JP2009180700A - Cylindrical shape measuring device and cylindrical surface shape measuring method - Google Patents

Cylindrical shape measuring device and cylindrical surface shape measuring method Download PDF

Info

Publication number
JP2009180700A
JP2009180700A JP2008022394A JP2008022394A JP2009180700A JP 2009180700 A JP2009180700 A JP 2009180700A JP 2008022394 A JP2008022394 A JP 2008022394A JP 2008022394 A JP2008022394 A JP 2008022394A JP 2009180700 A JP2009180700 A JP 2009180700A
Authority
JP
Japan
Prior art keywords
measured
cylinder
axis
sensor
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008022394A
Other languages
Japanese (ja)
Inventor
Satoshi Kiyono
慧 清野
Etsuo Fujita
悦男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2008022394A priority Critical patent/JP2009180700A/en
Publication of JP2009180700A publication Critical patent/JP2009180700A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical shape measuring device for accurately measuring the surface shape of a cylinder processed on a machine tool. <P>SOLUTION: The cylindrical shape measuring device 1 includes a rotation support device of an object to be measured for supporting a cylinder 2 to be measured rotatably about its center axis, a trident sensor holder 3 that is on a cylinder surface to be measured supported by the rotation support device and abuts on the cylinder surface to be measured at a total of three points, namely one point 5c on one linear bus 6 parallel to the center axis (z-axis) of the cylinder to be measured and two points 5a and 5b existing at the positions gripping the linear bus, and a first displacement sensor 4a and a second displacement sensor 4b arranged at the positions separated from the three abutting points by a known distance in the trident sensor holder. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の変位センサを用い、被測定円筒の円母線の真円形状と直線母線の真直形状を含む円筒形状の測定を簡易に高精度に行う円筒形状測定装置、およびその測定装置を用いて被測定円筒の形状を測定する方法に関する。   The present invention relates to a cylindrical shape measuring apparatus that uses a plurality of displacement sensors and performs measurement of a cylindrical shape including a circular shape of a circular line of a cylinder to be measured and a straight shape of a straight line with high accuracy, and a measuring device thereof. The present invention relates to a method for measuring the shape of a cylinder to be measured.

金属工作機械上における円筒ロール、丸管、クランクピンなどの円筒の直径や真円度を測定する測定が行われている。   Measurements are performed to measure the diameter and roundness of cylinders such as cylindrical rolls, round tubes and crank pins on metal machine tools.

例えば、幾何学的中心を有し、回転軸線の回りで回転して、該回転軸線に対して直交する回転平面を形成するように、サポート手段に取り付けられている、回転可能な装置と共に使用されて、前記回転可能な装置が前記軸線の回りで回転する際に、前記回転平面の中における前記回転可能な装置の位置的パラメータ、幾何学的パラメータ及び運動学的パラメータの1つあるいはそれ以上を測定するための測定装置であって、 前記回転可能な装置に対して固定されると共に、前記回転可能な装置の幾何学的中心と実質的に同心円状の既知の曲率半径を有する円弧に沿って角度方向に互いに隔置された、複数の間隔マーカーと、 前記幾何学的中心の回りの3つの異なる角位置においてそれぞれ前記サポート手段に対して固定され、前記回転可能な装置が前記回転軸線の回りで回転する際に、前記マーカーを検知するための、少なくとも3つのセンサと、 前記各々のセンサによって検知された隣接するマーカーの間の角位置を、最後のマーカーが前記各々のセンサによって検知された後の測定された時間経過の関数として補間するための、補間手段と、 前記各々のセンサによる前記マーカーの検知、並びに、最後のマーカーが前記各々のセンサによって検知された後の測定された時間経過の関数として、前記1又はそれ以上のパラメータを測定するための測定手段とを備える測定装置が提案されている(例えば、特許文献1参照。)。   For example, used with a rotatable device having a geometric center and attached to a support means to rotate about an axis of rotation to form a plane of rotation orthogonal to the axis of rotation. And when the rotatable device rotates about the axis, one or more of the positional, geometric and kinematic parameters of the rotatable device in the plane of rotation. A measuring device for measuring along an arc fixed with respect to the rotatable device and having a known radius of curvature substantially concentric with the geometric center of the rotatable device A plurality of spacing markers spaced apart from one another in an angular direction and fixed to the support means at three different angular positions around the geometric center and rotatable As the device rotates about the axis of rotation, at least three sensors for detecting the marker and the angular position between adjacent markers detected by each sensor, the last marker is the Interpolating means for interpolating as a function of the measured time course after being detected by each sensor, detection of the marker by each sensor, and the last marker detected by each sensor A measuring device has been proposed comprising measuring means for measuring the one or more parameters as a function of the later measured time course (see, for example, Patent Document 1).

また、加工物及びマスターゲージの直径をわたる両側に測定子を接触して円筒状加工物直径を測定する寸法測定装置と、寸法測定装置を円筒状加工物とマスターゲージ間で移動させる送り装置と、マスターゲージの回転駆動手段を備えた定寸装置も知られている(例えば、特許文献2参照。)。   Further, a dimension measuring device for measuring a cylindrical workpiece diameter by contacting a measuring element on both sides of the workpiece and the diameter of the master gauge, and a feeding device for moving the dimension measuring device between the cylindrical workpiece and the master gauge A sizing device having a master gauge rotation drive means is also known (for example, see Patent Document 2).

また、回転軸にて回転可能に支持された工作物と一体成形され、前記回転軸から偏心した円筒の真円度を測定する真円度測定装置であって、前記円筒の半径を三点接触法により測定する三点接触式測定器と、前記円筒の前記回転軸に垂直な断面上の円周に沿って前記三点接触式測定器を接触移動させる測定器滑動手段と、前記真円度測定装置に対する前記回転軸の相対位置xを測定する位置測定手段と、前記円筒の前記回転軸周りの回転角Ψを測定する回転角測定手段と、前記回転軸の周りを回転する前記円筒の真円度を前記相対位置x、前記回転角Ψ、及び、前記三点接触式測定器の出力値yより算出する真円度演算手段とを有することを特徴とする真円度測定装置が提案されている(例えば、特許文献3参照。)。   Also, a roundness measuring device that is integrally formed with a workpiece rotatably supported by a rotating shaft and measures the roundness of a cylinder eccentric from the rotating shaft, wherein the radius of the cylinder is contacted at three points A three-point contact type measuring instrument for measuring by a method, a measuring instrument sliding means for moving the three-point contact type measuring instrument in contact with a circumference on a cross section perpendicular to the rotation axis of the cylinder, and the roundness Position measuring means for measuring the relative position x of the rotation axis with respect to the measuring device; rotation angle measuring means for measuring the rotation angle Ψ around the rotation axis of the cylinder; and true of the cylinder rotating around the rotation axis. A roundness measuring apparatus is proposed, characterized by comprising roundness calculating means for calculating roundness from the relative position x, the rotation angle Ψ, and the output value y of the three-point contact measuring device. (For example, refer to Patent Document 3).

直径2Rの円筒状ワ−ク側端を主軸台と心押台よりなるワ−ク把持具で把持し、ワ−クを回転させながら回転する砥石車でワ−クの外周を研削し、ワ−クの径方向にrだけ研削した所望の定寸となったときにワ−クの研削終点を検出する方法において、前後スライドテ−ブル上のワ−クの研削開始にレ−ザ光が当たるように、かつ、ワ−クの軸芯に対し垂直な方向の位置に設けられたレ−ザ変位センサを用いてレ−ザ変位センサから研削されているワ−クの外周までの距離Liを測定し、研削開始時のワ−クの外周までの距離L0と研削中の前記距離Liの変位幅(Δ=L0−Li)がrとなったときを円筒状ワ−クの研削終了とする方法も提案されている(例えば、特許文献4参照。)。 The end of the cylindrical workpiece having a diameter of 2R is gripped by a workpiece gripper composed of a headstock and a tailstock, and the outer periphery of the workpiece is ground with a grinding wheel that rotates while the workpiece is rotated. -In the method of detecting the grinding end point of the workpiece when the desired fixed size is obtained by grinding by r in the radial direction of the workpiece, the laser beam hits the grinding start of the workpiece on the front and rear slide table. Thus, the distance L i from the laser displacement sensor to the outer periphery of the workpiece being ground using the laser displacement sensor provided at a position perpendicular to the axis of the workpiece When the displacement width (Δ = L 0 -L i ) between the distance L 0 to the outer periphery of the workpiece at the start of grinding and the distance L i during grinding becomes r, the cylindrical workpiece A method of finishing the grinding is also proposed (see, for example, Patent Document 4).

更に、円筒体の高精度測定に、その円母線形状を測定する真円度測定のための3点法(Vブロック法またはサドルゲージ法)も知られている(例えば、非特許文献1参照。)。   Furthermore, a three-point method (V-block method or saddle gauge method) for measuring roundness for measuring the circular generatrix shape is also known for high-precision measurement of a cylindrical body (for example, see Non-Patent Document 1). ).

また、変位センサを6個所定の位置に配置して円筒形状を測定する方法も知られている(例えば、非特許文献2参照。)。   In addition, a method of measuring a cylindrical shape by arranging six displacement sensors at predetermined positions is also known (see, for example, Non-Patent Document 2).

特表平9−506176号公報JP-T 9-506176 特開平6−79622号公報JP-A-6-79622 特開2001−66132号公報JP 2001-66132 A 特開2002−28859号公報JP 2002-28859 A 清野 慧著、「超精密測定−ソフトウエアデータムを中心に」、発行者 精密工学会フェロー 清野 慧、p.35−p39、平成19年3月発行Satoru Kiyono, “Ultra-precision measurement-focusing on software datum”, publisher Fellow of Japan Society for Precision Engineering, Satoshi Kiyono, p.35-p39, published in March 2007 遠藤 勝幸著、「マルチプローブ型円筒形状測定機の開発」、精密工学会誌2003年4月号 507頁Endo, Katsuyuki, “Development of Multi-Probe Cylindrical Measuring Machine”, Journal of Precision Engineering, April 2003, page 507

回転主軸などの高精度化に伴い、円筒形状の評価も直線母線の真円度と真直度を個別に評価して得られる情報だけでは工作機械加工メーカーから要求される評価精度を満たせなくなっている。特に円筒の中心軸の曲がりや軸に沿う方向で生じる直径の変化などが従来の真円度測定の三点法だけでは評価できず、また、三点法による真直形状測定を多数の回転角位置で繰り返しても真円形状が合わせて評価されないと必要な精度での円筒形状の評価はできない。 Along with the high accuracy of rotating spindles, etc., the cylindrical shape can no longer satisfy the evaluation accuracy required by machine tool manufacturers only with the information obtained by evaluating the roundness and straightness of the straight busbars individually. . In particular, the bending of the central axis of the cylinder and the change in diameter that occurs in the direction along the axis cannot be evaluated by the conventional three-point method of roundness measurement. Even if the process is repeated, the cylindrical shape cannot be evaluated with the required accuracy unless the perfect circular shape is evaluated together.

上記非特許文献2のように変位センサを5,6本用いて真円度測定の3点法と真直度測定の3点方を同時に実施して円筒を機上測定する方法も提案されているが、多くの変位センサを用いるので測定システムが高価になること、センサ相互のドリフト特性の違いなどが誤差要因になることなどから実用に到っていない。   As described in Non-Patent Document 2, there has also been proposed a method of measuring a cylinder on the machine by using five or six displacement sensors and simultaneously performing the three-point method of roundness measurement and the three points of straightness measurement. However, since many displacement sensors are used, the measurement system is expensive, and the difference in drift characteristics between the sensors is an error factor, so that it has not been put into practical use.

本発明は、かかる問題点に鑑み、真円度測定と真直度測定の3点法を最小のセンサの数で同時に実現する多点法を提供し、多点法による円筒計測システムにおける価格の問題とドリフトの問題を解決する円筒表面形状測定手段の提供を目的とする。   In view of such problems, the present invention provides a multipoint method that simultaneously realizes the three-point method of roundness measurement and straightness measurement with the minimum number of sensors, and the problem of cost in a cylindrical measurement system based on the multipoint method. An object of the present invention is to provide a cylindrical surface shape measuring means that solves the problem of drift.

請求項1の発明は、被測定円筒をその中心軸で回転自在に支持する被測定物の回転支持装置、この回転支持装置に支持された被測定円筒面上にあり該被測定円筒の中心軸に平行な一つの直線母線上の1点とこの直線母線を挟む位置にある2点の合計3点で被測定円筒面に当接する三叉センサホルダと、該三叉センサホルダに前記3つの当接点からの距離が既知の位置に配置された第一変位センサと第二変位センサの2個を備える円筒形状測定装置を提供するものである。 According to a first aspect of the present invention, there is provided a rotation support device for an object to be measured which rotatably supports a cylinder to be measured on its central axis, and a central axis of the cylinder to be measured which is on a measurement cylinder surface supported by the rotation support device A trident sensor holder that abuts the cylindrical surface to be measured at a total of three points, one point on one straight line parallel to the line and two points sandwiching the straight line, and the three fork sensor holder from the three abutment points A cylindrical shape measuring device including two sensors, a first displacement sensor and a second displacement sensor, which are arranged at a position where the distance is known is provided.

請求項2の発明は、前記直線母線を挟む三叉センサホルダと被測定円筒面との2つの当接点と、前記2個の変位センサのうちの一方の変位センサによる測定点が被測定円筒の一つの軸直角断面(xy断面:円母線ともいう)上にあることを特徴とする、請求項1に記載の円筒形状測定装置を提供するものである。 The invention according to claim 2 is characterized in that two contact points between the trident sensor holder and the measured cylindrical surface sandwiching the straight generatrix and a measurement point by one of the two displacement sensors are one of the measured cylinders. The cylindrical shape measuring device according to claim 1, wherein the cylindrical shape measuring device is provided on two cross sections perpendicular to an axis (xy cross section: also referred to as a circle bus).

請求項3の発明は、 前記三叉センサホルダに取り付けられる変位センサの少なくとも一つが、角度センサ、または、変位と角度を同時に検出できる混合センサであることを特徴とする円筒形状測定装置を提供するものである。 The invention according to claim 3 provides a cylindrical shape measuring apparatus, wherein at least one of the displacement sensors attached to the three-pronged sensor holder is an angle sensor or a mixed sensor capable of detecting displacement and angle simultaneously. It is.

請求項4の発明は、被測定円筒の前記直線母線を挟む三叉センサホルダの2つの当接点が、被測定円筒の軸に直交する回転軸を持つ姿勢で三叉センサホルダに対して回転可能な構造で取り付けられた支持用円筒ころで形成されることを特徴とする円筒形状測定装置を提供するものである。 The invention according to claim 4 is a structure in which two contact points of the trident sensor holder sandwiching the straight generatrix of the cylinder to be measured can rotate with respect to the trident sensor holder in a posture having a rotation axis orthogonal to the axis of the cylinder to be measured. A cylindrical shape measuring device is provided, which is formed by a supporting cylindrical roller attached in (1).

請求項5の発明は、被測定円筒の前記直線母線を挟む三叉センサホルダと被測定円筒との2つの当接点が、三叉センサホルダの内側に備えられた2つの球と被測定円筒との接点であることを特徴とする円筒形状測定装置を提供するものである。 According to the invention of claim 5, two contact points between the trident sensor holder and the cylinder to be measured sandwiching the straight generatrix of the cylinder to be measured are the contact points between the two spheres provided inside the trident sensor holder and the cylinder to be measured. The present invention provides a cylindrical shape measuring apparatus.

請求項6の発明は、請求項1に記載の円筒形状測定装置を用い、数値制御円筒研削装置の主軸台と心押台とで支持されている被測定円筒の表面形状を測定する方法において、円筒形状測定装置の三叉センサホルダを被測定円筒面の直線母線上であって、被測定円筒の中心軸に平行な一つの直線母線上の1点と、この直線母線を挟む位置にある三叉センサホルダの被測定円筒表面の2点で当接させるように配置し、回転中の被測定円筒の中心軸(z軸)に平行に前記三叉センサホルダを直線移動、または被測定円筒を該被測定円筒の中心軸(z軸)方向に移動させて被測定円筒の前記軸直角断面(xy断面)の真直形状値を測定し、変位センサのコントローラより変位センサと被測定円筒間の距離値および角度センサにより送信される被測定円筒の基準直線母線に対する角度の値を電気信号としてパソコンの記録部に送信し、データ解析部で送信されてきた距離および角度θの電気信号値からパソコンの記憶部に保管されている円筒表面形状測定プログラムに従って円筒の中心軸に対し、角度θにおける位置の被測定円筒表面のx座標、y座標およびz座標の座標軸値を算出し、パソコン表示画面またはプリンタに円筒表面形状を出力することを特徴とする、円筒の表面形状測定方法を提供するものである。 The invention of claim 6 uses the cylindrical shape measuring apparatus according to claim 1 to measure the surface shape of the cylinder to be measured supported by the headstock and the tailstock of the numerically controlled cylindrical grinding apparatus. The three-pronged sensor holder of the cylindrical shape measuring device is located on a straight generatrix of the cylinder surface to be measured, one point on one straight generatrix parallel to the central axis of the cylinder to be measured, and a position between the straight generatrix The holder is arranged so as to abut at two points on the surface of the cylinder to be measured, and the three-pronged sensor holder is linearly moved parallel to the central axis (z-axis) of the rotating cylinder to be measured, or the cylinder to be measured is measured. A straight shape value of the section perpendicular to the axis (xy section) of the cylinder to be measured is measured by moving in the direction of the center axis (z axis) of the cylinder, and the distance value and angle between the displacement sensor and the cylinder to be measured are measured by the displacement sensor controller. Measured circle sent by sensor The angle value for the reference straight line bus is transmitted as an electrical signal to the recording unit of the personal computer, and the cylindrical surface shape measurement stored in the storage unit of the personal computer from the electrical signal value of the distance and angle θ transmitted by the data analysis unit According to the program, the coordinate axis values of the x, y and z coordinates of the measured cylindrical surface at the angle θ with respect to the central axis of the cylinder are calculated, and the cylindrical surface shape is output to a personal computer display screen or printer. A method for measuring the surface shape of a cylinder is provided.

本発明は、多点法に必要な測定点の一部を三叉センサホルダの被測定面への当接点に置き換えることで2本の変位センサで円筒形状を測定でき、変位センサの数を減じることができる。   In the present invention, a cylindrical shape can be measured with two displacement sensors by replacing some of the measurement points necessary for the multipoint method with the contact points of the trident sensor holder with the surface to be measured, and the number of displacement sensors can be reduced. Can do.

本発明はまた、三叉センサホルダと被測定円筒との当接点を回転可能なコロまたは球で形成し、円筒と三叉センサホルダの接触面積を小さくできるので、三叉センサホルダの磨耗が小さく抑えられる。   In the present invention, the contact point between the trident sensor holder and the cylinder to be measured is formed by a rotatable roller or sphere, and the contact area between the cylinder and the trident sensor holder can be reduced, so that wear of the trident sensor holder can be kept small.

本発明はまた、被測定円筒面に対する当接点を立体的に配置することで、従来個別に成されていた真円度測定と真直度測定を一体化できるので、工作機械上で被測定円筒の表面形状を測定できる。   In the present invention, the roundness measurement and the straightness measurement which have been conventionally performed can be integrated by arranging the contact points on the measurement cylindrical surface in a three-dimensional manner. The surface shape can be measured.

変位センサとして角度センサを用いると円筒形状の高周波成分の測定も可能で、また、円筒軸の曲がりに関する直行二成分の位置が測定可能である。   When an angle sensor is used as the displacement sensor, it is possible to measure a cylindrical high-frequency component, and it is possible to measure the position of two orthogonal components related to the bending of the cylindrical axis.

以下、図を用いて本発明をさらに詳細に説明する。図1は円筒形状測定装置の正面図、図2は円筒形状測定装置の側面図、および、図3は円筒形状測定装置の平面図である。   Hereinafter, the present invention will be described in more detail with reference to the drawings. 1 is a front view of the cylindrical shape measuring apparatus, FIG. 2 is a side view of the cylindrical shape measuring apparatus, and FIG. 3 is a plan view of the cylindrical shape measuring apparatus.

図1、図2および図3に示す円筒形状測定装置1において、2は被測定円筒、3は三叉センサホルダ、3a,3bは円筒コロ、3cは球、4a,4bは変位センサ、5aは第一接点、5bは第二接点、5cは第三接点である。6は直線母線、7,7はセンサコントローラ、8はパソコン、8aはパソコン表示画面、9は操作盤、10はプリンタおよび11はマウスである。 In the cylindrical shape measuring apparatus 1 shown in FIGS. 1, 2 and 3, 2 is a cylinder to be measured, 3 is a three-pronged sensor holder, 3a and 3b are cylindrical rollers, 3c is a sphere, 4a and 4b are displacement sensors, and 5a is a first sensor. One contact, 5b is a second contact, and 5c is a third contact. Reference numeral 6 denotes a straight bus, 7, 7 a sensor controller, 8 a personal computer, 8a a personal computer display screen, 9 an operation panel, 10 a printer, and 11 a mouse.

コントローラ7は、変位センサ4a,4bと被測定円筒2間の距離値および角度センサ4aにより送信される被測定円筒の基準直線母線6に対する角度をコントローラ7が受信し、その値を電気信号としてパソコン8の記録部に送信し、データ解析部(演算部)は送信されてきた距離および角度の電気信号値からパソコンの記憶部に保管されている円筒表面形状測定プログラムに従って円筒の中心軸に対し、角度θにおける位置の被測定円筒表面のx座標、y座標およびz座標の座標軸値算出し、パソコン表示画面8aに映し出すことができる。 The controller 7 receives the distance value between the displacement sensors 4a and 4b and the cylinder 2 to be measured and the angle of the cylinder to be measured with respect to the reference straight line 6 transmitted by the angle sensor 4a, and uses the value as an electrical signal for the personal computer. The data analysis unit (calculation unit) transmits the electrical signal value of the transmitted distance and angle to the central axis of the cylinder according to the cylindrical surface shape measurement program stored in the storage unit of the personal computer. The coordinate axis values of the x, y, and z coordinates of the surface of the cylinder to be measured at the position at the angle θ can be calculated and displayed on the personal computer display screen 8a.

図1と図2には表示されていないが、被測定円筒2の両側面は、数値制御円筒研削装置の主軸台12と心押台13とで回転可能に支持され、主軸台と心押台は同一スライドテーブル上に固定されている。前記三叉センサホルダ3は、リニアーアクチュエータによりその長手方向を被測定円筒の軸心に平行に移動できる構造としてもよい。さらに、変位センサ4a,4bの位置座標(x,y,z)は、三叉センサホルダ3と被測定円筒面上の前記3点の位置座標と相関して図示されていない数値制御円筒研削装置に備えられたx軸リニアスケール、y軸リニアスケールおよびz軸リニアスケールで読み込むようになっている。 Although not shown in FIGS. 1 and 2, both side surfaces of the cylinder 2 to be measured are rotatably supported by the headstock 12 and the tailstock 13 of the numerically controlled cylindrical grinding apparatus. Are fixed on the same slide table. The trident sensor holder 3 may have a structure in which a longitudinal direction of the trident sensor holder 3 can be moved in parallel with the axis of the cylinder to be measured. Further, the position coordinates (x i , y i , z i ) of the displacement sensors 4a, 4b are not illustrated in correlation with the position coordinates of the three-point sensor holder 3 and the three points on the measured cylinder surface. Reading is performed with an x-axis linear scale, a y-axis linear scale, and a z-axis linear scale provided in the grinding apparatus.

非接触型静電容量型変位センサとしては、日本エー・ディ・イー株式会社のマイクロセンス5000シリーズ(商品名)、小野測販株式会社の静電容量型変位計VE−521(商品名)、株式会社光洋製作所のアキュメジャー(商品名)、岩通計測株式会社のST−3571A(商品名)、テクノシステム株式会社のATSシリーズ、ATMシリーズ(商品名)等が利用できる。非接触型静電容量型変位計に代えて、非接触型レーザ光変位センサを用いてもよい。角度センサは、株式会社交洋製作所よりマイクロ角度センサKMA−200S(商品名)が、データテック株式会社より3次元角度センサM12P(商品名)が入手できる。   As non-contact type capacitance displacement sensors, Japan AE Co., Ltd. Microsense 5000 series (product name), Ono Sakusa Co., Ltd. capacitance displacement meter VE-521 (product name), AccuMajor (trade name) of Koyo Seisakusho Co., Ltd., ST-3571A (trade name) of Iwatori Measurement Co., Ltd., ATS series, ATM series (trade name) of Techno System Co., Ltd., etc. can be used. A non-contact type laser beam displacement sensor may be used instead of the non-contact type capacitance displacement meter. As for the angle sensor, a micro angle sensor KMA-200S (trade name) can be obtained from Koyo Manufacturing Co., Ltd., and a three-dimensional angle sensor M12P (trade name) can be obtained from Datatec Corporation.

また、被測定円筒が回転しているときの被測定円筒の三叉センサホルダ3と前記被測定円筒面とが当接する2点5a,5bを結ぶ線分の角度αを検出できる角度センサ、および当該線分が回転すると同時に長さ変化を生じる場合に、角度変化と長さ変化を一体化したセンサ部で検出して、当該線分の相対的変位を測定できる混合センサ4aまたは4bは、キーエンス株式会社より角度・変位複合センサKS−1100(商品名)が、サンクス株式会社より高精度レーザ角度・高さ変位センサHL−V1(商品名)が販売されている。   An angle sensor capable of detecting an angle α of a line segment connecting two points 5a and 5b at which the three-pronged sensor holder 3 of the measured cylinder and the measured cylindrical surface abut when the measured cylinder is rotating, and The mixed sensor 4a or 4b, which detects the change in the angle and the change in the length and detects the relative displacement of the line segment when the line segment is changed at the same time as the rotation of the line segment, is a keyence stock. A combined angle / displacement sensor KS-1100 (trade name) is sold by the company, and a high-precision laser angle / height displacement sensor HL-V1 (trade name) is sold by Sunkus Corporation.

三叉センサホルダ3のホルダーバー3k,3m,3n,3rの素材は、ステンレス、ポリアセタールやナイロン6などのエンジニアリングプラスチックス、石英、セラミックなどの剛体材料が用いられる。コロ3a,3bや球3cの素材としては、ポリアセタール、ポリ(ジフロロジクロロエタン)、ナイロン6、ステンレス、セラミックが用いられる。円筒ころの代わりに球を用いても良い。 As the material of the holder bars 3k, 3m, 3n, and 3r of the three-pronged sensor holder 3, a rigid material such as stainless steel, engineering plastics such as polyacetal or nylon 6, quartz, or ceramic is used. As materials for the rollers 3a and 3b and the spheres 3c, polyacetal, poly (difluorodichloroethane), nylon 6, stainless steel, and ceramic are used. A sphere may be used instead of the cylindrical roller.

以下、図1、図2およびと図3を参照しながら被測定円筒の外径や真円度を求める測定原理を数式で説明する。 Hereinafter, the measurement principle for obtaining the outer diameter and roundness of the cylinder to be measured will be described with reference to FIG. 1, FIG. 2, and FIG.

被測定円筒2の中心軸をz軸に採り、変位センサ4a,4bの感度方向がx軸に合わせてある。xz断面に直行する方向にy軸を採る。図2に示すように、三叉センサホルダ3のバー3m,3nが被測定円筒2の直線母線6にV字型で股がる2本の円筒コロ3a,3aで被測定円筒軸直角断面(xy断面)上の2つの当接点5a,5bが形成され、第一の変位センサ4aの測定点が前記軸直角断面(xy断面)上にある。また、図1に示すように第二の変位センサ4bと第三の当接点5cを形成する球3c保持部材が三叉センサホルダーバ3kの一つの直線母線上にある。第3の当接点を形成する三叉センサホルダの支点は、被測定円筒と互いに軸を直交させる円筒状の支点でも、球状の支点でもよい。本発明のセンサホルダは被測定円筒に3点で接して、被測定面が設計値どおりの理想的な形状であれば、被測定円筒表面上の3点の接点で支えられた三叉センサホルダ3と被測定円筒2の相対位置関係が決まるので、変位センサ4a,4bの出力は予め校正された値になる。 The central axis of the cylinder 2 to be measured is taken as the z-axis, and the sensitivity directions of the displacement sensors 4a and 4b are aligned with the x-axis. The y axis is taken in the direction perpendicular to the xz cross section. As shown in FIG. 2, the bars 3m and 3n of the three-pronged sensor holder 3 have two cylindrical rollers 3a and 3a in which the bars 3m and 3n crotch in a straight line 6 of the cylinder 2 to be measured. Two contact points 5a and 5b on the cross section) are formed, and the measurement point of the first displacement sensor 4a is on the cross section perpendicular to the axis (xy cross section). Further, as shown in FIG. 1, the ball 3c holding member forming the second displacement sensor 4b and the third contact point 5c is on one straight line of the trident sensor holder bar 3k. The fulcrum of the three-pronged sensor holder that forms the third contact point may be a cylindrical fulcrum whose axis is perpendicular to the cylinder to be measured, or a spherical fulcrum. If the sensor holder of the present invention is in contact with the cylinder to be measured at three points and the measured surface has an ideal shape as designed, the three-pronged sensor holder 3 supported by the three points of contact on the surface of the cylinder to be measured. Since the relative positional relationship between the cylinder 2 and the cylinder 2 to be measured is determined, the outputs of the displacement sensors 4a and 4b are calibrated in advance.

いま、被測定円筒の形状F(z,θ)が、中心軸のx、y方向への曲がりΔX(z)、ΔY(z)と、平均半径の変化R(z)、各点での平均半径からの偏差(真円形状) r(z,θ)で表されるとする。 Now, the shape F (z, θ) of the cylinder to be measured is bent in the x and y directions of the central axis ΔX (z), ΔY (z), the average radius change R (z), and the average at each point Deviation from radius (circular shape) Suppose that it is represented by r (z, θ).

F(z,θ)=ΔX(z)+ΔY(z)+R(z)+r(z,θ) (1)   F (z, θ) = ΔX (z) + ΔY (z) + R (z) + r (z, θ) (1)

2つの当接点における円筒面形状の影響を考慮した三叉センサホルダの高さは、次式(2)で表される。 The height of the trident sensor holder in consideration of the influence of the cylindrical surface shape at the two contact points is expressed by the following equation (2).

S(z)= ΔX(z)+{R(z)+r(z,θ-π/2+α/2)+r(z,θ+π/2-α/2)}cos(α/2) (2) S (z) = ΔX (z) + {R (z) + r (z, θ-π / 2 + α / 2) + r (z, θ + π / 2-α / 2)} cos (α / 2) (2)

このとき、zの位置の軸直角断面を考えると真円形状はr(z,θ)であり、
その断面上に2つの当接点と変位センサがあると、三叉変位センサの出力は、次式(3)で表される。
At this time, considering a cross section perpendicular to the axis at the position of z, the perfect circular shape is r (z, θ),
If there are two contact points and a displacement sensor on the cross section, the output of the three-pronged displacement sensor is expressed by the following equation (3).

m1(z,θ)=R(z)+r(z,θ)−{R(z)+r(z,θ-π/2+α/2)+r(z,θ+π/2-α/2)}cos (α/2) (3)   m1 (z, θ) = R (z) + r (z, θ) − {R (z) + r (z, θ−π / 2 + α / 2) + r (z, θ + π / 2−α / 2) )} Cos (α / 2) (3)

ただし、変位センサの出力は、三叉センサホルダ3のx方向位置を基準にしたときの、当該センサ測定点における被測定円筒面の形状高さで表している。以後も同様である。 However, the output of the displacement sensor is represented by the shape height of the cylindrical surface to be measured at the sensor measurement point when the position of the trident sensor holder 3 in the x direction is used as a reference. The same applies thereafter.

当接点や変位センサの位置zが同一軸直角断面上に無いときは、それぞれの当接点のz軸座標と変位センサ位置のz座標を上式に代入すれば変位センサ出力に関して一応の近似式が成立する。   If the contact z or the position z of the displacement sensor is not on the same-axis cross section, substituting the z-axis coordinate of each contact point and the z-coordinate of the displacement sensor position into the above equation gives a temporary approximation for the displacement sensor output. To establish.

図1に示すように、直線母線6上の第3の当接点位置がz+L3で、第2のセンサ位置がz+Ls、母線を挟む円筒コロの当接点がzであれば、第三の当接点高さ S(z+L3)は、次式(4)のようになる。 As shown in FIG. 1, if the third contact point position on the straight bus 6 is z + L3, the second sensor position is z + Ls, and the contact point of the cylindrical roller sandwiching the bus is z, the third contact point height S (z + L3) is expressed by the following equation (4).

S(z+L3)=ΔX(z+L3)+R(z+L3)+r(z+L3、θ) (4)   S (z + L3) = ΔX (z + L3) + R (z + L3) + r (z + L3, θ) (4)

第二の変位センサ4b位置での変位出力は、次式(5)で示される。   The displacement output at the position of the second displacement sensor 4b is expressed by the following equation (5).

m2(z,θ)=X(z+Ls)−X(z)+R(z+Ls)+r(z+Ls,θ)−{S(z+L3)−S(z)}Ls/L3 (5) m2 (z, θ) = X (z + Ls) −X (z) + R (z + Ls) + r (z + Ls, θ) − {S (z + L3) −S (z)} Ls / L3 ( 5)

第二の変位センサ位置で直線母線の傾斜を検出する角度センサ4bがあれば、その角度センサ出力は、次式(6)で表される。 If there is an angle sensor 4b that detects the inclination of the straight bus at the second displacement sensor position, the output of the angle sensor is expressed by the following equation (6).

μ2(z,θ)=dR(z+Ls)/dz+dr(z+Ls,θ) /dz−{S(z+L3)−S(z)}/L3 (6)   μ2 (z, θ) = dR (z + Ls) / dz + dr (z + Ls, θ) / dz− {S (z + L3) −S (z)} / L3 (6)

第二のセンサ位置で円周接線の傾斜を検出する角度センサ4bがあれば、その角度センサ出力は、次式(7)で表される。   If there is an angle sensor 4b that detects the inclination of the circumferential tangent at the second sensor position, the output of the angle sensor is expressed by the following equation (7).

ν2(z,θ)={ΔY(z+Ls)−ΔY(z)}/R+dr(z+Ls,θ) /Rdθ (7)   ν2 (z, θ) = {ΔY (z + Ls) −ΔY (z)} / R + dr (z + Ls, θ) / Rdθ (7)

前記式(2)乃至式(7)をセンサ出力一回転分について平均すると、それぞれ次式(8),(9),(10),(11),(12)および式(13)を得る。 When the equations (2) to (7) are averaged for one rotation of the sensor output, the following equations (8), (9), (10), (11), (12) and equation (13) are obtained, respectively.

Save(z)= ΔX(z)+R(z) cos(α/2) (8)   Save (z) = ΔX (z) + R (z) cos (α / 2) (8)

Save(z+L3)=ΔX(z+L3)+R(z+L3) (9)   Save (z + L3) = ΔX (z + L3) + R (z + L3) (9)

m1ave(z,θ)=R(z)−R(z) cos(α/2) (10)   m1ave (z, θ) = R (z) −R (z) cos (α / 2) (10)

m2ave(z,θ)=X(z+Ls)−X(z)+R(z+Ls)−{Save(z+L3)−Save(z)}Ls/L3 (11)   m2ave (z, θ) = X (z + Ls) −X (z) + R (z + Ls) − {Save (z + L3) −Save (z)} Ls / L3 (11)

μ2ave(z,θ)=dR(z+Ls)/dz−{Save(z+L3)−Save(z)}/L3 (12)   μ2ave (z, θ) = dR (z + Ls) / dz− {Save (z + L3) −Save (z)} / L3 (12)

ν2ave(z,θ)={ΔY(z+Ls)−ΔY(z)}/R (13)   ν2ave (z, θ) = {ΔY (z + Ls) −ΔY (z)} / R (13)

式(10)より、円筒の平均半径R(z)がR(z)=m1ave(z,θ)/{1−cos(α/2)}と導かれる。m1ave(z,θ)は被測定円筒2のテーパを含む平均直径変化を示す。 From the equation (10), the average radius R (z) of the cylinder is derived as R (z) = m1ave (z, θ) / {1-cos (α / 2)}. m1ave (z, θ) indicates the average diameter change including the taper of the cylinder 2 to be measured.

また、式(8)と式(9)より次式(14)が導かる。 Moreover, following Formula (14) is guide | induced from Formula (8) and Formula (9).

Save(z+L3)−Save(z)=ΔX(z+L3)−ΔX(z)+{R(z+L3)−R(z) cos(α/2)} (14)   Save (z + L3) −Save (z) = ΔX (z + L3) −ΔX (z) + {R (z + L3) −R (z) cos (α / 2)} (14)

式(11)と式(14)より、次式(15)が導かれ、真直形状の3点法の差動となる。   From the equations (11) and (14), the following equation (15) is derived, which is a straight three-point differential.

m2ave(z,θ)−R(z+Ls)−{R(z+L3)−R(z) cos(α/2)}Ls/L3
=X(z+Ls)−X(z)−{ΔX(z+L3)−ΔX(z)}Ls/L3 (15)
m2ave (z, θ) −R (z + Ls) − {R (z + L3) −R (z) cos (α / 2)} Ls / L3
= X (z + Ls) −X (z) − {ΔX (z + L3) −ΔX (z)} Ls / L3 (15)

この式(15)を解析すれば、被測定円筒2の中心軸のxz断面での被測定円筒の真直形状が求められる。   If this equation (15) is analyzed, the straight shape of the cylinder to be measured in the xz section of the central axis of the cylinder 2 to be measured is obtained.

前式(13)のν2ave(z,θ)は、被測定円筒2の中心軸のyz断面での真直形状に関する2点法の差動出力が得られる。これを解析すれば、被測定円筒2の中心軸のyz断面での真直形状が求められる。   Ν2ave (z, θ) in the previous equation (13) provides a differential output of the two-point method relating to the straight shape in the yz section of the central axis of the cylinder 2 to be measured. If this is analyzed, a straight shape in the yz section of the central axis of the cylinder 2 to be measured is obtained.

このように平均出力で決まる量を求めた後、前式(3)のm1(z,θ)をみると、軸方向の位置zでの軸直角断面の被測定円筒2の真円形状がわかる。中心軸の真直形状がわかれば、被測定円筒2の中心位置がわかるので、その位置での平均半径R(z)とr(z,θ)を使えば、被測定円筒2の三次元的な形状が出力される。   After obtaining the amount determined by the average output in this way, looking at m1 (z, θ) in the previous equation (3), the perfect circle shape of the cylinder 2 to be measured having a cross section perpendicular to the axis at the position z in the axial direction can be seen. . If the straight shape of the central axis is known, the center position of the cylinder 2 to be measured can be found. If the average radii R (z) and r (z, θ) at that position are used, the three-dimensional shape of the cylinder 2 to be measured is obtained. The shape is output.

直線母線6の真直形状は、上記の円筒形状からも求められるが、また、θを固定したときの式(5)のm2(z,θ)から直線母線の真直形状が三点法出力として別途求めることもできる。   The straight shape of the straight bus 6 can also be obtained from the above cylindrical shape, but the straight shape of the straight bus from the m2 (z, θ) in equation (5) when θ is fixed is separately output as a three-point method. You can ask for it.

前式(6)のμ2(z,θ)、前式(12)のμ2ave(z,θ)は、上述の説明では使わなかったが、式(5)の代わりに式(6)を用いれば、真直形状に関する混合法出力となり、形状の高周波成分の詳細を知る上では有利になる。また、式(3)の代わりに式(7)を用いると円母線の真円形状に関する混合法出力が得られ、やはり、形状の高周波成分の詳細を知る上では有利になる。 Although μ2 (z, θ) in the previous equation (6) and μ2ave (z, θ) in the previous equation (12) were not used in the above description, if equation (6) is used instead of equation (5), This is a mixed method output for a straight shape, which is advantageous for knowing the details of the high-frequency component of the shape. Further, when Expression (7) is used instead of Expression (3), a mixed method output relating to the perfect circle shape of the circle bus is obtained, which is also advantageous in knowing details of the high-frequency component of the shape.

なお、図1においては測定用センサの一つ4aを、2つの円筒コロ3a,3bによる当接点5a,5bと同一の円母線上(xy断面)に配置しているが、この位置はz軸方向に移動させてもよい。また、変位センサは2個用いているが、当接点近傍に測定点があるような変位センサを1〜3個追加すると、当該の当接点が被測定物から離れるような状況が生じても誤差を生じない測定装置システムとすることができる。一箇所でも被測定円筒面からの分離が許される当接点があれば、三叉センサホルダ3を被測定円筒表面に押し付ける力の配分の均等性に余裕が生まれるという利点がある。 In FIG. 1, one of the measuring sensors 4a is arranged on the same circle bus (xy cross section) as the contact points 5a and 5b by the two cylindrical rollers 3a and 3b, but this position is the z axis. It may be moved in the direction. Also, although two displacement sensors are used, adding one to three displacement sensors that have measurement points in the vicinity of the contact point will cause an error even if the contact point is separated from the object to be measured. It can be set as the measuring device system which does not produce. If there is a contact point at which separation from the cylindrical surface to be measured is allowed even at one place, there is an advantage that there is a margin in the uniformity of the distribution of the force for pressing the three-pronged sensor holder 3 against the surface of the cylindrical object to be measured.

円筒形状測定装置1を用い、数値制御円筒研削装置の主軸台12と心押台13とで支持されている被測定円筒の表面形状を測定するには、円筒形状測定装置1の三叉センサホルダ3のホルダーバー3kを被測定円筒面上方位置に備えさせ、被測定円筒の中心軸に平行な一つの直線母線上の1点と、この直線母線を挟む位置にある三叉センサホルダの被測定円筒表面の2点の合計3点で三叉センサホルダ3を被測定円筒面に当接させ、被測定円筒を回転させ、変位センサ4aで中心軸泡利に対する円筒表面形状を測定し、また、回転中の被測定円筒の中心軸(z軸)に平行に三叉センサホルダを直線移動または被測定円筒を該被測定円筒の中心軸(z軸)方向に移動させて被測定円筒の前記軸直角断面(xy断面)の真直形状値を測定し、コントローラ7,7より変位センサ4a,4bと被測定円筒2間の距離値および角度センサ4aにより送信される被測定円筒の基準直線母線6に対する角度の値を電気信号としてパソコン8の記録部に送信し、データ解析部(演算部)で送信されてきた距離および角度の電気信号値からパソコンの記憶部に保管されている前記式(1)から式(15)を含む円筒表面形状測定プログラムに従って円筒の中心軸に対し、角度θにおける位置の被測定円筒表面のx座標、y座標およびz座標の座標軸値を算出し、パソコン表示画面8aに映し出す。被測定円筒の外表面形状は、この真直形状値の中心軸移動方向の値を積分することにより被測定円筒の表面形状を算出し、パソコン表示画面8aに映し出すことができる。 In order to measure the surface shape of the cylinder to be measured supported by the headstock 12 and the tailstock 13 of the numerically controlled cylindrical grinding apparatus using the cylindrical shape measuring apparatus 1, the trident sensor holder 3 of the cylindrical shape measuring apparatus 1. The holder bar 3k is provided at a position above the cylindrical surface to be measured, one point on one straight line parallel to the central axis of the measured cylinder, and the measured cylindrical surface of the three-pronged sensor holder at a position sandwiching the straight line. The three-pronged sensor holder 3 is brought into contact with the cylinder surface to be measured at a total of three points, and the cylinder to be measured is rotated, and the cylinder surface shape with respect to the central axis foam is measured by the displacement sensor 4a. The trident sensor holder is linearly moved parallel to the center axis (z axis) of the cylinder to be measured or the cylinder to be measured is moved in the direction of the center axis (z axis) of the cylinder to be measured (xy) Measure the straight shape value of the The distance values between the displacement sensors 4a and 4b and the cylinder 2 to be measured and the angle values of the cylinder to be measured, which are transmitted by the angle sensor 4a, are transmitted from the rollers 7 and 7 to the recording unit of the personal computer 8 as electrical signals. Then, the cylinder according to the cylindrical surface shape measurement program including the above formulas (1) to (15) stored in the storage unit of the personal computer from the electric signal values of the distance and angle transmitted from the data analysis unit (calculation unit) The coordinate axis values of the x, y, and z coordinates of the surface of the cylinder to be measured at the angle θ are calculated with respect to the central axis and projected on the personal computer display screen 8a. As the outer surface shape of the cylinder to be measured, the surface shape of the cylinder to be measured can be calculated by integrating the value of the straight shape value in the direction of movement of the central axis, and can be displayed on the personal computer display screen 8a.

本発明の円筒形状測定装置の別態様として、三叉センサホルダ3と被測定円筒表面の当接点での摩擦による引っ掛かりの影響を低減するために、三叉センサホルダ3に微小振動装置を搭載することも容易である。また、被測定面の汚れや加工中に付着する加工液が測定に及ぼす影響を避けるために、当接点近傍に表面清掃用のパッドを押し付けて、清浄な面に対する機上測定を実施してもよい。 As another aspect of the cylindrical shape measuring apparatus of the present invention, a micro-vibration device may be mounted on the trident sensor holder 3 in order to reduce the influence of friction caused by friction at the contact point between the trident sensor holder 3 and the surface of the cylinder to be measured. Easy. In addition, in order to avoid the influence of dirt on the surface to be measured and the processing liquid adhering during processing on the measurement, a surface cleaning pad may be pressed near the contact point to perform on-machine measurement on a clean surface. Good.

本発明によれば、円筒の中心軸の曲がり測定や、円筒のテーパの測定も可能である。これは、従来行われている各種の三点法による真円形状測定のz軸の沿う繰り返しだけでは実現できなかったものである。 According to the present invention, it is possible to measure the bending of the central axis of the cylinder and the taper of the cylinder. This cannot be realized only by repeating along the z-axis for the measurement of a perfect circle shape by various three-point methods that are conventionally performed.

本発明の円筒形状測定装置は、工作機械に取り付けられている円筒の形状測定に利用できる。特に、当接点を構成する三叉センサホルダ3の支持部材に回転可能な円筒コロ5a,5b、球5cを用いれば、この機上測定は容易となる。 The cylindrical shape measuring apparatus of the present invention can be used for measuring the shape of a cylinder attached to a machine tool. In particular, if the rotatable cylindrical rollers 5a and 5b and the sphere 5c are used for the support member of the three-pronged sensor holder 3 constituting the contact point, this on-machine measurement becomes easy.

本発明の円筒表面形状の測定方法は、円筒のテーパを平均半径の変化として、真円形状測定のための三点法を利用するので、真直形状測定におけるゼロ点調整が不要である。   Since the cylindrical surface shape measurement method of the present invention uses a three-point method for measuring a perfect circle shape with the taper of the cylinder as a change in average radius, zero point adjustment in the straight shape measurement is unnecessary.

円筒形状測定装置の正面図である。It is a front view of a cylindrical shape measuring apparatus. 円筒形状測定装置の側面図である。It is a side view of a cylindrical shape measuring apparatus. 円筒形状測定装置の平面図である。It is a top view of a cylindrical shape measuring apparatus.

符号の説明Explanation of symbols

1 円筒形状測定装置
2 被測定円筒
3 三叉センサホルダ
4a,4b 変位センサまたは角度・変位混合センサ
5 変位センサホルダバ
6 直線母線
7 コントローラ
8 パソコン
10 プリンタ
DESCRIPTION OF SYMBOLS 1 Cylindrical shape measuring apparatus 2 Cylinder to be measured 3 Trident sensor holder 4a, 4b Displacement sensor or angle / displacement mixed sensor 5 Displacement sensor holder bar 6 Linear bus 7 Controller 8 Personal computer 10 Printer

Claims (6)

被測定円筒をその中心軸で回転自在に支持する被測定物の回転支持装置、この回転支持装置に支持された被測定円筒面上にあり該被測定円筒の中心軸に平行な一つの直線母線上の1点とこの直線母線を挟む位置にある2点の合計3点で被測定円筒面に当接する三叉センサホルダと、該三叉センサホルダに前記3つの当接点からの距離が既知の位置に配置された第一変位センサと第二変位センサの2個を備える円筒形状測定装置。 A rotation support device for the object to be measured, which rotatably supports the cylinder to be measured about its central axis, and a single linear mother on the surface of the measurement cylinder supported by the rotation support device and parallel to the center axis of the cylinder to be measured A trident sensor holder that abuts the cylindrical surface to be measured at a total of three points, one point on the line and two points between the straight generatrix, and a distance from the three abutment points to the trident sensor holder at a known position A cylindrical shape measuring apparatus including two arranged first displacement sensors and second displacement sensors. 前記直線母線を挟む三叉センサホルダと被測定円筒面との2つの当接点と、前記2個の変位センサのうちの一方の変位センサによる測定点が被測定円筒の一つの軸直角断面(xy断面)上にあることを特徴とする、請求項1に記載の円筒形状測定装置。 Two contact points between the three-pronged sensor holder and the cylindrical surface to be measured sandwiching the straight generatrix, and a measurement point by one displacement sensor of the two displacement sensors are one axis perpendicular section (xy cross section) of the measured cylinder. The cylindrical shape measuring apparatus according to claim 1, wherein 前記三叉センサホルダに取り付けられる変位センサの少なくとも一つが、角度センサ、または、変位と角度を同時に検出できる混合センサであることを特徴とする請求項1に記載の円筒形状測定装置。   The cylindrical shape measuring apparatus according to claim 1, wherein at least one of the displacement sensors attached to the three-pronged sensor holder is an angle sensor or a mixed sensor capable of detecting displacement and angle simultaneously. 被測定円筒の前記直線母線を挟む三叉センサホルダの2つの当接点が、被測定円筒の軸に直交する回転軸を持つ姿勢で三叉センサホルダに対して回転可能な構造で取り付けられた支持用円筒ころで形成されることを特徴とする、請求項1に記載の円筒形状測定装置。   A supporting cylinder attached with a structure in which two contact points of the trident sensor holder sandwiching the straight generatrix of the cylinder to be measured have a rotation axis orthogonal to the axis of the cylinder to be measured and can rotate with respect to the trident sensor holder. The cylindrical shape measuring apparatus according to claim 1, wherein the cylindrical shape measuring apparatus is formed of rollers. 被測定円筒の前記直線母線を挟む三叉センサホルダと被測定円筒との2つの当接点が、三叉センサホルダの内側に備えられた2つの球と被測定円筒との接点であることを特徴とする、請求項1または請求項2に記載の円筒形状測定装置。   Two contact points between the three-pronged sensor holder and the measured cylinder sandwiching the straight generatrix of the measured cylinder are contact points between the two spheres provided inside the trident sensor holder and the measured cylinder. The cylindrical shape measuring apparatus according to claim 1 or 2. 請求項1に記載の円筒形状測定装置を用い、数値制御円筒研削装置の主軸台と心押台とで支持されている被測定円筒の表面形状を測定する方法において、円筒形状測定装置の三叉センサホルダを被測定円筒面の直線母線上であって、被測定円筒の中心軸に平行な一つの直線母線上の1点と、この直線母線を挟む位置にある三叉センサホルダの被測定円筒表面の2点で当接させるように配置し、回転中の被測定円筒の中心軸(z軸)に平行に前記三叉センサホルダを直線移動、または被測定円筒を該被測定円筒の中心軸(z軸)方向に移動させて被測定円筒の前記軸直角断面(xy断面)の真直形状値を測定し、変位センサのコントローラより変位センサと被測定円筒間の距離値および角度センサにより送信される被測定円筒の基準直線母線に対する角度の値を電気信号としてパソコンの記録部に送信し、データ解析部で送信されてきた距離および角度θの電気信号値からパソコンの記憶部に保管されている円筒表面形状測定プログラムに従って円筒の中心軸に対し、角度θにおける位置の被測定円筒表面のx座標、y座標およびz座標の座標軸値を算出し、パソコン表示画面またはプリンタに円筒表面形状を出力することを特徴とする、円筒の表面形状測定方法。   A method for measuring a surface shape of a cylinder to be measured supported by a headstock and a tailstock of a numerically controlled cylindrical grinding apparatus using the cylindrical shape measuring apparatus according to claim 1, The holder is located on a straight generatrix of the cylinder surface to be measured, on one linear generatrix parallel to the central axis of the cylinder to be measured, and on the surface of the cylinder to be measured of the three-pronged sensor holder at a position sandwiching the straight generatrix. The three-pronged sensor holder is linearly moved parallel to the center axis (z axis) of the rotating cylinder to be measured, or the cylinder to be measured is center axis (z axis) of the cylinder to be measured. ) To measure the straight shape value of the cross section perpendicular to the axis (xy cross section) of the cylinder to be measured, and the distance value between the displacement sensor and the cylinder to be measured and the angle sensor transmitted from the controller of the displacement sensor. To the cylindrical straight straight line The angle value to be transmitted to the recording unit of the personal computer as an electrical signal, and the cylinder surface shape measurement program stored in the storage unit of the personal computer is stored from the distance and the electrical signal value of the angle θ transmitted by the data analysis unit. Calculating the x-axis, y-coordinate and z-coordinate values of the measured cylindrical surface at a position at an angle θ with respect to the central axis, and outputting the cylindrical surface shape to a personal computer display screen or printer; Surface shape measurement method.
JP2008022394A 2008-02-01 2008-02-01 Cylindrical shape measuring device and cylindrical surface shape measuring method Pending JP2009180700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022394A JP2009180700A (en) 2008-02-01 2008-02-01 Cylindrical shape measuring device and cylindrical surface shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022394A JP2009180700A (en) 2008-02-01 2008-02-01 Cylindrical shape measuring device and cylindrical surface shape measuring method

Publications (1)

Publication Number Publication Date
JP2009180700A true JP2009180700A (en) 2009-08-13

Family

ID=41034781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022394A Pending JP2009180700A (en) 2008-02-01 2008-02-01 Cylindrical shape measuring device and cylindrical surface shape measuring method

Country Status (1)

Country Link
JP (1) JP2009180700A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478397A (en) * 2010-11-22 2012-05-30 中国科学院沈阳自动化研究所 Device for detecting radial run-out of outer ring of pipe and control method thereof
KR20150006130A (en) * 2013-07-08 2015-01-16 대우조선해양 주식회사 Ellipticity measuring apparatus and measuring method of pipe
CN110044315A (en) * 2019-05-07 2019-07-23 中国水利水电科学研究院 Roundness measuring system
CN113847908A (en) * 2021-09-03 2021-12-28 浙江可胜技术股份有限公司 Heliostat upright column center point positioning device and positioning method
CN115979118A (en) * 2023-03-17 2023-04-18 山东科技大学 Device and method for measuring perpendicularity error and error azimuth angle of cylindrical part

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478397A (en) * 2010-11-22 2012-05-30 中国科学院沈阳自动化研究所 Device for detecting radial run-out of outer ring of pipe and control method thereof
KR20150006130A (en) * 2013-07-08 2015-01-16 대우조선해양 주식회사 Ellipticity measuring apparatus and measuring method of pipe
KR101971975B1 (en) 2013-07-08 2019-04-24 대우조선해양 주식회사 Ellipticity measuring apparatus and measuring method of pipe
CN110044315A (en) * 2019-05-07 2019-07-23 中国水利水电科学研究院 Roundness measuring system
CN110044315B (en) * 2019-05-07 2024-02-02 中国水利水电科学研究院 Roundness measuring system
CN113847908A (en) * 2021-09-03 2021-12-28 浙江可胜技术股份有限公司 Heliostat upright column center point positioning device and positioning method
CN113847908B (en) * 2021-09-03 2023-10-24 浙江可胜技术股份有限公司 Heliostat upright post center point positioning device and positioning method
CN115979118A (en) * 2023-03-17 2023-04-18 山东科技大学 Device and method for measuring perpendicularity error and error azimuth angle of cylindrical part
CN115979118B (en) * 2023-03-17 2023-06-09 山东科技大学 Device and method for measuring verticality error and error azimuth angle of cylindrical part

Similar Documents

Publication Publication Date Title
US10073435B2 (en) Reducing errors of a rotatory device, in particular for the determination of coordinates of a workpiece or the machining of a workpiece
US8494800B2 (en) Method and program for identifying mechanical errors
JP6419575B2 (en) Machine tool and workpiece measurement method
JP5539865B2 (en) Scan head calibration apparatus and method
JP5277033B2 (en) Correction ball diameter calculation method and shape measuring apparatus
Chen et al. Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool
CN102472605A (en) Method and apparatus for probe tip diameter calibration
CN104368886A (en) Cutting tool machining method and a wire electric discharge machine
WO2014112431A1 (en) Normal-line detection device, processing device, and normal-line detection method
JP2012159499A (en) Measuring apparatus and measuring method for ball screw
JP2022172365A (en) Measurement of toothed article using multiple sensors
Stepien In situ measurement of cylindricity—Problems and solutions
JP2009180700A (en) Cylindrical shape measuring device and cylindrical surface shape measuring method
JP4748287B2 (en) Shape measuring device
Ito et al. Measurement of form error of a probe tip ball for coordinate measuring machine (CMM) using a rotating reference sphere
JP2006349388A (en) Measuring method and measuring instrument for rotation center
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
JP4891629B2 (en) Surface texture measuring machine, shape analysis program and recording medium
Guo et al. Continuous measurements with single setup for position-dependent geometric errors of rotary axes on five-axis machine tools by a laser displacement sensor
EP3334562B1 (en) Grinding error compensation
Masashi et al. Evaluation of linear axis motion error of machine tools using an R-test device
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JP6181935B2 (en) Coordinate measuring machine
CN105666325B (en) Taper measurement method, apparatus, internal grinder and cylindrical grinder