させながら、半径Rの円周上を変位センサSNで測定する。回転円板RDの面形状が既知であれば、半径Rの円周上を測定する変位センサSNの出力から、変位センサSNのゼロ点誤差が決まる。続いて、図7(b)に示すように、回転円板RDの中心にセンサSNの測定点をおき、回転円板RDを回転させながら、回転円板RDの中心を変位センサSNで測定すると、接点P1,P2のZ軸方向の平均値が求まる。校正値が半径R上の一点では偶然誤差などの影響が大きくなるが、回転円板RDの一回転での平均値を用いることで、その影響は低減できる。   FIG. 7 shows an example of a method for calibrating the zero point error of the three-point method including two contacts and a displacement sensor. In FIG. 7A, a sphere SP that forms one contact P1 of the sensor holder SH shown in FIG. 1 is placed at the center of the rotating disk RD whose surface shape is known, and a sphere SP that forms the other contact P2. Is placed on the circumference of radius 2R which is equal to the distance between both contacts P1, P2. In this state, while rotating the rotating disk RD, the circumference of the radius R is measured by the displacement sensor SN. If the surface shape of the rotating disk RD is known, the zero point error of the displacement sensor SN is determined from the output of the displacement sensor SN that measures the circumference of the radius R. Subsequently, as shown in FIG. 7B, when the measurement point of the sensor SN is placed at the center of the rotating disk RD and the center of the rotating disk RD is measured by the displacement sensor SN while rotating the rotating disk RD. The average value of the contacts P1, P2 in the Z-axis direction is obtained. When the calibration value is at one point on the radius R, the influence of an accidental error or the like becomes large, but the influence can be reduced by using the average value at one rotation of the rotating disk RD.

本発明の一例であるセンサホルダの例を示す図である。It is a figure which shows the example of the sensor holder which is an example of this invention. 本発明の別例であるセンサホルダの例を示す図である。It is a figure which shows the example of the sensor holder which is another example of this invention. 本発明の別例であるセンサホルダの例を示す図である。It is a figure which shows the example of the sensor holder which is another example of this invention. 本発明の別例であるセンサホルダの例を示す図である。It is a figure which shows the example of the sensor holder which is another example of this invention. 本発明の別例であるセンサホルダの例を示す図であり、球の代わりに円筒を用いている。It is a figure which shows the example of the sensor holder which is another example of this invention, and is using the cylinder instead of the ball | bowl. 本発明の別例である2次元の形状測定のためのセンサホルダの例を示す図である。It is a figure which shows the example of the sensor holder for the two-dimensional shape measurement which is another example of this invention. センサホルダの接点と変位センサよりなる3点法プローブのゼロ点誤差を校正するための校正装置を示す図である。It is a figure which shows the calibration apparatus for calibrating the zero point error of the three-point method probe which consists of a contact of a sensor holder and a displacement sensor. センサホルダの別な例を示す斜視図である。It is a perspective view which shows another example of a sensor holder.

符号の説明Explanation of symbols

CY 円筒
GD ガイド
P1 接点
P2 接点
P3 接点
P4 接点
R 半径
RD 回転円板
SH センサホルダ
SN センサ
SN1 センサ
SN2 センサ
SP 球
CY Cylindrical GD Guide P1 Contact P2 Contact P3 Contact P4 Contact R Radius RD Rotating disc SH Sensor holder SN Sensor SN1 Sensor SN2 Sensor SP Sphere

Claims (5)

被測定面に対してそれぞれが当接する当接点の間隔が既知である2個の凸部を有するセンサホルダと、前記センサホルダに取り付けられ、前記凸部の2つの当接点を結ぶ直線上の前記当接点から既知の距離にある被測定面の形状高さを測定する変位センサと、前記変位センサの出力に影響を及ぼすことなく前記センサホルダを所望の直線に沿って位置を検出しながら移動させるためのガイドとからなることを特徴とする面形状測定装置。   A sensor holder having two protrusions each of which has a known contact point interval with respect to the surface to be measured, and the straight line that is attached to the sensor holder and connects the two contact points of the protrusions. A displacement sensor that measures the shape height of the surface to be measured at a known distance from the contact point, and moves the sensor holder along a desired straight line without affecting the output of the displacement sensor. A surface shape measuring device comprising a guide for the purpose. 前記被測定面との当接点が3点あり、前記センサホルダが自立して被測定面上で姿勢維持ができることを特徴とする請求項1に記載の面形状測定装置。   The surface shape measuring apparatus according to claim 1, wherein there are three contact points with the surface to be measured, and the sensor holder can stand and maintain a posture on the surface to be measured. 前記被測定面と当接する前記凸部が前記センサホルダに取り付けられた回転可能な球または円筒であって、前記センサホルダが前記被測定面に対して相対移動を滑らかに連続的に行うための軸受けや車輪の役割を果たすことを特徴とする請求項1又は2に記載の形状測定装置。   The convex portion in contact with the surface to be measured is a rotatable sphere or cylinder attached to the sensor holder, and the sensor holder smoothly and continuously moves relative to the surface to be measured. The shape measuring device according to claim 1, wherein the shape measuring device serves as a bearing or a wheel. 前記センサホルダに取り付ける変位センサを用いて、2次元の形状測定を行うことを特徴とする請求項1〜3のいずれかに記載の形状測定装置。   The shape measuring apparatus according to claim 1, wherein a two-dimensional shape measurement is performed using a displacement sensor attached to the sensor holder. 前記球または円筒が所定の量だけ回転したことを検出する装置を有していて、前記球または円筒が所定の量を回転する間に採取された変位センサの出力の平均をとることで、前記球または円筒の真円形状誤差の影響を平均効果で低減することを特徴とする請求項1〜4のいずれかに記載の形状測定装置。   A device for detecting that the sphere or cylinder has rotated by a predetermined amount, and taking an average of the outputs of the displacement sensors collected while the sphere or cylinder rotates by the predetermined amount; The shape measuring apparatus according to claim 1, wherein an influence of a spherical or cylindrical perfect circle shape error is reduced by an average effect.
JP2007321704A 2007-12-13 2007-12-13 Measuring device Pending JP2009145152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321704A JP2009145152A (en) 2007-12-13 2007-12-13 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321704A JP2009145152A (en) 2007-12-13 2007-12-13 Measuring device

Publications (1)

Publication Number Publication Date
JP2009145152A true JP2009145152A (en) 2009-07-02

Family

ID=40915913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321704A Pending JP2009145152A (en) 2007-12-13 2007-12-13 Measuring device

Country Status (1)

Country Link
JP (1) JP2009145152A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411577A (en) * 2013-07-16 2013-11-27 宁波北仑宁润机械有限公司 Flatness and parallelism measurement device and flatness and parallelism measurement method
CN105698743A (en) * 2016-01-26 2016-06-22 京东方科技集团股份有限公司 A pressure detection apparatus, a support mechanism and a conveying device
CN110260766A (en) * 2019-07-29 2019-09-20 京东方科技集团股份有限公司 Angle plate detection jig, system and detection method
CN111451725A (en) * 2020-04-13 2020-07-28 宁波江丰电子材料股份有限公司 Target flatness detection tool and machining method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411577A (en) * 2013-07-16 2013-11-27 宁波北仑宁润机械有限公司 Flatness and parallelism measurement device and flatness and parallelism measurement method
CN103411577B (en) * 2013-07-16 2016-03-09 宁波北仑宁润机械有限公司 A kind of flatness and parallelism measuring apparatus and measuring method
CN105698743A (en) * 2016-01-26 2016-06-22 京东方科技集团股份有限公司 A pressure detection apparatus, a support mechanism and a conveying device
CN110260766A (en) * 2019-07-29 2019-09-20 京东方科技集团股份有限公司 Angle plate detection jig, system and detection method
CN110260766B (en) * 2019-07-29 2022-05-13 京东方科技集团股份有限公司 Angle plate detection jig, system and detection method
CN111451725A (en) * 2020-04-13 2020-07-28 宁波江丰电子材料股份有限公司 Target flatness detection tool and machining method thereof

Similar Documents

Publication Publication Date Title
US20080034601A1 (en) Measurement Probe For Use In Coordinate Measuring Machines
CN107121060B (en) Inner wall measuring instrument and offset calculating method
JP2013524185A (en) Measuring method for surface measuring measuring machine
CN110160464B (en) Device for measuring cylindricity of inner hole and application method thereof
CN105444673A (en) Device and method for determining center of optical element according to rotating translation absolute detection method
CN108692687B (en) Compact coordinate measuring machine configuration with large working volume relative to size
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
CN103890535A (en) Method for measuring a three-dimensional object
JP2009145152A (en) Measuring device
JP4964691B2 (en) Measuring method of measured surface
JP5158791B2 (en) measuring device
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
CN101750007B (en) Contact type measuring method for precisely measuring position of bearing ferrule trench
JP2009098092A (en) Relative height detector
JP2006234427A (en) Flatness measuring method and instrument
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
JP6398488B2 (en) Apparatus and method for measuring surface roughness of raceway in rolling bearing
JP5252649B2 (en) Calibration device and straight shape measuring device
JP5032741B2 (en) 3D shape measuring method and 3D shape measuring apparatus
KR101971975B1 (en) Ellipticity measuring apparatus and measuring method of pipe
JP5460427B2 (en) Measuring method and shape measuring device
JP6181935B2 (en) Coordinate measuring machine
CN105222715B (en) A kind of direct incident-type light arm scale-up version one-dimensional linear gauge head
JP2009031170A (en) Surface shape calibrating device and method
JP6757391B2 (en) Measuring method