JP2009281768A - Measuring apparatus - Google Patents

Measuring apparatus Download PDF

Info

Publication number
JP2009281768A
JP2009281768A JP2008131895A JP2008131895A JP2009281768A JP 2009281768 A JP2009281768 A JP 2009281768A JP 2008131895 A JP2008131895 A JP 2008131895A JP 2008131895 A JP2008131895 A JP 2008131895A JP 2009281768 A JP2009281768 A JP 2009281768A
Authority
JP
Japan
Prior art keywords
probe
point
dimensional
measuring
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131895A
Other languages
Japanese (ja)
Other versions
JP5158791B2 (en
Inventor
Satoshi Kiyono
慧 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008131895A priority Critical patent/JP5158791B2/en
Publication of JP2009281768A publication Critical patent/JP2009281768A/en
Application granted granted Critical
Publication of JP5158791B2 publication Critical patent/JP5158791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring apparatus which uses effectively only advantages of a level and the multipoint method in the measurement of a long cross-sectional linear shape or planar shape, allowing a large-area surface under measurement to be measured quickly and with high precision. <P>SOLUTION: The apparatus scans and measures a linear shape by relatively moving a stage on which a sample under measurement is mounted and a sensor holder holding a multipoint method probe. The level is provided which can measure the inclination angle in the scanning direction of the moving sensor holder or stage. The inclination angle of the moving object is measured by the level at the start point and end point of the scanning movement, thereby allowing the zero-point adjustment error of the multipoint method probe to be calibrated in-situ. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、測定技術に関し、特に大型の被測定物の真直形状、面形状および移動真直運動誤差の測定を高精度に行う測定装置に関する。   The present invention relates to a measurement technique, and more particularly, to a measurement apparatus that measures a straight shape, a surface shape, and a moving straight motion error of a large-sized object with high accuracy.

面形状や断面直線形状の測定をするためには、基準となる直定規との比較測定を実施することが多い。あるいは、光軸の直線性を基準にして、走査方向に被測定面と2点で当接する台上の鏡の傾斜をオートコリメータで測定して、直線形状を算出する方法が用いられる。また、基準が使えないときには、多点法プローブを用いた多点法により、運動誤差と形状誤差を分離する方法がとられる(特許文献1参照)。そのほか、水準器を用いて、水準器下面が被測定面に当接する点の間の傾斜を被測定面上の必要な箇所で測定し、その測定結果より直線形状あるいは面形状を算出する方法が用いられる。
特開2008−8879号公報
In order to measure a surface shape or a cross-sectional linear shape, a comparative measurement with a standard straight ruler is often performed. Alternatively, on the basis of the linearity of the optical axis, a method of calculating the linear shape by measuring the inclination of the mirror on the table that is in contact with the surface to be measured at two points in the scanning direction with an autocollimator. Further, when the reference cannot be used, a method of separating the motion error and the shape error by a multipoint method using a multipoint probe is used (see Patent Document 1). In addition, using a spirit level, measure the slope between the points where the lower surface of the spirit level contacts the surface to be measured at the required location on the surface to be measured, and calculate the linear shape or surface shape from the measurement results. Used.
JP 2008-8879 A

真直形状や平面形状の測定対象が大型化するのにともない、基準定規が長尺化し、その作成が困難になる。また、空中での光線の揺らぎの影響で光軸の基準も十分な精度を保てなくなる。そこで多点法の必要性が高まるが、多点法ではゼロ点調整誤差による放物線誤差の問題があり、しかも長尺になるほど放物線誤差は大きくなる。   As the measuring object of straight shape or planar shape becomes larger, the reference ruler becomes longer and it becomes difficult to create it. In addition, the accuracy of the optical axis reference cannot be maintained due to the influence of light fluctuation in the air. Therefore, the necessity of the multipoint method is increased. However, the multipoint method has a problem of a parabola error due to a zero point adjustment error, and the longer the length is, the larger the parabola error becomes.

これに対して、水準器では、重力方向を基準に取るために長尺に対しても理論上安定した測定ができるが、外乱振動の影響で感度が上げられないことと、高感度のものほど応答速度が遅くなり、移動しながらの迅速な計測は難しく、大平面での多数の点の傾斜測定にかかる時間も長くなるという難点がある。   On the other hand, with the level, since the direction of gravity is taken as a reference, it is possible to perform theoretically stable measurements even for long lengths. The response speed is slow, it is difficult to measure quickly while moving, and the time taken to measure the inclination of a large number of points on a large plane is also long.

本発明は、かかる問題点に鑑み、長尺の断面直線形状や面形状の測定における水準器と多点法の利点だけを有効に使い、大面積の被測定面を迅速に高精度に測定できる測定装置を提供することを目的とする。   In view of such a problem, the present invention can effectively use only the advantage of a level and multipoint method in measuring a long straight line shape and a surface shape, and can measure a large area to be measured quickly and with high accuracy. It aims at providing a measuring device.

本発明の測定装置は、被測定試料の置かれたステージと多点法プローブを保持するセンサホルダが互いに相対的に移動をして直線形状を走査測定する装置において、移動する側のセンサホルダまたはステージ(以後移動側物体と呼ぶ)の走査方向の傾斜角を測定することの出来る水準器を備えていて、前記水準器によって走査移動の開始点と終了点での前記移動側物体の傾斜を測定することで、多点法プローブのゼロ点調整誤差をその場校正することを特徴とする。   The measuring apparatus of the present invention is an apparatus for scanning and measuring a linear shape by moving a stage on which a sample to be measured and a sensor holder holding a multipoint probe move relative to each other. A level that can measure the tilt angle of the stage (hereinafter referred to as the moving object) in the scanning direction is provided, and the inclination of the moving object at the start and end points of the scanning movement is measured by the level. Thus, the zero-point adjustment error of the multipoint probe is calibrated in situ.

多点法で真直形状と運動真直形状を分離して測定するが、多点法プローブにゼロ点調整誤差があれば運動真直形状にも放物線誤差が含まれる。ところで、放物線を一回微分して傾斜をもとめると、傾斜は直線的に変化する。従って、運動真直形状の両端での傾斜の差に生じる誤差が分かれば、放物線誤差が求められることになる。   The straight shape and the motion straight shape are separately measured by the multipoint method, but if the multipoint probe has a zero point adjustment error, the motion straight shape also includes a parabolic error. By the way, when the parabola is differentiated once and the inclination is obtained, the inclination changes linearly. Therefore, if an error generated in the difference in inclination at both ends of the motion straight shape is known, a parabola error is obtained.

即ち、運動する移動物体側の傾斜を、形状測定における移動開始点と終了点の静止時に正しく計測できれば、多点法プローブで測定評価した運動真直形状における両端の傾斜の差に含まれる、多点法プローブのゼロ点調整誤差による放物線誤差の影響を抽出できる。この結果、目的の形状測定データそのものから多点法プローブのゼロ点の校正が出来る、いわゆるその場校正が実現できる。従来は、既知の基準形状を測定してみることでゼロ点誤差を校正してから目的の被測定面を多点法で走査測定するという2段階のステップが必要であったが、提案の方法によって測定の迅速化だけでなく、ドリフトなど時間経過による誤差の低減も実現できる。   In other words, if the inclination on the moving moving object side can be measured correctly when the movement start point and end point in shape measurement are stationary, it is included in the difference between the inclinations of both ends of the movement straight shape measured and evaluated by the multipoint probe. It is possible to extract the effect of parabolic error due to zero adjustment error of the method probe. As a result, the so-called in-situ calibration can be realized in which the zero point of the multipoint probe can be calibrated from the target shape measurement data itself. Previously, it was necessary to calibrate the zero point error by measuring a known reference shape and then scan and measure the target surface to be measured using the multipoint method. In addition to speeding up the measurement, it is possible to reduce errors such as drift over time.

本発明はこの考えに基づき、静止中の移動物体の傾斜を重力方向基準で正しく測定できる水準器を多点法測定における移動側物体に固定して走査移動両端での移動物体の傾斜を正しく測定することを提案する。   Based on this concept, the present invention correctly measures the tilt of the moving object at both ends of the scanning movement by fixing the level that can correctly measure the tilt of the moving object in the direction of gravity to the moving object in multipoint measurement. Suggest to do.

図面を参照して、本発明の原理を説明する。図1(a)に多点法プローブのゼロ調整点誤差によって生じる放物線形状と、図1(b)にその放物線形状の元となる、走査線に沿う傾斜の変化を模式的に示す。ここで、ゼロ調整点誤差によって生じる放物線形状は、移動方向をx方向としたときに、ゼロ点調整誤差をαとすると、h(x)=αx2/2で表せる。測定全長Lにおける最大高さhmax=αL2/8となる。 The principle of the present invention will be described with reference to the drawings. FIG. 1A schematically shows a parabolic shape caused by a zero adjustment point error of the multipoint probe, and FIG. 1B schematically shows a change in inclination along the scanning line, which is the basis of the parabolic shape. Here, parabolic shape caused by the zeroing point error, the moving direction when the x-direction, when the zero point adjustment error and alpha, expressed by h (x) = αx 2/ 2. Maximum the height h max = αL 2/8 at the measurement total length L.

走査開始点と終了点での移動物体の傾斜の差ΔEφを、静止時の水準器の読みから測定できる。一方、多点法プローブで得られる走査開始点と終了点の傾斜の違いΔμは、ゼロ点誤差に起因する放物線の一回微分に相当する値h´の両端での差Δh´だけ誤差を含む。これより、以下のような関係が得られる。
Δμ=ΔEφ+Δh´
従って、
Δh´=Δμ−ΔEφ
となる。ここで、Δh´=αLとして、
α=Δh´/L
が求まる。
The difference ΔEφ in the inclination of the moving object between the scanning start point and the end point can be measured from the reading of the level indicator at rest. On the other hand, the difference Δμ in inclination between the scanning start point and the end point obtained with the multipoint method probe includes an error by a difference Δh ′ at both ends of a value h ′ corresponding to a single derivative of a parabola caused by a zero point error. . From this, the following relationship is obtained.
Δμ = ΔEφ + Δh ′
Therefore,
Δh ′ = Δμ−ΔEφ
It becomes. Here, Δh ′ = αL,
α = Δh ′ / L
Is obtained.

更に、水準器を使ったゼロ点調整誤差の校正について原理の説明を簡単にするため、多点法として角度2点法を選んで説明する。図2に、2つの角度センサAS1,AS2からなる角度2点法プローブによる真直形状測定の原理図を示す。ここでは、被測定試料SPが搭載されたステージSTXが移動側物体となる例を示す。x方向に走査される2つの角度センサAS1,AS2の間隔がdであり、角度センサAS1,AS2の出力をそれぞれμ1(x)、μ2(x+d)とする。被測定試料SPにおける被測定面の形状をf(x)、その微係数をf´(x)とし、相対走査時の運動のピッチングをeφ(x)とすると、角度センサAS1,AS2の出力として式(1)、(2)を得る。ただし、αが2つの角度センサAS1,AS2のゼロの違い、すなわちゼロ点調整誤差を表す。
μ1(x)=f´(x)+eφ(x) (1)
μ2(x)=f´(x+d)+eφ(x)+α (2)
Further, in order to simplify the explanation of the principle of zero point adjustment error calibration using a level, a two-point angle method is selected and explained as a multipoint method. FIG. 2 shows a principle diagram of straight shape measurement using an angle two-point probe composed of two angle sensors AS1 and AS2. Here, an example is shown in which the stage STX on which the sample SP to be measured is mounted is a moving object. The interval between the two angle sensors AS1 and AS2 scanned in the x direction is d, and the outputs of the angle sensors AS1 and AS2 are μ1 (x) and μ2 (x + d), respectively. If the shape of the surface to be measured in the sample SP to be measured is f (x), the derivative thereof is f ′ (x), and the pitching of the motion during relative scanning is e φ (x), the outputs of the angle sensors AS1 and AS2 Equations (1) and (2) are obtained as follows. However, α represents the difference between the zeros of the two angle sensors AS1, AS2, that is, the zero point adjustment error.
μ1 (x) = f ′ (x) + e φ (x) (1)
μ2 (x) = f ′ (x + d) + e φ (x) + α (2)

ここで、プローブ(AS1,AS2)をx方向にdだけシフトした位置での角度センサAS1の出力は、
μ1(x+d)=f´(x+d)+eφ(x+d) (3)
となる。
Here, the output of the angle sensor AS1 at the position where the probe (AS1, AS2) is shifted by d in the x direction is:
μ1 (x + d) = f ′ (x + d) + e φ (x + d) (3)
It becomes.

更に、式(2)、(3)より
μ1(x+d)−μ2(x)=eφ(x+d)−eφ(x)−α (4)
を得る。
Furthermore, from the equations (2) and (3), μ1 (x + d) −μ2 (x) = e φ (x + d) −e φ (x) −α (4)
Get.

測定全長LをdNとし、i番目の点をxiとすると、x1=0、xN=d(N−1)の点での傾斜をeφ(0)、eφ(N−1)として、移動真直形状を逐次法で求めると、以下のようになる。
Σ{μ1(x+d)−μ2(x)}=eφ(N−1)−eφ(0)−(N−1)α (5)
If the measurement total length L is dN and the i-th point is x i , the slopes at the points of x 1 = 0 and x N = d (N−1) are e φ (0) and e φ (N−1). When the moving straight shape is obtained by the sequential method, the following is obtained.
Σ {μ1 (x + d) −μ2 (x)} = e φ (N−1) −e φ (0) − (N−1) α (5)

一方、水準器ELで計測した両端での傾斜の差ΔEφは、ΔEφ={eφ(N−1)−eφ(0)}となるので、ゼロ点調整誤差αは次のように求められる。
α= [Σ{μ1(x+d)−μ2(x)}−ΔEφ]/(N−1) (6)
従って、式(5)、(6)より、ゼロ点調整誤差αを排除して移動物体の移動真直形状eφ(x)を正しく求めることができる。さらに、式(1)から被測定試料SPにおける被測定面の形状を精度良く求めることができる。
On the other hand, the difference Derutaifai slope at both ends measured by Level EL, since the ΔEφ = {e φ (N- 1) -e φ (0)}, the zero point adjustment error α is determined as follows .
α = [Σ {μ1 (x + d) −μ2 (x)} − ΔEφ] / (N−1) (6)
Therefore, from equations (5) and (6), it is possible to correctly obtain the moving straight shape e φ (x) of the moving object while eliminating the zero point adjustment error α. Furthermore, the shape of the surface to be measured in the sample SP to be measured can be accurately obtained from the equation (1).

図2に示す被測定物SPを搭載したステージSTXが移動する形式の測定装置において、被測定物SPと同じステージSTX上に水準器ELが設置される。原理的には、移動中のステージSTXと被測定試料SPは、姿勢を変えることはあっても変形しないものとするが、ステージ長が長くなると位置の変化と共に変形する可能性もあるので、複数の水準器を被測定物SPに沿った位置に配置することも好ましい。また、水準器ELは重力の方向で指示値が変わるので、地球の曲率に合わせて水準器の値を補正する必要もある。近似的には1mの移動で水準器ELの読みは約0.03秒変化する。   In the measuring apparatus of the type in which the stage STX on which the object SP to be measured shown in FIG. In principle, the moving stage STX and the sample SP to be measured are not deformed even if the posture is changed. However, as the stage length becomes longer, there is a possibility that the stage STX and the sample SP to be measured are deformed along with the position change. It is also preferable to arrange the level of at a position along the object SP to be measured. Further, since the indication value of the level EL changes in the direction of gravity, it is necessary to correct the value of the level according to the curvature of the earth. Approximately, the reading of the level EL changes by about 0.03 seconds with a movement of 1 m.

なお、移動するステージSTXを静圧軸受けで支持する場合など、ステージSTXの走査移動開始前から姿勢が変わることがある。そのような場合は、静止時の水準器ELの読みを取ると同時に多点法プローブのセンサAS1,AS2の出力を取り、静止時の水準器ELの読みが示す姿勢と、実際に移動走査が始まる時点での姿勢の変化を補正する必要がある。この事情は、走査移動が終わった後にステージSTXの姿勢が変わり続ける場合も同様で、水準器ELが示す姿勢が安定するまで同じ位置での姿勢を多点法プローブで読み、走査終了後の姿勢変化の補正をする必要がある。   Note that the posture may change before the start of scanning movement of the stage STX, such as when the moving stage STX is supported by a static pressure bearing. In such a case, the reading of the level EL at the time of rest is taken and the outputs of the sensors AS1 and AS2 of the multipoint probe are taken simultaneously. It is necessary to correct the change in posture at the beginning. This is the same when the posture of the stage STX continues to change after the scanning movement is finished. It is necessary to correct the change.

図3は、門型工作機械のy方向案内SYに沿って移動する工具軸をセンサホルダとして、多点法プローブと水準器EL2を取り付け、被測定面をy方向に走査する測定装置を示し、これは請求項2に対応する実施形態である。   FIG. 3 shows a measuring apparatus that scans a surface to be measured in the y direction by attaching a multipoint probe and a level EL2 using a tool axis that moves along the y-direction guide SY of the portal machine tool as a sensor holder. This is an embodiment corresponding to claim 2.

このとき、被測定試料SPを搭載したステージSTXがx方向に移動走査する平面形状測定装置では、ステージSTXにも水準器EL1が取り付けられる。多点法プローブとしては、図3(b)に示すようにx方向の走査に2次元角度センサASxy1とx方向の傾斜を検知する角度センサASx2の測定値を用いた角度2点法が成立し、y方向走査には2次元角度センサASxy1とy方向の傾斜を検知する角度センサASy2の測定値を用いた角度2点法が成立する。   At this time, in the planar shape measuring apparatus in which the stage STX loaded with the sample SP to be measured moves and scans in the x direction, the level EL1 is also attached to the stage STX. As the multipoint probe, as shown in FIG. 3 (b), the angle two-point method using the measurement values of the two-dimensional angle sensor ASxy1 and the angle sensor ASx2 for detecting the tilt in the x direction is established for scanning in the x direction. In the y-direction scanning, a two-point angle method using measurement values of the two-dimensional angle sensor ASxy1 and the angle sensor ASy2 that detects the inclination in the y direction is established.

尚、移動物体が直交する2次元方向に移動可能であり、水準器が2次元方向の傾斜測定が可能な2次元水準器であり、2次元の走査移動の開始点と終了点の少なくとも3箇所での移動側物体の2次元の傾斜を測定することで、2次元の多点法プローブのゼロ点調整誤差をその場校正すると好ましい。また、多点法プローブが、一つの走査線上に並んだ変位センサ3本による変位3点法プローブ、または、一つの走査線上に並んだ角度センサ2本による角度2点法プローブ、または、一つの走査線上に並んだ変位センサ2本と角度センサ1本による混合法プローブであると好ましい。更に、多点法プローブが、2次元的に配置された4点ないし5点を計測する2次元多点法プローブ、または、2次元的に配置された3点ないし4点の傾斜角を計測する角度センサよる2次元多点法プローブ、または、2次元的に配置された3点の変位と少なくとも1点における直交2方向の傾斜角を計測する角度センサとによる2次元多点法プローブであると好ましい。   The moving object can move in two-dimensional directions perpendicular to each other, and the level is a two-dimensional level that can measure the tilt in the two-dimensional direction. At least three points of the start and end points of the two-dimensional scanning movement It is preferable to calibrate the zero point adjustment error of the two-dimensional multi-point probe in situ by measuring the two-dimensional inclination of the moving object at the same position. Further, the multipoint probe may be a displacement three-point probe using three displacement sensors arranged on one scanning line, an angle two-point probe using two angle sensors arranged on one scanning line, or one It is preferable that the mixing method probe is composed of two displacement sensors and one angle sensor arranged on the scanning line. Furthermore, the multipoint probe measures a two-dimensional multipoint probe that measures four to five points arranged two-dimensionally, or measures the tilt angles of three to four points arranged two-dimensionally. It is a two-dimensional multi-point probe using an angle sensor or a two-dimensional multi-point probe based on a three-dimensionally arranged displacement and an angle sensor that measures an inclination angle in two orthogonal directions at least at one point. preferable.

本発明で校正の対象とする多点法のセンサ間のゼロ点調整誤差とそれによる放物線誤差の関係を示す図である。It is a figure which shows the relationship of the zero point adjustment error between the sensors of the multipoint method made into the calibration object by this invention, and the parabolic error by it. 多点法の一例として、角度2点法の真直形状測定システムの測定の概要を示す図である。It is a figure which shows the outline | summary of the measurement of the straight shape measuring system of an angle 2 point method as an example of a multipoint method. 請求項2に対応する実施例を示す図である。It is a figure which shows the Example corresponding to Claim 2.

符号の説明Explanation of symbols

α:多点法のゼロ点調整誤差
hmax:ゼロ点調整誤差に起因する放物線誤差の最大値
Δh´:放物線誤差の両端での傾斜の差
AS1、AS2、ASxy1角度センサ
EL、EL1、EL2 水準器
SH センサホルダ
STX 試料搭載用ステージ
SY y方向の走査案内
SP 被測定試料
f(x) 被測定試料の真直形状
eφ(x) 走査時のピッチング
α: Zero point adjustment error hmax of multipoint method hmax: Maximum value of parabola error caused by zero point adjustment error Δh ′: Difference in slope at both ends of parabola error
AS1, AS2, ASxy1 angle sensors
EL, EL1, EL2 level
SH Sensor holder
STX stage for specimen loading
SY Scanning direction in y direction
SP Sample to be measured
f (x) Straight shape of sample to be measured
e φ (x) Pitching during scanning

Claims (5)

被測定試料の置かれたステージと多点法プローブを保持するセンサホルダが互いに相対的に移動をして直線形状を走査測定する装置において、移動する側のセンサホルダまたはステージ(以後移動側物体と呼ぶ)の走査方向の傾斜角を測定することの出来る水準器を備えていて、前記水準器によって走査移動の開始点と終了点での前記移動側物体の傾斜を測定することで、多点法プローブのゼロ点調整誤差をその場校正することを特徴とする測定装置。   In an apparatus for scanning and measuring a linear shape by moving a stage on which a sample to be measured and a sensor holder holding a multipoint probe move relative to each other, a moving sensor holder or stage (hereinafter referred to as a moving object) Multi-point method by measuring the inclination of the moving object at the start and end points of the scanning movement by the level. A measuring apparatus characterized by in-situ calibration of a zero adjustment error of a probe. 2次元の相対走査移動による測定において、前記被測定試料の置かれたステージと前記多点法プローブを保持するセンサホルダのそれぞれが、直交する2方向のうちの一方向の走査において前記水準器を有する前記移動物体側になることで、多点法プローブのゼロ点調整誤差をその場校正して、2次元の面形状と2方向の移動真直度を測定することを特徴とする請求項1に記載の測定装置。   In measurement by two-dimensional relative scanning movement, each of the stage on which the sample to be measured is placed and the sensor holder holding the multipoint probe are used to scan the level in one of two orthogonal directions. The in-situ calibration of the zero-point adjustment error of the multipoint probe by being on the moving object side, and measuring the two-dimensional surface shape and the movement straightness in two directions. The measuring device described. 前記移動物体が直交する2次元方向に移動可能であり、前記水準器が2次元方向の傾斜測定が可能な2次元水準器であり、2次元の走査移動の開始点と終了点の少なくとも3箇所での移動側物体の2次元の傾斜を測定することで、2次元の多点法プローブのゼロ点調整誤差をその場校正することを特徴とする請求項1又は2に記載の測定装置。   The moving object is movable in two-dimensional directions perpendicular to each other, and the level is a two-dimensional level capable of measuring a tilt in a two-dimensional direction, and at least three points of a two-dimensional scanning movement start point and end point The measuring apparatus according to claim 1 or 2, wherein a zero-point adjustment error of a two-dimensional multipoint probe is calibrated in situ by measuring a two-dimensional inclination of a moving-side object. 前記多点法プローブが、一つの走査線上に並んだ変位センサ3本による変位3点法プローブ、または、一つの走査線上に並んだ角度センサ2本による角度2点法プローブ、または、一つの走査線上に並んだ変位センサ2本と角度センサ1本による混合法プローブであることを特徴とする請求項1〜3のいずれかに記載の測定装置。   The multipoint probe is a displacement three-point probe using three displacement sensors arranged on one scan line, or an angle two-point probe using two angle sensors arranged on one scan line, or one scan. The measuring apparatus according to any one of claims 1 to 3, wherein the measuring apparatus is a mixing method probe using two displacement sensors and one angle sensor arranged on a line. 前記多点法プローブが、2次元的に配置された4点ないし5点を計測する2次元多点法プローブ、または、2次元的に配置された3点ないし4点の傾斜角を計測する角度センサよる2次元多点法プローブ、または、2次元的に配置された3点の変位と少なくとも1点における直交2方向の傾斜角を計測する角度センサとによる2次元多点法プローブであることを特徴とする請求項1〜4のいずれかに記載の測定装置。   The multipoint probe measures a two-dimensional multipoint probe that measures four to five points arranged two-dimensionally, or an angle that measures an inclination angle of three to four points arranged two-dimensionally A two-dimensional multi-point probe using a sensor, or a two-dimensional multi-point probe based on a two-dimensionally arranged three-point displacement and an angle sensor that measures an inclination angle in two orthogonal directions at at least one point. The measuring apparatus according to claim 1, wherein the measuring apparatus is characterized.
JP2008131895A 2008-05-20 2008-05-20 measuring device Expired - Fee Related JP5158791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131895A JP5158791B2 (en) 2008-05-20 2008-05-20 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131895A JP5158791B2 (en) 2008-05-20 2008-05-20 measuring device

Publications (2)

Publication Number Publication Date
JP2009281768A true JP2009281768A (en) 2009-12-03
JP5158791B2 JP5158791B2 (en) 2013-03-06

Family

ID=41452384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131895A Expired - Fee Related JP5158791B2 (en) 2008-05-20 2008-05-20 measuring device

Country Status (1)

Country Link
JP (1) JP5158791B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169815A (en) * 2010-02-19 2011-09-01 Shoichi Shimada Calibration device and measuring device
JP2012068202A (en) * 2010-09-27 2012-04-05 Daiichi Sokuhan Seisakusho:Kk Straightness measuring device and straightness measuring method
JP2014173855A (en) * 2013-03-06 2014-09-22 Satoshi Kiyono Measuring method
JP2016130648A (en) * 2015-01-13 2016-07-21 株式会社ナガセインテグレックス Measuring method and measuring device
JP2017037028A (en) * 2015-08-12 2017-02-16 宇田 豊 Measurement device
CN113340186A (en) * 2021-05-31 2021-09-03 常州伊贝基位移科技有限公司 Error measuring device for linear displacement sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210647A (en) * 1996-01-30 1997-08-12 Tohoku Ricoh Co Ltd Optical type object shape measuring device and method
JP2005308703A (en) * 2004-04-20 2005-11-04 Kunitoshi Nishimura Offset error calibration method for detector
JP2008089541A (en) * 2006-10-05 2008-04-17 Satoshi Kiyono Reference for measuring motion error and motion error measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210647A (en) * 1996-01-30 1997-08-12 Tohoku Ricoh Co Ltd Optical type object shape measuring device and method
JP2005308703A (en) * 2004-04-20 2005-11-04 Kunitoshi Nishimura Offset error calibration method for detector
JP2008089541A (en) * 2006-10-05 2008-04-17 Satoshi Kiyono Reference for measuring motion error and motion error measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011057775; 清野慧: 'ソフトウェアデータムを用いた形状評価' 精密工学会誌 Vol.61,No.8, 199508, 1059-1063, 社団法人精密工学会 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169815A (en) * 2010-02-19 2011-09-01 Shoichi Shimada Calibration device and measuring device
JP2012068202A (en) * 2010-09-27 2012-04-05 Daiichi Sokuhan Seisakusho:Kk Straightness measuring device and straightness measuring method
JP2014173855A (en) * 2013-03-06 2014-09-22 Satoshi Kiyono Measuring method
JP2016130648A (en) * 2015-01-13 2016-07-21 株式会社ナガセインテグレックス Measuring method and measuring device
JP2017037028A (en) * 2015-08-12 2017-02-16 宇田 豊 Measurement device
CN113340186A (en) * 2021-05-31 2021-09-03 常州伊贝基位移科技有限公司 Error measuring device for linear displacement sensor
CN113340186B (en) * 2021-05-31 2022-08-12 常州伊贝基位移科技有限公司 Error measuring device for linear displacement sensor

Also Published As

Publication number Publication date
JP5158791B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP4203439B2 (en) Probe position detection device for detecting the position of a probe element in a multi-coordinate measuring machine
CN102997843B (en) Surface detection apparatus for location determining device
JP5158791B2 (en) measuring device
JP2011081014A (en) Measuring probe used for coordinate measuring machine
JPH1183438A (en) Position calibration method for optical measuring device
JP6488073B2 (en) Stage apparatus and charged particle beam apparatus using the same
US7385214B2 (en) System and method for correcting systematic error of, and calibrating for, tilt angle of surface topology sensor head having plurality of distance sensors
JP4051040B2 (en) 3D position detection device for slides that can move on coordinate axes
JP2017150993A (en) Inner wall measurement device and offset amount calculation method
CN106461385A (en) Device and method for geometrically measuring an object
JP2011002317A (en) Calibration method of image probe and shape measuring machine
US20060209296A1 (en) Interaxis angle correction method
JP2009068957A (en) Straightness measuring apparatus, thickness fluctuation measuring apparatus, and orthogonality measuring apparatus
JP6430874B2 (en) Measuring method
JP4964691B2 (en) Measuring method of measured surface
JP5290038B2 (en) Measuring apparatus and measuring method
KR101854177B1 (en) Processing implement position alignment device for component and method thereof
JP4866807B2 (en) Surface shape calibration apparatus and surface shape calibration method
JP4980818B2 (en) Variation detection method of zero error of multi-point probe
CN110017803A (en) A kind of REVO gauge head B axle error of zero scaling method
JP7296334B2 (en) Straightness measurement system, displacement sensor calibration method, and straightness measurement method
EP2385342A1 (en) Apparatus and method for calibrating a coordinate measuring apparatus
JP6128639B2 (en) Measuring method
JP4980817B2 (en) Multipoint probe zero error related value recording device
JP2009085833A (en) Measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

R150 Certificate of patent or registration of utility model

Ref document number: 5158791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees