JP6779151B2 - Measuring method - Google Patents

Measuring method Download PDF

Info

Publication number
JP6779151B2
JP6779151B2 JP2017019191A JP2017019191A JP6779151B2 JP 6779151 B2 JP6779151 B2 JP 6779151B2 JP 2017019191 A JP2017019191 A JP 2017019191A JP 2017019191 A JP2017019191 A JP 2017019191A JP 6779151 B2 JP6779151 B2 JP 6779151B2
Authority
JP
Japan
Prior art keywords
measurement
error
point
zero
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017019191A
Other languages
Japanese (ja)
Other versions
JP2018128259A (en
Inventor
宇田 豊
豊 宇田
雄大 ▲なつ▼目
雄大 ▲なつ▼目
尚一 島田
尚一 島田
清野 慧
慧 清野
諒介 井村
諒介 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Integrex Co Ltd
Original Assignee
Nagase Integrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Integrex Co Ltd filed Critical Nagase Integrex Co Ltd
Priority to JP2017019191A priority Critical patent/JP6779151B2/en
Publication of JP2018128259A publication Critical patent/JP2018128259A/en
Application granted granted Critical
Publication of JP6779151B2 publication Critical patent/JP6779151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、測定方法に関し、被測定物の真直形状や面形状を高精度に測定できる測定方法に関する。 The present invention relates to a measuring method, and relates to a measuring method capable of measuring a straight shape or a surface shape of an object to be measured with high accuracy.

長尺物などの被測定物の面形状や断面直線形状を精度良く測定をするために、基準となる直定規との比較測定を実施することがある。あるいは、光軸の直線性を基準にして、走査方向に被測定面と2点で当接する台上の鏡の傾斜をオートコリメータで測定して、直線形状を算出する方法も用いられている。また、基準が使えないときには、多点法プローブを用いた多点法により、運動誤差と形状誤差を分離する方法がとられる。更には、2点で当接する水準器あるいはタリベルなどで直線形状を求める方法もある。 In order to accurately measure the surface shape and cross-sectional linear shape of the object to be measured such as a long object, comparative measurement with a standard straightedge may be performed. Alternatively, a method of calculating the linear shape by measuring the inclination of the mirror on the table that contacts the surface to be measured at two points in the scanning direction with an autocollimator based on the linearity of the optical axis is also used. When the reference cannot be used, a method of separating motion error and shape error is adopted by a multipoint method using a multipoint probe. Furthermore, there is also a method of obtaining a linear shape with a spirit level or a Talibel that abuts at two points.

これに対し、被測定物が大型化するのに伴い基準定規が長尺化し、その作製が困難になってきているという実情がある。また、空中での光線の揺らぎの影響で光軸の直線性を利用した基準も十分な精度を保てない場合もある。このような背景から、多点法を用いた測定の必要性が高まっているが、多点法ではゼロ点調整誤差による放物線誤差の問題があり、しかも長尺になり逐次数が増えるほど放物線誤差が大きくなるという問題がある。 On the other hand, as the object to be measured becomes larger, the standard ruler becomes longer and it becomes difficult to manufacture the ruler. In addition, the reference using the linearity of the optical axis may not be able to maintain sufficient accuracy due to the influence of the fluctuation of light rays in the air. Against this background, the need for measurement using the multipoint method is increasing, but the multipoint method has the problem of parabolic error due to zero-point adjustment error, and the longer the length and the more sequential the number, the more the parabolic error. There is a problem that becomes large.

特許文献1には、例えばステージの傾斜を、形状測定における移動開始点と終了点の静止時に計測し、多点法プローブで測定評価した真直形状における両端の傾斜の差に含まれる、多点法プローブのゼロ点調整誤差による放物線誤差の影響を抽出できることを利用して、目的の形状測定データそのものから多点法プローブのゼロ点の校正が出来る、いわゆるその場校正を実現できる技術が開示されている。 Patent Document 1 describes, for example, a multipoint method in which the inclination of a stage is measured when the movement start point and the end point in shape measurement are stationary, and is included in the difference in inclination between both ends in a straight shape measured and evaluated by a multipoint probe. A technology that can realize so-called in-situ calibration that can calibrate the zero point of a multipoint probe from the target shape measurement data itself by utilizing the fact that the influence of the parabolic error due to the zero point adjustment error of the probe can be extracted is disclosed. There is.

2016−183887号公報2016-183887

ところで、特許文献1によれば、基準定規等に頼ることなく精度良く長尺物の形状を測定できる優れた測定方法を実現しているところ、移動開始点と終了点における角度測定ユニットにより検出される角度差を用いて零点誤差を求めることが行われている。しかるに、この手法では,角度測定ユニットの精度,分解能と環境の外乱等により生じる測定誤差の影響を直接受けるという課題がある。又、測定物を固定し,それに対してセンサホルダを走査する場合,センサホルダの傾き角度を検出して零点誤差を求めることが出来ることと同様に、センサホルダを固定し,それに対して測定物を走査して測定物の走査による傾き角度を検出しても、零点誤差を求めることが出来る。但し,後者の場合は,測定物を走査する際に,測定物が剛体であること,すなわち,測定物、及びそれを載置した走査テーブルにおいて自重による変形が生じないことが、零点誤差の計算の前提になっているが、実際は微小な変形が生じることから、計算値と理論値との間に乖離が生じている。 By the way, according to Patent Document 1, an excellent measuring method capable of accurately measuring the shape of a long object without relying on a reference ruler or the like is realized, and it is detected by an angle measuring unit at a movement start point and an end point. The zero point error is obtained by using the angle difference. However, this method has a problem that it is directly affected by the measurement error caused by the accuracy, resolution and environmental disturbance of the angle measurement unit. Also, when the object to be measured is fixed and the sensor holder is scanned against it, the sensor holder is fixed and the object to be measured is fixed in the same way as the tilt angle of the sensor holder can be detected to obtain the zero point error. The zero point error can also be obtained by scanning the above and detecting the tilt angle due to the scanning of the measured object. However, in the latter case, when scanning the measured object, the zero point error is calculated because the measured object is a rigid body, that is, the measured object and the scanning table on which it is placed do not deform due to its own weight. However, in reality, a slight deformation occurs, so there is a discrepancy between the calculated value and the theoretical value.

本発明は、かかる問題点に鑑み、測定誤差の影響を低減することで、より精度良く且つ効率的に被測定物の形状を測定できる測定方法を提供することを目的とする。 In view of such a problem, an object of the present invention is to provide a measuring method capable of measuring the shape of an object to be measured more accurately and efficiently by reducing the influence of measurement error.

請求項1に記載の測定方法は、センサホルダと測定対象物のうち一方を固定し、他方を走査しつつ、前記センサホルダに取り付けた複数のセンサを用いて、逐次多点法により測定対象物の形状を測定する測定方法において、
N個の測定点で、前記センサの出力を取得するステップと、
任意の測定点で、前記センサホルダと前記測定対象物のうち前記他方の傾き角を検出するステップと、
第1の測定点の傾き角と、前記第1の測定点とは異なる第2の測定点の傾き角との差に基づいて零点誤差を求め、更に測定点を変えて前記零点誤差を求めるステップと、
求めた前記零点誤差の平均をとり、その平均値及び前記センサの出力を用いて前記測定対象物の形状を求めるステップとを有し、
平均化するために用いる前記零点誤差の数は、前記測定点数nに基づいて決定されることを特徴とする。
In the measurement method according to claim 1, one of the sensor holder and the measurement object is fixed, and while scanning the other, a plurality of sensors attached to the sensor holder are used, and the measurement object is sequentially measured by a multipoint method. In the measuring method for measuring the shape of
Steps to acquire the output of the sensor at N measurement points,
A step of detecting the tilt angle of the other of the sensor holder and the measurement object at an arbitrary measurement point, and
A step of obtaining a zero point error based on the difference between the tilt angle of the first measurement point and the tilt angle of a second measurement point different from the first measurement point, and further changing the measurement point to obtain the zero point error. When,
It has a step of taking the average of the obtained zero points error and obtaining the shape of the measurement object by using the average value and the output of the sensor.
The number of the zero error used for averaging is determined based on the number of measurement points n.

本発明によれば、平均化するために用いる前記零点誤差の数は、前記測定点数nに基づいて決定されるので、前記零点誤差の数の最適値を統計的手法で求めることで、前記傾き角の測定を適正な数で行うことが出来、それにより求めた前記零点誤差の平均値及び前記センサの出力を用いて、より精度良く且つ効率的に被測定物の形状を測定することができる。 According to the present invention, the number of the zero point errors used for averaging is determined based on the number of measurement points n. Therefore, by obtaining the optimum value of the number of zero point errors by a statistical method, the inclination is obtained. The angle can be measured with an appropriate number, and the shape of the object to be measured can be measured more accurately and efficiently by using the average value of the zero point error and the output of the sensor obtained thereby. ..

請求項2に記載の測定方法は、請求項1に記載の発明において、全ての測定点で、前記センサホルダの傾き角を検出することを特徴とするので、測定された前記傾き角から最適なものを選択して差をとることができる。 The measuring method according to claim 2 is characterized in that, in the invention according to claim 1, the tilt angle of the sensor holder is detected at all measurement points, and thus is optimal from the measured tilt angle. You can choose the one and make a difference.

請求項3に記載の測定方法は、請求項1又は2に記載の発明において、前記センサは3つであり、逐次3点法を用いて前記測定対象物の形状を測定することを特徴とする。 The measuring method according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the number of the sensors is three, and the shape of the object to be measured is measured by sequentially using a three-point method. ..

本発明によれば、測定誤差の影響を低減することで、より精度良く且つ効率的に被測定物の形状を測定できる測定方法を提供することができる。 According to the present invention, by reducing the influence of measurement error, it is possible to provide a measurement method capable of measuring the shape of an object to be measured more accurately and efficiently.

本実施の形態にかかる測定装置を備えた測定系の概略図である。It is the schematic of the measurement system provided with the measuring apparatus which concerns on this embodiment. 測定装置MDをZ方向に見た図である。It is a figure which looked at the measuring apparatus MD in the Z direction. 角度測定ユニットAMUの概略構成を示す図である。It is a figure which shows the schematic structure of the angle measuring unit AMU. 光学素子OBJとプローブPB1〜PB3との関係を模式的に示す図であり、差分0の場合を表す。It is a figure which shows typically the relationship between the optical element OBJ and the probes PB1 to PB3, and shows the case where the difference is 0. 光学素子OBJとプローブPB1〜PB3との関係を模式的に示す図であり、差分1の場合を表す。It is a figure which shows typically the relationship between the optical element OBJ and the probes PB1 to PB3, and shows the case of difference 1. 光学素子OBJとプローブPB1〜PB3との関係を模式的に示す図であり、差分2の場合を表す。It is a figure which shows typically the relationship between the optical element OBJ and the probes PB1 to PB3, and shows the case of difference 2. 評価値mを縦軸とし、差分mを横軸として、測定点数n=35の場合における値をプロットしたグラフである。It is a graph which plotted the value when the number of measurement points n = 35 with the evaluation value m as the vertical axis and the difference m as the horizontal axis. 評価値mを縦軸とし、差分mを横軸として、測定点数n=20,25,30,35、40の場合における値をプロットしたグラフである。It is a graph which plotted the value in the case of the number of measurement points n = 20, 25, 30, 35, 40 with the evaluation value m as the vertical axis and the difference m as the horizontal axis. 評価値mを縦軸とし、差分mを横軸として、実測値をプロットしたグラフである。It is a graph which plotted the measured value with the evaluation value m as the vertical axis and the difference m as the horizontal axis.

以下、図面を参照して本発明の実施の形態を説明する。図1は、本実施の形態にかかる測定装置を備えた測定系の概略図であり、斜め下方から見た状態を示している。図1において、不図示の定盤上に下面を接地させた台板BPが設けられている。更に台板BP上に下端を接するようにして、一対の壁WLが設けられている。壁WLの上端には天板CLが接合されている。保持台としての天板CLの下面には、被測定物である光学素子OBJが光学面を下方に向けて取り付けられている。天板CLに対向する台板BP上には、光学素子OBJに対して測定装置MDが移動可能に配置されている。ここで、測定装置MDの移動方向をX方向とし、X方向に直交する重力加速度方向をY方向とし、X方向とY方向とに直交する方向をZ方向とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a measurement system including the measuring device according to the present embodiment, and shows a state viewed from diagonally below. In FIG. 1, a base plate BP whose lower surface is grounded is provided on a surface plate (not shown). Further, a pair of wall WLs are provided so that the lower ends are in contact with the base plate BP. A top plate CL is joined to the upper end of the wall WL. An optical element OBJ, which is an object to be measured, is attached to the lower surface of the top plate CL as a holding table with the optical surface facing downward. On the base plate BP facing the top plate CL, the measuring device MD is movably arranged with respect to the optical element OBJ. Here, the moving direction of the measuring device MD is the X direction, the gravitational acceleration direction orthogonal to the X direction is the Y direction, and the direction orthogonal to the X direction and the Y direction is the Z direction.

図2は、測定装置MDをZ方向に見た図である。台板BP上をX方向に沿って移動可能な走査部SP上に、センサホルダSHが配置されている。センサホルダSHは、変位センサである3本のプローブPB1、PB2、PB3を、X方向に沿って配置している。プローブPB1、PB2、PB3の検出感度軸方向は、Y方向であり、その検出感度軸間隔はdである。3本のプローブPB1、PB2、PB3の出力は、不図示のパソコンなどに入力され,形状を求めるために後述する演算が行われることとなる。 FIG. 2 is a view of the measuring device MD in the Z direction. The sensor holder SH is arranged on the scanning unit SP that can move along the X direction on the base plate BP. In the sensor holder SH, three probes PB1, PB2, and PB3, which are displacement sensors, are arranged along the X direction. The detection sensitivity axis directions of the probes PB1, PB2, and PB3 are in the Y direction, and the detection sensitivity axis spacing thereof is d. The outputs of the three probes PB1, PB2, and PB3 are input to a personal computer (not shown) or the like, and the calculation described later is performed to obtain the shape.

更に、センサホルダSHの傾斜角を測定する為の角度測定ユニットAMUが、センサホルダSH上に配置されて一体的に傾くようになっている。図3は、角度測定ユニットAMUの概略構成を示す図である。センサホルダSH上に、ケースCAを保持した支持部HDが固定されている。 Further, an angle measuring unit AMU for measuring the tilt angle of the sensor holder SH is arranged on the sensor holder SH so as to be integrally tilted. FIG. 3 is a diagram showing a schematic configuration of the angle measuring unit AMU. A support HD holding the case CA is fixed on the sensor holder SH.

ケースCA内には、コリメートな光束DLを出射する光源LDと、ビームスプリッタBSと、光束DLを検出する光検出器PDとが固定されている。又、ケースCAの天井面から垂下させた糸SG(2本あると更に安定しやすい)の下端に基準鏡SRが連結されている。これにより、基準鏡SRの反射面は、重力加速度方向に対して平行となっている。光源LDと、基準鏡SRと、光検出器PDとで投受光系を構成する。 A light source LD that emits a collimating luminous flux DL, a beam splitter BS, and a photodetector PD that detects the luminous flux DL are fixed in the case CA. Further, the reference mirror SR is connected to the lower end of the thread SG (it is easier to stabilize if there are two) hanging from the ceiling surface of the case CA. As a result, the reflecting surface of the reference mirror SR is parallel to the gravitational acceleration direction. The light source LD, the reference mirror SR, and the photodetector PD constitute a light emitting / receiving system.

角度測定ユニットAMUの校正は、センサホルダSHを水平にして行う。このとき、光源LDから出射された光束DLは、ビームスプリッタBSを通過して、基準鏡SRに入射する。基準鏡SRで反射した光束DLは、ビームスプリッタBSで反射されて、光検出器PDの受光面PDaに入射する。このときの入射位置を原点として、不図示のメモリ等に記憶する。実際にセンサホルダSHの傾斜角を測定するときは、センサホルダSHと共にケースCAも傾くのに対し、基準鏡SRは常に重力加速度方向に延在しているため、基準鏡SRに入射する光束DLの入射角が変わり、その反射した光束DLが光検出器PDの受光面PDaに入射する位置が原点からずれる。このずれ量が、センサホルダSHの傾斜角に相当するので、ずれ量を検出することでセンサホルダSHの傾斜角がわかる。尚、角度測定ユニットAMUは以上の構成に限られない。 The angle measurement unit AMU is calibrated with the sensor holder SH horizontal. At this time, the luminous flux DL emitted from the light source LD passes through the beam splitter BS and is incident on the reference mirror SR. The luminous flux DL reflected by the reference mirror SR is reflected by the beam splitter BS and is incident on the light receiving surface PDa of the photodetector PD. The incident position at this time is set as the origin and stored in a memory or the like (not shown). When actually measuring the tilt angle of the sensor holder SH, the case CA also tilts together with the sensor holder SH, whereas the reference mirror SR always extends in the direction of gravitational acceleration, so the luminous flux DL incident on the reference mirror SR The angle of incidence of the light flux DL changes, and the position where the reflected luminous flux DL is incident on the light receiving surface PDa of the photodetector PD shifts from the origin. Since this amount of deviation corresponds to the inclination angle of the sensor holder SH, the inclination angle of the sensor holder SH can be known by detecting the amount of deviation. The angle measuring unit AMU is not limited to the above configuration.

次に、本実施の形態における測定装置MDを用いた光学素子の光学面の形状測定方法について説明する。 Next, a method of measuring the shape of the optical surface of the optical element using the measuring device MD in the present embodiment will be described.

ここで、形状測定に用いる逐次3点法について説明する。逐次3点法においては、複数のプローブPB1、PB2、PB3を使用することから、各プローブ間に生じる測定誤差要因として零点誤差がある。例えば、中央のプローブPB2のY方向の位置を基準とした場合、隣接する他のプローブPB1,PB3は、それぞれαR、αFの零点誤差(Y方向のずれ)を持つこととなる。このように、零点誤差とは複数のプローブ間におけるそれぞれのゼロ点のずれのことである。 Here, the sequential three-point method used for shape measurement will be described. In the sequential three-point method, since a plurality of probes PB1, PB2, and PB3 are used, there is a zero point error as a measurement error factor generated between the probes. For example, when the position of the central probe PB2 in the Y direction is used as a reference, the other adjacent probes PB1 and PB3 have zero error (deviation in the Y direction) of α R and α F , respectively. In this way, the zero point error is the deviation of each zero point between a plurality of probes.

この場合、通常、複数のプローブのゼロ点を合わせるためには、何か基準となる直線を有する基準物(すなわち、実体基準)に当ててみて、その読みがゼロになるように調整することは理論的には可能である。しかし、実際にはこの基準物が理想的な直線を有していない場合が多く、形状測定において逐次3点法を使用する場合、3個のプローブのゼロ点を合わせることは極めて困難である。よって、プローブが零点誤差を持つ場合、以下に述べるように形状測定に影響を与えることとなる。 In this case, in order to match the zero points of a plurality of probes, it is usually necessary to hit a reference object (that is, a substantive reference) having some reference straight line and adjust the reading so that it becomes zero. It is theoretically possible. However, in reality, this reference object often does not have an ideal straight line, and when the sequential three-point method is used in shape measurement, it is extremely difficult to align the zero points of the three probes. Therefore, if the probe has a zero error, it will affect the shape measurement as described below.

図2において、センサホルダSHに保持された3本の変位計(プローブ)PB1〜PB3を、被測定物OBJと走査部SPとの相対移動方向(X方向)に沿って等間隔dで配置し、被測定物の真の表面形状をg、零点誤差が重畳された表面形状をf、走査テーブルの並進運動誤差ez、走査テーブルの回転運動誤差eθとしたときに、中央のプローブPB2の出力をS30、相対移動方向前方のプローブPB1の出力をS3F、相対移動方向後方のプローブPB3の出力をS3Rとし、中央のプローブに対する前方及び後方のプローブの零点ずれをαR、αFとして、被測定物OBJと走査部SPとをX方向に沿って相対移動させてn点の測定を行った場合に、下記の式が得られる。
30(xi)=g(xi)+ez(xi) (1)
3F(xi)=g(xi+1)+ez(xi)+deθ(xi)+αF (2)
3R(xi)=g(xi-1)+ez(xi)−deθ(xi)+αR (3)
f(xi)=g(xi)+n(n−1)α/2 (4)
但し、α=αF+αR
In FIG. 2, three displacement meters (probes) PB1 to PB3 held by the sensor holder SH are arranged at equal intervals d along the relative movement direction (X direction) between the object to be measured OBJ and the scanning unit SP. When the true surface shape of the object to be measured is g, the surface shape on which the zero point error is superimposed is f, the translational motion error e z of the scanning table, and the rotational motion error e θ of the scanning table, the central probe PB2 The output is S 30 , the output of the probe PB1 in the front in the relative movement direction is S 3F , the output of the probe PB 3 in the rear in the relative movement direction is S 3R, and the zero points of the front and rear probes with respect to the center probe are α R and α F As a result, the following equation is obtained when the object to be measured OBJ and the scanning unit SP are relatively moved along the X direction to measure n points.
S 30 (x i ) = g (x i ) + ez (x i ) (1)
S 3F (x i ) = g (x i + 1 ) + e z (x i ) + de θ (x i ) + α F (2)
S 3R (x i ) = g (x i-1 ) + e z (x i ) -de θ (x i ) + α R (3)
f (x i ) = g (x i ) + n (n-1) α / 2 (4)
However, α = α F + α R

[差分0の場合]
図4は、光学素子OBJとプローブPB1〜PB3との関係を模式的に示す図である。零点誤差を求めるために、測定開始点と、測定n点目(例えば測定終了点)での運動誤差によるセンサホルダSHの傾きを利用する。これを差分0の場合という。逐次3点法では運動誤差を演算処理によって分離できるが、各プローブの零点にずれが生じている場合、分離した各運動誤差量にも影響が含まれてしまう。以下に、零点誤差が生じていない場合(α=0)と、生じている場合(α≠0)における、演算処理によって求められる運動誤差の式を示す。
[When the difference is 0]
FIG. 4 is a diagram schematically showing the relationship between the optical element OBJ and the probes PB1 to PB3. In order to obtain the zero point error, the inclination of the sensor holder SH due to the motion error at the measurement start point and the measurement nth point (for example, the measurement end point) is used. This is called the case where the difference is 0. In the sequential three-point method, the motion error can be separated by arithmetic processing, but if the zero points of each probe are deviated, the amount of each separated motion error is also affected. The following shows the equation of the motion error obtained by the arithmetic processing when the zero point error does not occur (α = 0) and when it does occur (α ≠ 0).

(a)零点誤差が生じていない場合の並進運動誤差ezと回転運動誤差eθ
z(xi)=S30(xi)−g(xi
=S30(xi)−f(xi) (5)
deθ(xi)=S3F(xi)−S30(xi)−g(xi+1)+g(xi
=S3F(xi)−S30(xi)−f(xi+1)+f(xi
=ΔS3F(xi)−Δf(xi) (6)
(A) Translational motion error e z and rotational motion error e θ when no zero error occurs:
e z (x i ) = S 30 (x i ) -g (x i )
= S 30 (x i ) -f (x i ) (5)
de θ (x i ) = S 3F (x i ) -S 30 (x i ) -g (x i + 1 ) + g (x i )
= S 3F (x i ) -S 30 (x i ) -f (x i + 1 ) + f (x i )
= ΔS 3F (x i ) −Δf (x i ) (6)

更に、測定開始点の回転運動誤差eθ(x0)と、測定n点目での回転運動誤差eθ(xn)との差Δeθ(xn)は、以下の式で表せる。
dΔeθ(xn)=d{eθ(xn)−eθ(x0)}
={ΔS3F(xn)−Δf(xn)}−{ΔS3F(x0)−Δf(x0)} (7)
Further, the rotational motion errors e theta measurement starting point (x 0), the rotational motion errors at the measurement point n th e theta difference Δe θ (x n) and (x n) can be expressed by the following equation.
dΔe θ (x n ) = d {e θ (x n ) -e θ (x 0 )}
= {ΔS 3F (x n ) -Δf (x n )}-{ΔS 3F (x 0 ) -Δf (x 0 )} (7)

(b)零点誤差が生じた場合の並進運動誤差ez’と回転運動誤差eθ’:
z’(xi)=S30(xi)−g(xi
=S30(xi)−f(xi)+n(n−1)α/2 (8)
deθ’(xi)=S3F(xi)−S30(xi)−g(xi+1)+g(xi
=S3F(xi)−S30(xi)−{f(xi+1)−(n+1)(n+1−1)α/2}+{f(xi)−n(n−1)α/2}−αF
=ΔS3F(xi)−Δf(xi)+nα−αF (9)
(B) translation error e z when zero error is generated 'and rotational motion error e theta':
e z '(x i ) = S 30 (x i ) -g (x i )
= S 30 (x i ) -f (x i ) + n (n-1) α / 2 (8)
de θ '(x i ) = S 3F (x i ) -S 30 (x i ) -g (x i + 1 ) + g (x i )
= S 3F (x i ) -S 30 (x i )-{f (x i + 1 )-(n + 1) (n + 1-1) α / 2} + {f (x i ) -n (n-1) α / 2} -α F
= ΔS 3F (x i ) -Δf (x i ) + nα-α F (9)

ここで、中央のプローブと後方のプローブの零点が同一直線上として考えればαR=0となるので、α=αFとなる。従って、(9)式は以下のように表せる。
deθ’(xi)=ΔS3F(xi)−Δf(xi)+nα−αF
=ΔS3F(xi)−Δf(xi)+(n−1)α (10)
Here, if the zero points of the central probe and the rear probe are considered to be on the same straight line, α R = 0, so α = α F. Therefore, equation (9) can be expressed as follows.
de θ '(x i ) = ΔS 3F (x i ) -Δf (x i ) + nα-α F
= ΔS 3F (x i ) −Δf (x i ) + (n-1) α (10)

更に、測定開始点の回転運動誤差eθ’(x0)と、測定n点目での回転運動誤差eθ’(xn)との差Δeθ’(xn)は、以下の式で表せる。
dΔeθ’(xn)=d{eθ’(xn)−eθ’(x0)}
={ΔS3F(xn)−Δf(xn)}−{ΔS3F(x0)−Δf(x0)}+(n−1)α (11)
Furthermore, rotational motion errors e theta measurement starting point 'and (x 0), the rotational motion errors at the measurement point n th e theta' difference Δe θ '(x n) and (x n) is the following formula Can be represented.
dΔe θ '(x n ) = d {e θ '(x n ) -e θ '(x 0 )}
= {ΔS 3F (x n ) -Δf (x n )}-{ΔS 3F (x 0 ) -Δf (x 0 )} + (n-1) α (11)

つまり、(7)式と(11)式とを比較すると、その差は(n−1)αであり、測定点数nは既知であるから、零点誤差αが求まれば、零点誤差を排除した被測定物の形状を求めることができるといえる。但し、dΔeθ’(xn)はプローブの実測値から演算処理すれば求まるが、零点誤差を含まないdΔeθ(xn)は未知数である。本実施の形態では、角度測定ユニットAMUを用いて測定開始点でセンサホルダSHの傾斜角θ0と,測定n点目でのセンサホルダSHの傾斜角θnを直接測定して差をとれば、(11)式中の{eθ’(xn)−eθ’(x0)}に相当するので、更にプローブ間隔dを掛けることで、(11)式の左辺が求まり、これと(7)式とから零点誤差を含まないdΔeθ(xn)を求めることができるのである。より具体的には、以下の式から零点誤差が求まる。
α=d{Δeθ’(xn)−Δeθ(xn)}/(n−1) (12)
That is, when the equations (7) and (11) are compared, the difference is (n-1) α, and the number of measurement points n is known. Therefore, if the zero error α is obtained, the zero error is eliminated. It can be said that the shape of the object to be measured can be obtained. However, dΔe θ '(x n ) can be obtained by arithmetic processing from the measured value of the probe, but dΔe θ (x n ) that does not include the zero error is an unknown number. In this embodiment, the inclination angle theta 0 of the sensor holder SH Start of measurement points using the angle measuring unit AMU, Taking the difference by directly measuring the inclination angle theta n of the sensor holder SH at the measuring point n th , Since it corresponds to {e θ '(x n ) -e θ '(x 0 )} in Eq. (11), the left side of Eq. (11) can be obtained by further multiplying by the probe interval d. From Eq. 7), dΔe θ (x n ) that does not include the zero point error can be obtained. More specifically, the zero error can be obtained from the following equation.
α = d {Δe θ '(x n ) −Δe θ (x n )} / (n-1) (12)

求めた零点誤差αを利用し、(4)式より、逐次3点法の演算処理結果f(xi)からn(n−1)α/2を減ずるように補正を行えば、真の形状g(xi)を求めることができる。 Using the obtained zero error α, if correction is performed from Eq. (4) so as to subtract n (n-1) α / 2 from the arithmetic processing result f (x i ) of the sequential three-point method, the true shape g (x i ) can be obtained.

[差分1の場合]
図5は、光学素子OBJとプローブPB1〜PB3との関係を模式的に示す図であるが、理解しやすいように光学素子OBJを2つに分けて示している。本例では、実際の測定長はLであるが、実際の測定長を(L−d)とみなして零点誤差を求める。また零点誤差を求めるために、測定開始点、測定第2点目、測定(n−1)点目、測定n点目でセンサホルダSHの傾きを測定する。これを差分1の場合という。
[In the case of difference 1]
FIG. 5 is a diagram schematically showing the relationship between the optical element OBJ and the probes PB1 to PB3, but the optical element OBJ is divided into two for easy understanding. In this example, the actual measurement length is L, but the actual measurement length is regarded as (Ld) to obtain the zero error. Further, in order to obtain the zero point error, the inclination of the sensor holder SH is measured at the measurement start point, the measurement second point, the measurement (n-1) point, and the measurement nth point. This is called the case of difference 1.

具体的には、図5(a)に示すように、測定開始点での傾斜角θ0と,測定(n−1)点目での傾斜角θn-1との傾きの差を取り、図5(b)に示すように、測定第2点目での傾斜角θ1と,測定n点目での傾斜角θnとの傾きの差をとることで、式(12)に示すようにして2個の零点誤差を算出できることとなる。 Specifically, as shown in FIG. 5 (a), taken as the inclination angle theta 0 at the measurement starting point, the difference in inclination between the inclination angle theta n-1 in the measurement (n-1) th point, As shown in FIG. 5 (b), by taking the difference in inclination between the inclination angle θ 1 at the second measurement point and the inclination angle θ n at the nth measurement point, as shown in the equation (12). Therefore, it is possible to calculate the two zero point errors.

[差分2の場合]
図6は、光学素子OBJとプローブPB1〜PB3との関係を模式的に示す図であるが、理解しやすいように光学素子OBJを3つに分けて示している。本例では、実際の測定長はLであるが、実際の測定長を(L−2d)とみなして零点誤差を求める。また零点誤差を求めるために、測定開始点、測定第2点目、測定第3点目、測定(n−2)点目、測定(n−1)点目、測定n点目でセンサホルダSHの傾きを測定する。これを差分2の場合という。
[In the case of difference 2]
FIG. 6 is a diagram schematically showing the relationship between the optical element OBJ and the probes PB1 to PB3, but the optical element OBJ is divided into three parts for easy understanding. In this example, the actual measurement length is L, but the actual measurement length is regarded as (L-2d) and the zero point error is obtained. Further, in order to obtain the zero error, the sensor holder SH is used at the measurement start point, the measurement second point, the measurement third point, the measurement (n-2) point, the measurement (n-1) point, and the measurement nth point. Measure the tilt of. This is called the case of difference 2.

具体的には、図6に示すように、測定開始点での傾斜角θ0と,測定(n−2)点目での傾斜角θn-2との傾きの差を取り、測定第2点目での傾斜角θ1と,測定(n−1)点目での傾斜角θn-1との傾きの差を取り、測定第3点目での傾斜角θ2と,測定n点目での傾斜角θnとの傾きの差を取とることで、式(12)に示すようにして3個の零点誤差を算出できることとなる。 Specifically, as shown in FIG. 6, taken as the inclination angle theta 0 at the measurement starting point, the difference in inclination between the inclination angle theta n-2 of the measurement (n-2) th point, the measurement second the inclination angle theta 1 at the point th measurement (n-1) taking the difference between the inclination of the inclined angle theta n-1 at th point, the inclination angle theta 2 in the measurement third goal, the measurement point n By taking the difference in inclination from the inclination angle θ n at the eyes, it is possible to calculate the three zero point errors as shown in the equation (12).

[差分mの場合]
以上より明らかであるが、実際の測定長を(L−md)とみなして零点誤差を求めた場合、m+1(但しm<n)個の零点誤差を求めることができる。よって、差分数としてのmは、「求めることが可能な零点誤差の数−1」と定義できる。
[In the case of difference m]
As is clear from the above, when the actual measurement length is regarded as (L-md) and the zero point error is obtained, m + 1 (however, m <n) zero point errors can be obtained. Therefore, m as the number of differences can be defined as "the number of zero errors that can be obtained-1".

ところで、以上の測定における零点誤差は同じものとみなせるため,この零点誤差の平均値を用いれば、平均化効果で,角度測定ユニットAMUの精度,分解能と環境の外乱とにより生じる測定誤差の影響を低減でき、より高精度に真の形状g(xi)を求めることができるともいえる。一方で、式(12)に示したように,誤差は分子に含まれており,分母の(n−1)の影響で,零点誤差を算出するステップ数が小さくなるにつれ,誤差が大きくなる傾向がある。よって、差分数としてのmを増大させれば、それに応じて誤差を低減できる可能性があるが、例え無制限にmを増大させても誤差のばらつきから、低減効果に限界があることが分かってきた。本実施の形態で用いている逐次三点法では,演算処理するためプローブからの出力をディジタル化している。そのため,最小桁の±1で誤差が生じるものとして,以下,誤差のばらつきについて検討する。 By the way, since the zero point errors in the above measurements can be regarded as the same, if the average value of the zero point errors is used, the effect of the measurement error caused by the accuracy and resolution of the angle measurement unit AMU and the disturbance of the environment can be obtained by the averaging effect. It can be said that it can be reduced and the true shape g (x i ) can be obtained with higher accuracy. On the other hand, as shown in Eq. (12), the error is included in the numerator, and due to the influence of the denominator (n-1), the error tends to increase as the number of steps for calculating the zero error decreases. There is. Therefore, if m as the number of differences is increased, the error may be reduced accordingly, but even if m is increased indefinitely, it has become clear that the reduction effect is limited due to the variation in error. It was. In the sequential three-point method used in this embodiment, the output from the probe is digitized for arithmetic processing. Therefore, assuming that an error occurs at the minimum digit of ± 1, the variation of the error will be examined below.

このディジタル化に固有の誤差はランダムに発生するから,「−1」,「0」,「1」が同じ確率で発生するものといえる。例えば差分0の場合、その差動出力の組み合わせは3×3=9通りあり、その結果は「−2」,「−1」,「0」,「1」,「2」の5つに分類される。一方、発生する頻度(比率)は,上記分類順に、1:2:3:2:1となる。このばらつきの標準偏差σは1.504となる。以下、差分の種類に応じて、発生比率と標準偏差とを示す。 Since the error inherent in this digitization occurs randomly, it can be said that "-1", "0", and "1" occur with the same probability. For example, in the case of a difference of 0, there are 3 × 3 = 9 combinations of differential outputs, and the results are classified into 5 categories of “-2”, “-1”, “0”, “1”, and “2”. Will be done. On the other hand, the frequency (ratio) of occurrence is 1: 2: 3: 2: 1 in the above classification order. The standard deviation σ of this variation is 1.504. Hereinafter, the occurrence ratio and the standard deviation are shown according to the type of difference.

[差分0の場合(零点誤差は1つ)]
誤差=「−1」,「0」,「1」
差動出力分類=「−2」,「−1」,「0」,「1」,「2」
発生比率=1:2:3:2:1
標準偏差σ0=1.054
[When the difference is 0 (there is one zero error)]
Error = "-1", "0", "1"
Differential output classification = "-2", "-1", "0", "1", "2"
Occurrence ratio = 1: 2: 3: 2: 1
Standard deviation σ 0 = 1.054

[差分1の場合(2つの零点誤差の平均値を用いる)]
誤差=「−4」,「−3」,「−2」,「−1」,「0」,「1」,「2」,「3」,「4」
差動出力分類=「−2」,「−1.5」,「−1」,「−0.5」,「0」,「0.5」,「1」,「1.5」,「2」
発生比率=1:4:10:16:19:16:10:4:1
標準偏差σ1=0.816
[In the case of difference 1 (use the average value of two zero errors)]
Error = "-4", "-3", "-2", "-1", "0", "1", "2", "3", "4"
Differential output classification = "-2", "-1.5", "-1", "-0.5", "0", "0.5", "1", "1.5", " 2 "
Occurrence ratio = 1: 4: 10: 16: 19: 16: 10: 4: 1
Standard deviation σ 1 = 0.816

[差分2の場合(3つの零点誤差の平均値を用いる)]
誤差=「−6」,「−5」,「−4」,「−3」,「−2」,「−1」,「0」,「1」,「2」,「3」,「4」,「5」,「6」
差動出力分類=「−2」,「−5/3」,「−4/3」,「−1」,「−2/3」,「−1/3」,「0」,「1/3」,「2/3」,「1」,「4/3」,「5/3」,「2」
発生比率=1:6:21:50:90:126:141:126:90:50:21:1
標準偏差σ2=0.667
[In the case of difference 2 (use the average value of three zero errors)]
Error = "-6", "-5", "-4", "-3", "-2", "-1", "0", "1", "2", "3", "4" , "5", "6"
Differential output classification = "-2", "-5/3", "-4/3", "-1", "-2/3", "-1/3", "0", "1 /" 3 ”,“ 2/3 ”,“ 1 ”,“ 4/3 ”,“ 5/3 ”,“ 2 ”
Occurrence ratio = 1: 6: 21: 50: 90: 126: 141: 126: 90: 50: 21: 1
Standard deviation σ 2 = 0.667

差分0から差分19の場合における標準偏差σmを、まとめて表1に示す。 Table 1 summarizes the standard deviation σ m when the difference is 0 to 19.

差分0の場合の標準偏差σ0と、差分mの場合の標準偏差σmとは、式(12)の分母が異なるため、分母を考慮して評価値mを求める。測定点数n=35の場合における評価値mを表2に示す。 Since the denominator of the equation (12) is different between the standard deviation σ 0 when the difference is 0 and the standard deviation σ m when the difference is m, the evaluation value m is obtained in consideration of the denominator. Table 2 shows the evaluation value m when the number of measurement points n = 35.

図7は、評価値mを縦軸とし、差分mを横軸として、測定点数n=35の場合における値をプロットしたグラフである。上述したように,零点誤差を求める式(12)で,誤差は分子に含まれており,分母の(n−1)の影響で,零点誤差を算出するステップ数が小さくなるにつれ,図7に示すように誤差が大きくなる。しかしながら、評価値mに対して差分の最適値(すなわち平均化するために用いる零点誤差の数)が存在する。具体的には、図7の例で評価値mが最も小さくなるのは、差分11の場合である。従って差分数を限定することで、長時間をかけることなく高精度な形状測定を行えることとなる。 FIG. 7 is a graph in which the evaluation value m is plotted on the vertical axis and the difference m is plotted on the horizontal axis when the number of measurement points is n = 35. As described above, in the equation (12) for obtaining the zero point error, the error is included in the numerator, and as the number of steps for calculating the zero point error decreases due to the influence of the denominator (n-1), FIG. As shown, the error becomes large. However, there is an optimum value of the difference (that is, the number of zero errors used for averaging) with respect to the evaluation value m. Specifically, in the example of FIG. 7, the evaluation value m is the smallest in the case of the difference 11. Therefore, by limiting the number of differences, highly accurate shape measurement can be performed without spending a long time.

図8は、評価値mを縦軸とし、差分mを横軸として、測定点数n=20,25,30,35、40の場合における値をプロットしたグラフである。いずれの場合にも、評価値mに対して差分の最適値が存在することがわかる。また、差分の最適値は測定点数nに応じて変化する。 FIG. 8 is a graph in which the evaluation values m are plotted on the vertical axis and the difference m is plotted on the horizontal axis when the number of measurement points is n = 20, 25, 30, 35, 40. In any case, it can be seen that the optimum value of the difference exists with respect to the evaluation value m. Further, the optimum value of the difference changes according to the number of measurement points n.

以下、本発明者らは、図1,2の測定装置において、測定対象物としてガラス板を用いて、プローブ間隔を30mmにセットし、測定点数n=35として同じ条件で繰り返し4回の形状測定を行った。プローブは電気マイクロメータであり,また水準器(0.01mm/m)で傾き角を測定した。4回の測定で求められる零点誤差のばらつきに基づいて、評価値mを縦軸とし、差分mを横軸として実測値をプロットしたグラフを図9に示す。 Hereinafter, in the measuring apparatus shown in FIGS. 1 and 2, the present inventors set the probe interval to 30 mm using a glass plate as the measurement object, set the number of measurement points n = 35, and repeatedly measure the shape four times under the same conditions. Was done. The probe was an electric micrometer, and the tilt angle was measured with a spirit level (0.01 mm / m). FIG. 9 shows a graph in which the measured values are plotted with the evaluation value m on the vertical axis and the difference m on the horizontal axis based on the variation in the zero point error obtained in the four measurements.

図9のグラフを図7のグラフと比較すると、最適値となる差分数は異なるが、両者のグラフの傾向は一致することがわかった。 Comparing the graph of FIG. 9 with the graph of FIG. 7, it was found that the tendency of both graphs was the same, although the number of differences which became the optimum value was different.

本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。例えば、上述した実施の形態では、走査部SPを移動させているが、センサホルダSH側を固定する代わりに、天板CL側を走査ステージとして移動させてもよい。その場合、移動する天板(又は測定物)側の測定点での傾き角の検出が必要になる。傾き角を検出するセンサとしては、図3に示す角度測定ユニットAMUなどを用いることができ、上述と同様にして零点誤差を求めることが出来る。又、全ての形状測定点毎に、プローブの出力と共にセンサホルダの傾き角を検出しても良いし、間引かれた形状測定点でセンサホルダの傾き角を検出しても良い。逐次多点法には、逐次3点法以外の場合も含む。 The present invention is not limited to the examples described in the specification, and it is clear to those skilled in the art from the examples and ideas described in the present specification that the present invention includes other examples and modifications. Is. The description and examples of the specification are for illustration purposes only, and the scope of the present invention is indicated by the claims described below. For example, in the above-described embodiment, the scanning unit SP is moved, but instead of fixing the sensor holder SH side, the top plate CL side may be moved as the scanning stage. In that case, it is necessary to detect the tilt angle at the measurement point on the moving top plate (or object to be measured) side. As the sensor for detecting the tilt angle, the angle measuring unit AMU shown in FIG. 3 or the like can be used, and the zero point error can be obtained in the same manner as described above. Further, the tilt angle of the sensor holder may be detected together with the output of the probe at each shape measurement point, or the tilt angle of the sensor holder may be detected at the thinned shape measurement points. The sequential multipoint method includes cases other than the sequential three-point method.

AMU 角度測定ユニット
BP 台板
BS ビームスプリッタ
CA ケース
CL 天板
DL 光束
HD 支持部
LD 光源
MD 測定装置
OBJ 光学素子
PB1-PB3 プローブ
PD 光検出器
PDa 受光面
SG 糸
SH センサホルダ
SP 走査部
SR 基準鏡
WL 壁
AMU angle measurement unit BP base plate BS beam splitter CA case CL top plate DL luminous flux HD support LD light source MD measuring device OBJ optical element PB1-PB3 probe PD photodetector PDa light receiving surface SG thread SH sensor holder SP scanning unit SR reference mirror WL wall

Claims (3)

センサホルダと測定対象物のうち一方を固定し、他方を走査しつつ、前記センサホルダに取り付けた複数のセンサを用いて、逐次多点法により測定対象物の形状を測定する測定方法において、
n個の測定点で、前記センサの出力を取得するステップと、
任意の測定点で、前記センサホルダと前記測定対象物のうち前記他方の傾き角を検出するステップと、
第1の測定点の傾き角と、前記第1の測定点とは異なる第2の測定点の傾き角との差に基づいて零点誤差を求め、更に測定点を変えて前記零点誤差を求めるステップと、
求めた前記零点誤差の平均をとり、その平均値及び前記センサの出力を用いて前記測定対象物の形状を求めるステップとを有し、
平均化するために用いる前記零点誤差の数は、前記測定点数nに基づいて決定されることを特徴とする測定方法。
In a measurement method in which one of a sensor holder and a measurement object is fixed, and the shape of the measurement object is measured by a sequential multipoint method using a plurality of sensors attached to the sensor holder while scanning the other.
The step of acquiring the output of the sensor at n measurement points, and
A step of detecting the tilt angle of the other of the sensor holder and the measurement object at an arbitrary measurement point, and
A step of obtaining a zero point error based on the difference between the tilt angle of the first measurement point and the tilt angle of a second measurement point different from the first measurement point, and further changing the measurement point to obtain the zero point error. When,
It has a step of taking the average of the obtained zero points error and obtaining the shape of the measurement object by using the average value and the output of the sensor.
A measuring method characterized in that the number of zero error used for averaging is determined based on the number of measurement points n.
全ての測定点で、前記センサホルダの傾き角を検出することを特徴とする請求項1に記載の測定方法。 The measurement method according to claim 1, wherein the tilt angle of the sensor holder is detected at all measurement points. 前記センサは3つであり、逐次3点法を用いて前記測定対象物の形状を測定することを特徴とする請求項1又は2に記載の測定方法。 The measuring method according to claim 1 or 2, wherein the number of sensors is three, and the shape of the object to be measured is measured by sequentially using a three-point method.
JP2017019191A 2017-02-06 2017-02-06 Measuring method Active JP6779151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019191A JP6779151B2 (en) 2017-02-06 2017-02-06 Measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019191A JP6779151B2 (en) 2017-02-06 2017-02-06 Measuring method

Publications (2)

Publication Number Publication Date
JP2018128259A JP2018128259A (en) 2018-08-16
JP6779151B2 true JP6779151B2 (en) 2020-11-04

Family

ID=63172614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019191A Active JP6779151B2 (en) 2017-02-06 2017-02-06 Measuring method

Country Status (1)

Country Link
JP (1) JP6779151B2 (en)

Also Published As

Publication number Publication date
JP2018128259A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6256380B2 (en) Strain sensor and strain amount measuring method
US20040052330A1 (en) Calibration and alignment of X-ray reflectometric systems
US9958263B2 (en) Correction device and correction method for optical measuring apparatus
JP2007263818A (en) Adjusting method for thickness measuring instrument, and device therefor
JP4970204B2 (en) Straightness measuring device, thickness variation measuring device, and orthogonality measuring device
CN111024006A (en) Roughness detection method and roughness detection device
JP6430874B2 (en) Measuring method
TWI472712B (en) Vertical and parallelism detection system and its detection method
JP5158791B2 (en) measuring device
WO2021036632A1 (en) Method for measuring deflection angle of galvanometer scanner, and laser radar using method
JP6779151B2 (en) Measuring method
JP5290038B2 (en) Measuring apparatus and measuring method
JP2006234427A (en) Flatness measuring method and instrument
JP2004163343A (en) Distance detecting device, thickness measuring device, and method thereof
CN105783738A (en) Incremental type small-measurement-range displacement sensor and measurement method
US3406292A (en) Surface checking device
CN116381708A (en) High-precision laser triangular ranging system
KR100937477B1 (en) A Coordinate Measuring Machine Using A Reference Plate
JP2017037028A (en) Measurement device
CN205619888U (en) Increment formula is journey displacement sensor in a small amount
JP6401618B2 (en) Measuring method and measuring device
KR101692152B1 (en) Displacement Sensor Using Astigmatism and Sensing Method thereof
JP3526724B2 (en) Error correction method in shape measuring device
JP5950760B2 (en) Calibration method of interference shape measuring mechanism
JP6599137B2 (en) Plane shape measuring apparatus and plane shape calculating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201013

R150 Certificate of patent or registration of utility model

Ref document number: 6779151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250