JP2005308703A - Offset error calibration method for detector - Google Patents

Offset error calibration method for detector Download PDF

Info

Publication number
JP2005308703A
JP2005308703A JP2004151051A JP2004151051A JP2005308703A JP 2005308703 A JP2005308703 A JP 2005308703A JP 2004151051 A JP2004151051 A JP 2004151051A JP 2004151051 A JP2004151051 A JP 2004151051A JP 2005308703 A JP2005308703 A JP 2005308703A
Authority
JP
Japan
Prior art keywords
detector
measured
detectors
offset error
mounting base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004151051A
Other languages
Japanese (ja)
Inventor
Kunitoshi Nishimura
国俊 西村
Ikumatsu Fujimoto
生松 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004151051A priority Critical patent/JP2005308703A/en
Publication of JP2005308703A publication Critical patent/JP2005308703A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an accurate offset error calibration method simple in a calibration procedure and capable of using an inexpensive test piece, in straightness measurement using a 2- or 3-point method. <P>SOLUTION: A surface shape of the test piece is measured by rotating a detector attaching table having two angle detectors or three displacement detectors, or the test piece. Outputs from the two or three detectors are computed in this constitution, and an offset error is calculated accurately in each of the detectors, using the fact that a shape on a circumference is brought into a periodic function. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は被測定物表面の測定方法に関し、特に被測定物表面の真直度を測定する2〜3点法における検出器校正法に関する。  The present invention relates to a method for measuring the surface of an object to be measured, and more particularly to a detector calibration method in a 2-3 point method for measuring the straightness of the surface of the object to be measured.

図1は、一般に行われる3点法の真直度測定法の概要を説明するための図である。すなわち、基準となる軸1に略並行となるように、検出器取付台3の案内面5と被測定物7が設置され、検出器取付台3は案内面5に沿って滑らかに動くように構成され、検出器取付台3には3個の変位検出器9が配置されている。変位検出器9は変位検出器A、B,Cからなり、各検出器の長手方向の軸は等間隔で互いに並行となるように、また被測定物の表面11までのギャップを測定できるように設置される。  FIG. 1 is a diagram for explaining an outline of a three-point straightness measurement method that is generally performed. That is, the guide surface 5 of the detector mounting base 3 and the object to be measured 7 are installed so as to be substantially parallel to the reference shaft 1, and the detector mounting base 3 moves smoothly along the guide surface 5. The detector mounting base 3 is configured with three displacement detectors 9. The displacement detector 9 includes displacement detectors A, B, and C. The longitudinal axes of the detectors are parallel to each other at equal intervals, and the gap to the surface 11 of the object to be measured can be measured. Installed.

真直度測定に際しては始めに3つの変位検出器A,B,Cの校正を行う。その校正時の様子を図2に示す。検出器取付台3は着脱可能であり、ここでは下設置台13上に固定され、3個の変位検出器9に対向するように標準試験片17が上設置台15に固定される。上設置台15あるいは下設置台13は検出器の長手方向の軸と直角方向に移動可能に構成されており、この状態で、上設置台15と下設置台13の相対位置を矢印19方向に変化させながら、3個の変位検出器9の出力を測定すると、例えば図3に示すような結果が得られる。なお、上設置台15と下設置台13の相対位置は、レーザ測長器等の予め校正された測長器により測定される。その測定量が横軸を表し、各変位検出器A,B,Cの出力が縦軸を表す。各出力を例えばDSP(Digital Signal Processor)に取り込み、図4に示すように、線形化すると共に、勾配(=感度)を揃える  When measuring straightness, the three displacement detectors A, B, and C are first calibrated. The state at the time of calibration is shown in FIG. The detector mounting base 3 is detachable. Here, the detector mounting base 3 is fixed on the lower mounting base 13, and the standard test piece 17 is fixed to the upper mounting base 15 so as to face the three displacement detectors 9. The upper installation table 15 or the lower installation table 13 is configured to be movable in a direction perpendicular to the longitudinal axis of the detector. In this state, the relative position of the upper installation table 15 and the lower installation table 13 is set in the direction of the arrow 19. When the outputs of the three displacement detectors 9 are measured while changing, for example, a result as shown in FIG. 3 is obtained. The relative position of the upper installation table 15 and the lower installation table 13 is measured by a length calibrated in advance such as a laser length measuring device. The measured quantity represents the horizontal axis, and the output of each displacement detector A, B, C represents the vertical axis. Each output is taken into, for example, a DSP (Digital Signal Processor) and linearized and the gradient (= sensitivity) is made uniform as shown in FIG.

ここで、線形化すると共に、勾配(=感度)を揃えられた各出力において
センサ出力; μ(z) μ(z) μ(z)
センサオフセット; s
と表し、Aを比例定数、zを校正された測長器の出力として

Figure 2005308703
Figure 2005308703
Figure 2005308703
と表す。次に各オフセットを
Figure 2005308703
となるように調整する。この調整は標準試験片17の表面形状が平らであるとの前提で行われるが、標準試験片17の表面形状が湾曲等しているとこの調整が不確かなものとなる。Here, linearization and sensor output at each output in which the gradient (= sensitivity) is aligned; μ A (z) μ B (z) μ C (z)
Sensor offset; s A s B s C
Where A is a proportional constant and z is the output of a calibrated length measuring instrument.
Figure 2005308703
Figure 2005308703
Figure 2005308703
It expresses. Then each offset
Figure 2005308703
Adjust so that This adjustment is performed on the assumption that the surface shape of the standard test piece 17 is flat. However, if the surface shape of the standard test piece 17 is curved or the like, this adjustment is uncertain.

従って、調整誤差が必ずあるものとして、各オフセットの関係を次の形で表す。

Figure 2005308703
ここで、sをオフセット誤差と呼ぶ。Therefore, assuming that there is always an adjustment error, the relationship between each offset is expressed in the following form.
Figure 2005308703
Here, s E is called an offset error.

真直度測定のアルゴリズムは次のように導かれる。
被測定物の表面形状; f(x)
案内面の形状; g(x)
取付け台のピッチング誤差; e(x)
センサ間隔; h/2
と置き、図1に示すように、基準となる軸1であるx軸にほぼ平行に、案内面5と被測定物7配置し、x軸に沿って、検出器取付台3を走査し、測定するので3個の変位検出器9の出力はxの関数と考えることが出来る.
検出器取付台3は2つの車輪で案内面5上を倣って走行すると考え、しかも2つの車輪は変位検出器A,Cの取付け位置に一致しているとする.このとき、検出器取付台3のピッチング誤差は、

Figure 2005308703
と表すことができる.
従って、各変位センサの出力は、
Figure 2005308703
Figure 2005308703
Figure 2005308703
となる.The straightness measurement algorithm is derived as follows.
Surface shape of object to be measured; f (x)
Guide surface shape; g (x)
Pitching error of the mount; e p (x)
Sensor interval; h / 2
1, as shown in FIG. 1, the guide surface 5 and the object 7 to be measured are arranged substantially parallel to the x axis which is the reference axis 1, and the detector mounting base 3 is scanned along the x axis. Since the measurement is performed, the outputs of the three displacement detectors 9 can be considered as a function of x.
It is assumed that the detector mounting base 3 travels along the guide surface 5 with two wheels, and the two wheels coincide with the mounting positions of the displacement detectors A and C. At this time, the pitching error of the detector mount 3 is
Figure 2005308703
It can be expressed as.
Therefore, the output of each displacement sensor is
Figure 2005308703
Figure 2005308703
Figure 2005308703
It becomes.

式(5)−式(6)、および式(6)−式(7)を計算すれば、

Figure 2005308703
Figure 2005308703
となり、次に
Figure 2005308703
Figure 2005308703
と近似する。ただし、f′(x)のダッシュはxに関する1階微分を表す。
式(8)と式(9)の差を計算し、式(10)と式(11)を代入すれば、
Figure 2005308703
を得る。ここで
Figure 2005308703
とおき、更に
Figure 2005308703
と近似すれば、結局
Figure 2005308703
を得る。ここでf″(x)の2つのダッシュはxに関する2階微分を表す。If formula (5) -formula (6) and formula (6) -formula (7) are calculated,
Figure 2005308703
Figure 2005308703
And then
Figure 2005308703
Figure 2005308703
And approximate. However, the dash of f ′ (x) represents the first derivative with respect to x.
If the difference between Equation (8) and Equation (9) is calculated and Equation (10) and Equation (11) are substituted,
Figure 2005308703
Get. here
Figure 2005308703
And more
Figure 2005308703
And eventually
Figure 2005308703
Get. Here, two dashes of f ″ (x) represent a second derivative with respect to x.

式(15)を2回積分すれば、

Figure 2005308703
を得る。
M(x)は測定される数値列であるので、これを2階数値積分することにより、オフセット誤差s=0の場合、被測定物7の表面形状f(x)が求められることになる。ただし、ここで、係数CとCは求められていないが、形状には直接関係しないので、敢えて求める必要がない。If equation (15) is integrated twice,
Figure 2005308703
Get.
Since M (x) is a numerical sequence to be measured, the surface shape f (x) of the DUT 7 is obtained by integrating the second-order numerical value when the offset error s E = 0. . However, here, although not the coefficient C 1 and C 0 is obtained, since the shape is not directly related, there is no need to seek dare.

しかし、オフセット誤差があれば、形状に放物線誤差2s(x/h)が加わることになる。
例えば、x/h=20とすると、
2(x/h)=800 となり
誤差sは800倍されることになり、わずかな誤差が非常に拡大されることになる.
However, if there is an offset error, a parabolic error 2s E (x / h) 2 is added to the shape.
For example, if x / h = 20,
Since 2 (x / h) 2 = 800, the error s E is multiplied by 800, and a slight error is greatly enlarged.

従ってオフセット誤差sをゼロとすることが重要になるが、ゼロでなくともその大きさが正確に分かればよい。すなわち、結果の形状より誤差分を差し引けば正確な形状が求められるからである。そこで本発明では正確にその値を知ることを、オフッセット誤差を校正すると表現する。Therefore it becomes important to the offset error s E to zero, or knowing its magnitude precisely without zero. That is, if an error is subtracted from the resulting shape, an accurate shape can be obtained. Therefore, in the present invention, accurately knowing the value is expressed as calibrating the offset error.

さて、オフッセット誤差を校正する従来の方法に、表面の形状の凹凸が対応する一組の標準試験片を用いる校正法が提案されている(特許文献1参照)。形状の凹凸が対応する一組の標準試験片は、通常すり合わせ法によって加工するが加工時間が長くなるため非常に高価なものとなる。また、正確な校正には凹面と凸面の対応する点での校正が必要であり、校正する検出器の検出点にその対応点を正確に位置づけなくてはならないが、その作業は困難であった。また、正確な測定には測定の毎に校正する必要があるが、凹面、凸面の2回の測定と面倒な手続きが必要であった。  Now, a calibration method using a set of standard test pieces corresponding to surface irregularities has been proposed as a conventional method for calibrating offset errors (see Patent Document 1). A set of standard test pieces to which the shape irregularities correspond is usually processed by a slicing method, but the processing time becomes long, so that it becomes very expensive. In addition, accurate calibration requires calibration at the corresponding points on the concave and convex surfaces, and the corresponding points must be accurately positioned at the detection points of the detector to be calibrated, but this is difficult. . Moreover, although it is necessary to calibrate every measurement for accurate measurement, the measurement of the concave surface and the convex surface twice and complicated procedures are required.

特開2003−254747号公報JP 2003-254747 A

校正手続きが簡単で正確なオフッセット誤差が求められる校正方法、しかもそこで使用される試験片は安価であることを特徴とするオフッセット誤差を校正する方法の実現が課題である。  It is an object to realize a calibration method that requires a simple calibration procedure and requires an accurate offset error, and a method for calibrating the offset error characterized in that the test piece used therein is inexpensive.

本発明で使用する試験片は円盤状であり、3個の検出器を有する検出器取付台を回転させ、円盤の表面の形状を測定する。この構成で得られる3個の検出器の出力を演算し、円盤の円周上の形状は周期関数となることを利用して、オフッセット誤差を正確に計算する。  The test piece used in the present invention has a disk shape, and a detector mounting base having three detectors is rotated to measure the surface shape of the disk. The outputs of the three detectors obtained with this configuration are calculated, and the offset error is accurately calculated by utilizing the fact that the shape on the circumference of the disk becomes a periodic function.

形状を求めるためのアルゴリズムは従来のものと大筋同じである。従来例では直線上を変化させる場合であったが、この考えを円盤の円周上に適用する。  The algorithm for obtaining the shape is roughly the same as the conventional one. In the conventional example, the change was made on a straight line, but this idea is applied to the circumference of the disk.

図5は、校正装置の構成例である。円盤101は、駆動モータ103と軸105で結合され、回転軸107を中心に回転する。円盤101には検出器取付台3が固定され、そこには3個の変位検出器9が固定されている。また、円盤101とほぼ並行に試験片である被測定物7が設置され、その表面形状(図では下面)を3個の変位検出器9で測定できるように、構成されている。なお、駆動モータ103および被測定物7は、基準となる土台(図示されず)に固定されており不動である。駆動モータ103は円盤101を等速度で回転させるように制御される。  FIG. 5 is a configuration example of the calibration apparatus. The disc 101 is coupled with a drive motor 103 and a shaft 105 and rotates around a rotation shaft 107. A detector mounting base 3 is fixed to the disk 101, and three displacement detectors 9 are fixed thereto. In addition, the DUT 7 that is a test piece is installed almost in parallel with the disk 101, and the surface shape (lower surface in the figure) can be measured by the three displacement detectors 9. The drive motor 103 and the DUT 7 are fixed to a base (not shown) serving as a reference and do not move. The drive motor 103 is controlled to rotate the disk 101 at a constant speed.

図6に示すように、円盤101には、検出器取付台3が固定され、そこには3個の変位検出器A,B,Cが被測定物7の表面のうねりを検出するために、各検出器の長手方向の軸が円盤101の表面と略直交するように設置される。なお、この図では被測定物7は省略されている。  As shown in FIG. 6, the detector mounting base 3 is fixed to the disk 101, and the three displacement detectors A, B, and C detect the undulation on the surface of the object 7 to be measured. The detector is installed so that the longitudinal axis of each detector is substantially orthogonal to the surface of the disk 101. In this figure, the device under test 7 is omitted.

また、図7は図6で示す円盤101を上より見た模式図である。ここに示すように3個の変位検出器A,B,Cは、円盤101の回転中心111を中心とする半径rの円周上に、角度αで配置される。  FIG. 7 is a schematic view of the disk 101 shown in FIG. 6 as viewed from above. As shown here, the three displacement detectors A, B, and C are arranged at an angle α on the circumference of the radius r centering on the rotation center 111 of the disk 101.

図8は、座標系を説明するための図である。円盤101は矢印109の時計方向に回転するものとする。その回転角をθとし、検出器が配置される半径rの円周上での変位xとして、

Figure 2005308703
で表す。FIG. 8 is a diagram for explaining the coordinate system. The disk 101 is assumed to rotate in the clockwise direction indicated by an arrow 109. The rotation angle is θ, and the displacement x on the circumference of the radius r where the detector is arranged is as follows:
Figure 2005308703
Represented by

先に説明したと同様なアルゴリズムを考える。図1で説明される真直度測定では、検出器取付台3は直線状を動くが、本検出器取付台3は回転軸に支えられて動く。ここで、3個の検出器のそれぞれの出力は次のように表すことが出来る。
f(x)は半径rの円周上に沿った被測定物7の表面形状
g(x)は円盤101の上下の動き
(x)は円盤101の傾き
hは図8に示す3個の変位検出器9の間隔
と考えれば、

Figure 2005308703
Figure 2005308703
Figure 2005308703
が成立する。上の3式はそれぞれ式(5)、式(6)式(7)と一致するので、式(8)から式(16)までそのまま成立する。Consider an algorithm similar to that described above. In the straightness measurement illustrated in FIG. 1, the detector mount 3 moves in a straight line, but the detector mount 3 moves while being supported by a rotating shaft. Here, the output of each of the three detectors can be expressed as follows.
f (x) is the vertical movement e P (x) is the slope h of the disc 101 of the surface shape g (x) is a disk 101 of the object 7 along a circumference of radius r 3 pieces shown in FIG. 8 If we consider the interval of the displacement detector 9 of
Figure 2005308703
Figure 2005308703
Figure 2005308703
Is established. Since the above three expressions coincide with Expression (5), Expression (6), and Expression (7), Expressions (8) to (16) hold as they are.

図9は、変位検出器A,B,Cの出力例を示した図である。検出器取付台3が1回転すると、すなわち回転角θが2π変化するとき、半径rの円周上のxはL(=2πr)変化する。  FIG. 9 is a diagram illustrating an output example of the displacement detectors A, B, and C. When the detector mount 3 rotates once, that is, when the rotation angle θ changes by 2π, x on the circumference of the radius r changes by L (= 2πr).

そこで、式(13)で定義される数値列M(x)を1回転分だけ切り出し、図10に示すように、積分すると、

Figure 2005308703
Figure 2005308703
が得られる。なお式(19)は式(16)の再掲である。Therefore, when the numerical sequence M (x) defined by the equation (13) is cut out by one rotation and integrated as shown in FIG.
Figure 2005308703
Figure 2005308703
Is obtained. Equation (19) is a reprint of Equation (16).

さて、円盤の表面形状f(x)は、円盤が1回転すると元に戻るので、

Figure 2005308703
Figure 2005308703
の性質がある。この性質を利用して未知数C、Cを決める。Now, the surface shape f (x) of the disk returns to its original state once the disk rotates once.
Figure 2005308703
Figure 2005308703
There is a nature of. Using this property, the unknowns C 1 and C 0 are determined.

式(18)において、
x=0のとき、

Figure 2005308703
x=Lのとき、
Figure 2005308703
である。In equation (18),
When x = 0
Figure 2005308703
When x = L
Figure 2005308703
It is.

式(23)−式(22)を計算すると、

Figure 2005308703
Figure 2005308703
るので、オフセット誤差sは正確に計算され、これで校正作業は完了となる。When equation (23) -equation (22) is calculated,
Figure 2005308703
Figure 2005308703
Therefore, the offset error s E is accurately calculated, and the calibration operation is completed.

更に、式(19)において
x=0のとき、

Figure 2005308703
x=Lのとき、
Figure 2005308703
であるから、式(26)−式(25)を計算すれば
Figure 2005308703
を得る。
式(27)よりCが求められ、式(19)に代入すれば、試料の形状f(x)が決定する。Furthermore, when x = 0 in equation (19),
Figure 2005308703
When x = L
Figure 2005308703
Therefore, if equation (26) -equation (25) is calculated,
Figure 2005308703
Get.
If C 1 is obtained from the equation (27) and substituted into the equation (19), the shape f (x) of the sample is determined.

以上の説明では3個の変位検出器を使用する場合であったが、角度検出器を使用してもよい。この場合は2個の角度検出器でよい。図11は角度検出器を用いた2点法の真直度測定法の概要を説明するための図である。図1と同様に、基準となる軸1に略並行となるように、検出器取付台3の案内面5と被測定物7が設置され、検出器取付台3は案内面5に沿って滑らかに動くように構成され、検出器取付台3には2個の角度検出器119が配置されている。角度検出器119は角度検出器D,Eからなり、被測定物の表面11の表面角度を測定できるように設置されている。  In the above description, three displacement detectors are used, but an angle detector may be used. In this case, two angle detectors are sufficient. FIG. 11 is a diagram for explaining the outline of the straightness measurement method of the two-point method using an angle detector. As in FIG. 1, the guide surface 5 of the detector mounting base 3 and the object to be measured 7 are installed so as to be substantially parallel to the reference shaft 1, and the detector mounting base 3 is smooth along the guide surface 5. The detector mounting base 3 is provided with two angle detectors 119. The angle detector 119 includes angle detectors D and E, and is installed so that the surface angle of the surface 11 of the object to be measured can be measured.

ここで、
センサ出力; aμ(x) aμ(x)
センサオフセット as as
と置き、表面形状とセンサー出力の関係を求める。ただし、ここでのセンサオフセットの単位は角度である。

Figure 2005308703
Figure 2005308703
となる.
式(28)−式(29)を計算し、式(14)で表される関係および
Figure 2005308703
を用いると
Figure 2005308703
となり、結局、式(15)と同様な2階の微分方程式が得られ、本発明に従えば、式(24)と同様にして
Figure 2005308703
が得られ、2つの角度検出器のオフセット誤差(as−as)が求められることになる。here,
Sensor output: aμ D (x) aμ E (x)
Sensor offset as D as E
To obtain the relationship between the surface shape and sensor output. However, the unit of the sensor offset here is an angle.
Figure 2005308703
Figure 2005308703
It becomes.
Formula (28) -Formula (29) is calculated, and the relationship represented by Formula (14) and
Figure 2005308703
With
Figure 2005308703
Eventually, a second-order differential equation similar to equation (15) is obtained, and according to the present invention, as in equation (24)
Figure 2005308703
Is obtained, and the offset error (as D −as E ) of the two angle detectors is obtained.

以上の説明では、本発明におけるオフセット誤差を求めるのに用いる円盤を被測定物あるいは試験片と表現し、標準試験片と呼ばなかった。標準試験片とは値付けされた精度の高い試験片を一般に指し、本発明の実施例で説明したように検出器が連続したデータを出力する形状であれば、円盤の加工精度を特に問題としないからである。もちろん値付けされている必要はない。  In the above description, the disk used to determine the offset error in the present invention is expressed as an object to be measured or a test piece and is not called a standard test piece. The standard test piece generally refers to a highly accurate test piece that is priced, and if the detector outputs a continuous data as described in the embodiment of the present invention, the processing accuracy of the disk is particularly problematic. Because it does not. Of course, it doesn't have to be priced.

また、以上の説明では、3つの変位検出器9の配置は、回転中心に対して同軸円周上にあると説明したが、略同軸円周上の配置でよい。同軸円周上でない場合、図8からも分かるように、3つの変位検出器は完全に同じ場所を測定しないので、式(5)〜式(7)の関係は成立しなくなる。しかし、一般に表面のうねりの形状は、検出器の検出面の大きさより、大きなピッチで変化するので、かなりの正確さで近似できるわけである。更に詳しく説明すると、図12は図7に示すA−A断面を示したものであるが、これから分かるように、うねりの形状は検出器の検出面の大きさに比較し大きく変化するので、検出器1個分程度左右方向にずれても(変位検出器Cが右にずれた様子を点線で示す)その出力の大きさには大きな変化がないと言うわけである。また、逆に想定されるうねりのピッチに比較し、十分小さな寸法の検出面を使用すれば、近似度は高められるわけである。なお、この図では被測定物の表面11は、説明のためにオーバに表現されている。  In the above description, the three displacement detectors 9 are arranged on the coaxial circumference with respect to the center of rotation, but may be arranged on a substantially coaxial circumference. If not on the coaxial circumference, as can be seen from FIG. 8, the three displacement detectors do not measure the exact same location, so the relationships of equations (5)-(7) do not hold. However, in general, the shape of the waviness on the surface changes at a larger pitch than the size of the detection surface of the detector, so that it can be approximated with considerable accuracy. More specifically, FIG. 12 shows the AA cross section shown in FIG. 7, but as can be seen, the shape of the swell changes greatly compared to the size of the detection surface of the detector. Even if it is displaced in the left-right direction by about one device (the state in which the displacement detector C is displaced to the right is indicated by a dotted line), there is no significant change in the magnitude of the output. On the other hand, the degree of approximation can be increased by using a detection surface having a sufficiently small size as compared with the undulating pitch assumed. In this figure, the surface 11 of the object to be measured is over-expressed for explanation.

先の説明において、略同軸円周上の配置でよいと表現したが、当然直線配置の場合も含んでいる。直線配置の場合、そこで使用する検出器の検出面の大きさと被測定物あるいは試験片の想定されるうねりの大きさを考慮して、検出部分の回転半径を決めればよい。直線配置の場合、本発明に従って校正した後、直ちに従来例で説明した真直度測定に適用できる利点がある。  In the above description, it is expressed that the arrangement on the substantially coaxial circumference is sufficient, but naturally the case of a linear arrangement is included. In the case of the linear arrangement, the radius of rotation of the detection portion may be determined in consideration of the size of the detection surface of the detector used there and the size of the swell to be measured or the test piece. The linear arrangement has an advantage that it can be applied to the straightness measurement described in the conventional example immediately after calibrating according to the present invention.

また、以上の説明では検出器が動く場合で説明したが、検出器が固定され、非測定物が動いてもよい。これは、検出器と被測定物の相対運動に基づくものであることから明らかである。  In the above description, the case where the detector moves is described. However, the detector may be fixed and the non-measurement object may move. This is apparent from the fact that it is based on the relative motion of the detector and the object to be measured.

また、1回転で得られたデータをもとに演算してオフセット誤差を計算すると表現したが、複数回の回転で得られたデータを平均化して、オフセット誤差を計算した方が高い精度で求めることが出来る。しかし処理時間は長くなる欠点はある。  In addition, although it is expressed that the offset error is calculated by calculating based on the data obtained by one rotation, it is more accurate to calculate the offset error by averaging the data obtained by a plurality of rotations. I can do it. However, there is a disadvantage that the processing time becomes long.

また、本発明における円盤は駆動モータにより等速回転するように制御されるとしたが、この方が一般に円盤の回転毎の高い再現性が得られるからである。再現性は連続回転の際に実現し易いが、再現性が実現できれば起動停止を繰り返す回転であってもよい。  In addition, the disk in the present invention is controlled to rotate at a constant speed by a drive motor, but this is because a higher reproducibility is generally obtained for each rotation of the disk. Reproducibility is easy to realize during continuous rotation, but rotation that repeats start and stop may be used as long as reproducibility can be realized.

また、以上の説明では試験片あるいは被測定物は円盤であると説明したが、要は回転することにより円周上の形状が測定できればよいのであるから、円盤に限定されることなく、4角形を始めとする任意形状でも差し支えない。  In the above description, the test piece or the object to be measured is a disk. However, it is only necessary that the shape on the circumference can be measured by rotating, so the shape is not limited to the disk. Any shape such as can be used.

発明の効果The invention's effect

以上説明したように、本発明は、回転する試験片あるいは被測定物を用いて、1回転で表面形状を繰り返す閉曲線において校正するようにしたため、簡単な校正手順で、検出器のオフセット誤差を極めて高い精度で求めることが可能になる。また、そこで用いる円盤は所謂標準試験片を必要とせず、通常の加工によって得られる円盤で可能である効果もある。    As described above, according to the present invention, a rotating test piece or a measured object is used to calibrate on a closed curve that repeats the surface shape in one rotation. It can be obtained with high accuracy. In addition, the disk used there does not require a so-called standard test piece, and there is an effect that is possible with a disk obtained by ordinary processing.

真直度測定法の概要を説明するための図Diagram for explaining the outline of straightness measurement method 変位検出器の校正時の様子を示す図Diagram showing how the displacement detector is calibrated 変位検出器の校正時の出力例Output example during calibration of displacement detector 調整後の変位検出器の出力例Output example of displacement detector after adjustment 本発明の構成例を示す正面図Front view showing a configuration example of the present invention 本発明の構成例を示す斜視図The perspective view which shows the structural example of this invention 変位検出器の配置を示す模式図Schematic diagram showing the arrangement of displacement detectors 座標系を説明するための図Illustration for explaining the coordinate system 変位検出器の出力例Output example of displacement detector 数値積分を説明するための図Diagram for explaining numerical integration 2つの角度検出器で測定する場合の説明図Explanatory drawing when measuring with two angle detectors 検出器の大きさと表面のうねり形状の関係Relationship between detector size and surface waviness

符号の説明Explanation of symbols

1 基準となる軸
3 検出器取付台
5 案内面
7 被測定物
9 変位検出器
9’ 変位検出器
11 被測定物の表面
13 下設置台
15 上設置台
17 標準試験片
19 矢印
101 円盤
103 駆動モータ
105 軸
107 回転軸
109 矢印
111 回転中心
119 角度検出器
DESCRIPTION OF SYMBOLS 1 Reference axis | shaft 3 Detector mounting base 5 Guide surface 7 Measured object 9 Displacement detector 9 'Displacement detector 11 Surface of measured object 13 Lower installation base 15 Upper installation base 17 Standard test piece 19 Arrow 101 Disk 103 Drive Motor 105 Shaft 107 Rotating shaft 109 Arrow 111 Rotation center 119 Angle detector

Claims (3)

検出器取付台及び被測定物の何れか一方を案内面に沿って移動させ、前記検出器取付台と被測定物の間の幾何学的関係を測定し、得られたデータ列から被測定物の表面の真直度を求める真直度測定法において、
前記検出器取付台及び前記被測定物の何れか一方を前記被測定物の表面に略並行に回転させ、前記検出器取付台と前記被測定物表面との幾何学的関係を測定するための複数個の検出器を前記回転運動の回転中心と略同軸円周上に沿って所定の間隔で設置するとともに、前記検出器検出器取付台または前記被測定物を回転移動して所定移動量ごとに前記検出器により前記検出器取付台と前記被測定物表面との幾何学的関係を一斉に測定し、少なくとも1回転の間に得られたデータ列からの演算により前記複数個の検出器のオフセット誤差を校正することを特徴とする検出器のオフセット誤差校正法
Either the detector mounting base or the object to be measured is moved along the guide surface, the geometric relationship between the detector mounting base and the object to be measured is measured, and the object to be measured is obtained from the obtained data string. In the straightness measurement method to find the straightness of the surface of
Rotating either one of the detector mount and the object to be measured substantially parallel to the surface of the object to be measured, and measuring the geometric relationship between the detector mount and the surface of the object to be measured A plurality of detectors are installed at a predetermined interval along a rotation axis of the rotational motion and substantially on the same circumference, and the detector detector mounting base or the object to be measured is rotated and moved for each predetermined movement amount. The geometric relationship between the detector mounting base and the surface of the object to be measured is simultaneously measured by the detector, and the calculation of the plurality of detectors is performed by calculation from a data string obtained during at least one rotation. A method for calibrating an offset error of a detector, characterized by calibrating the offset error
請求項1に記載される複数個の検出器が3個の変位検出器であることを特徴とする検出器のオフセット誤差校正法A method for calibrating an offset error of a detector, wherein the plurality of detectors according to claim 1 are three displacement detectors. 請求項1に記載される複数個の検出器が2個の角度検出器であることを特徴とする検出器のオフセット誤差校正法A method for calibrating an offset error of a detector, wherein the plurality of detectors according to claim 1 are two angle detectors.
JP2004151051A 2004-04-20 2004-04-20 Offset error calibration method for detector Pending JP2005308703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151051A JP2005308703A (en) 2004-04-20 2004-04-20 Offset error calibration method for detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151051A JP2005308703A (en) 2004-04-20 2004-04-20 Offset error calibration method for detector

Publications (1)

Publication Number Publication Date
JP2005308703A true JP2005308703A (en) 2005-11-04

Family

ID=35437634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151051A Pending JP2005308703A (en) 2004-04-20 2004-04-20 Offset error calibration method for detector

Country Status (1)

Country Link
JP (1) JP2005308703A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281768A (en) * 2008-05-20 2009-12-03 Satoshi Kiyono Measuring apparatus
JP2010286430A (en) * 2009-06-15 2010-12-24 Nagase Integrex Co Ltd Calibration device and straight shape measuring device
JP2016166873A (en) * 2015-03-04 2016-09-15 住友重機械工業株式会社 Shape measurement apparatus, processing device and calibration method of shape measurement apparatus
CN108036751A (en) * 2017-12-17 2018-05-15 胡长悦 Based on the formula roundness error separation device and method that is synchronized with the movement
CN108061532A (en) * 2017-12-17 2018-05-22 胡长悦 One kind is based on the formula roundness error separation device and method that is synchronized with the movement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281768A (en) * 2008-05-20 2009-12-03 Satoshi Kiyono Measuring apparatus
JP2010286430A (en) * 2009-06-15 2010-12-24 Nagase Integrex Co Ltd Calibration device and straight shape measuring device
JP2016166873A (en) * 2015-03-04 2016-09-15 住友重機械工業株式会社 Shape measurement apparatus, processing device and calibration method of shape measurement apparatus
CN108036751A (en) * 2017-12-17 2018-05-15 胡长悦 Based on the formula roundness error separation device and method that is synchronized with the movement
CN108061532A (en) * 2017-12-17 2018-05-22 胡长悦 One kind is based on the formula roundness error separation device and method that is synchronized with the movement
CN110514164A (en) * 2017-12-17 2019-11-29 胡长悦 One kind is based on moving synchronously formula roundness error separation device
CN110514164B (en) * 2017-12-17 2020-11-24 正斌超市平阳有限公司 Based on synchronous motion formula circularity error separator

Similar Documents

Publication Publication Date Title
US9074865B2 (en) Contour and surface texture measuring instrument and contour and surface texture measuring method
JP2764103B2 (en) Method of using analog measuring probe and positioning device
JP6149337B1 (en) Surface shape measuring device
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
JP6503282B2 (en) Shape measurement and calibration device
JP2007263818A (en) Adjusting method for thickness measuring instrument, and device therefor
JP2008505328A (en) Measuring device having a plurality of distance sensors, calibration means for the measuring device and method for determining the shape of the surface
JP5158791B2 (en) measuring device
JP2005308703A (en) Offset error calibration method for detector
JP2012117811A (en) Wafer flatness measuring method
JP6203502B2 (en) Structure and method for positioning a machining tool relative to a workpiece
JP6743351B2 (en) Method for calculating misalignment of roundness measuring machine and roundness measuring machine
JP5290038B2 (en) Measuring apparatus and measuring method
JP4996263B2 (en) Crystal orientation measuring device
JP5252649B2 (en) Calibration device and straight shape measuring device
JP2746511B2 (en) Method for measuring orientation flat width of single crystal ingot
CN101133298A (en) Apparatus and method for checking position and/or shape of mechanical pieces
JP2009041983A (en) Method for detecting variation of zero-point error of multi-point probe
JP2003254747A (en) Straightness measurement method
JP2005172810A (en) Three-dimensional shape measuring method and three-dimensional shape measuring device
JP5601699B2 (en) Calibration device
JP2010169636A (en) Shape measuring apparatus
JP6401618B2 (en) Measuring method and measuring device
JP4980817B2 (en) Multipoint probe zero error related value recording device
JP2003232625A (en) Method of measuring straightness