JP4529664B2 - Tool shape measuring apparatus and method - Google Patents

Tool shape measuring apparatus and method Download PDF

Info

Publication number
JP4529664B2
JP4529664B2 JP2004351604A JP2004351604A JP4529664B2 JP 4529664 B2 JP4529664 B2 JP 4529664B2 JP 2004351604 A JP2004351604 A JP 2004351604A JP 2004351604 A JP2004351604 A JP 2004351604A JP 4529664 B2 JP4529664 B2 JP 4529664B2
Authority
JP
Japan
Prior art keywords
drill
cutting edge
tool
displacement meter
laser displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004351604A
Other languages
Japanese (ja)
Other versions
JP2006162344A (en
Inventor
浩 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2004351604A priority Critical patent/JP4529664B2/en
Publication of JP2006162344A publication Critical patent/JP2006162344A/en
Application granted granted Critical
Publication of JP4529664B2 publication Critical patent/JP4529664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、例えば、棒状工具であるドリルを再研磨して使用する際、再研磨後の工具の刃先形状が正確なものかどうかを検査する測定装置に関するものである。 The present invention relates to a measuring apparatus for inspecting whether or not a cutting edge shape of a tool after re-polishing is accurate when, for example, a drill which is a rod-shaped tool is re-polished and used.

切削加工又は穴あけ加工において使用されるドリルあるいはエンドミルは、使用時間の増大につれ、加工物(ワーク)に接触する先端部の切れ刃が磨耗するので、工具研削盤により切れ刃を研磨しながら使用する。この研磨作業を再研磨と呼んでいるが、再研磨した後の刃先形状、ことに切れ刃の形状は加工精度及び工具の寿命に大きな影響を及ぼす。例えば、ドリルにはその先端部に通常複数の切れ刃を備えられているが、それらの形状に差があると、特定の切れ刃のみで加工が行われたり、加工時のドリルの振れが異常に大きくなる不具合を生じる。   The drill or end mill used in cutting or drilling is worn while the cutting edge is worn by the tool grinder because the cutting edge at the tip contacting the workpiece (workpiece) is worn as the usage time increases. . This polishing operation is called re-polishing, but the shape of the cutting edge after re-polishing, especially the shape of the cutting edge, has a great influence on machining accuracy and tool life. For example, a drill usually has a plurality of cutting edges at its tip, but if there is a difference in their shape, machining is performed with only a specific cutting edge, or the deflection of the drill during machining is abnormal. This causes a problem that becomes larger.

したがって、再研磨の後には、正確な研磨が行われ各部分が所定の形状となっているか否かについての検査を実施している。この検査は、工場等の作業現場において実施され、簡単なものではVブロックとダイヤルゲージを用いて手作業で検査する。Vブロックを用いる検査では、VブロックのV溝に研磨後のドリルを置き、図7(a)に図示されるように、複数の切れ刃の中の一枚にダイヤルゲージの測定子を当ててこれを基準位置とする。次いで、V溝の中でドリルを回転させ、他の切れ刃について同様に位置を測定して基準位置との差を求める。この作業を切れ刃の形状の特定に必要な数点で実施して各切れ刃の形状の差を検出し、再研磨の合否を判定する。   Therefore, after re-polishing, an accurate polishing is performed and an inspection is performed as to whether or not each portion has a predetermined shape. This inspection is performed at a work site such as a factory, and in a simple case, it is manually inspected using a V block and a dial gauge. In the inspection using the V block, a polished drill is placed in the V groove of the V block, and a dial gauge probe is applied to one of the plurality of cutting edges as shown in FIG. This is the reference position. Next, the drill is rotated in the V groove, and the positions of the other cutting edges are measured in the same manner to obtain the difference from the reference position. This operation is performed at several points necessary for specifying the shape of the cutting edge, the difference in the shape of each cutting edge is detected, and the pass / fail of re-polishing is determined.

ボールエンドミルのように切れ刃の先端が円弧をなしている工具を検査する装置にあっては、回転軸にチャックによって工具を固定し、ダイヤルゲージを円弧の形状に合わせて旋回できるように設置したものがある。ダイヤルゲージを旋回させながら、複数の切れ刃の一枚について円弧上の数点の位置を測定した後、回転軸に固定した工具を回転させ他の切れ刃について同様に位置を測定して、形状の差を検出する(図7(b)参照)。   In a device that inspects a tool whose tip of the cutting edge forms an arc, such as a ball end mill, the tool is fixed to the rotating shaft by a chuck, and the dial gauge is installed so that it can be rotated according to the shape of the arc. There is something. While turning the dial gauge, measure the position of several points on the arc of one of the cutting edges, rotate the tool fixed to the rotating shaft, measure the position of the other cutting edges in the same way, Is detected (see FIG. 7B).

また、このような工具の形状の測定、検査作業を自動化したものとして、特開平6−137842号公報に開示される装置がある。この装置は、工具顕微鏡とテレビカメラとを組み合わせ、ボールエンドミル等の工具の切れ刃の形状を測定するもので、図8に装置の概要を示す。   Further, there is an apparatus disclosed in Japanese Patent Laid-Open No. 6-137842 as an automated tool for measuring and inspecting such a tool shape. This apparatus combines a tool microscope and a television camera to measure the shape of the cutting edge of a tool such as a ball end mill. FIG. 8 shows an outline of the apparatus.

検査対象であるボールエンドミル等の工具30は、チャック31に取付けられ軸Aを中心に回転可能となっている。チャック31は角度割り出し装置32に支持され、この角度割り出し装置32は、X軸、Y軸方向に移動可能なテーブル33上に設置され、X軸方向には送りネジ34及びモータ35により、Y軸方向には送りネジ36及びモータ37により移動することができる。工具30の上方には、軸Pを光軸とする工具顕微鏡38とテレビカメラ39とが設けてあり、テレビカメラ39は画像処理装置に接続されている。   A tool 30 such as a ball end mill to be inspected is attached to a chuck 31 and is rotatable about an axis A. The chuck 31 is supported by an angle indexing device 32. The angle indexing device 32 is installed on a table 33 that is movable in the X-axis and Y-axis directions. The direction can be moved by a feed screw 36 and a motor 37. A tool microscope 38 and a television camera 39 having an axis P as an optical axis are provided above the tool 30, and the television camera 39 is connected to the image processing apparatus.

工具の形状を測定する際には、光学顕微鏡38の焦点を軸Aの位置に合わせて固定し、次いで、テーブル33を移動し工具顕微鏡の光軸である軸Pを、切れ刃の存在する工具先端部の輪郭線上の測定点と一致させる。その後、テレビカメラ39に接続された画像処理装置によって測定点における切れ刃の位置を検出し、これを工具顕微鏡38の焦点位置に合致するよう軸Aの周りに工具30を回転させ角度位置を定める。このような測定を工具先端部の輪郭線上において複数の測定点で実行し、得られたX軸、Y軸及び角度位置のデータを用いて工具30の切れ刃の寸法、形状等を計測することにより、工具30の検査あるいは合否判定を行うことができる。
特開平6−137842号公報
When measuring the shape of the tool, the focus of the optical microscope 38 is fixed to the position of the axis A, then the table 33 is moved, and the axis P, which is the optical axis of the tool microscope, is changed to a tool with a cutting edge. Match with the measurement point on the contour of the tip. Thereafter, the position of the cutting edge at the measurement point is detected by an image processing device connected to the television camera 39, and the tool 30 is rotated around the axis A so as to match the focal position of the tool microscope 38, thereby determining the angular position. . Such measurement is performed at a plurality of measurement points on the contour of the tool tip, and the dimensions, shape, and the like of the cutting edge of the tool 30 are measured using the obtained X-axis, Y-axis, and angular position data. Thus, the inspection of the tool 30 or the pass / fail determination can be performed.
JP-A-6-137842

ドリル等の工具の検査には、上述のように、いくつかの方法がある。このうち、Vブロック及びダイヤルゲージを使用する方法は、基本的に作業者が行う手作業であり簡易な方法ではあるが、長時間の作業を必要するとともに、精度のよい検査のためには作業者の熟練を要する。 As described above, there are several methods for inspecting a tool such as a drill. Of these, the method using the V block and dial gauge is basically a manual operation performed by the operator and is a simple method. However, it requires a long period of work and is necessary for accurate inspection. It shall be subject to a skilled person.

特許文献1に開示される装置では、自動的な測定が可能となるけれども、工具顕微鏡や画像処理装置を備え付けなければならず、検査装置が非常に高価なものとなると同時に、現状では、測定可能な工具の大きさに限りがある。さらに、作業現場での工具再研磨後の検査においては、複数の切れ刃の寸法、角度等の差が許容範囲内にあるか否かを検査すれば合否判定としては十分である場合も多く、精密な測定が可能である高級な装置は必要としない面がある。本発明は、比較的簡単な装置により、再研磨後等の工具における切れ刃部分の形状を、必要かつ十分な精度で検査することを課題とする。   In the apparatus disclosed in Patent Document 1, although automatic measurement is possible, a tool microscope and an image processing apparatus must be provided, and an inspection apparatus becomes very expensive, and at the present time, measurement is possible. There is a limit to the size of the tool. Furthermore, in the inspection after tool re-polishing at the work site, it is often sufficient as a pass / fail judgment if it is inspected whether the difference in dimensions, angles, etc. of the plurality of cutting edges is within an allowable range, There is an aspect that does not require a high-quality device capable of precise measurement. An object of the present invention is to inspect the shape of a cutting edge portion of a tool after re-polishing or the like with a relatively simple device with necessary and sufficient accuracy.

上記の課題に鑑み、本発明は、直線状の切れ刃を備えた棒状工具であるドリルの切れ刃の形状を簡易な装置で、作業者による精度上のばらつきを伴うことなく測定することを目的とする。すなわち、本発明は、
直線状の切れ刃を有するドリルの切れ刃の形状を測定する工具形状測定装置であって、前記ドリルを保持し回転させる工具保持装置と、前記ドリルの回転軸と平行な平面上を直線的に摺動する摺動テーブルとを有する工具形状測定装置において、
前記摺動テーブル上に支持され前記摺動テーブルに対し旋回可能な旋回テーブルと、前記旋回テーブルの旋回軸の径方向と直交する直線に沿って摺動する支持台とを設け、前記支持台に前記切れ刃と対向してレーザー変位計を取付けるとともに、前記レーザー変位計を、前記旋回テーブルの旋回軸の径方向と直交する直線に沿って摺動させ、前記レーザー変位計と前記切れ刃との距離を複数の点で測定する
ことを特徴とする工具形状測定装置となっている。
In view of the above problems, the present invention aims to measure the shape of a cutting edge of a drill, which is a rod-shaped tool provided with a linear cutting edge, with a simple device without any variation in accuracy by an operator. And That is, the present invention
"A tool shape measuring apparatus for measuring the shape of the cutting edge of the drill with a straight cutting edge, rectilinear and the tool holding device for rotating and holding the drill, the upper rotating shaft parallel to the plane of the drill In a tool shape measuring device having a sliding table that slides on
A swivel table supported on the slide table and capable of swiveling with respect to the slide table, and a support base that slides along a straight line perpendicular to the radial direction of the swivel axis of the swivel table, are provided on the support base. A laser displacement meter is mounted facing the cutting edge, and the laser displacement meter is slid along a straight line perpendicular to the radial direction of the turning shaft of the turning table, and the laser displacement meter and the cutting edge Measure distance at multiple points. ''
This is a tool shape measuring device characterized by this.

請求項2に記載のように、前記レーザー変位計には、前記ドリルの先端部と前記レーザー変位計との距離を一定の幅に亘り走査して切れ刃の位置を検出するデータ処理装置を接続することができる。 According to a second aspect of the present invention, the laser displacement meter is connected to a data processing device that scans the distance between the tip of the drill and the laser displacement meter over a certain width to detect the position of the cutting edge. can do.

本発明は、ドリルの切り刃の形状を測定する方法の発明として実施することができる。この場合は、請求項3に記載のように、
「直線状の切れ刃を有するドリルの切り刃の形状を測定する工具形状測定方法であって、
前記ドリルを保持し回転させる工具保持装置に前記ドリルを取付け、
前記ドリルの回転軸と平行な平面上を旋回する旋回テーブルに、前記ドリルの先端部と対向するようレーザー変位計を設置するとともに、前記レーザー変位計を前記ドリルの切れ刃と平行に直線的に摺動させ、前記レーザー変位計と前記ドリルの切れ刃との距離を複数の点で測定する」
ことを特徴とする工具形状測定方法となる。
The present invention can be implemented as an invention of a method for measuring the shape of a cutting blade of a drill. In this case, as described in claim 3,
"A tool shape measuring method for measuring the shape of a cutting edge of a drill having a linear cutting edge,
Attaching the drill to a tool holding device for holding and rotating the drill,
A laser displacement meter is installed on a turning table that rotates on a plane parallel to the rotation axis of the drill so as to face the tip of the drill, and the laser displacement meter is linearly parallel to the cutting edge of the drill. Slide and measure the distance between the laser displacement meter and the cutting edge of the drill at multiple points. "
This is a tool shape measuring method characterized by this.

本発明では、棒状工具であるドリルの切れ刃の形状を測定するにあたり、工具保持装置にドリルを保持し回転させるとともに、旋回可能な旋回テーブル上にレーザー変位計を取付けた支持台を載置し、ドリル先端の直線状切れ刃に対向して設置したレーザー変位計を、旋回テーブルの旋回軸の径方向と直交する直線に沿って、旋回テーブル上で直線的に移動させるようにしたものである。そして、レーザー変位計とこれに対向する切れ刃の測定点までの距離を複数の個所で測定してドリルの切れ刃の形状を求め、さらに、ドリルの複数の切れ刃について同様な形状測定を実施して工具研磨の合否を決定する。測定するのは距離のみであるから、装置は簡易なものとなり、工場等の製造加工現場において、熟練した作業者でなくとも検査の実施が可能となる。また、レーザー変位計は精密な測定が可能であって、十分な精度で形状を測定することができる。 In the present invention, when measuring the shape of the cutting edge of the drill is a rod-like tool, with to hold the drill rotation to the tool holding device, placing the support base fitted with a laser displacement meter on a pivotable turntable The laser displacement meter installed opposite the linear cutting edge at the tip of the drill is linearly moved on the swivel table along a straight line perpendicular to the radial direction of the swivel axis of the swivel table. . The distance between the laser displacement meter and the measuring point of the cutting edge facing it is measured at multiple points to determine the shape of the cutting edge of the drill , and the same shape measurement is performed for the multiple cutting edges of the drill. Then, the pass / fail of the tool polishing is determined. Since only the distance is measured, the apparatus is simple, and it is possible to carry out an inspection at a manufacturing / processing site such as a factory without a skilled worker. The laser displacement meter is capable of precise measurement and can measure the shape with sufficient accuracy.

請求項2の発明では、ドリルの先端部とレーザー変位計との距離を一定の幅に亘り走査して切れ刃の位置を検出する。つまり、切れ刃と直角方向に走査して距離が最短となる点を切れ刃位置と定めるので、その位置を正確に決定することが可能である。
In the invention of claim 2, the position of the cutting edge is detected by scanning the distance between the tip of the drill and the laser displacement meter over a certain width. That is, since the point where the distance is the shortest by scanning in the direction perpendicular to the cutting edge is determined as the cutting edge position, the position can be accurately determined.

請求項3の発明は、棒状工具であるドリルの切れ刃の形状測定法となっているドリルは、切れ刃は平面視でほぼ直線となっており、この直線と平行に、旋回テーブルに設置したレーザー変位計を移動させると、切れ刃までの距離は殆ど変化せず安定した測定ができる。なお、請求項3の発明では、上述の請求項1の発明と同様な効果も達成できることは明らかである。 The invention of claim 3 has the shape measuring method of the cutting edge of the drill is a rod-like tool. In the drill, the cutting edge is almost straight in plan view, and when the laser displacement meter installed on the swivel table is moved parallel to this straight line, the distance to the cutting edge hardly changes and stable measurement can be performed. The In the invention of claim 3, it is clear that also achievable invention the same effect as in claim 1 above.

以下、図面に基づいて、本発明による工具形状計測装置及び方法について説明する。図1は本発明の工具形状計測装置を概略的に表す平面図であり、テーブル等を駆動するモータ、測定データを処理するデータ処理装置も併せて図示してある。図2は、レーザー変位計が棒状工具に正対するように置かれた状態における装置の概略的な正面図であり、また、図3は旋回テーブルの駆動装置を示す図である。   Hereinafter, a tool shape measuring apparatus and method according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view schematically showing a tool shape measuring apparatus according to the present invention, in which a motor for driving a table and the like, and a data processing apparatus for processing measurement data are also shown. FIG. 2 is a schematic front view of the apparatus in a state where the laser displacement meter is placed so as to face the bar-shaped tool, and FIG. 3 is a view showing a drive device of the turning table.

工具形状計測装置の基台1上には、棒状工具2を固定するチャック3及び回転位置の割り出し機構等を備え、検査する棒状工具を回転させる工具保持装置4が置かれる。図1における棒状工具2はドリルであって、その先端部には平面図では直線状の切れ刃5を有しており、軸6を回転軸としてステッピングモータ7により回転可能となっている。ステッピングモータ7を用いる代わりに手動によって回転させてもよい。   On the base 1 of the tool shape measuring device, a tool holding device 4 that includes a chuck 3 for fixing the bar-shaped tool 2 and an indexing mechanism for a rotational position and that rotates the bar-shaped tool to be inspected is placed. The rod-shaped tool 2 in FIG. 1 is a drill, and has a linear cutting edge 5 in a plan view at a tip portion thereof, and can be rotated by a stepping motor 7 with a shaft 6 as a rotation axis. Instead of using the stepping motor 7, it may be rotated manually.

基台1には、回転軸6と平行にレール8が形成してあり、レール8に摺動テーブル9が載置される。摺動テーブル9は、ステッピングモータ23により、例えば送りねじ機構を用いて、レール8に沿って回転軸6と平行に摺動される。この摺動テーブル9は、図3に示されるように、回転軸6の方向から見たときには断面が基本的にはコ字状であって、中央部は中空となっており、また、上面には貫通孔10が開けられている。   A rail 8 is formed on the base 1 in parallel with the rotary shaft 6, and a sliding table 9 is placed on the rail 8. The sliding table 9 is slid by the stepping motor 23 in parallel with the rotary shaft 6 along the rail 8 using, for example, a feed screw mechanism. As shown in FIG. 3, the sliding table 9 is basically U-shaped in cross section when viewed from the direction of the rotating shaft 6 and has a hollow central portion. The through hole 10 is opened.

摺動テーブル9には旋回テーブル11が載置される。図2、図3に示されるとおり、旋回テーブル11の下部には円柱状の旋回軸12が一体に形成され、摺動テーブル9の貫通孔10に嵌め込まれる。旋回軸12の下方にはウォームギヤ13が固定され、ウォームギヤ13は、摺動テーブル9の中空部分に配置されたウォーム14と噛合する。ウォーム14は、摺動テーブル9の側面に取付けられたステッピングモータ15によって回転駆動される。したがって、旋回テーブル11は回転軸6と平行な平面上で回転軸6と直角な軸の周りに旋回可能となっている。   A turning table 11 is placed on the sliding table 9. As shown in FIGS. 2 and 3, a columnar turning shaft 12 is integrally formed at the lower portion of the turning table 11 and is fitted into the through hole 10 of the sliding table 9. A worm gear 13 is fixed below the turning shaft 12, and the worm gear 13 meshes with a worm 14 disposed in a hollow portion of the sliding table 9. The worm 14 is rotationally driven by a stepping motor 15 attached to the side surface of the sliding table 9. Therefore, the turning table 11 can turn around an axis perpendicular to the rotating shaft 6 on a plane parallel to the rotating shaft 6.

旋回テーブル11の上面には直線的に摺動する支持台16が載置され、支持台16にはレーザー変位計17が固定される。レーザー変位計17は、棒状工具であるドリル2の切れ刃に対向するように回転軸6と同一の高さに設置される。支持台16は、ステッピングモータ18により旋回テーブル11の上面のレールに案内されて、旋回テーブル11の旋回軸の径方向と直交する直線に沿って直線的に摺動可能である。つまり、この支持台16は、ドリル2の直線状の切れ刃5に平行に移動可能となっている。
支持台16上のレーザー変位計17は、棒状工具であるドリル2の先端部にレーザーを照射し、その反射光を利用して先端部までの距離を測定する。その測定データはデータ処理装置19に入力される。また、各ステッピングモータの回転量は、制御装置20で制御され、それらのデータもデータ処理装置19に入力される。
A support base 16 that slides linearly is placed on the upper surface of the turntable 11, and a laser displacement meter 17 is fixed to the support base 16. The laser displacement meter 17 is installed at the same height as the rotary shaft 6 so as to face the cutting edge of the drill 2 which is a rod-shaped tool. The support 16 is guided by the rail on the upper surface of the turning table 11 by the stepping motor 18 and can slide linearly along a straight line perpendicular to the radial direction of the turning shaft of the turning table 11 . That is, the support base 16 is movable in parallel to the linear cutting edge 5 of the drill 2.
The laser displacement meter 17 on the support base 16 irradiates the tip of the drill 2 which is a rod-shaped tool with laser, and measures the distance to the tip using the reflected light. The measurement data is input to the data processing device 19. Further, the rotation amount of each stepping motor is controlled by the control device 20, and those data are also input to the data processing device 19.

ここで、本発明の工具形状測定装置を使用する測定方法について、図4乃至図5も参照しながら説明する。まず、検査する棒状工具であるドリル2を工具保持装置4に取付けた後、摺動テーブル9をドリルの長さに合わせて基台1上を摺動させ、レーザー変位計17をドリルの先端部の切れ刃5に近接させる。図4(a)はドリルの先端部を軸線方向から見た図であるが、ドリルの切れ刃5は通常直線となっている。この切れ刃5の直線が水平面に位置するよう工具保持装置4でドリルを回転して位置決めし、さらに、旋回テーブル11上のレールが平面図において切れ刃5と平行となるように旋回テーブル11を旋回させる。 Here, measurement method of using a tool shape measuring apparatus of the present invention will be described with reference also to FIG. 4 to FIG. First, after attaching the drill 2 which is a rod-shaped tool to be inspected to the tool holding device 4, the slide table 9 is slid on the base 1 according to the length of the drill, and the laser displacement meter 17 is moved to the tip of the drill. Is brought close to the cutting edge 5. FIG. 4A is a view of the tip of the drill as viewed from the axial direction, but the cutting edge 5 of the drill is usually a straight line. The tool holding device 4 rotates and positions the drill so that the straight line of the cutting edge 5 is positioned on the horizontal plane, and the turning table 11 is further adjusted so that the rail on the turning table 11 is parallel to the cutting edge 5 in the plan view. Turn.

この状態で、レーザー変位計17からレーザーを照射し、レーザー変位計17とドリルの先端部表面との距離を測定する。図4(a)に図示するように、測定は各測定点1,2〜nまで、ステッピングモータ18によりレーザー変位計17の支持台16を摺動させながら、切れ刃と直角方向にレーザーを矢印のごとく一定幅で走査して行う。その結果、1,2〜nの測定点について図4(b)図示されるデータが得られる。各測定点におけるドリルの切れ刃の位置は、距離の一番短い点であるから、図4(b)の矢印のピーク値が切れ刃の位置に相当するものとなる。ピーク値の検出はデータ処理装置19において実行され、各測定点の切れ刃の距離が求められる。また、各測定点の間の点における距離は、データ処理装置19で各測定点のデータを補間することによって求めることができ、連続した切れ刃形状が決定される。   In this state, laser is irradiated from the laser displacement meter 17, and the distance between the laser displacement meter 17 and the surface of the tip of the drill is measured. As shown in FIG. 4 (a), the measurement is performed by moving the support 16 of the laser displacement meter 17 by the stepping motor 18 to the measurement points 1, 2 to n, and moving the laser in the direction perpendicular to the cutting edge. As shown in FIG. As a result, the data shown in FIG. 4B is obtained for the measurement points 1, 2 to n. Since the position of the cutting edge of the drill at each measurement point is the point with the shortest distance, the peak value of the arrow in FIG. 4B corresponds to the position of the cutting edge. The detection of the peak value is executed by the data processing device 19, and the distance of the cutting edge at each measurement point is obtained. Moreover, the distance at the point between each measurement point can be calculated | required by interpolating the data of each measurement point with the data processor 19, and the continuous cutting-blade shape is determined.

ドリルの一方の切れ刃に関して計測が終了すると、ステッピングモータ7を駆動してドリルを180度回転し、他方の切れ刃について同様な測定を実施する。再研磨のときに、図5(a)に示されるように、両方の切れ刃が正確に研磨されなかった場合は切れ刃の角度が非対称となり、両方の切れ刃の形状は、図5(b)の測定結果に表されるとおり、一致しないものとなる。このようにして、再研磨後の両方の切れ刃の形状を比較することにより、ドリルの再研磨作業の検査を実施することができ、工場等の作業現場であっても簡単に合否の判定が行えることとなる。   When the measurement is completed for one cutting edge of the drill, the stepping motor 7 is driven to rotate the drill 180 degrees, and the same measurement is performed for the other cutting edge. At the time of re-polishing, as shown in FIG. 5A, when both the cutting edges are not accurately polished, the angles of the cutting edges become asymmetric, and the shapes of both cutting edges are as shown in FIG. ) As shown in the measurement results. In this way, by comparing the shape of both cutting edges after re-polishing, it is possible to inspect the re-polishing operation of the drill, and it is easy to determine whether or not it is acceptable even at a work site such as a factory. It will be possible.

参考例として、図6には、本発明と同様な検査装置を用いた、円弧状の切れ刃を有するボールエンドミルの検査方法を示す。レーザー変位計17はレーザーの反射光を利用して測定するので、測定点の切れ刃の接線とレーザー光とのなす角度が大きいときは測定誤差が増加する。これを防止するためボールエンドミルの検査では、支持台16の摺動する旋回テーブル11上のレールが工具の回転軸6に対して45度の角度をなすように旋回テーブル11を位置させる。 As a reference example, FIG. 6 shows an inspection method for a ball end mill having an arcuate cutting edge using an inspection apparatus similar to the present invention . Since the laser displacement meter 17 performs measurement using the reflected light of the laser, the measurement error increases when the angle formed by the tangent to the cutting edge of the measurement point and the laser beam is large. In order to prevent this, in the inspection of the ball end mill, the turning table 11 is positioned so that the rail on the turning table 11 on which the support base 16 slides forms an angle of 45 degrees with respect to the rotary shaft 6 of the tool.

この位置では、レーザー変位計17は一方の切れ刃の中央位置における接線と平行に摺動することとなり、測定部分の両端、つまり、回転軸6と切れ刃との交点21及び切れ刃の外周端22、において変位計17の軸と切れ刃の接線がなす角度が等しくなる。したがって、レーザー変位計17は照射したレーザーの反射光を平均的に受光することができ、レーザー光と切れ刃測定点の接線の形成する角度が増大することに伴う測定誤差の増加を避けることができる。レーザー光を各測定点の切れ刃になるべく直角に近い状態で照射するよう、場合によっては、回転軸6に対する旋回テーブル11の回転量を段階的に変化させることもできる。一方の切れ刃の測定が終了した後、ボールエンドミルを180度回転し他方の切れ刃の形状を測定して比較することにより合否判定が可能なことは、上述のドリルの場合と同様である。   At this position, the laser displacement meter 17 slides in parallel with the tangent at the center position of one of the cutting edges, and thus both ends of the measurement portion, that is, the intersection 21 between the rotating shaft 6 and the cutting edge and the outer peripheral edge of the cutting edge. 22, the angle formed by the axis of the displacement meter 17 and the tangent line of the cutting edge becomes equal. Therefore, the laser displacement meter 17 can averagely receive the reflected light of the irradiated laser, and avoid an increase in measurement error due to an increase in the angle formed by the tangent line between the laser beam and the cutting edge measurement point. it can. In some cases, the amount of rotation of the turntable 11 relative to the rotating shaft 6 can be changed stepwise so that the laser beam is irradiated as close to a right angle as possible at the cutting edge of each measurement point. After the measurement of one cutting edge is completed, the pass / fail judgment can be made by rotating the ball end mill 180 degrees and measuring and comparing the shape of the other cutting edge, as in the case of the above-described drill.

以上詳述したように、本発明は、ドリルにおける直線状の切れ刃の形状を、簡易な装置で作業者による精度上のばらつきを伴うことなく測定することを目的とし、工具保持装置に棒状工具であるドリルを保持し回転させるとともに、ドリル先端の切れ刃に対向して設置したレーザー変位計を直線的に移動させるよう、旋回可能な旋回テーブル上でレーザー変位計を取付けた支持台を摺動させるものである。支持台やテーブルを駆動するため、ここではステッピングモータを用いているが、油圧シリンダを有するアクチュエータ等その他の駆動機構を採用することができるのは明らかである。また、旋回テーブルを回転させるには、ウォーム機構の代わりに、例えば往復動を回転運動に変える周知のリンク機構を用いることもできる。 As described in detail above, the present invention aims to measure the shape of a linear cutting edge in a drill with a simple device without variation in accuracy by an operator. Hold and rotate the drill , and slide the support base with the laser displacement meter on the swivelable turntable so that the laser displacement meter installed facing the cutting edge at the tip of the drill moves linearly. It is something to be made. Although a stepping motor is used here to drive the support base and the table, it is obvious that other drive mechanisms such as an actuator having a hydraulic cylinder can be employed. Further, in order to rotate the turning table, for example, a well-known link mechanism that changes the reciprocating motion into a rotational motion can be used instead of the worm mechanism.

本発明の工具形状測定装置の概略的な平面図である。It is a schematic plan view of the tool shape measuring apparatus of this invention. 本発明の工具形状測定装置の概略的な正面図である。It is a schematic front view of the tool shape measuring apparatus of this invention. 本発明の旋回テーブルの駆動装置を示す図である。It is a figure which shows the drive device of the turning table of this invention. 本発明に基づくドリル切れ刃の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of the drill cutting edge based on this invention. 本発明に基づくドリルの合否判定方法を示す説明図である。It is explanatory drawing which shows the pass / fail determination method of the drill based on this invention. ボールエンドミルの合否判定方法を、参考例として示す説明図である。It is explanatory drawing which shows the pass / fail determination method of a ball end mill as a reference example . 従来の工具形状測定方法の説明図である。It is explanatory drawing of the conventional tool shape measuring method. 従来の工具形状測定装置の斜視図である。It is a perspective view of the conventional tool shape measuring apparatus.

符号の説明Explanation of symbols

1 基台
2 棒状工具
4 工具保持装置
5 切れ刃
9 摺動テーブル
11 旋回テーブル
13 ウォームギヤ
14 ウォーム
16 支持台
17 レーザー変位計
19 データ処理装置
DESCRIPTION OF SYMBOLS 1 Base 2 Bar-shaped tool 4 Tool holding device 5 Cutting blade 9 Sliding table 11 Turning table 13 Worm gear 14 Worm 16 Support stand 17 Laser displacement meter 19 Data processing device

Claims (3)

直線状の切れ刃を有するドリル(2)の切れ刃(5)の形状を測定する工具形状測定装置であって、前記ドリル(2)を保持し回転させる工具保持装置(4)と、前記ドリル(2)の回転軸(6)と平行な平面上を直線的に摺動する摺動テーブル(9)とを有する工具形状測定装置において、
前記摺動テーブル(9)上に支持され前記摺動テーブル(9)に対し旋回可能な旋回テーブル(11)と、前記旋回テーブルの旋回軸の径方向と直交する直線に沿って摺動する支持台(16)とを設け、前記支持台(16)に前記切れ刃(5)と対向してレーザー変位計(17)を取付けるとともに、前記レーザー変位計(17)を、前記旋回テーブルの旋回軸の径方向と直交する直線に沿って摺動させ、前記レーザー変位計(17)と前記切れ刃(5)との距離を複数の点で測定することを特徴とする工具形状測定装置。
A tool shape measuring device for measuring the shape of a cutting edge (5) of a drill (2) having a linear cutting edge, the tool holding device (4) for holding and rotating the drill (2), and the drill In a tool shape measuring apparatus having a sliding table (9) that slides linearly on a plane parallel to the rotational axis (6) of (2),
A turning table (11) supported on the sliding table (9) and capable of turning with respect to the sliding table (9), and a support that slides along a straight line perpendicular to the radial direction of the turning axis of the turning table. And a laser displacement meter (17) is attached to the support table (16) so as to face the cutting edge (5), and the laser displacement meter (17) is attached to the turning shaft of the turning table. The tool shape measuring apparatus is characterized in that the distance between the laser displacement meter (17) and the cutting edge (5) is measured at a plurality of points by sliding along a straight line orthogonal to the radial direction.
前記レーザー変位計(17)には、前記ドリル(2)の先端部と前記レーザー変位計(17)との距離を一定の幅に亘り走査して前記切れ刃(5)の位置を検出するデータ処理装置(19)が接続されている請求項1に記載の工具形状測定装置。 The laser displacement meter (17) scans the distance between the tip of the drill (2) and the laser displacement meter (17) over a certain width to detect the position of the cutting edge (5). The tool shape measuring device according to claim 1, to which a processing device (19) is connected. 直線状の切れ刃を有するドリル(2)の切れ刃(5)の形状を測定する工具形状測定方法であって、
前記ドリル(2)を保持し回転させる工具保持装置(4)に前記ドリル(2)を取付け、
前記ドリル(2)の回転軸(6)と平行な平面上を旋回する旋回テーブル(11)に、前記ドリル(2)の先端部と対向するようレーザー変位計(17)を設置するとともに、前記レーザー変位計(17)を、前記ドリル(2)の切れ刃(5)と平行に直線的に摺動させ、前記レーザー変位計(17)と前記ドリル(2)の切れ刃(5)との距離を複数の点で測定することを特徴とする工具形状測定方法。
A tool shape measuring method for measuring the shape of a cutting edge (5) of a drill (2) having a linear cutting edge ,
The drill (2) is attached to a tool holding device (4) for holding and rotating the drill (2),
A laser displacement meter (17) is installed on a turning table (11) that turns on a plane parallel to the rotation axis (6) of the drill (2) so as to face the tip of the drill (2). A laser displacement meter (17) is linearly slid parallel to the cutting edge (5) of the drill (2), and the laser displacement meter (17) and the cutting edge (5) of the drill (2) A tool shape measuring method comprising measuring a distance at a plurality of points.
JP2004351604A 2004-12-03 2004-12-03 Tool shape measuring apparatus and method Expired - Fee Related JP4529664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351604A JP4529664B2 (en) 2004-12-03 2004-12-03 Tool shape measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351604A JP4529664B2 (en) 2004-12-03 2004-12-03 Tool shape measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2006162344A JP2006162344A (en) 2006-06-22
JP4529664B2 true JP4529664B2 (en) 2010-08-25

Family

ID=36664536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351604A Expired - Fee Related JP4529664B2 (en) 2004-12-03 2004-12-03 Tool shape measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP4529664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195310A (en) * 2018-02-12 2018-06-22 大连大学 A kind of cutter blade type detection device based on computer vision

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953749B2 (en) * 2006-10-06 2012-06-13 株式会社東京精密 Tool holder mounting state detection method and apparatus, and machine tool
KR101492636B1 (en) 2008-12-01 2015-02-12 두산인프라코어 주식회사 Tool damage detection device of machine tool
CN103017677B (en) * 2011-09-23 2015-07-15 通用电气公司 Method for measuring profile of edge of cutting tool
DE102012019026A1 (en) * 2012-09-26 2014-03-27 Blum-Novotest Gmbh Method and device for measuring a tool received in a workpiece processing machine
CN109764811A (en) * 2019-02-27 2019-05-17 深圳市圆梦精密技术研究院 Tool dimension detection machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262903A (en) * 1989-03-31 1990-10-25 Okuma Mach Works Ltd Core height regulation method for bite
JPH0318711A (en) * 1989-06-16 1991-01-28 Chubo Tekkosho:Kk Instrument and method for tool inspection
JPH04323543A (en) * 1991-02-19 1992-11-12 Westinghouse Electric Corp <We> Pipe inspecting apparatus and pipe adjusting method
JPH06201351A (en) * 1993-01-07 1994-07-19 Mitsutoyo Corp Shape measurement for rotary tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262903A (en) * 1989-03-31 1990-10-25 Okuma Mach Works Ltd Core height regulation method for bite
JPH0318711A (en) * 1989-06-16 1991-01-28 Chubo Tekkosho:Kk Instrument and method for tool inspection
JPH04323543A (en) * 1991-02-19 1992-11-12 Westinghouse Electric Corp <We> Pipe inspecting apparatus and pipe adjusting method
JPH06201351A (en) * 1993-01-07 1994-07-19 Mitsutoyo Corp Shape measurement for rotary tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195310A (en) * 2018-02-12 2018-06-22 大连大学 A kind of cutter blade type detection device based on computer vision

Also Published As

Publication number Publication date
JP2006162344A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
US9086272B2 (en) Profile measuring apparatus, method for manufacturing structure, and structure manufacturing system
US6327788B1 (en) Surface form measurement
US8520066B2 (en) Automated optical inspection system for the runout tolerance of circular saw blades
JP6425815B2 (en) Tool shape measuring device
JP7374271B2 (en) Measurement of toothed articles using multiple sensors
JP7325409B2 (en) Measurement of Toothed Articles on a Multi-Mechanical Testing Machine Platform Using Non-Contact Sensors
KR20190028339A (en) Method and apparatus for gear skiving
US20150092920A1 (en) Intelligent machines and process for production of monocrystalline products with goniometer continual feedback
JP3792812B2 (en) Ball end mill sphericity measurement method
JP2006231509A (en) Method for measuring program control type machine tool
JP2014532171A (en) Method for obtaining cutting edge preparation profile of a cutting tool
JP6440495B2 (en) Method of scanning a tube being processed on a laser cutting machine using a sensor for measuring the radiation reflected or emitted by the tube
EP3789729B1 (en) Method of non-contact scanning of profiles of rotating objects and evaluation of their external dimensions
JP2009115527A (en) Stylus, shape measuring instrument, and part program
KR20130122760A (en) Centering method for optical elements
JPH0560503A (en) Inspection method for edge accuracy of cutting tool
JP4529664B2 (en) Tool shape measuring apparatus and method
JP2011232336A (en) Optical measurement method and apparatus
JP5005807B2 (en) Goniometer
JP2000074644A (en) Measuring apparatus of rod type cutting tool and measuring method of drill which uses the measuring apparatus
JPH07311163A (en) Instrument and method for measuring x-ray reflectance
JP2007090412A (en) Precision processing machine
JP2017067512A (en) Outer diameter measuring instrument and grinding device using the same
KR20150145612A (en) Vernier Calipers for Inspecting the Machinery Work
JP2007017276A (en) Method and device for inspecting cutting edge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees