JP6430874B2 - Measuring method - Google Patents
Measuring method Download PDFInfo
- Publication number
- JP6430874B2 JP6430874B2 JP2015063746A JP2015063746A JP6430874B2 JP 6430874 B2 JP6430874 B2 JP 6430874B2 JP 2015063746 A JP2015063746 A JP 2015063746A JP 2015063746 A JP2015063746 A JP 2015063746A JP 6430874 B2 JP6430874 B2 JP 6430874B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- measured
- stage
- sensor holder
- light beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
本発明は、測定方法に関し、被測定物の真直形状や面形状を高精度に測定できる測定方法に関する。 The present invention relates to a measuring method, and more particularly to a measuring method capable of measuring a straight shape and a surface shape of an object to be measured with high accuracy.
長尺物などの被測定物の面形状や断面直線形状を精度良く測定をするために、基準となる直定規との比較測定を実施することがある。あるいは、光軸の直線性を基準にして、走査方向に被測定面と2点で当接する台上の鏡の傾斜をオートコリメータで測定して、直線形状を算出する方法も用いられている。また、基準が使えないときには、多点法プローブを用いた多点法により、運動誤差と形状誤差を分離する方法がとられる。更には、2点で当接する水準器あるいはタリベルなどで直線形状を求める方法もある。 In order to accurately measure the surface shape and the cross-sectional linear shape of an object to be measured such as a long object, a comparative measurement with a standard straight ruler may be performed. Alternatively, a method of calculating a linear shape by measuring an inclination of a mirror on a table that is in contact with a surface to be measured at two points in the scanning direction with an autocollimator on the basis of linearity of the optical axis is also used. Further, when the reference cannot be used, a method of separating the motion error and the shape error by a multipoint method using a multipoint probe is employed. Furthermore, there is also a method for obtaining a linear shape with a level or a Talibel that abuts at two points.
真直形状や平面形状の測定対象が大型化するのに伴い、基準定規が長尺化し、その作成が困難になってきている。また、空中での光線の揺らぎの影響で光軸の基準も十分な精度を保てない場合もある。このような背景から、多点法を用いた測定の必要性が高まっているが、多点法ではゼロ点調整誤差による放物線誤差の問題があり、しかも長尺になり逐次数が増えるほど放物線誤差が大きくなるという問題がある。 As the measuring object of straight shape or planar shape becomes larger, the reference ruler becomes longer and its creation becomes difficult. In addition, the optical axis reference may not be sufficiently accurate due to the influence of light fluctuations in the air. Against this background, the need for measurement using the multipoint method is increasing, but the multipoint method has a problem of parabolic error due to zero point adjustment error, and the longer the number becomes, the more the number of successive parabolic errors increases. There is a problem that becomes larger.
特許文献1には、例えばステージの傾斜を、形状測定における移動開始点と終了点の静止時に計測し、多点法プローブで測定評価した真直形状における両端の傾斜の差に含まれる、多点法プローブのゼロ点調整誤差による放物線誤差の影響を抽出できることを利用して、目的の形状測定データそのものから多点法プローブのゼロ点の校正が出来る、いわゆるその場校正を実現できる技術が開示されている。 In Patent Document 1, for example, the stage inclination is measured when the movement start point and the end point are stationary in shape measurement, and is included in the difference in inclination between both ends in a straight shape measured and evaluated by a multipoint probe. Disclosed is a technology that can perform so-called in-situ calibration, which can calibrate the zero point of the multipoint probe from the target shape measurement data itself, by using the fact that the influence of the parabolic error due to the zero adjustment error of the probe can be extracted. Yes.
ところで、実際の測定に即しては、長尺の被測定物とプローブとを駆動系により相対移動させる必要があるが、比較的重量がある被測定物を載置したステージを相対移動させるよりも、プローブを保持するセンサホルダを門形のフレーム等に設置して、ステージに対してセンサホルダをフレーム毎相対移動させた方が、駆動系の負担が少なくなり有利な場合がある。ところが、フレームを移動させる際に駆動力やセンサホルダ重量の移動の影響でフレームの微小変形等が生じることがあるが、それにより測定中にステージに傾きが生じて、プローブと被測定物とで走査方向両端における傾斜の差が変化してしまい、形状測定に悪影響を及ぼす恐れがある。しかしながら、フレームの剛性を高めることは駆動系の負担を増大させるという問題があり、また例えフレームの剛性を高めたとしても、測定時のステージの傾きを完全に排除することは困難である。一方、センサホルダ側を固定する代わりにステージ側を相対移動する構成としても、比較的重量がある被測定物を載置したステージを相対移動させることで、ステージの傾きを招く恐れもある。 By the way, in actual measurement, it is necessary to relatively move the long object to be measured and the probe by the drive system, but rather to relatively move the stage on which the relatively heavy object to be measured is placed. However, it may be advantageous to install the sensor holder for holding the probe on a portal frame or the like and move the sensor holder relative to the stage relative to the frame because the load on the drive system is reduced. However, when moving the frame, there may be slight deformation of the frame due to the influence of the driving force or the weight of the sensor holder, which causes the stage to tilt during the measurement, causing the probe and the object to be measured to move. The difference in inclination at both ends in the scanning direction changes, which may adversely affect shape measurement. However, increasing the rigidity of the frame has the problem of increasing the load on the drive system, and even if the rigidity of the frame is increased, it is difficult to completely eliminate the tilt of the stage during measurement. On the other hand, even if the stage side is relatively moved instead of fixing the sensor holder side, the stage may be inclined by relatively moving the stage on which the relatively heavy object to be measured is placed.
本発明は、かかる問題点に鑑み、簡素な構成でありながら、精度良く長尺物の形状を測定できる測定方法を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a measurement method capable of measuring the shape of a long object with high accuracy while having a simple configuration.
請求項1に記載の測定方法は、被測定物の置かれたステージと、3本のプローブを保持するセンサホルダとが相対的に移動可能となっており、前記プローブを用いて前記被測定物の直線形状を走査測定する逐次3点法による測定方法において、
重力加速度方向を基準として、走査測定の開始点と終了点で前記センサホルダの走査方向における傾斜角を測定してその差をとり、また前記ステージの走査方向における傾斜角を測定してその差をとり、得られた2つの差に基づいて前記プローブのゼロ点誤差の影響を排除しつつ前記被測定物の直線形状を求めることを特徴とする。
In the measurement method according to claim 1, a stage on which an object to be measured is placed and a sensor holder that holds three probes are relatively movable, and the object to be measured is used by using the probe. In the measurement method by the sequential three-point method for scanning and measuring the linear shape of
Using the gravitational acceleration direction as a reference, the inclination angle in the scanning direction of the sensor holder is measured at the start and end points of scanning measurement, and the difference is obtained. The inclination angle in the scanning direction of the stage is measured and the difference is obtained. Therefore, the linear shape of the object to be measured is obtained based on the obtained two differences while eliminating the influence of the zero point error of the probe.
本発明によれば、前記センサホルダの走査方向における傾斜角の走査測定の開始点と終了点での差と、前記ステージの走査方向における傾斜角の走査測定の開始点と終了点での差に基づいて前記プローブのゼロ点誤差の影響を排除することにより、例え測定の際に前記ステージや前記センサホルダが傾いたとしても、高精度な形状測定を行うことができ,これにより前記測定装置を小型簡素化できる。 According to the present invention, the difference between the start point and the end point of the scan measurement of the tilt angle in the scanning direction of the sensor holder, and the difference between the start point and the end point of the scan measurement of the tilt angle in the scanning direction of the stage. Based on this, by eliminating the influence of the zero point error of the probe, even if the stage or the sensor holder is tilted during measurement, it is possible to perform highly accurate shape measurement. Small and simple.
請求項2に記載の測定方法は、請求項1に記載の発明において、前記センサホルダの傾斜角又は前記ステージの傾斜角は、光束を出射する光源と、重力加速度に従い垂下された状態で前記光束を反射する基準鏡と、前記基準鏡で反射した前記光束を入射する受光面を備えた光検出器とを有する角度測定ユニットにより測定されることを特徴とする。 According to a second aspect of the present invention, there is provided the measurement method according to the first aspect, wherein the tilt angle of the sensor holder or the tilt angle of the stage is a light source that emits a light beam and the light beam in a suspended state according to gravitational acceleration. Is measured by an angle measuring unit having a reference mirror that reflects the light and a photodetector having a light receiving surface on which the light beam reflected by the reference mirror is incident.
本発明によれば、前記センサホルダ及び前記ステージの走査方向における傾斜角を、走査測定の開始点と終了点で測定するため、その間は前記センサホルダと前記ステージとを連続的に相対移動させることで効率の良い測定を行うことが出来、更に、走査測定の開始点と終了点では前記センサホルダと前記ステージとを静止させることで、前記角度測定ユニットの基準鏡の揺れを抑制できるから、高精度な傾斜角測定を行える。 According to the present invention, since the tilt angle in the scanning direction of the sensor holder and the stage is measured at the start point and end point of scanning measurement, the sensor holder and the stage are continuously moved relative to each other in the meantime. In addition, since the sensor holder and the stage can be kept stationary at the start and end points of scanning measurement, the reference mirror of the angle measurement unit can be prevented from shaking. Accurate tilt angle can be measured.
請求項3に記載の測定方法は、請求項1に記載の発明において、前記センサホルダの傾斜角又は前記ステージの傾斜角は、光束を出射する光源と、容器内の液体中に浮遊し、前記光束を反射する基準鏡を表面の少なくとも一部に設けた浮き子と、前記基準鏡で反射した前記光束を入射する受光面を備えた光検出器とを有する水準器により測定されることを特徴とする。 The measuring method according to claim 3 is the invention according to claim 1, wherein the tilt angle of the sensor holder or the tilt angle of the stage is suspended in a light source that emits a light beam and in a liquid in a container, Measured by a level having a float having a reference mirror that reflects a light beam provided on at least a part of the surface, and a photodetector having a light receiving surface on which the light beam reflected by the reference mirror is incident. And
本発明によれば、前記センサホルダ及び前記ステージの走査方向における傾斜角を、走査測定の開始点と終了点で測定するため、その間は前記センサホルダと前記ステージとを連続的に相対移動させることで効率の良い測定を行うことが出来、更に、走査測定の開始点と終了点では前記センサホルダと前記ステージとを静止させることで、前記水準器の浮き子に揺れを抑制できるから、高精度な傾斜角測定を行える。 According to the present invention, since the tilt angle in the scanning direction of the sensor holder and the stage is measured at the start point and end point of scanning measurement, the sensor holder and the stage are continuously moved relative to each other in the meantime. In addition, it is possible to perform an efficient measurement at the start point and the end point of scanning measurement. Tilt angle can be measured.
本発明によれば、簡素な構成でありながら、精度良く長尺物の形状を測定できる測定方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, although it is a simple structure, the measuring method which can measure the shape of a long thing accurately can be provided.
以下、図面を参照して本発明の実施の形態を説明する。図1は、本実施の形態にかかる測定方法を実現可能な測定装置MDの斜視図である。ここでは被測定物OBJに対する走査方向をX方向とし、X方向に直交する鉛直方向をZ方向とし、X方向とZ方向とに直交する方向をY方向とする。測定装置MDは、長さLの被測定物OBJを支持したステージSTと、このステージSTに対して、X方向に移動自在に設けられた門形フレームFRと、この門形フレームFRを駆動する駆動源とガイドとを含む駆動機構DRと、門形フレームFRの中央に支持されたセンサホルダSHと、センサホルダSHに保持された変位センサである3本のプローブPB1,PB2,PB3とを有している。3本のプローブPB1,PB2,PB3は、間隔dでX方向に沿ってこの順序で配置され、その検出感度軸方向はZ方向である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a measuring apparatus MD capable of realizing the measuring method according to the present embodiment. Here, the scanning direction with respect to the measurement object OBJ is defined as the X direction, the vertical direction orthogonal to the X direction is defined as the Z direction, and the direction orthogonal to the X direction and the Z direction is defined as the Y direction. The measuring device MD drives a stage ST that supports an object OBJ having a length L, a portal frame FR that is movable in the X direction with respect to the stage ST, and the portal frame FR. A drive mechanism DR including a drive source and a guide, a sensor holder SH supported at the center of the portal frame FR, and three probes PB1, PB2, and PB3 that are displacement sensors held by the sensor holder SH are provided. doing. The three probes PB1, PB2, and PB3 are arranged in this order along the X direction at intervals d, and the detection sensitivity axis direction is the Z direction.
センサホルダSH上には、角度測定ユニットAMUが配置されて一体的に傾くようになっている。図2は、角度測定ユニットAMUの概略構成を示す図である。センサホルダSH上に、ケースCAを保持した支持部SPが固定されている。 An angle measuring unit AMU is disposed on the sensor holder SH so as to be integrally tilted. FIG. 2 is a diagram showing a schematic configuration of the angle measurement unit AMU. A support portion SP that holds the case CA is fixed on the sensor holder SH.
ケースCA内には、コリメートな光束DLを出射する光源LDと、ビームスプリッタBSと、光束DLを検出する光検出器PDとが固定されている。又、ケースCAの天井面から垂下させた糸SG(2本あると更に安定しやすい)の下端に基準鏡SRが連結されている。これにより、基準鏡SRの反射面は、重力加速度方向に対して平行となっている。光源LDと、基準鏡SRと、光検出器PDとで投受光系を構成する。 A light source LD that emits a collimated light beam DL, a beam splitter BS, and a photodetector PD that detects the light beam DL are fixed in the case CA. In addition, a reference mirror SR is connected to the lower end of a thread SG (which is more stable if there are two) suspended from the ceiling surface of the case CA. Thereby, the reflecting surface of the reference mirror SR is parallel to the gravitational acceleration direction. The light source LD, the reference mirror SR, and the photodetector PD constitute a light projecting / receiving system.
角度測定ユニットAMUの校正は、センサホルダSHを水平にして行う。このとき、光源LDから出射された光束DLは、ビームスプリッタBSを通過して、基準鏡SRに入射する。基準鏡SRで反射した光束DLは、ビームスプリッタBSで反射されて、光検出器PDの受光面PDaに入射する。このときの入射位置を原点として、不図示のメモリ等に記憶する。実際にセンサホルダSHの傾斜角を測定するときは、センサホルダSHと共にケースCAも傾くのに対し、基準鏡SRは常に重力加速度方向に延在しているため、基準鏡SRに入射する光束DLの入射角が変わり、その反射した光束DLが光検出器PDの受光面PDaに入射する位置が原点からずれる。このずれ量が、センサホルダSHの傾斜角に相当するので、ずれ量を検出することでセンサホルダSHの傾斜角がわかる。 Calibration of the angle measuring unit AMU is performed with the sensor holder SH horizontal. At this time, the light beam DL emitted from the light source LD passes through the beam splitter BS and enters the reference mirror SR. The light beam DL reflected by the reference mirror SR is reflected by the beam splitter BS and enters the light receiving surface PDa of the photodetector PD. The incident position at this time is set as the origin and stored in a memory (not shown) or the like. When actually measuring the tilt angle of the sensor holder SH, the case CA is tilted together with the sensor holder SH, whereas the reference mirror SR always extends in the direction of gravitational acceleration, and therefore the light beam DL incident on the reference mirror SR. Is changed, and the position where the reflected light beam DL is incident on the light receiving surface PDa of the photodetector PD deviates from the origin. Since this deviation amount corresponds to the inclination angle of the sensor holder SH, the inclination angle of the sensor holder SH can be determined by detecting the deviation amount.
図3は、ステージの傾斜角測定用の水準器LVの概略構成を示す図である。図3に示す水準器LVは、ステージSTの上面に載置される一対の脚部SPaを備えた支持部SPを有する。支持部SPの上には、ケースCAが配置されている。 FIG. 3 is a diagram showing a schematic configuration of a level LV for measuring the tilt angle of the stage. The level LV shown in FIG. 3 includes a support portion SP including a pair of leg portions SPa placed on the upper surface of the stage ST. A case CA is disposed on the support portion SP.
ケースCAの底部には容器VLが形成されており、容器VL内にはシリコン油などの高粘度液体LQが貯留されていて、その中に逆円錐形状の浮き子FTが浮かべられている。浮き子FTの底と容器VLの底面とは、糸SGにより連結されて、浮き子FTの傾きは許容するが移動は制限している。浮き子FTの上面は、高粘度液体LQより上方に露出しており、ここに基準鏡SRが取り付けられている。 A container VL is formed at the bottom of the case CA. A high-viscosity liquid LQ such as silicon oil is stored in the container VL, and an inverted conical float FT is floated in the container. The bottom of the float FT and the bottom surface of the container VL are connected by the thread SG, and the tilt of the float FT is allowed but the movement is limited. The upper surface of the float FT is exposed above the high-viscosity liquid LQ, and the reference mirror SR is attached here.
一方、ケースCA内には、容器VLの上方において、光源LDとビームスプリッタBSと光検出器PDとが取り付けられている。光源LDと、基準鏡SRと、光検出器PDとで投受光系を構成する。 On the other hand, in the case CA, a light source LD, a beam splitter BS, and a photodetector PD are attached above the container VL. The light source LD, the reference mirror SR, and the photodetector PD constitute a light projecting / receiving system.
水準器LVの校正は、水平な定盤等に載置して行う。このとき、光源LDから出射したコリメートな光束DLは、ビームスプリッタBSで反射されて、浮き子FT上の基準鏡SRに向かい、ここで反射してビームスプリッタBSを通過し、光検出器PDに入射する。このときの入射位置を原点として、不図示のメモリ等に記憶する。実際にステージSTの傾斜角を測定するときは、ステージSTの傾斜に応じてケースCAも傾くが、基準鏡SRは常に水平であるため、基準鏡SRに入射する光束DLの入射角が変わり、その反射した光束DLが光検出器PDの受光面PDaに入射する位置が原点からずれる。このずれ量が、ステージSTの傾斜角に相当するので、ずれ量を検出することでステージSTの傾斜角がわかる。尚、水準器LVは、被測定物OBJの中央(x=L/2)のステージST上に固定して配置されており、ステージST自体の撓み変形に影響がないように2点で搭載された台に載せられ、被測定OBJの傾きと、水準器LVの傾きが同じになるようマウントされていると好ましい。但し、ステージSTが剛体とみなせる場合、水準器LVはステージST上で被測定物OBJの中央に限られず、いずれの位置に配置されても良い。また図3の水準器LVを用いてセンサホルダSHの傾斜角を測定しても良く、また図2の角度測定ユニットAMUを用いてステージSTの傾斜角を測定しても良い。 Calibration of the level LV is performed by placing it on a horizontal surface plate or the like. At this time, the collimated light beam DL emitted from the light source LD is reflected by the beam splitter BS, is directed to the reference mirror SR on the float FT, is reflected here, passes through the beam splitter BS, and is incident on the photodetector PD. Incident. The incident position at this time is set as the origin and stored in a memory (not shown) or the like. When actually measuring the tilt angle of the stage ST, the case CA also tilts according to the tilt of the stage ST, but the reference mirror SR is always horizontal, so the incident angle of the light beam DL incident on the reference mirror SR changes, The position where the reflected light beam DL is incident on the light receiving surface PDa of the photodetector PD deviates from the origin. Since this deviation amount corresponds to the inclination angle of the stage ST, the inclination angle of the stage ST can be known by detecting the deviation amount. The level LV is fixedly disposed on the stage ST at the center (x = L / 2) of the object OBJ, and is mounted at two points so as not to affect the bending deformation of the stage ST itself. It is preferably mounted so that the inclination of the OBJ to be measured and the inclination of the level LV are the same. However, when the stage ST can be regarded as a rigid body, the level LV is not limited to the center of the object to be measured OBJ on the stage ST, and may be arranged at any position. Further, the tilt angle of the sensor holder SH may be measured using the level LV shown in FIG. 3, and the tilt angle of the stage ST may be measured using the angle measuring unit AMU shown in FIG.
次に、本実施の形態における、被測定物の測定方法について説明する。ここでは、フレームFRをステージSTに対して相対移動させながら、逐次3点法により被測定物OBJの上面の形状を測定する。 Next, a method for measuring an object to be measured in the present embodiment will be described. Here, while the frame FR is moved relative to the stage ST, the shape of the upper surface of the object OBJ is measured by the sequential three-point method.
フレームFRを移動する際に微小な変形や傾きが生じると、センサホルダSH全体がz方向に移動したり傾斜したりすることによる運動誤差成分が生じる。ここで、被測定物OBJの表面形状をf(x)、センサホルダSHのZ方向への偏心誤差をez(x)とし、走査方向への傾斜誤差をEp(x)とし、各プローブPB1,PB2,PB3の出力m1(x)、m2(x)、m3(x)は、以下の式で表せる。
m1(x)=f(x−d)+ez(x)−d・Ep(x) (1)
m2(x)=f(x)+ez(x) (2)
m3(x)=f(x+d)+ez(x)+d・Ep(x) (3)
If a minute deformation or tilt occurs when moving the frame FR, a motion error component is generated due to the entire sensor holder SH moving or tilting in the z direction. Here, the surface shape of the object OBJ to be measured is f (x), the eccentric error in the Z direction of the sensor holder SH is ez (x), the inclination error in the scanning direction is E p (x), and each probe The outputs m 1 (x), m 2 (x), and m 3 (x) of PB1, PB2, and PB3 can be expressed by the following equations.
m 1 (x) = f (x−d) + e z (x) −d · E p (x) (1)
m 2 (x) = f (x) + e z (x) (2)
m 3 (x) = f (x + d) + e z (x) + d · E p (x) (3)
更に隣り合うプローブの出力から偏心誤差成分を消去して、次式の差動出力を得る。
μ1(x)=m3(x)−m2(x)=f(x+d)−f(x)+d・Ep(x) (4)
μ2(x)=m2(x)−m1(x)=f(x)−f(x−d)+d・Ep(x) (5)
Further, the eccentric error component is eliminated from the outputs of adjacent probes to obtain a differential output of the following formula.
μ 1 (x) = m 3 (x) −m 2 (x) = f (x + d) −f (x) + d · E p (x) (4)
μ 2 (x) = m 2 (x) −m 1 (x) = f (x) −f (x−d) + d · E p (x) (5)
更に、(4),(5)式の差をΔμ(x)とすると、傾斜誤差成分を除去した以下の式が得られる。
Δμ(x)=μ1(x)−μ2(x)=f(x+d)−2f(x)+f(x−d) (6)
Further, when the difference between the expressions (4) and (5) is Δμ (x), the following expression from which the inclination error component is removed is obtained.
Δμ (x) = μ 1 (x) −μ 2 (x) = f (x + d) −2f (x) + f (x−d) (6)
一方、式(1)〜(3)より、f(x)の二階差分を求めると、以下の式(7)となる。
Δ2f(x)
={f(x+d)−2・f(x)+f(x−d)}/d2
=[{f(x+d)−f(x)}−{f(x)−f(x−d)}]/d2
={m3(x)−2・m2(x)−m1(x)}/d2 (7)
On the other hand, when the second-order difference of f (x) is obtained from the equations (1) to (3), the following equation (7) is obtained.
Δ 2 f (x)
= {F (x + d) −2 · f (x) + f (x−d)} / d 2
= [{F (x + d) -f (x)}-{f (x) -f (x-d)}] / d 2
= {M 3 (x) −2 · m 2 (x) −m 1 (x)} / d 2 (7)
よって、Δ2f(x)は、ステージSTの並進誤差ez(x)、傾斜誤差Ep(x)の影響を受けることなく、プローブ出力m1(x),m2(x),m3(x)及び間隔dで表されることとなる。 Therefore, Δ 2 f (x) is not affected by the translation error e z (x) and the tilt error E p (x) of the stage ST, and the probe outputs m 1 (x), m 2 (x), m 3 (x) and the distance d.
つまり、測定値m1(x)〜m3(x)等により得られたΔ2f(x)を二階積分することにより、被測定物OBJの上面の表面形状f(x)を知ることができる。なお、f(x)の一次以下の項は、被測定物OBJの測定部分の平均的な距離、傾きを表すことになるので、形状測定においては無視することができる。 That is, it is possible to know the surface shape f (x) of the upper surface of the object OBJ by second-order integration of Δ 2 f (x) obtained from the measured values m 1 (x) to m 3 (x). it can. Note that the terms below the first order of f (x) represent the average distance and inclination of the measurement part of the object OBJ, and can be ignored in the shape measurement.
しかし、実際には、センサホルダSHに支持された各プローブPB1,PB2,PB3には、測定時の基準点のずれ、いわゆるゼロ点ずれが存在する。例えば、各プローブPB1,PB2,PB3のz方向の基準点からのずれを、それぞれ、k1,k2,k3とおいて、式(1)〜(3)を再計算すると、以下の式(1)′〜(3)′となる。
m1(x)=f(x−d)+ez(x)−d・Ep(x)+k1 (1)′
m2(x)=f(x)+ez(x)+k2 (2)′
m3(x)=f(x+d)+ez(x)+d・Ep(x)+k3 (3)′
However, in practice, each probe PB1, PB2, PB3 supported by the sensor holder SH has a reference point shift at the time of measurement, that is, a so-called zero point shift. For example, when the deviations of the probes PB1, PB2, and PB3 from the reference point in the z direction are set to k 1 , k 2 , and k 3 , respectively, and the equations (1) to (3) are recalculated, the following equation ( 1) ′ to (3) ′.
m 1 (x) = f (x−d) + e z (x) −d · E p (x) + k 1 (1) ′
m 2 (x) = f (x) + e z (x) + k 2 (2) ′
m 3 (x) = f (x + d) + e z (x) + d · E p (x) + k 3 (3) ′
更に、f(x)の二階差分を取ると、以下の式(7)′となる。
Δ2f(x)
={f(x+d)−2・f(x)+f(x−d)}/d2
={m3(x)−2・m2(x)−m1(x)}/d2−{k3−2・k2+k1}/d2
={m3(x)−2・m2(x)−m1(x)}−k123/d2 (7)′
ただし、式(7)′において、k3−2・k2+k1=k123とした。
Further, taking the second-order difference of f (x), the following equation (7) ′ is obtained.
Δ 2 f (x)
= {F (x + d) −2 · f (x) + f (x−d)} / d 2
= {M 3 (x) −2 · m 2 (x) −m 1 (x)} / d 2 − {k 3 −2 · k 2 + k 1 } / d 2
= {M 3 (x) −2 · m 2 (x) −m 1 (x)} − k 123 / d 2 (7) ′
However, in Equation (7) ′, k 3 −2 · k 2 + k 1 = k 123 is set.
さらに、式(7)′に基づいて、Δ2f(x)を二階積分すると、測定値m1(x)〜m3(x)等の項の他に、k123/2d2を係数としたx2に比例する項が生じる。したがって、測定値m1(x)〜m3(x)から得られる値は、表面形状f(x)からk123・x2/2d2の分ずれたものであり、これは、いわゆる放物線誤差として知られるゼロ点ずれに起因する誤差である。かかる放物線誤差をg(x)とする。つまり、プローブPB1,PB2,PB3の出力値からは、被測定物OBJの真の上面形状f(x)に、放物線誤差g(x)が重畳された、誤差内在形状h(x)=f(x)+g(x)が求められることとなり、よって放物線誤差g(x)を求めない限り、真の被測定物OBJの上面形状f(x)を得ることができないといえる。 Further, when Δ 2 f (x) is second-order integrated based on the equation (7) ′, k 123 / 2d 2 is taken as a coefficient in addition to the terms such as the measured values m 1 (x) to m 3 (x). A term proportional to x 2 is generated. Therefore, the value obtained from the measured values m 1 (x) to m 3 (x) is shifted from the surface shape f (x) by k 123 · x 2 / 2d 2 , which is a so-called parabolic error. It is an error caused by a zero point shift known as. Let this parabolic error be g (x). That is, from the output values of the probes PB1, PB2, and PB3, the error inherent shape h (x) = f (), in which the parabolic error g (x) is superimposed on the true top surface shape f (x) of the object OBJ. x) + g (x) is obtained. Therefore, unless the parabolic error g (x) is obtained, it can be said that the upper surface shape f (x) of the true object OBJ cannot be obtained.
そこで、水準器を利用して放物線誤差を排除することを考える。(4)、(5)式の差動出力に対して、(5)式にゼロ点誤差の項αを加え、(4)式の差動出力をdだけシフトして、以下の式を得る。
μ1(x+d)=f(x+2d)−f(x+d)+d・Ep(x+d) (4)′
μ2(x)=f(x)−f(x−d)+d・Ep(x)+α (5)′
Therefore, consider eliminating the parabolic error using a level. For the differential output of equations (4) and (5), the zero point error term α is added to equation (5), and the differential output of equation (4) is shifted by d to obtain the following equation: .
μ 1 (x + d) = f (x + 2d) −f (x + d) + d · E p (x + d) (4) ′
μ 2 (x) = f (x) −f (x−d) + d · E p (x) + α (5) ′
ここで、αは2つの隣り合うプローブの測定端を結ぶ線が平行にならないことによるZ方向のシフト誤差を、角度に対応させたゼロ点誤差である。(4)′、(5)′式の差をとると、以下の式が得られる。
ΔEp(x)≡d(Ep(x+d)−Ep(x))=μ1(x+d)−μ2(x)+α (8)
Here, α is a zero point error in which the shift error in the Z direction due to the fact that the line connecting the measurement ends of two adjacent probes is not parallel corresponds to the angle. Taking the difference between the equations (4) ′ and (5) ′, the following equation is obtained.
ΔEp (x) ≡d (E p (x + d) −E p (x)) = μ 1 (x + d) −μ 2 (x) + α (8)
(8)式は,隣り合うプローブの傾斜誤差の差分を表しているから、逐次N点加えていくことで、以下の(9)式を得る。 Since equation (8) represents the difference in tilt error between adjacent probes, the following equation (9) is obtained by sequentially adding N points.
(9)式の左辺におけるEp(0)は、測定開始点(x=0)の傾斜誤差であり、Ep(Nd)は、測定終了点(x=Nd=L)の傾斜誤差である。つまり、測定開始点と測定終了点でのセンサホルダSHの傾きを、角度測定ユニットAMUで測定すれば、右辺の値、すなわちゼロ点誤差αを理論上求めることができるのである。 Ep (0) on the left side of equation (9) is a tilt error at the measurement start point (x = 0), and Ep (Nd) is a tilt error at the measurement end point (x = Nd = L). That is, if the inclination of the sensor holder SH at the measurement start point and the measurement end point is measured by the angle measurement unit AMU, the value on the right side, that is, the zero point error α can be theoretically obtained.
一方、本発明者らは、センサホルダSHの傾きの測定のみでは、ゼロ点誤差の影響を完全に消失できないことに気づいた。従来は、相当に厚い金属から形成したステージを剛体とみなしており、センサホルダ側を移動させた際におけるステージの変形は無いか、例えあっても無視できる量と見積もっていたのに対し、実際には、フレームを移動させることでステージ側に無視できない変形が生じ、プローブPB1〜PB3と被測定物OBJとの姿勢関係が変わり、ゼロ点誤差を求める際に影響が及ぶ恐れがあることを見出したのである。同様のことは、フレームを固定し、ステージを移動する場合にもいえる。 On the other hand, the present inventors have realized that the influence of the zero point error cannot be completely eliminated only by measuring the inclination of the sensor holder SH. Previously, a stage formed from a fairly thick metal was considered a rigid body, and it was estimated that there would be no deformation of the stage when moving the sensor holder side, even if it was negligible. In this case, it is found that the movement of the frame causes a non-negligible deformation on the stage side, the posture relationship between the probes PB1 to PB3 and the object to be measured OBJ changes, and there is a possibility of affecting the zero point error. It was. The same applies to the case where the frame is fixed and the stage is moved.
かかる知見に基づけば、図4を参照して、測定開始点と測定終了点にて角度測定ユニットAMUで測定したセンサホルダSHの傾きの差分Δ1と、測定開始点と測定終了点にて水準器LVで測定したステージSTの傾きの差分Δ2とを求め、以下の(10)式を得ることができる。言い換えると、差分Δ1,Δ2が既知となれば、(9)式よりゼロ点誤差αを求めることができるから、(5)’式の右辺が定まり、これにより被測定物OBJの形状を精度良く求めることができるのである。
Ep(Nd)−Ep(0)=Δ1+Δ2 (10)
Based on this knowledge, referring to FIG. 4, the difference Δ1 in the inclination of the sensor holder SH measured by the angle measurement unit AMU at the measurement start point and the measurement end point, and the level at the measurement start point and the measurement end point The difference Δ2 in the inclination of the stage ST measured by LV is obtained, and the following equation (10) can be obtained. In other words, if the differences Δ1 and Δ2 are known, the zero point error α can be obtained from the equation (9). Therefore, the right side of the equation (5) ′ is determined, and this allows the shape of the object OBJ to be accurately measured. It can be sought.
E p (Nd) −E p (0) = Δ1 + Δ2 (10)
本発明者らが行った実験では、測定時における測定装置全体としての傾きが、1m当たりのステージ移動により0.005mm/mほど傾くことがあり、測定軸間隔d=75mmピッチのプローブを用いて、逐次3点法で長さL=1800mmの被測定物の形状を評価する際、プローブの前後端傾き差で0.005mm/mの傾斜誤差があると、真直度は1.23μm変化することが分かっている。本実施の形態によれば、ステージとセンサホルダを同時に水準器で確認することで、その誤差を取り除いた測定を行うことができる。 In an experiment conducted by the present inventors, the inclination of the whole measuring apparatus at the time of measurement may be inclined by about 0.005 mm / m by moving the stage per meter, and using a probe with a measurement axis interval d = 75 mm pitch. When evaluating the shape of an object to be measured having a length L = 1800 mm by the sequential three-point method, if there is an inclination error of 0.005 mm / m due to the inclination difference between the front and rear ends of the probe, the straightness changes by 1.23 μm. I know. According to the present embodiment, the stage and the sensor holder can be checked with the level at the same time, so that the measurement with the error removed can be performed.
尚、プローブを3本用いて形状測定を行う逐次3点法の場合、測定始端及び測定終端近傍でステージSTとセンサホルダSHの傾斜角を測定するのみで、その場校正が可能であるが、プローブを2本用いて形状測定を行う逐次2点法の場合、走査測定全域にわたり、形状測定毎に測定点又はその近傍で、ステージSTとセンサホルダSHの傾斜角を測定して誤差を排除することが望ましい。 In the case of the sequential three-point method in which shape measurement is performed using three probes, in-situ calibration is possible only by measuring the inclination angles of the stage ST and the sensor holder SH in the vicinity of the measurement start end and measurement end. In the case of the sequential two-point method in which shape measurement is performed using two probes, errors are eliminated by measuring the tilt angles of the stage ST and the sensor holder SH at or near the measurement point for every shape measurement over the entire scanning measurement. It is desirable.
本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。例えば、上述した実施の形態では、プローブを保持するセンサホルダを移動させているが、ステージ側を移動させてもよい。又、角度検出ユニット及び/又は水準器は、以上のタイプに限られず一般的なタイプを用いても良い。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims. For example, in the above-described embodiment, the sensor holder that holds the probe is moved, but the stage side may be moved. In addition, the angle detection unit and / or the level is not limited to the above type, and a general type may be used.
BS ビームスプリッタ
CA ケース
DR 駆動機構
FR 門形フレーム
FT 浮き子
DL 光束
LD 光源
LQ 高粘度液体
LV 水準器
MD 測定装置
OBJ 被測定物
PB1,PB2,PB3 プローブ
PD 光検出器
PDa 受光面
SG 糸
SH センサホルダ
SP 支持部
SPa 脚部
SR 基準鏡
ST ステージ
VL 容器
BS Beam splitter CA Case DR Drive mechanism FR Portal frame FT Float DL Light beam LD Light source LQ High viscosity liquid LV Level MD Measuring device OBJ Object to be measured PB1, PB2, PB3 Probe PD Photodetector PDa Light receiving surface SG Thread SH sensor Holder SP Support part SPa Leg SR Reference mirror ST Stage VL Container
Claims (3)
重力加速度方向を基準として、走査測定の開始点と終了点で前記センサホルダの走査方向における傾斜角を測定してその差をとり、また前記ステージの走査方向における傾斜角を測定してその差をとり、得られた2つの差に基づいて前記プローブのゼロ点誤差の影響を排除しつつ前記被測定物の直線形状を求めることを特徴とする測定方法。 The stage on which the object to be measured is placed and the sensor holder that holds the three probes are relatively movable, and three successive points for scanning and measuring the linear shape of the object to be measured using the probe In the measurement method by the method,
Using the gravitational acceleration direction as a reference, the inclination angle in the scanning direction of the sensor holder is measured at the start and end points of scanning measurement, and the difference is obtained. The inclination angle in the scanning direction of the stage is measured and the difference is obtained. And measuring the linear shape of the object to be measured while eliminating the influence of the zero point error of the probe based on the obtained two differences.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015063746A JP6430874B2 (en) | 2015-03-26 | 2015-03-26 | Measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015063746A JP6430874B2 (en) | 2015-03-26 | 2015-03-26 | Measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016183887A JP2016183887A (en) | 2016-10-20 |
JP6430874B2 true JP6430874B2 (en) | 2018-11-28 |
Family
ID=57241759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015063746A Active JP6430874B2 (en) | 2015-03-26 | 2015-03-26 | Measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6430874B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6392395B1 (en) * | 2017-03-26 | 2018-09-19 | 株式会社アドテックエンジニアリング | Flatness measurement method and pin height adjustment method |
KR102156999B1 (en) * | 2018-05-08 | 2020-09-16 | 한양대학교 에리카산학협력단 | Apparatus for measuring the surface of an object having a linear cross-sectional shape and Measuring Method Using Same |
WO2019216624A1 (en) * | 2018-05-08 | 2019-11-14 | 한양대학교에리카산학협력단 | Measuring apparatus and measuring method of surface of object |
CN112105889B (en) * | 2018-05-08 | 2022-09-20 | 汉阳大学校Erica产学协力团 | Device and method for measuring surface of object |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI88282C (en) * | 1990-11-28 | 1993-04-26 | Kone Oy | Equipment for checking the straightness of lift guides |
JP5246952B2 (en) * | 2009-06-29 | 2013-07-24 | 慧 清野 | Measuring method |
JP6128639B2 (en) * | 2013-03-06 | 2017-05-17 | 清野 慧 | Measuring method |
-
2015
- 2015-03-26 JP JP2015063746A patent/JP6430874B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016183887A (en) | 2016-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6430874B2 (en) | Measuring method | |
EP2449342B1 (en) | Coordinate measuring machine (cmm) and method of compensating errors in a cmm | |
EP2075530A2 (en) | Surveying instrument and surveying compensation method | |
JPH05248840A (en) | Mechanical stand and constructing method therefor | |
JP5158791B2 (en) | measuring device | |
JP2009068957A (en) | Straightness measuring apparatus, thickness fluctuation measuring apparatus, and orthogonality measuring apparatus | |
JP2009031120A (en) | Method and device for adjusting thickness measuring instrument | |
JP5290038B2 (en) | Measuring apparatus and measuring method | |
JP2017037028A (en) | Measurement device | |
JP7296334B2 (en) | Straightness measurement system, displacement sensor calibration method, and straightness measurement method | |
JP2006234427A (en) | Flatness measuring method and instrument | |
JP5246952B2 (en) | Measuring method | |
JP6401618B2 (en) | Measuring method and measuring device | |
JP4779155B2 (en) | Flatness measuring device | |
JP2009041983A (en) | Method for detecting variation of zero-point error of multi-point probe | |
JP6779151B2 (en) | Measuring method | |
JP6185701B2 (en) | Shape measuring device | |
KR101033032B1 (en) | Displacement measuring device | |
JP4980817B2 (en) | Multipoint probe zero error related value recording device | |
JP6128639B2 (en) | Measuring method | |
JP5280890B2 (en) | Sensor holder and sensor support device | |
JP5133744B2 (en) | Shape measuring device | |
JP6617039B2 (en) | measuring device | |
JPH08304046A (en) | Bending measuring instrument | |
JP2016153727A (en) | Measuring device and measuring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181101 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6430874 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |