WO2022070439A1 - Tilt measurement device and tilt measurement method - Google Patents

Tilt measurement device and tilt measurement method Download PDF

Info

Publication number
WO2022070439A1
WO2022070439A1 PCT/JP2020/047552 JP2020047552W WO2022070439A1 WO 2022070439 A1 WO2022070439 A1 WO 2022070439A1 JP 2020047552 W JP2020047552 W JP 2020047552W WO 2022070439 A1 WO2022070439 A1 WO 2022070439A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
displacement meter
irradiation position
measuring jig
displacement
Prior art date
Application number
PCT/JP2020/047552
Other languages
French (fr)
Japanese (ja)
Inventor
和典 井上
智浩 江川
大哉 吉岡
真理 大野
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2022070439A1 publication Critical patent/WO2022070439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a tilt measuring device and a tilt measuring method.
  • the conventional multi-point angle measuring device includes a rotation support for measuring the rotation angle of the reference plane, an XY table attached to the rotation support and having a movable part, an X-ray source having a fixed radiation direction, and a receiving tube. Then, two laser focus displacement meters each having a light source are installed above the crystal plate. An angle calculator is connected to the laser focus displacement meter. The laser focus displacement meter measures the displacement in the direction perpendicular to the main surface at two points on the crystal plate. Then, the angle calculator calculates the slope between the two points by a trigonometric function from the preset distance between the light sources and the displacement difference between the two points. (See, for example, Japanese Patent Application Laid-Open No. 11-63956)
  • the above-mentioned multipoint angle measuring device can calculate the inclination in the rotation direction about the axis parallel to the main surface of the crystal plate.
  • An object of the present invention is to suppress an increase in the displacement meter and measure the inclination of a movable body with a simpler configuration.
  • the exemplary tilt measuring device of the present invention measures the tilt of a swingable movable body.
  • the inclination measuring device includes a measuring jig that is held by the movable body and can swing together with the movable body, and a displacement meter that irradiates the measuring jig with a laser beam to measure the displacement of the measuring jig.
  • the measuring jig is held by the movable body and can swing together with the movable body.
  • the displacement meter irradiates the measuring jig with a laser beam to measure the displacement of the measuring jig.
  • the measuring jig has a flat surface and a base portion arranged on the flat surface.
  • the plane in a stationary state of the measuring jig is perpendicular to the first axis extending in the first direction through the swing center of the measuring jig.
  • the pedestal has a slope extending in the first slope direction and the second slope direction.
  • the first slope direction is perpendicular to the first direction and intersects the radial direction with respect to the first axis.
  • the second slope direction is perpendicular to the first slope direction and diagonally intersects with the first slope direction.
  • the displacement meter has a first displacement meter that irradiates the laser beam toward the slope. The first displacement meter measures the displacement of the first irradiation position of the laser beam on the slope in the first direction.
  • the exemplary tilt measuring method of the present invention measures the tilt of a swingable movable body.
  • the inclination measuring method includes a step of measuring the displacement of the measuring jig with a displacement meter that irradiates a measuring jig held by the movable body and swingable together with the movable body with a laser beam.
  • the measuring jig has a flat surface and a base portion arranged on the flat surface.
  • the plane in a stationary state of the measuring jig is perpendicular to the first axis extending in the first direction through the swing center of the measuring jig.
  • the pedestal has a slope extending in the first slope direction and the second slope direction.
  • the first slope direction is perpendicular to the first direction and intersects the radial direction with respect to the first axis.
  • the second slope direction is perpendicular to the first slope direction and diagonally intersects with the first slope direction.
  • the measurement step is a first displacement meter that irradiates the laser beam toward the slope, and includes a step of measuring the displacement of the laser beam in the first direction of the first irradiation position on the slope.
  • the exemplary tilt measuring device and tilt measuring method of the present invention it is possible to suppress the increase of the displacement meter and measure the tilt of the movable body with a simpler configuration.
  • FIG. 1 is a perspective view showing an outline of a tilt measuring device.
  • FIG. 2 is a block diagram showing a configuration example of the tilt measuring device.
  • FIG. 3 is a perspective view showing a configuration example of the base portion.
  • FIG. 4A is a perspective view showing a first modification of the base portion.
  • FIG. 4B is a perspective view showing a second modification of the base portion.
  • FIG. 4C is a perspective view showing a third modification of the base portion.
  • FIG. 4D is a perspective view showing a fourth modified example of the base portion.
  • FIG. 4E is a perspective view showing a fifth modified example of the base portion.
  • FIG. 5 is a top view of the vicinity of the slope of the measuring jig rotated in the first rotation direction.
  • FIG. 5 is a top view of the vicinity of the slope of the measuring jig rotated in the first rotation direction.
  • FIG. 6 is a conceptual diagram showing the positional relationship of the first irradiation position after rotation.
  • FIG. 7 is a side view of the measuring jig rotated in the second rotation direction as viewed from the second direction.
  • FIG. 8 is a side view of the measuring jig rotated in the third rotation direction as viewed from the third direction.
  • FIG. 9 is a flowchart for explaining a method of measuring the inclination of the measuring jig.
  • the state in which the swingable measuring jig 1 to be described later is stopped and the normal direction of the plane 11 of the measuring jig 1 is parallel to the laser beam 20 of the displacement meter 2 is defined as “measuring jig”. It is called "a state in which 1 is stationary”.
  • first direction D1 The normal direction of the plane 11 when the measuring jig 1 is stationary is called “first direction D1".
  • first direction one D1a the direction from the displacement meter 2 to the measuring jig 1
  • first direction other D1b the direction from the measuring jig 1 to the displacement meter 2
  • first direction other D1b the direction from the measuring jig 1 to the displacement meter 2
  • first direction other D1b the direction from the measuring jig 1 to the displacement meter 2
  • first direction other D1b the direction from the measuring jig 1 to the displacement meter 2
  • first direction other D1b the direction other D1b
  • second direction D2 The direction perpendicular to the first direction D1 is called "second direction D2".
  • One of the second directions D2 is referred to as “second direction one D2a”, and the other of the second directions D2 is referred to as “second direction other D2b".
  • the end in the second direction one D2a is referred to as the "second direction one end” and the end in the second direction other D2b is referred to as the "second direction other end”.
  • the surface facing one D2a in the second direction is referred to as “one end surface in the second direction”
  • the surface facing the other D2b in the second direction is referred to as "the other end surface in the second direction”.
  • third direction D3 The direction perpendicular to both the first direction D1 and the second direction D2 is called "third direction D3".
  • One of the third directions D3 is referred to as “third direction one D3a”, and the other of the third directions D3 is referred to as “third direction other D3b".
  • the end in one D3a in the third direction is referred to as the "one end in the third direction” and the end in the other D3b in the third direction is referred to as the "other end in the third direction”.
  • the surface facing one D3a in the third direction is referred to as "one end surface in the third direction”
  • the surface facing the other D3b in the third direction is referred to as "the other end surface in the third direction”.
  • the axis extending in the first direction D1 is called “first axis A1”
  • the axis extending in the second direction D2 is called “second axis A2”
  • the axis extending in the third direction D3 is called “third axis A3”. ..
  • the first axis A1, the second axis A2, and the third axis A3 each pass through the swing center CP of the measuring jig 1 and are orthogonal to each other.
  • the circumferential direction centered on the first axis A1 is called “first rotation direction DR1”
  • the circumferential direction centered on the second axis A2 is called “second rotation direction DR2”
  • the third axis A3 is the center.
  • the circumferential direction is called “third rotation direction DR3”.
  • the first rotation direction DR1 is the so-called rolling direction.
  • One of the second rotation direction DR2 and the third rotation direction DR3 is the so-called pitching direction.
  • the other of the second rotation direction DR2 and the third rotation direction DR3 is the so-called yawing direction.
  • the direction orthogonal to a predetermined axis is called the "diameter direction" with respect to this axis.
  • the predetermined axes are, for example, the first axis A1, the second axis A2, and the third axis A3.
  • the direction closer to the predetermined axis is called “diametrically inward”
  • the direction away from the predetermined axis is called “diametrically outward”.
  • the inner end in the radial direction is referred to as the “inner end portion in the radial direction”
  • the end portion in the outer direction in the radial direction is referred to as the "outer end portion in the radial direction”.
  • the side surface facing inward in the radial direction is referred to as “diameter inner surface”
  • the side surface facing outward in the radial direction is referred to as "diameter outer surface”.
  • FIG. 1 is a perspective view showing an outline of the inclination measuring device 100.
  • FIG. 2 is a block diagram showing a configuration example of the tilt measuring device 100.
  • the measuring jig 1 and the movable body 201 are stationary.
  • the tilt measuring device 100 measures the tilt of the measuring jig 1 that swings together with the movable body 201 to be measured in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3.
  • the measurement target in the present embodiment is an optical unit 200 having a shake correction function for correcting the runout of an optical module such as a camera unit.
  • the optical unit 200 includes a movable body 201 that holds the optical module, a fixed body (not shown) that holds the movable body 201 swingably, and a drive mechanism 202 that rotationally drives the movable body 201 with respect to the fixed body.
  • the optical unit 200 is mounted on a smartphone with a camera, an image pickup device such as a photo camera and a video camera, an action camera mounted on a moving body such as a drone, and the like.
  • the runout correction function of the optical unit 200 is movable based on the detection results such as acceleration, angular velocity, and runout amount in the three-dimensional direction detected by a sensor such as a gyroscope (not shown) when the movable body 201 is tilted with respect to the fixed body.
  • the inclination of the body 201 is corrected, and the deviation of the optical axis of the optical module of the movable body 201 is corrected.
  • the optical unit 200 is equipped with the measuring jig 1 instead of the optical module.
  • the movable body 201 has a cylindrical holder 203 that houses and holds the measuring jig 1.
  • the holder 203 is arranged radially outside the measuring jig 1 and surrounds the measuring jig 1 in the circumferential direction.
  • the tilt measuring device 100 measures the tilt of the swingable movable body 201. That is, the inclination measuring device 100 measures the inclination of the measuring jig 1 as described above as the inclination of the movable body 201 in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3.
  • the tilt measuring device 100 includes a measuring jig 1, a displacement meter 2, a storage unit 3, and a control unit 4.
  • the measuring jig 1 can swing around the swing center CP.
  • "swing" means to rotate within a predetermined rotation angle range in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3.
  • the measuring jig 1 can rotate in at least one of the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3 by receiving an action from the outside of the measurement jig 1. ..
  • the inclination measuring device 100 includes the measuring jig 1.
  • the measuring jig 1 is held by the movable body 201 and can swing together with the movable body 201.
  • the measuring jig 1 is made of a metal such as Al in this embodiment.
  • the present invention is not limited to this example, and the measuring jig 1 may be, for example, a resin.
  • the material of the measuring jig 1 can be selected in consideration of the weight of the optical module to be mounted on the optical unit 200.
  • the weight of the measuring jig 1 is preferably close to the weight of the optical module, and more preferably the same as the weight of the optical module.
  • the measuring jig 1 has a flat surface 11 and a base portion 12 arranged on the flat surface 11.
  • the plane 11 is a mirror surface arranged on the other end surface in the first direction of the measuring jig 1 and reflects light.
  • the plane 11 in the stationary state of the measuring jig 1 is perpendicular to the first axis A1 extending in the first direction D1 through the swing center CP of the measuring jig 1.
  • the flat surface 11 may be a mirror-finished metal surface.
  • the flat surface 11 may be realized by arranging a member such as a film having a mirror surface on the other end surface of the measuring jig 1 in the first direction.
  • the plane 11 includes a first region 111, a second region 112, a third region 113, and a fourth region 114.
  • the first region 111 is a region on the D2a side in the second direction and on the D3a side in the third direction.
  • the second region 112 is a region on one side of D2a in the second direction and on the other side of D3b in the third direction.
  • the third region 113 is a region on the other D2b side in the second direction and on the other D3b side in the third direction.
  • the fourth region 114 is a region on the D2b side of the other in the second direction and the D3a side of the other in the third direction.
  • the base portion 12 is arranged in the first region 111.
  • the base 12 has a slope 120.
  • the slope 120 extends in the first slope direction Ds1 and the second slope direction Ds2 (see FIG. 3 described later).
  • the first slope direction Ds1 is perpendicular to the first direction D1 and intersects the radial direction with respect to the first axis A1.
  • the second slope direction Ds2 is perpendicular to the first slope direction Ds1 and diagonally intersects the first slope direction D1. Further configurations of the base 12 will be described later.
  • the displacement meter 2 irradiates the measuring jig 1 with the laser beam 20 to measure the displacement of the measuring jig 1.
  • the tilt measuring device 100 includes the displacement meter 2.
  • the displacement meter 2 can measure the displacement of the measuring jig 1 by receiving the laser beam 20 reflected by the measuring jig 1.
  • the displacement meter 2 includes a first displacement meter 21, a second displacement meter 22, a third displacement meter 23, and a fourth displacement meter 24.
  • the first displacement meter 21 irradiates the laser beam 20 toward the slope 120.
  • the displacement meter 2 has a first displacement meter 21.
  • the first displacement meter 21 receives the laser beam 20 reflected at the first irradiation position P1 on the slope 120 of the measuring jig 1. From the light receiving result, the first displacement meter 21 measures the displacement of the laser beam 20 on the slope 120 in the first direction D1 of the first irradiation position P1.
  • the measuring jig 1 swings together with the movable body 201 and rotates in the first rotation direction DR1
  • the first irradiation position P1 of the laser beam 20 emitted from the first displacement meter 21 is displaced in the first direction D1. ..
  • the rotation angle of the measuring jig 1 in the first rotation direction DR1 can be calculated as the first rotation angle of the movable body 201 based on the result of the first displacement meter 21 measuring the displacement of the first irradiation position P1. That is, the measurement for obtaining the rotation angle of the measuring jig 1 in the first rotation direction DR1 can be performed by one first displacement meter 21. Therefore, the increase of the displacement meter 2 is suppressed and the configuration is simpler than the normal configuration in which the first rotation angle of the measuring jig 1 in the first rotation direction DR1 is measured from the measurement results of a plurality of displacement meters. The inclination of the movable body 201 can be measured.
  • the second displacement meter 22 irradiates the laser beam 20 toward the plane 11.
  • the displacement meter 2 has a second displacement meter 22.
  • the second displacement meter 22 receives the laser beam 20 reflected at the second irradiation position P2 on the plane 11 of the measuring jig 1. From the light receiving result, the second displacement meter 22 measures the displacement of the laser beam 20 on the plane 11 in the first direction D1 of the second irradiation position P2.
  • the third displacement meter 23 irradiates the laser beam 20 toward the plane 11.
  • the displacement meter 2 has a third displacement meter 23.
  • the third displacement meter 23 receives the laser beam 20 reflected at the third irradiation position P3 on the plane 11 of the measuring jig 1. From the light receiving result, the third displacement meter 23 measures the displacement of the laser beam 20 on the plane 11 in the first direction D1 of the third irradiation position P3.
  • the fourth displacement meter 24 irradiates the laser beam 20 toward the plane 11.
  • the displacement meter 2 has a fourth displacement meter 24.
  • the fourth displacement meter 24 receives the laser beam 20 reflected at the fourth irradiation position P4 on the plane 11 of the measuring jig 1. From the light receiving result, the fourth displacement meter 24 measures the displacement of the laser beam 20 on the plane 11 in the first direction D1 of the fourth irradiation position P4.
  • the second irradiation position P2 and the third irradiation position P3 are arranged in the second direction D2, and the third irradiation position P3 and the fourth irradiation position P4 are arranged in the third direction D3.
  • the second direction D2 is perpendicular to the first direction D1.
  • the third direction D3 is perpendicular to the first direction D1 and intersects the second direction D2.
  • the third direction D3 is perpendicular to the second direction D2 in the present embodiment, but is not limited to this example and may intersect diagonally.
  • the second measurement jig 1 in the second rotation direction DR2 centered on the second axis A2 extending in the second direction D2.
  • the rotation angle can be measured.
  • the third rotation angle of the measuring jig 1 in the third rotation direction DR3 centered on the third axis A3 extending in the third direction D3 can be measured. ..
  • the inclination of the measuring jig 1 and the movable body 201 in the pitching direction and the yawing direction can be measured.
  • the laser beam 20 of the first displacement meter 21 irradiates the slope 120 of the base 12 on the first region 111.
  • the laser beam 20 of the second displacement meter 22 irradiates the second region 112.
  • the laser beam 20 of the third displacement meter 23 irradiates the third region 113.
  • the laser beam 20 of the fourth displacement meter 24 irradiates the fourth region 114.
  • the first displacement meter 21, the second displacement meter 22, the third displacement meter 23, and the fourth displacement meter 24 all irradiate the laser beam 20 along the first direction D1. Since the first displacement meter 21, the second displacement meter 22, the third displacement meter 23, and the fourth displacement meter 24 irradiate the laser beam 20 in the same direction, their placement positions are in the second direction D2 and / or the third. Does not disperse in direction D3. For example, these can be collectively arranged in a space above the plane 11 of the measuring jig 1. Therefore, the tilt measuring device 100 can be made more compact.
  • the storage unit 3 is a non-transient storage medium that can maintain storage even without power supply.
  • the storage unit 3 stores, for example, a program and information used by the control unit 4.
  • the control unit 4 controls the tilt measuring device 100.
  • the control unit 4 controls each component by using the program and the information stored in the storage unit 3.
  • the control unit 4 includes a calculation unit 41.
  • the calculation unit 41 calculates the inclination of the measuring jig 1 based on the measurement result of the displacement meter 2.
  • the calculation unit 41 determines the first measurement result of the first displacement meter 21 at a predetermined first time point and the second measurement result of the first displacement meter 21 at the second time point after the first time point. Based on this, the displacement amount of the first irradiation position P1 in the first direction D1 is calculated. Further, the calculation unit 41 calculates the rotation angle of the measuring jig 1 in the first rotation direction DR1 from the calculated displacement amount. In this way, the inclination measuring device 100 can calculate the rotation angle of the measuring jig 1 in the first rotation direction DR1 as the first rotation angle of the movable body 201 from the measurement result of the first displacement meter 21. The method of calculating the first rotation angle of the measuring jig 1 will be described later.
  • the calculation unit 41 includes the third measurement results of the second displacement meter 22 and the third displacement meter 23 at a predetermined third time point, and the second displacement meter 22 and the third displacement meter 22 at the fourth time point after the third time point. Based on the third measurement result of the displacement meter 23, the displacement amounts of the second irradiation position P2 and the third irradiation position P3 in the first direction D1 are calculated respectively. Further, the calculation unit 41 calculates the rotation angle of the measuring jig 1 in the second rotation direction DR2 from the above-mentioned displacement amount.
  • the inclination measuring device 100 calculates the rotation angle of the measuring jig 1 in the second rotation direction DR2 as the second rotation angle of the movable body 201 from the measurement results of the second displacement meter 22 and the third displacement meter 23. can.
  • the method of calculating the second rotation angle of the measuring jig 1 will be described later.
  • the calculation unit 41 includes the fifth measurement results of the third displacement meter 23 and the fourth displacement meter 24 at a predetermined fifth time point, and the third displacement meter 23 and the fourth at the sixth time point after the fifth time point. Based on the sixth measurement result of the displacement meter 24, the displacement amounts of the third irradiation position P3 and the fourth irradiation position P4 in the first direction D1 are calculated respectively. Further, the calculation unit 41 calculates the rotation angle of the measuring jig 1 in the third rotation direction DR3 from the above-mentioned displacement amount.
  • the inclination measuring device 100 calculates the rotation angle of the measuring jig 1 in the third rotation direction DR3 as the third rotation angle of the movable body 201 from the measurement results of the third displacement meter 23 and the fourth displacement meter 24. can.
  • the method of calculating the third rotation angle of the measuring jig 1 will be described later.
  • the above-mentioned first and second time points may be the same as the above-mentioned third and fourth time points, respectively. And / or the above-mentioned first and second time points may be the same as the above-mentioned fifth and sixth time points, respectively. And / or the above-mentioned third and fourth time points may be the same as the above-mentioned fifth and sixth time points, respectively. Alternatively, the first and second time points described above may be different from the third and fourth time points described above and the third and fourth time points described above, respectively.
  • the inclination measuring device 100 can simultaneously measure the rotation angle of the measuring jig 1 in at least two of the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3. Further, the tilt measuring device 100 can individually measure the rotation angles of the measuring jig 1 in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3.
  • FIG. 3 is a perspective view showing a configuration example of the base portion 12.
  • FIG. 4A is a perspective view showing a first modification of the base portion 12a.
  • FIG. 4B is a perspective view showing a second modification of the base portion 12b.
  • FIG. 4C is a perspective view showing a third modification example of the base portion 12c.
  • FIG. 4D is a perspective view showing a fourth modified example of the base portion 12d.
  • FIG. 4E is a perspective view showing a fifth modification of the base portion 12e.
  • FIGS. 3 and 4A to 4E correspond to, for example, an enlarged view of the vicinity of the base portion 12 in the perspective view of FIG.
  • the measuring jig 1 is in a stationary state.
  • the base portion 12 of the present embodiment has a frustum shape.
  • the size of the pedestal portion 12 in the first direction D1 can be reduced as compared with the case where the pedestal portion 12a has a cone shape as shown in FIG. 4A, for example. Therefore, when the measuring jig 1 rotates about a predetermined rotation axis, the centrifugal force acting on the base 12 can be made smaller, so that the measuring jig 1 moves outward in the radial direction with respect to the rotation axis. It becomes difficult to shift.
  • the measuring jig 1 when the measuring jig 1 is greatly rotated, it is possible to suppress or prevent the tip portion of the base portion 12 in the first direction D1 from blocking at least a part of the laser beam 20 of the displacement meter 2 other than the first displacement meter 21. ..
  • this example does not exclude the configuration in which the base portion 12a has a cone shape, as shown in FIG. 4A, for example.
  • the base portion 12 is separated from the first axis A1 in the radial direction with respect to the first axis A1. That is, the radial inner end portion of the base portion 12 is separated from the first axis A1.
  • the volume of the base portion 12 can be reduced as compared with the configuration in which the radial inner end portion of the base portion 12b is in contact with the first axis A1 as shown in FIG. 4B, for example. Therefore, when the measuring jig 1 rotates about a predetermined rotation axis, the centrifugal force acting on the base 12 can be made smaller, so that the measuring jig 1 moves outward in the radial direction with respect to the rotation axis. It becomes difficult to shift.
  • the present invention is not limited to this example, and the radial inner end portion of the base portion 12b may be in contact with the first axis A1 as shown in FIG. 4B, for example.
  • the base portion 12b can be arranged with the first axis A1 as a reference. Therefore, since the base portion 12b can be easily arranged on the flat surface 11, the measuring jig 1 can be easily manufactured.
  • a part of the base portion 12 may be arranged on at least a part of the second region 112 to the fourth region 114, and the first axis A1 may pass through the base portion 12.
  • the base 12 is hollow.
  • the base portion 12c may have a plate member 121 having a slope 120c and a pillar portion 122 supporting the plate member 121.
  • the weight of the base portion 12c can be reduced. Therefore, when the measuring jig 1 rotates about a predetermined rotation axis, the centrifugal force acting on the base portion 12c can be made smaller, so that the measuring jig 1 moves outward in the radial direction with respect to the rotation axis. It becomes difficult to shift. Therefore, the inclination measuring device 100 can measure the inclination of the movable body 201 more accurately.
  • the slope 120 faces outward in the radial direction with respect to the first axis A1.
  • the arrangement position of the base portion 12 can be brought closer to the first axis A1 passing through the swing center CP, so that when the measuring jig 1 rotates in the first rotation direction DR1, the centrifugal force is applied to the base portion 12. Even if it acts, the measuring jig 1 is less likely to shift outward in the radial direction with respect to the first axis A1. Therefore, the accuracy of measuring the inclination of the measuring jig 1 can be improved.
  • the slope 120 does not have to face outward in the radial direction without being limited to the above example.
  • the slope 120d may face inward in the radial direction with respect to the first axis A1.
  • the one end portion in the first direction of the slope 120d may be radially inward from the other end portion in the first direction of the slope 120d.
  • the radial outer end portion of the base portion 12d with respect to the first axis A1 may be arranged on the outer peripheral edge portion of the measuring jig 1 when viewed from the first direction D1.
  • the base portion 12d when viewed from the first direction D1, one end in the second direction and / or one end in the third direction with respect to the first axis A1 of the base portion 12d are arranged on the outer peripheral edge of the measuring jig 1. You may. By doing so, the base portion 12d can be arranged with the outer peripheral edge portion of the measuring jig 1 as a reference. Therefore, the base portion 12d can be easily arranged.
  • the one end portion in the first direction of the slope 120 is radially outer than the other end portion in the first direction of the slope 120.
  • the first irradiation position P1 of the laser beam 20 of the first displacement meter 21 is between one end of the slope 120 in the first direction and the other end of the first direction.
  • the first irradiation position P1 is a radial inward position or the same radial position from the end portion in the first direction of the slopes 120, 120a, 120b, 120c, while D1a.
  • the first irradiation position P1 is radially outward from the end portion of the slope 120, 120a, 120b, 120c in the first direction and the other D1b, or at the same radial position. Further, in FIG. 4D, the first irradiation position P1 is radially outward from the end portion in the first direction of the slope 120d, while D1a, or is the same radial position. Further, the first irradiation position P1 is radially inward from the end portion of the slope 120d in the first direction and the other D1b, or at the same radial position. By doing so, it is possible to prevent the first irradiation position P1 from deviating from the slope 120 when the measuring jig 1 rotates in the first rotation direction DR1.
  • the slope 120 extends from the plane 11.
  • one end of the slope 120 in the first direction is connected to the plane 11.
  • the first irradiation position P1 in a state where the measuring jig 1 is stationary overlaps with the connecting portion 123 between one end of the slope 120 in the first direction and the plane 11.
  • the one end of the slope 120 in the first direction is the end of the slope 120 on the plane 11 side in the first direction D1.
  • the first irradiation position P1 when the measuring jig 1 is stationary can be used as a reference for the displacement measured by the first displacement meter 21. Therefore, it becomes easy to calculate the rotation angle of the measuring jig 1 in the first rotation direction DR1.
  • the above example does not exclude the configuration in which the slope 120 does not extend from the plane 11.
  • one end of the slope 120 in particular in the first direction may be separated from the plane 11 by the other D1b in the first direction.
  • the first slope direction Ds1 of the slope 120 is perpendicular to the fourth direction D4.
  • the fourth direction D4 is one of the radial directions with respect to the first axis A1 and is parallel to the plane 11.
  • the fourth direction D4 is perpendicular to the first axis A1.
  • the fourth direction D4 goes from the first axis A1 to the first irradiation position P1 in a state where the measuring jig 1 is stationary. This makes it easier to calculate the rotation angle of the measuring jig 1 in the first rotation direction DR1. For example, when the slopes 120, 120a, 120b, 120c face radially outward as shown in FIGS.
  • the first 1 The irradiation position P1 is displaced in the first direction D1 to the other D1b in the first direction away from the plane 11.
  • the slope 120d faces inward in the radial direction as shown in FIG. 4D (see FIG. 5 described later)
  • the first irradiation position regardless of which side of the first rotation direction DR1 the measuring jig 1 rotates.
  • P1 is displaced in the first direction D1 toward D1a in the first direction approaching the plane 11. Therefore, regardless of which side of the first rotation direction DR1 the measuring jig 1 is rotated, the first irradiation position P1 is displaced to the same side of the first direction D1.
  • the rotation angle in one rotation direction DR1 can be calculated.
  • the slope 120e may face the first rotation direction DR1 with respect to the first axis A1.
  • the first slope direction Ds1 is perpendicular to the first direction D1 and diagonally intersects the radial direction with respect to the first axis A1.
  • the first slope direction Ds1 may be parallel to the third direction D3 as shown in FIG. 4E.
  • the second slope direction Ds2 is perpendicular to the first slope direction Ds1 and diagonally intersects the first slope direction D1.
  • the first irradiation position P1 is displaced to one D1a in the first direction. .. Further, when the measuring jig 1 rotates in the direction from the first region 111 to the third region 113 in the first rotation direction DR1, the first irradiation position P1 is displaced to the other D1b in the first direction. Therefore, the direction of rotation of the measuring jig 1 in the first rotation direction DR1 can be detected from the measurement result of the first displacement meter 21.
  • the region of the slope 120e on the D3a side in the third direction is arranged on the D1a in the first direction rather than the plane 11, that is, is arranged on the inner surface of the recess 13 recessed in the D1a in the first direction. ..
  • the measuring jig 1 has a recess 13.
  • the recess 13 is arranged in the first region 111 of the plane 11.
  • the region of the slope 120e on the other D3b side in the third direction is arranged on the other D1b in the first direction rather than the plane 11, that is, arranged on the base portion 12 protruding from the plane 11 to the other D1b in the first direction in the first region 111. Will be done.
  • FIG. 5 is a top view of the vicinity of the slope 120 of the measuring jig 1 rotated in the first rotation direction DR1.
  • FIG. 6 is a conceptual diagram showing the positional relationship of the first irradiation position P1 after rotation.
  • "measurement jig 1A”, “plane 11A”, “base 12A”, and “slope 120A” are the measurement jig 1, plane 11, base 12, and before rotation, respectively.
  • the slope 120, and the “measurement jig 1B”, the “plane 11B”, the “base 12B”, and the “slope 120B” are the measurement jig 1, the plane 11, the base 12, and the slope 120 after rotation, respectively. .. Further, in the following, the first irradiation position P1 before rotation may be referred to as “first irradiation position P1a”, and the first irradiation position P1 after rotation may be referred to as “first irradiation position P1b”.
  • the point O is the intersection of the first axis A1 and the plane 11.
  • the two virtual lines extending from the point O are called Lx and Ly.
  • the virtual lines Lx and Ly are included in the virtual plane including the plane 11.
  • the virtual line Lx before rotation extends to D2a in the second direction
  • the virtual line Ly before rotation extends to D3a in the third direction.
  • One rotation angle ⁇ 1 is described later.
  • the virtual plane including the first axis A1 and the virtual line Lx is called PL.
  • the intersection of the virtual plane including the slope 120A and the first axis A1 is called a point A
  • the intersection of the virtual plane including the rotated slope 120A and the rotated virtual line Lx is called a point B.
  • the measuring jig 1 rotates in the direction from the first irradiation position P1 in the first rotation direction DR1 to the virtual line Lx.
  • the first rotation angle of the measuring jig 1 in the first rotation direction DR1 is ⁇ 1.
  • the distance between the first irradiation position P1a before rotation and the virtual line Lx before rotation, and the first irradiation position P1a before rotation and the virtual line Ly before rotation. The intervals between them are both a.
  • the minimum angle formed by the plane 11 and the slope 120 is 45 °.
  • the first irradiation position P1 is in the fourth direction D4 from the first axis A1. That is, before rotation, the minimum angle formed by the line passing through the first irradiation position P1 and the point O and the virtual plane PL is 45 °.
  • the first irradiation position P1 is displaced in the first direction D1. Since the position of the laser beam 20 of the first displacement meter 21 does not change, the first irradiation position P1 does not displace in the second direction D2 and the third direction D3.
  • the first rotation angle ⁇ 1 can be calculated from the displacement ⁇ d1 in the first direction D1 of the first irradiation position P1 detected by the first displacement meter 21. The calculation method will be described below.
  • a perpendicular line is extended from the first irradiation position P1b after rotation to the virtual plane PL after rotation, and the intersection of this perpendicular line and the virtual plane PL after rotation is called a point C. Further, a perpendicular line is extended from the point C to the first axis A1, and the intersection of this perpendicular line and the first axis A1 is referred to as a point D.
  • a figure having three points P1b, C, and D as vertices is a right triangle.
  • the minimum angle formed by the line segment connecting the first irradiation position P1b and the point C after rotation and the line segment connecting the first irradiation position P1b and the point D after rotation is (45 ° - ⁇ ).
  • the distance between the first irradiation position P1b after rotation and the first axis A1 is ( ⁇ 2 ⁇ a), which is the same as the distance between the first irradiation position P1a and the first axis A1 before rotation. Therefore, the length of the line segment CD connecting the points C and D is ⁇ ( ⁇ 2 ⁇ a) sin (45 ° ⁇ 1) ⁇ . Further, since the figure having the three points A, C, and D as vertices is an isosceles right triangle, the length of the line segment AD connecting the points A and D is ⁇ ( ⁇ 2 ⁇ ), which is the same as the line segment CD. a) sin (45 ° - ⁇ 1) ⁇ .
  • the length of the line segment DO connecting the point D and the point O is the same as the displacement ⁇ d1 of the first irradiation position P1 in the first direction D1. Therefore, the displacement ⁇ d1 of the first irradiation position P1 in the first direction D1 is the difference from the length of the line segment AO connecting the points A and O to the length of the line segment AD, and can be expressed by the following mathematical formula 1.
  • ⁇ d1 ⁇ a- ( ⁇ 2 ⁇ a) sin (45 ° - ⁇ 1) ⁇ (Equation 1)
  • the displacement ⁇ d1 of the first irradiation position P1 in the first direction D1 can be detected from the difference between the first direction position of the first irradiation position P1a before rotation and the first direction position of the first irradiation position P1b after rotation. Therefore, the first rotation angle ⁇ 1 can be calculated from the above-mentioned mathematical formula 2.
  • FIG. 7 is a side view of the measuring jig 1 rotated in the second rotation direction DR2 as viewed from the second direction D2.
  • the alternate long and short dash line indicates the plane 11 of the measuring jig 1 after rotation.
  • the second rotation angle of the measuring jig 1 in the second rotation direction DR2 is ⁇ 2.
  • the distance between the second irradiation position P2 and the third irradiation position P3 is L2.
  • the plane 11 before rotation is referred to as "plane 11a”, and the plane 11 after rotation is referred to as “plane 11b”.
  • the second irradiation position P2 before rotation may be referred to as “second irradiation position P2a”, and the second irradiation position P2 after rotation may be referred to as “second irradiation position P2b”.
  • the third irradiation position P3 before rotation may be referred to as "third irradiation position P3a”
  • the third irradiation position P3 after rotation may be referred to as "third irradiation position P3b”.
  • the second irradiation position is determined by the difference between the first direction position of the second irradiation position P2a before rotation and the first direction position of the second irradiation position P2b after rotation. It can be detected that P2 is displaced by ⁇ d2a to D1a in one of the first directions, for example. Further, the third irradiation position P3 is displaced by ⁇ d3b to, for example, the other D1b in the first direction due to the difference between the first direction position of the third irradiation position P3a before rotation and the first direction position of the third irradiation position P3b after rotation. Can be detected.
  • the second irradiation position P2 and the third irradiation position P3 do not displace in the second direction D2 and the third direction D3. ..
  • the second rotation angle ⁇ 2 can be calculated from the following mathematical formula 3.
  • ⁇ 2 tan -1 ⁇ ( ⁇ d2a + ⁇ d2b) / L2 ⁇ (number 3)
  • FIG. 8 is a side view of the measuring jig 1 rotated in the third rotation direction DR3 as viewed from the third direction D3.
  • the alternate long and short dash line indicates the plane 11 of the measuring jig 1 after rotation.
  • the third rotation angle of the measuring jig 1 in the third rotation direction DR3 is ⁇ 3.
  • the distance between the third irradiation position P3 and the fourth irradiation position P4 in the second direction D2 is L3.
  • the plane 11 before rotation is referred to as "plane 11a”, and the plane 11 after rotation is referred to as “plane 11b”.
  • the third irradiation position P3 before rotation may be referred to as “third irradiation position P3a”, and the third irradiation position P3 after rotation may be referred to as “third irradiation position P3b”.
  • the fourth irradiation position P4 before rotation may be referred to as "fourth irradiation position P4a”
  • the fourth irradiation position P4 after rotation may be referred to as "fourth irradiation position P4b”.
  • the third irradiation position is obtained from the difference between the first direction position of the third irradiation position P3a before rotation and the first direction position of the third irradiation position P3b after rotation. It can be detected that P3 is displaced by ⁇ d3a to D1a in one of the first directions, for example. Further, the fourth irradiation position P4 is displaced by ⁇ d3b to, for example, the other D1b in the first direction due to the difference between the first direction position of the fourth irradiation position P4a before rotation and the first direction position of the fourth irradiation position P4b after rotation. Can be detected.
  • the third irradiation position P3 and the fourth irradiation position P4 do not displace in the second direction D2 and the third direction D3. ..
  • the third rotation angle ⁇ 3 can be calculated from the following mathematical formula 4.
  • ⁇ 3 tan -1 ⁇ ( ⁇ d3a + ⁇ d3b) / L3 ⁇ (number 4)
  • FIG. 9 is a flowchart for explaining a method of measuring the inclination of the measuring jig 1.
  • the inclination measuring method described below is carried out by using the inclination measuring device 100.
  • the measuring jig 1 is held by the movable body 201 and can swing together with the movable body 201.
  • the displacement of the measuring jig 1 is measured by the displacement meter 2 that irradiates the measuring jig 1 with the laser beam 20.
  • the inclination of the movable body 201 is calculated based on the measurement result of the displacement.
  • the "reference state" of the movable body 201 means a state in which the movable body 201 is not rotated in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3. That is, the rotation angles of the movable body 201 in the reference state in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3 are all 0 °.
  • the measuring jig 1 is attached to the movable body 201 of the optical unit 200 (step S101), and the optical unit 200 is attached to the tilt measuring device 100 (step 102).
  • the normal direction of the plane 11 of the measuring jig 1 is parallel to the optical axis of the optical module to be mounted on the movable body 201.
  • the swing center CP of the movable body 201 on which the measuring jig 1 is mounted is set to the same position as the swing center of the movable body 201 when the optical module is mounted.
  • the term "same position" as used herein includes a state in which the positional relationship between the two is deviated to the extent that the gist of the present invention is not deviated.
  • the first displacement meter 21 detects the position of the first irradiation position P1 before rotation in the first direction D1 (step S111).
  • the drive mechanism 202 rotates the movable body 201 in the first rotation direction DR1 together with the measuring jig 1, and then stops the movable body 201 (step S112).
  • the first displacement meter 21 detects the position of the first irradiation position P1 after rotation in the first direction D1 (step S113).
  • the calculation unit 41 calculates the inclination of the movable body 201 in the first rotation direction DR1 based on the measurement results of the first displacement meter 21 before and after rotation (step S114). Specifically, the calculation unit 41 displaces the first irradiation position P1 in the first direction D1 based on the measurement result of the first displacement meter 21 in step S111 and the measurement result of the first displacement meter 21 in step S113. Calculate the amount. Further, the calculation unit 41 calculates the first rotation angle ⁇ 1 of the measuring jig 1 in the first rotation direction DR1 from the calculated displacement amount. The calculated first rotation angle ⁇ 1 is the inclination of the movable body 201 in the first rotation direction DR1.
  • the drive mechanism 202 releases the tilt of the movable body 201 in the first rotation direction DR1 and returns the movable body 201 from the state tilted in the first rotation direction DR1 to the reference state (step S115).
  • the second displacement meter 22 and the third displacement meter 23 detect the positions of the second irradiation position P2 and the third irradiation position P3 before rotation in the first direction D1 (step S121), respectively.
  • the drive mechanism 202 rotates the movable body 201 in the second rotation direction DR2 together with the measuring jig 1, and then stops the movable body 201 (step S122).
  • the second displacement meter 22 and the third displacement meter 23 detect the positions of the second irradiation position P2 and the third irradiation position P3 after rotation in the first direction D1, respectively (step S123).
  • the calculation unit 41 calculates the inclination of the movable body 201 in the second rotation direction DR2 based on the measurement results of the second displacement meter 22 and the third displacement meter 23 before and after rotation (step S124). Specifically, the calculation unit 41 is based on the measurement results of the second displacement meter 22 and the third displacement meter 23 in step S121 and the measurement results of the second displacement meter 22 and the third displacement meter 23 in step S123. The displacement amount of the second irradiation position P2 in the first direction D1 and the displacement amount of the third irradiation position P3 in the first direction D1 are calculated. Further, the calculation unit 41 calculates the second rotation angle ⁇ 2 of the measuring jig 1 in the second rotation direction DR2 from the calculated displacement amount. The calculated second rotation angle ⁇ 2 is the inclination of the movable body 201 in the second rotation direction DR2.
  • the drive mechanism 202 releases the tilt of the movable body 201 in the second rotation direction DR2, and returns the movable body 201 from the state tilted in the second rotation direction DR2 to the reference state (step S125).
  • the third displacement meter 23 and the fourth displacement meter 24 detect the positions of the third irradiation position P3 and the fourth irradiation position P4 before rotation in the first direction D1 (step S131), respectively.
  • the drive mechanism 202 rotates the movable body 201 in the third rotation direction DR3 together with the measuring jig 1 and then stops the movable body 201 (step S132).
  • the third displacement meter 23 and the fourth displacement meter 24 detect the positions of the third irradiation position P3 and the fourth irradiation position P4 after rotation in the first direction D1 (step S133), respectively.
  • the calculation unit 41 calculates the inclination of the movable body 201 in the third rotation direction DR3 based on the measurement results of the third displacement meter 23 and the fourth displacement meter 24 before and after rotation (step S134). Specifically, the calculation unit 41 is based on the measurement results of the third displacement meter 23 and the fourth displacement meter 24 in step S131 and the measurement results of the third displacement meter 23 and the fourth displacement meter 24 in step S133. The displacement amount of the third irradiation position P3 in the first direction D1 and the displacement amount of the fourth irradiation position P4 in the first direction D1 are calculated. Further, the calculation unit 41 calculates the third rotation angle ⁇ 3 of the measuring jig 1 in the third rotation direction DR3 from the calculated displacement amount. The calculated third rotation angle ⁇ 3 is the inclination of the movable body 201 in the third rotation direction DR3.
  • the drive mechanism 202 releases the tilt of the movable body 201 in the third rotation direction DR3, and returns the movable body 201 from the state tilted in the third rotation direction DR3 to the reference state (step S135).
  • the optical unit 200 is removed from the tilt measuring device 100 (step S141), and the measuring jig 1 is removed from the movable body 201 of the optical unit 200 (step S142). Then, the inclination measurement method ends.
  • steps S111 to S115, steps S121 to S125, and steps S131 to S135 may be interchanged with each other.
  • the inclination of the movable body 201 in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3 was independently measured.
  • the present invention is not limited to this example, and the inclination of the movable body 201 rotated in at least two of the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3 may be measured at one time.
  • the step of measuring the displacement of the measuring jig 1 with the displacement meter 2 is the first displacement meter 21 that irradiates the laser beam 20 toward the slope 120 on the slope 120 of the laser beam 20. It has a step of measuring the displacement of the first irradiation position P1 in the first direction D1 in the above.
  • the measuring jig 1 swings together with the movable body 201 to rotate in the first rotation direction DR1
  • the first irradiation position P1 of the laser beam 20 emitted from the first displacement meter 21 is displaced in the first direction D1. ..
  • the rotation angle of the measuring jig 1 in the first rotation direction DR1 can be calculated as the first rotation angle ⁇ 1 of the movable body 201 based on the result of the first displacement meter 21 measuring the displacement of the first irradiation position P1. That is, the measurement for obtaining the first rotation angle ⁇ 1 of the measurement jig 1 in the first rotation direction DR1 can be performed by one first displacement meter 21. Therefore, as compared with the normal configuration in which the first rotation angle ⁇ 1 of the measuring jig 1 in the first rotation direction DR1 is measured from the measurement results of the plurality of displacement meters, the increase of the displacement meter 2 is suppressed and the configuration is simpler.
  • the inclination of the movable body 201 can be measured with.
  • FIGS. 3 and 4A to 4E can be arbitrarily combined as long as there is no particular contradiction.
  • the present invention is useful for a device and a method for measuring the rotation angle of a measurement target.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This tilt measurement device measures the tilt of a movable body that can swing. A measurement jig can swing together with the movable body. A flat surface of the measurement jig in a stationary state is perpendicular to a first axis which extends in a first direction and passes through the swing center of the measurement jig. A base part disposed on the flat surface has a slope extending in a first slope direction and a second slope direction. The first slope direction is perpendicular to the first direction and intersects a radial direction with respect to the first axis. The second slope direction is perpendicular to the first slope direction and diagonally intersects the first direction. A first displacement meter projects a laser beam toward the slope of the measurement jig and measures the displacement, in the first direction, of a first irradiation position of the laser beam on the slope.

Description

傾き計測装置、及び傾き計測方法Tilt measuring device and tilt measuring method
 本発明は、傾き計測装置、及び傾き計測方法に関する。 The present invention relates to a tilt measuring device and a tilt measuring method.
 従来の多点角度測定装置は、基準面の回転角を計測する回転支持体、これに取り付けられて可動部を有するXYテーブル、放射方向が固定されたX線源及び受線管を備える。そして、光源をそれぞれ有する2個のレーザーフォーカス変位計を、水晶板の上方に設置する。レーザーフォーカス変位計には角度演算器が接続される。レーザーフォーカス変位計は、水晶板の2点における、主面に対して垂直方向の変位を計測する。そして、角度演算器は、予め設定された光源間の距離と2点間の変位差から、三角関数により2点間の傾きを計算する。(たとえば特開平11-63956号公報参照) The conventional multi-point angle measuring device includes a rotation support for measuring the rotation angle of the reference plane, an XY table attached to the rotation support and having a movable part, an X-ray source having a fixed radiation direction, and a receiving tube. Then, two laser focus displacement meters each having a light source are installed above the crystal plate. An angle calculator is connected to the laser focus displacement meter. The laser focus displacement meter measures the displacement in the direction perpendicular to the main surface at two points on the crystal plate. Then, the angle calculator calculates the slope between the two points by a trigonometric function from the preset distance between the light sources and the displacement difference between the two points. (See, for example, Japanese Patent Application Laid-Open No. 11-63956)
 上述の多点角度測定装置では、水晶板の主面と平行な軸を中心とする回転方向の傾きを計算できる。 The above-mentioned multipoint angle measuring device can calculate the inclination in the rotation direction about the axis parallel to the main surface of the crystal plate.
特開平11-63956号公報Japanese Unexamined Patent Publication No. 11-63956
 しかしながら、上述の多点角度測定装置において、水晶板の主面と垂直な軸を中心とする回転方向の傾きを計算するためには、2個のレーザーフォーカス変位計を追加する必要がある。 However, in the above-mentioned multipoint angle measuring device, it is necessary to add two laser focus displacement meters in order to calculate the inclination in the rotation direction about the axis perpendicular to the main surface of the crystal plate.
 本発明は、変位計の増加を抑制して、より簡素な構成で可動体の傾きを計測することを目的とする。 An object of the present invention is to suppress an increase in the displacement meter and measure the inclination of a movable body with a simpler configuration.
 本発明の例示的な傾き計測装置は、揺動可能な可動体の傾きを計測する。前記傾き計測装置は、前記可動体に保持されて前記可動体とともに揺動可能な計測治具と、前記計測治具にレーザ光を照射して前記計測治具の変位を計測する変位計と、を備える。前記計測治具は、前記可動体に保持されて、前記可動体とともに揺動可能である。前記変位計は、前記計測治具にレーザ光を照射して前記計測治具の変位を計測する。前記計測治具は、平面と、前記平面上に配置される台部と、を有する。前記計測治具が静止した状態における前記平面は、前記計測治具の揺動中心を通って第1方向に延びる第1軸と垂直である。前記台部は、第1斜面方向と第2斜面方向とに広がる斜面を有する。前記第1斜面方向は、前記第1方向と垂直であるとともに、前記第1軸を基準とする径方向と交わる。前記第2斜面方向は、前記第1斜面方向と垂直であるとともに、前記第1方向と斜めに交わる。前記変位計は、前記斜面に向かって前記レーザ光を照射する第1変位計を有する。前記第1変位計は、前記斜面上における前記レーザ光の第1照射位置の前記第1方向における変位を計測する。 The exemplary tilt measuring device of the present invention measures the tilt of a swingable movable body. The inclination measuring device includes a measuring jig that is held by the movable body and can swing together with the movable body, and a displacement meter that irradiates the measuring jig with a laser beam to measure the displacement of the measuring jig. To prepare for. The measuring jig is held by the movable body and can swing together with the movable body. The displacement meter irradiates the measuring jig with a laser beam to measure the displacement of the measuring jig. The measuring jig has a flat surface and a base portion arranged on the flat surface. The plane in a stationary state of the measuring jig is perpendicular to the first axis extending in the first direction through the swing center of the measuring jig. The pedestal has a slope extending in the first slope direction and the second slope direction. The first slope direction is perpendicular to the first direction and intersects the radial direction with respect to the first axis. The second slope direction is perpendicular to the first slope direction and diagonally intersects with the first slope direction. The displacement meter has a first displacement meter that irradiates the laser beam toward the slope. The first displacement meter measures the displacement of the first irradiation position of the laser beam on the slope in the first direction.
 本発明の例示的な傾き計測方法は、揺動可能な可動体の傾きを計測する。前記傾き計測方法は、前記可動体に保持されて前記可動体とともに揺動可能な計測治具にレーザ光を照射する変位計で、前記計測治具の変位を計測するステップを備える。前記計測治具は、平面と、前記平面上に配置される台部と、を有する。前記計測治具が静止した状態における前記平面は、前記計測治具の揺動中心を通って第1方向に延びる第1軸と垂直である。前記台部は、第1斜面方向と第2斜面方向とに広がる斜面を有する。前記第1斜面方向は、前記第1方向と垂直であるとともに、前記第1軸を基準とする径方向と交わる。前記第2斜面方向は、前記第1斜面方向と垂直であるとともに、前記第1方向と斜めに交わる。前記計測するステップは、前記斜面に向かって前記レーザ光を照射する第1変位計で、前記レーザ光の前記斜面上における第1照射位置の前記第1方向における変位を計測するステップを有する。 The exemplary tilt measuring method of the present invention measures the tilt of a swingable movable body. The inclination measuring method includes a step of measuring the displacement of the measuring jig with a displacement meter that irradiates a measuring jig held by the movable body and swingable together with the movable body with a laser beam. The measuring jig has a flat surface and a base portion arranged on the flat surface. The plane in a stationary state of the measuring jig is perpendicular to the first axis extending in the first direction through the swing center of the measuring jig. The pedestal has a slope extending in the first slope direction and the second slope direction. The first slope direction is perpendicular to the first direction and intersects the radial direction with respect to the first axis. The second slope direction is perpendicular to the first slope direction and diagonally intersects with the first slope direction. The measurement step is a first displacement meter that irradiates the laser beam toward the slope, and includes a step of measuring the displacement of the laser beam in the first direction of the first irradiation position on the slope.
 本発明の例示的な傾き計測装置、及び傾き計測方法によれば、変位計の増加を抑制して、より簡素な構成で可動体の傾きを計測することができる。 According to the exemplary tilt measuring device and tilt measuring method of the present invention, it is possible to suppress the increase of the displacement meter and measure the tilt of the movable body with a simpler configuration.
図1は、傾き計測装置の概略を示す斜視図である。FIG. 1 is a perspective view showing an outline of a tilt measuring device. 図2は、傾き計測装置の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of the tilt measuring device. 図3は、台部の構成例を示す斜視図である。FIG. 3 is a perspective view showing a configuration example of the base portion. 図4Aは、台部の第1変形例を示す斜視図である。FIG. 4A is a perspective view showing a first modification of the base portion. 図4Bは、台部の第2変形例を示す斜視図である。FIG. 4B is a perspective view showing a second modification of the base portion. 図4Cは、台部の第3変形例を示す斜視図である。FIG. 4C is a perspective view showing a third modification of the base portion. 図4Dは、台部の第4変形例を示す斜視図である。FIG. 4D is a perspective view showing a fourth modified example of the base portion. 図4Eは、台部の第5変形例を示す斜視図である。FIG. 4E is a perspective view showing a fifth modified example of the base portion. 図5は、第1回転方向に回転させた計測治具の斜面付近の上面図である。FIG. 5 is a top view of the vicinity of the slope of the measuring jig rotated in the first rotation direction. 図6は、回転後の第1照射位置の位置関係を示す概念図である。FIG. 6 is a conceptual diagram showing the positional relationship of the first irradiation position after rotation. 図7は、第2回転方向に回転させた計測治具を第2方向から見た側面図である。FIG. 7 is a side view of the measuring jig rotated in the second rotation direction as viewed from the second direction. 図8は、第3回転方向に回転させた計測治具を第3方向から見た側面図である。FIG. 8 is a side view of the measuring jig rotated in the third rotation direction as viewed from the third direction. 図9は、計測治具の傾き計測方法を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining a method of measuring the inclination of the measuring jig.
 以下に図面を参照して例示的な実施形態を説明する。 An exemplary embodiment will be described below with reference to the drawings.
 なお、本明細書では、後述する揺動可能な計測治具1が停止し且つ計測治具1の平面11の法線方向が変位計2のレーザ光20と平行である状態を「計測治具1が静止した状態」と呼ぶ。 In this specification, the state in which the swingable measuring jig 1 to be described later is stopped and the normal direction of the plane 11 of the measuring jig 1 is parallel to the laser beam 20 of the displacement meter 2 is defined as “measuring jig”. It is called "a state in which 1 is stationary".
 計測治具1が静止した状態における平面11の法線方向を「第1方向D1」と呼ぶ。第1方向D1のうち、変位計2から計測治具1への向きを「第1方向一方D1a」と呼び、計測治具1から変位計2への向きを「第1方向他方D1b」と呼ぶ。各々の構成要素において、第1方向一方D1aにおける端部を「第1方向一方端部」と呼び、第1方向他方D1bにおける端部を「第1方向他方端部」と呼ぶ。各々の構成要素において、第1方向一方D1aを向く面を「第1方向一方端面」と呼び、第1方向他方D1bを向く面を「第1方向他方端面」と呼ぶ。 The normal direction of the plane 11 when the measuring jig 1 is stationary is called "first direction D1". Of the first direction D1, the direction from the displacement meter 2 to the measuring jig 1 is called "first direction one D1a", and the direction from the measuring jig 1 to the displacement meter 2 is called "first direction other D1b". .. In each component, the end in one D1a in the first direction is referred to as the "one end in the first direction" and the end in the other D1b in the first direction is referred to as the "other end in the first direction". In each component, the surface facing one D1a in the first direction is referred to as "one end surface in the first direction", and the surface facing the other D1b in the first direction is referred to as "the other end surface in the first direction".
 第1方向D1と垂直な方向を「第2方向D2」と呼ぶ。第2方向D2のうちの一方を「第2方向一方D2a」と呼び、第2方向D2のうちの他方を「第2方向他方D2b」と呼ぶ。各々の構成要素において、第2方向一方D2aにおける端部を「第2方向一方端部」と呼び、第2方向他方D2bにおける端部を「第2方向他方端部」と呼ぶ。各々の構成要素において、第2方向一方D2aを向く面を「第2方向一方端面」と呼び、第2方向他方D2bを向く面を「第2方向他方端面」と呼ぶ。 The direction perpendicular to the first direction D1 is called "second direction D2". One of the second directions D2 is referred to as "second direction one D2a", and the other of the second directions D2 is referred to as "second direction other D2b". In each component, the end in the second direction one D2a is referred to as the "second direction one end" and the end in the second direction other D2b is referred to as the "second direction other end". In each component, the surface facing one D2a in the second direction is referred to as "one end surface in the second direction", and the surface facing the other D2b in the second direction is referred to as "the other end surface in the second direction".
 第1方向D1及び第2方向D2の両方と垂直な方向を「第3方向D3」と呼ぶ。第3方向D3のうちの一方を「第3方向一方D3a」と呼び、第3方向D3のうちの他方を「第3方向他方D3b」と呼ぶ。各々の構成要素において、第3方向一方D3aにおける端部を「第3方向一方端部」と呼び、第3方向他方D3bにおける端部を「第3方向他方端部」と呼ぶ。各々の構成要素において、第3方向一方D3aを向く面を「第3方向一方端面」と呼び、第3方向他方D3bを向く面を「第3方向他方端面」と呼ぶ。 The direction perpendicular to both the first direction D1 and the second direction D2 is called "third direction D3". One of the third directions D3 is referred to as "third direction one D3a", and the other of the third directions D3 is referred to as "third direction other D3b". In each component, the end in one D3a in the third direction is referred to as the "one end in the third direction" and the end in the other D3b in the third direction is referred to as the "other end in the third direction". In each component, the surface facing one D3a in the third direction is referred to as "one end surface in the third direction", and the surface facing the other D3b in the third direction is referred to as "the other end surface in the third direction".
 第1方向D1に延びる軸を「第1軸A1」と呼び、第2方向D2に延びる軸を「第2軸A2」と呼び、第3方向D3に延びる軸を「第3軸A3」と呼ぶ。第1軸A1、第2軸A2、及び第3軸A3は、それぞれ計測治具1の揺動中心CPを通り、互いに直交する。 The axis extending in the first direction D1 is called "first axis A1", the axis extending in the second direction D2 is called "second axis A2", and the axis extending in the third direction D3 is called "third axis A3". .. The first axis A1, the second axis A2, and the third axis A3 each pass through the swing center CP of the measuring jig 1 and are orthogonal to each other.
 第1軸A1を中心とする周方向を「第1回転方向DR1」と呼び、第2軸A2を中心とする周方向を「第2回転方向DR2」と呼び、第3軸A3を中心とする周方向を「第3回転方向DR3」と呼ぶ。第1回転方向DR1は、いわゆるローリング方向である。第2回転方向DR2及び第3回転方向DR3のうちの一方は、いわゆるピッチング方向である。第2回転方向DR2及び第3回転方向DR3のうちの他方は、いわゆるヨーイング方向である。 The circumferential direction centered on the first axis A1 is called "first rotation direction DR1", the circumferential direction centered on the second axis A2 is called "second rotation direction DR2", and the third axis A3 is the center. The circumferential direction is called "third rotation direction DR3". The first rotation direction DR1 is the so-called rolling direction. One of the second rotation direction DR2 and the third rotation direction DR3 is the so-called pitching direction. The other of the second rotation direction DR2 and the third rotation direction DR3 is the so-called yawing direction.
 所定の軸に直交する方向を、この軸を基準とする「径方向」と呼ぶ。所定の軸は、たとえば第1軸A1、第2軸A2、第3軸A3である。径方向のうち、所定の軸へと近づく向きを「径方向内方」と呼び、所定の軸から離れる向きを「径方向外方」と呼ぶ。各々の構成要素において、径方向内方における端部を「径方向内端部」と呼び、径方向外方における端部を「径方向外端部」と呼ぶ。各々の構成要素において、径方向内方を向く側面を「径方向内側面」と呼び、径方向外方を向く側面を「径方向外側面」と呼ぶ。 The direction orthogonal to a predetermined axis is called the "diameter direction" with respect to this axis. The predetermined axes are, for example, the first axis A1, the second axis A2, and the third axis A3. Of the radial directions, the direction closer to the predetermined axis is called "diametrically inward", and the direction away from the predetermined axis is called "diametrically outward". In each component, the inner end in the radial direction is referred to as the "inner end portion in the radial direction", and the end portion in the outer direction in the radial direction is referred to as the "outer end portion in the radial direction". In each component, the side surface facing inward in the radial direction is referred to as "diameter inner surface", and the side surface facing outward in the radial direction is referred to as "diameter outer surface".
 方向、線、及び面のうちのいずれかと他のいずれかとの位置関係において、「平行」は、両者がどこまで延長しても全く交わらない状態のみならず、実質的に平行である状態を含む。また、「垂直」は、両者が成す最小の角度が90度である状態のみならず、実質的に垂直である状態を含む。「直交」は、両者が互いに垂直に交わる状態のみならず、実質的に直交する状態を含む。つまり、「平行」、「垂直」及び「直交」はそれぞれ、両者の位置関係に本発明の主旨を逸脱しない程度の角度ずれがある状態を含む。 In the positional relationship between any one of the directions, lines, and planes and any of the other, "parallel" includes not only a state in which they do not intersect at all no matter how long they extend, but also a state in which they are substantially parallel. Further, "vertical" includes not only a state in which the minimum angle formed by the two is 90 degrees, but also a state in which the two are substantially vertical. "Orthogonal" includes not only a state in which the two intersect perpendicularly to each other, but also a state in which they are substantially orthogonal to each other. That is, "parallel", "vertical", and "orthogonal" each include a state in which the positional relationship between the two has an angular deviation to the extent that the gist of the present invention is not deviated.
 なお、これらは単に説明のために用いられる名称であって、実際の位置関係、方向、及び名称などを限定する意図はない。 Note that these are names used only for explanation, and there is no intention to limit the actual positional relationship, direction, name, etc.
<1.実施形態>
 図1及び図2を参照して、傾き計測装置100の構成を説明する。図1は、傾き計測装置100の概略を示す斜視図である。図2は、傾き計測装置100の構成例を示すブロック図である。なお、図1において、計測治具1及び可動体201は静止している。
<1. Embodiment>
The configuration of the tilt measuring device 100 will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view showing an outline of the inclination measuring device 100. FIG. 2 is a block diagram showing a configuration example of the tilt measuring device 100. In FIG. 1, the measuring jig 1 and the movable body 201 are stationary.
 <1-1.傾き計測装置>
 傾き計測装置100は、計測対象の可動体201とともに揺動する計測治具1の第1回転方向DR1、第2回転方向DR2、及び第3回転方向DR3における傾きを計測する。本実施形態における計測対象は、カメラユニットなどの光学モジュールの振れを補正する振れ補正機能を有する光学ユニット200である。
<1-1. Tilt measuring device>
The tilt measuring device 100 measures the tilt of the measuring jig 1 that swings together with the movable body 201 to be measured in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3. The measurement target in the present embodiment is an optical unit 200 having a shake correction function for correcting the runout of an optical module such as a camera unit.
 光学ユニット200は、光学モジュールを保持する可動体201と、可動体201を揺動可能に保持する固定体(図示省略)と、固定体に対して可動体201を回転駆動する駆動機構202と、を有する。光学ユニット200は、カメラ付きスマートフォン、フォトカメラ及びビデオカメラなどの撮像装置、ドローンなどの移動体に搭載されるアクションカメラなどに搭載される。光学ユニット200の振れ補正機能は、可動体201が固定体に対して傾くと、図示しないジャイロスコープなどのセンサにより検出される3次元方向の加速度、角速度、振れ量などの検出結果に基づいて可動体201の傾きを補正し、可動体201が有する光学モジュールの光軸の振れを補正する。 The optical unit 200 includes a movable body 201 that holds the optical module, a fixed body (not shown) that holds the movable body 201 swingably, and a drive mechanism 202 that rotationally drives the movable body 201 with respect to the fixed body. Has. The optical unit 200 is mounted on a smartphone with a camera, an image pickup device such as a photo camera and a video camera, an action camera mounted on a moving body such as a drone, and the like. The runout correction function of the optical unit 200 is movable based on the detection results such as acceleration, angular velocity, and runout amount in the three-dimensional direction detected by a sensor such as a gyroscope (not shown) when the movable body 201 is tilted with respect to the fixed body. The inclination of the body 201 is corrected, and the deviation of the optical axis of the optical module of the movable body 201 is corrected.
 なお、本実施形態では、光学ユニット200には、光学モジュールに代えて、計測治具1が搭載される。可動体201は、計測治具1を収容して保持する筒状のホルダ203を有する。ホルダ203は、計測治具1よりも径方向外方に配置され、周方向に計測治具1を囲む。傾き計測装置100は、揺動可能な可動体201の傾きを計測する。つまり、傾き計測装置100は、計測治具1の上述のような傾きを可動体201の第1回転方向DR1、第2回転方向DR2、及び第3回転方向DR3における傾きとして計測する。 In the present embodiment, the optical unit 200 is equipped with the measuring jig 1 instead of the optical module. The movable body 201 has a cylindrical holder 203 that houses and holds the measuring jig 1. The holder 203 is arranged radially outside the measuring jig 1 and surrounds the measuring jig 1 in the circumferential direction. The tilt measuring device 100 measures the tilt of the swingable movable body 201. That is, the inclination measuring device 100 measures the inclination of the measuring jig 1 as described above as the inclination of the movable body 201 in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3.
 傾き計測装置100は、計測治具1と、変位計2と、記憶部3と、制御部4と、を備える。 The tilt measuring device 100 includes a measuring jig 1, a displacement meter 2, a storage unit 3, and a control unit 4.
 計測治具1は、揺動中心CPを中心に揺動可能である。なお、「揺動」とは、第1回転方向DR1、第2回転方向DR2、及び第3回転方向DR3において所定の回転角度範囲内で回転することを意味する。詳細には、計測治具1は、計測治具1の外部からの作用を受けて、第1回転方向DR1、第2回転方向DR2、及び第3回転方向DR3の少なくともいずれかに回転可能である。本実施形態では、前述の如く、傾き計測装置100は、計測治具1を備える。計測治具1は、可動体201に保持されて、可動体201とともに揺動可能である。 The measuring jig 1 can swing around the swing center CP. In addition, "swing" means to rotate within a predetermined rotation angle range in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3. Specifically, the measuring jig 1 can rotate in at least one of the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3 by receiving an action from the outside of the measurement jig 1. .. In the present embodiment, as described above, the inclination measuring device 100 includes the measuring jig 1. The measuring jig 1 is held by the movable body 201 and can swing together with the movable body 201.
 計測治具1は、本実施形態ではAlなどの金属製である。但し、この例示に限定されず、計測治具1は、たとえば樹脂であってもよい。計測治具1の材料は、光学ユニット200に搭載予定の光学モジュールの重量を考慮して選択できる。たとえば、計測治具1の重量は、好ましくは光学モジュールの重量に近くされ、さらに好ましくは光学モジュールの重量と同じとされる。 The measuring jig 1 is made of a metal such as Al in this embodiment. However, the present invention is not limited to this example, and the measuring jig 1 may be, for example, a resin. The material of the measuring jig 1 can be selected in consideration of the weight of the optical module to be mounted on the optical unit 200. For example, the weight of the measuring jig 1 is preferably close to the weight of the optical module, and more preferably the same as the weight of the optical module.
 計測治具1は、平面11と、平面11上に配置される台部12と、を有する。 The measuring jig 1 has a flat surface 11 and a base portion 12 arranged on the flat surface 11.
 平面11は、計測治具1の第1方向他方端面に配置される鏡面であり、光を反射する。計測治具1が静止した状態における平面11は、計測治具1の揺動中心CPを通って第1方向D1に延びる第1軸A1と垂直である。たとえば、平面11は、鏡面加工された金属面であってもよい。或いは、鏡面を有するフィルムなどの部材が計測治具1の第1方向他方端面に配置されることにより、平面11が実現されてもよい。 The plane 11 is a mirror surface arranged on the other end surface in the first direction of the measuring jig 1 and reflects light. The plane 11 in the stationary state of the measuring jig 1 is perpendicular to the first axis A1 extending in the first direction D1 through the swing center CP of the measuring jig 1. For example, the flat surface 11 may be a mirror-finished metal surface. Alternatively, the flat surface 11 may be realized by arranging a member such as a film having a mirror surface on the other end surface of the measuring jig 1 in the first direction.
 平面11は、第1領域111と、第2領域112と、第3領域113と、第4領域114と、を含む。第1領域111は、第2方向一方D2a側且つ第3方向一方D3a側の領域である。第2領域112は、第2方向一方D2a側且つ第3方向他方D3b側の領域である。第3領域113は、第2方向他方D2b側且つ第3方向他方D3b側の領域である。第4領域114は、第2方向他方D2b側且つ第3方向一方D3a側の領域である。 The plane 11 includes a first region 111, a second region 112, a third region 113, and a fourth region 114. The first region 111 is a region on the D2a side in the second direction and on the D3a side in the third direction. The second region 112 is a region on one side of D2a in the second direction and on the other side of D3b in the third direction. The third region 113 is a region on the other D2b side in the second direction and on the other D3b side in the third direction. The fourth region 114 is a region on the D2b side of the other in the second direction and the D3a side of the other in the third direction.
 台部12は、第1領域111に配置される。台部12は、斜面120を有する。斜面120は、第1斜面方向Ds1と第2斜面方向Ds2とに広がる(後述する図3参照)。なお、第1斜面方向Ds1は、第1方向D1と垂直であるとともに、第1軸A1を基準とする径方向と交わる。第2斜面方向Ds2は、第1斜面方向Ds1と垂直であるとともに、第1方向D1と斜めに交わる。台部12の更なる構成は、後に説明する。 The base portion 12 is arranged in the first region 111. The base 12 has a slope 120. The slope 120 extends in the first slope direction Ds1 and the second slope direction Ds2 (see FIG. 3 described later). The first slope direction Ds1 is perpendicular to the first direction D1 and intersects the radial direction with respect to the first axis A1. The second slope direction Ds2 is perpendicular to the first slope direction Ds1 and diagonally intersects the first slope direction D1. Further configurations of the base 12 will be described later.
 次に、変位計2は、計測治具1にレーザ光20を照射して、計測治具1の変位を計測する。前述の如く、傾き計測装置100は、変位計2を備える。変位計2は、計測治具1で反射されたレーザ光20を受光することにより、計測治具1の変位を計測できる。変位計2は、第1変位計21と、第2変位計22と、第3変位計23と、第4変位計24と、を有する。 Next, the displacement meter 2 irradiates the measuring jig 1 with the laser beam 20 to measure the displacement of the measuring jig 1. As described above, the tilt measuring device 100 includes the displacement meter 2. The displacement meter 2 can measure the displacement of the measuring jig 1 by receiving the laser beam 20 reflected by the measuring jig 1. The displacement meter 2 includes a first displacement meter 21, a second displacement meter 22, a third displacement meter 23, and a fourth displacement meter 24.
 第1変位計21は、斜面120に向かってレーザ光20を照射する。前述の如く、変位計2は、第1変位計21を有する。第1変位計21は、計測治具1の斜面120上の第1照射位置P1で反射されたレーザ光20を受光する。その受光結果から、第1変位計21は、斜面120上におけるレーザ光20の第1照射位置P1の第1方向D1における変位を計測する。計測治具1が可動体201とともに揺動することによって第1回転方向DR1に回転すると、第1変位計21から出射されるレーザ光20の第1照射位置P1が、第1方向D1に変位する。そのため、第1変位計21が第1照射位置P1の変位を計測した結果に基づいて、第1回転方向DR1における計測治具1の回転角度を可動体201の第1回転角度として算出できる。つまり、第1回転方向DR1における計測治具1の回転角度を得るための計測を1つの第1変位計21で実施できる。従って、複数の変位計の計測結果から第1回転方向DR1における計測治具1の第1回転角度を計測する通常の構成と比べて、変位計2の増加を抑制して、より簡素な構成で可動体201の傾きを計測することができる。 The first displacement meter 21 irradiates the laser beam 20 toward the slope 120. As described above, the displacement meter 2 has a first displacement meter 21. The first displacement meter 21 receives the laser beam 20 reflected at the first irradiation position P1 on the slope 120 of the measuring jig 1. From the light receiving result, the first displacement meter 21 measures the displacement of the laser beam 20 on the slope 120 in the first direction D1 of the first irradiation position P1. When the measuring jig 1 swings together with the movable body 201 and rotates in the first rotation direction DR1, the first irradiation position P1 of the laser beam 20 emitted from the first displacement meter 21 is displaced in the first direction D1. .. Therefore, the rotation angle of the measuring jig 1 in the first rotation direction DR1 can be calculated as the first rotation angle of the movable body 201 based on the result of the first displacement meter 21 measuring the displacement of the first irradiation position P1. That is, the measurement for obtaining the rotation angle of the measuring jig 1 in the first rotation direction DR1 can be performed by one first displacement meter 21. Therefore, the increase of the displacement meter 2 is suppressed and the configuration is simpler than the normal configuration in which the first rotation angle of the measuring jig 1 in the first rotation direction DR1 is measured from the measurement results of a plurality of displacement meters. The inclination of the movable body 201 can be measured.
 第2変位計22は、平面11に向かってレーザ光20を照射する。前述の如く、変位計2は、第2変位計22を有する。第2変位計22は、計測治具1の平面11上の第2照射位置P2で反射されたレーザ光20を受光する。その受光結果から、第2変位計22は、平面11上におけるレーザ光20の第2照射位置P2の第1方向D1における変位を計測する。 The second displacement meter 22 irradiates the laser beam 20 toward the plane 11. As described above, the displacement meter 2 has a second displacement meter 22. The second displacement meter 22 receives the laser beam 20 reflected at the second irradiation position P2 on the plane 11 of the measuring jig 1. From the light receiving result, the second displacement meter 22 measures the displacement of the laser beam 20 on the plane 11 in the first direction D1 of the second irradiation position P2.
 第3変位計23は、平面11に向かってレーザ光20を照射する。前述の如く、変位計2は、第3変位計23を有する。第3変位計23は、計測治具1の平面11上の第3照射位置P3で反射されたレーザ光20を受光する。その受光結果から、第3変位計23は、平面11上におけるレーザ光20の第3照射位置P3の第1方向D1における変位を計測する。 The third displacement meter 23 irradiates the laser beam 20 toward the plane 11. As described above, the displacement meter 2 has a third displacement meter 23. The third displacement meter 23 receives the laser beam 20 reflected at the third irradiation position P3 on the plane 11 of the measuring jig 1. From the light receiving result, the third displacement meter 23 measures the displacement of the laser beam 20 on the plane 11 in the first direction D1 of the third irradiation position P3.
 第4変位計24は、平面11に向かってレーザ光20を照射する。前述の如く、変位計2は、第4変位計24を有する。第4変位計24は、計測治具1の平面11上の第4照射位置P4で反射されたレーザ光20を受光する。その受光結果から、第4変位計24は、平面11上におけるレーザ光20の第4照射位置P4の第1方向D1における変位を計測する。 The fourth displacement meter 24 irradiates the laser beam 20 toward the plane 11. As described above, the displacement meter 2 has a fourth displacement meter 24. The fourth displacement meter 24 receives the laser beam 20 reflected at the fourth irradiation position P4 on the plane 11 of the measuring jig 1. From the light receiving result, the fourth displacement meter 24 measures the displacement of the laser beam 20 on the plane 11 in the first direction D1 of the fourth irradiation position P4.
 平面11において、第2照射位置P2及び第3照射位置P3は第2方向D2に並び、第3照射位置P3及び第4照射位置P4は第3方向D3に並ぶ。なお、第2方向D2は、第1方向D1と垂直である。第3方向D3は、第1方向D1と垂直であって、第2方向D2と交わる。なお、第3方向D3は、本実施形態では第2方向D2と垂直であるが、この例示に限定されず、斜めに交わってもよい。上述のような配列により、第2変位計22及び第3変位計23の計測結果から、第2方向D2に延びる第2軸A2を中心とする第2回転方向DR2における計測治具1の第2回転角度を計測できる。また、第3変位計23及び第4変位計24の計測結果から、第3方向D3に延びる第3軸A3を中心とする第3回転方向DR3における計測治具1の第3回転角度を計測できる。たとえば、計測治具1及び可動体201のピッチング方向及びヨーイング方向における傾きを計測できる。 On the plane 11, the second irradiation position P2 and the third irradiation position P3 are arranged in the second direction D2, and the third irradiation position P3 and the fourth irradiation position P4 are arranged in the third direction D3. The second direction D2 is perpendicular to the first direction D1. The third direction D3 is perpendicular to the first direction D1 and intersects the second direction D2. The third direction D3 is perpendicular to the second direction D2 in the present embodiment, but is not limited to this example and may intersect diagonally. According to the arrangement as described above, from the measurement results of the second displacement meter 22 and the third displacement meter 23, the second measurement jig 1 in the second rotation direction DR2 centered on the second axis A2 extending in the second direction D2. The rotation angle can be measured. Further, from the measurement results of the third displacement meter 23 and the fourth displacement meter 24, the third rotation angle of the measuring jig 1 in the third rotation direction DR3 centered on the third axis A3 extending in the third direction D3 can be measured. .. For example, the inclination of the measuring jig 1 and the movable body 201 in the pitching direction and the yawing direction can be measured.
 第1変位計21のレーザ光20は、第1領域111上の台部12の斜面120に照射される。第2変位計22のレーザ光20は、第2領域112に照射される。第3変位計23のレーザ光20は、第3領域113に照射される。第4変位計24のレーザ光20は、第4領域114に照射される。こうすれば、斜面120を有する台部12と、第2照射位置P2、第3照射位置P3、及び第4照射位置P4とを平面11上の異なる領域に配置できる。従って、第1方向D1から見て、斜面120上の第1照射位置P1、第2照射位置P2、第3照射位置P3、及び第4照射位置P4のうちの一つと他の一つとの間の間隔を十分に開けて、相互の干渉を防止できる。 The laser beam 20 of the first displacement meter 21 irradiates the slope 120 of the base 12 on the first region 111. The laser beam 20 of the second displacement meter 22 irradiates the second region 112. The laser beam 20 of the third displacement meter 23 irradiates the third region 113. The laser beam 20 of the fourth displacement meter 24 irradiates the fourth region 114. By doing so, the base portion 12 having the slope 120 and the second irradiation position P2, the third irradiation position P3, and the fourth irradiation position P4 can be arranged in different regions on the plane 11. Therefore, when viewed from the first direction D1, between one of the first irradiation position P1, the second irradiation position P2, the third irradiation position P3, and the fourth irradiation position P4 on the slope 120 and the other one. It can be sufficiently spaced to prevent mutual interference.
 第1変位計21、第2変位計22、第3変位計23、及び第4変位計24はいずれも、第1方向D1に沿ってレーザ光20を照射する。第1変位計21、第2変位計22、第3変位計23、及び第4変位計24が同じ方向にレーザ光20を照射するので、これらの配置位置が第2方向D2及び/又は第3方向D3に分散しない。たとえば、これらを計測治具1の平面11よりも上方のスペースにまとめて配置できる。従って、傾き計測装置100をよりコンパクトにできる。 The first displacement meter 21, the second displacement meter 22, the third displacement meter 23, and the fourth displacement meter 24 all irradiate the laser beam 20 along the first direction D1. Since the first displacement meter 21, the second displacement meter 22, the third displacement meter 23, and the fourth displacement meter 24 irradiate the laser beam 20 in the same direction, their placement positions are in the second direction D2 and / or the third. Does not disperse in direction D3. For example, these can be collectively arranged in a space above the plane 11 of the measuring jig 1. Therefore, the tilt measuring device 100 can be made more compact.
 次に、記憶部3は、電力供給がなくても記憶を維持できる非一過性の記憶媒体である。記憶部3は、たとえば制御部4で用いられるプログラム及び情報などを記憶する。 Next, the storage unit 3 is a non-transient storage medium that can maintain storage even without power supply. The storage unit 3 stores, for example, a program and information used by the control unit 4.
 制御部4は、傾き計測装置100を制御する。たとえば、制御部4は、記憶部3に記憶されたプログラム及び情報を用いて、各々の構成要素を制御する。図2に示すように、制御部4は、算出部41を備える。算出部41は、変位計2の計測結果に基づいて、計測治具1の傾きを算出する。 The control unit 4 controls the tilt measuring device 100. For example, the control unit 4 controls each component by using the program and the information stored in the storage unit 3. As shown in FIG. 2, the control unit 4 includes a calculation unit 41. The calculation unit 41 calculates the inclination of the measuring jig 1 based on the measurement result of the displacement meter 2.
 詳細には、算出部41は、所定の第1時点における第1変位計21の第1計測結果と、第1時点よりも後の第2時点における第1変位計21の第2計測結果とに基づいて、第1照射位置P1の第1方向D1における変位量を算出する。さらに、算出部41は、算出した変位量から第1回転方向DR1における計測治具1の回転角度を算出する。こうすれば、傾き計測装置100は、第1変位計21の計測結果から第1回転方向DR1における計測治具1の回転角度を可動体201の第1回転角度として算出できる。計測治具1の第1回転角度の算出方法は、後に説明する。 Specifically, the calculation unit 41 determines the first measurement result of the first displacement meter 21 at a predetermined first time point and the second measurement result of the first displacement meter 21 at the second time point after the first time point. Based on this, the displacement amount of the first irradiation position P1 in the first direction D1 is calculated. Further, the calculation unit 41 calculates the rotation angle of the measuring jig 1 in the first rotation direction DR1 from the calculated displacement amount. In this way, the inclination measuring device 100 can calculate the rotation angle of the measuring jig 1 in the first rotation direction DR1 as the first rotation angle of the movable body 201 from the measurement result of the first displacement meter 21. The method of calculating the first rotation angle of the measuring jig 1 will be described later.
 また、算出部41は、所定の第3時点における第2変位計22及び第3変位計23の第3計測結果と、第3時点よりも後の第4時点における第2変位計22及び第3変位計23の第3計測結果とに基づいて、第2照射位置P2及び第3照射位置P3の第1方向D1における変位量をそれぞれ算出する。さらに、算出部41は、上述の変位量から第2回転方向DR2における計測治具1の回転角度を算出する。こうすれば、傾き計測装置100は、第2変位計22及び第3変位計23の計測結果から、第2回転方向DR2における計測治具1の回転角度を可動体201の第2回転角度として算出できる。計測治具1の第2回転角度の算出方法は、後に説明する。 In addition, the calculation unit 41 includes the third measurement results of the second displacement meter 22 and the third displacement meter 23 at a predetermined third time point, and the second displacement meter 22 and the third displacement meter 22 at the fourth time point after the third time point. Based on the third measurement result of the displacement meter 23, the displacement amounts of the second irradiation position P2 and the third irradiation position P3 in the first direction D1 are calculated respectively. Further, the calculation unit 41 calculates the rotation angle of the measuring jig 1 in the second rotation direction DR2 from the above-mentioned displacement amount. Then, the inclination measuring device 100 calculates the rotation angle of the measuring jig 1 in the second rotation direction DR2 as the second rotation angle of the movable body 201 from the measurement results of the second displacement meter 22 and the third displacement meter 23. can. The method of calculating the second rotation angle of the measuring jig 1 will be described later.
 また、算出部41は、所定の第5時点における第3変位計23及び第4変位計24の第5計測結果と、第5時点よりも後の第6時点における第3変位計23及び第4変位計24の第6計測結果とに基づいて、第3照射位置P3及び第4照射位置P4の第1方向D1における変位量をそれぞれ算出する。さらに、算出部41は、上述の変位量から第3回転方向DR3における計測治具1の回転角度を算出する。こうすれば、傾き計測装置100は、第3変位計23及び第4変位計24の計測結果から、第3回転方向DR3における計測治具1の回転角度を可動体201の第3回転角度として算出できる。計測治具1の第3回転角度の算出方法は、後に説明する。 In addition, the calculation unit 41 includes the fifth measurement results of the third displacement meter 23 and the fourth displacement meter 24 at a predetermined fifth time point, and the third displacement meter 23 and the fourth at the sixth time point after the fifth time point. Based on the sixth measurement result of the displacement meter 24, the displacement amounts of the third irradiation position P3 and the fourth irradiation position P4 in the first direction D1 are calculated respectively. Further, the calculation unit 41 calculates the rotation angle of the measuring jig 1 in the third rotation direction DR3 from the above-mentioned displacement amount. Then, the inclination measuring device 100 calculates the rotation angle of the measuring jig 1 in the third rotation direction DR3 as the third rotation angle of the movable body 201 from the measurement results of the third displacement meter 23 and the fourth displacement meter 24. can. The method of calculating the third rotation angle of the measuring jig 1 will be described later.
 なお、上述の第1時点及び第2時点はそれぞれ上述の第3時点及び第4時点と同じであってもよい。及び/又は、上述の第1時点及び第2時点はそれぞれ上述の第5時点及び第6時点と同じであってもよい。及び/又は、上述の第3時点及び第4時点はそれぞれ上述の第5時点及び第6時点と同じであってもよい。或いは、上述の第1時点及び第2時点はそれぞれ、上述の第3時点及び第4時点、上述の第3時点及び第4時点と異なっていてもよい。 The above-mentioned first and second time points may be the same as the above-mentioned third and fourth time points, respectively. And / or the above-mentioned first and second time points may be the same as the above-mentioned fifth and sixth time points, respectively. And / or the above-mentioned third and fourth time points may be the same as the above-mentioned fifth and sixth time points, respectively. Alternatively, the first and second time points described above may be different from the third and fourth time points described above and the third and fourth time points described above, respectively.
 つまり、傾き計測装置100は、第1回転方向DR1、第2回転方向DR2、及び第3回転方向DR3のうちの少なくとも2つにおける計測治具1の回転角度をそれぞれ、同時に計測できる。さらに、傾き計測装置100は、第1回転方向DR1、第2回転方向DR2、及び第3回転方向DR3における計測治具1の回転角度をそれぞれ、個別に計測することもできる。 That is, the inclination measuring device 100 can simultaneously measure the rotation angle of the measuring jig 1 in at least two of the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3. Further, the tilt measuring device 100 can individually measure the rotation angles of the measuring jig 1 in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3.
 <1-2.計測治具の台部>
 次に、図3及び図4Aから図4Eを参照して、計測治具1の詳細な構成を説明する。図3は、台部12の構成例を示す斜視図である。図4Aは、台部12aの第1変形例を示す斜視図である。図4Bは、台部12bの第2変形例を示す斜視図である。図4Cは、台部12cの第3変形例を示す斜視図である。図4Dは、台部12dの第4変形例を示す斜視図である。図4Eは、台部12eの第5変形例を示す斜視図である。なお、図3及び図4Aから図4Eは、たとえば図1の斜視図のうちの台部12付近を拡大した図に対応する。図3及び図4Aから図4Eにおいて、計測治具1は静止した状態である。
<1-2. Base of measuring jig>
Next, a detailed configuration of the measuring jig 1 will be described with reference to FIGS. 3 and 4A to 4E. FIG. 3 is a perspective view showing a configuration example of the base portion 12. FIG. 4A is a perspective view showing a first modification of the base portion 12a. FIG. 4B is a perspective view showing a second modification of the base portion 12b. FIG. 4C is a perspective view showing a third modification example of the base portion 12c. FIG. 4D is a perspective view showing a fourth modified example of the base portion 12d. FIG. 4E is a perspective view showing a fifth modification of the base portion 12e. It should be noted that FIGS. 3 and 4A to 4E correspond to, for example, an enlarged view of the vicinity of the base portion 12 in the perspective view of FIG. In FIGS. 3 and 4A to 4E, the measuring jig 1 is in a stationary state.
 図3に示すように、本実施形態の台部12は、錐台形状である。こうすれば、たとえば図4Aのように台部12aが錐体形状である場合と比べて、台部12の第1方向D1におけるサイズを低減できる。従って、計測治具1が所定の回転軸を中心に回転する際に、台部12に作用する遠心力をより小さくできるので、その回転軸を基準とする径方向外方に計測治具1がずれ難くなる。また、計測治具1が大きく回転したとき、台部12の第1方向D1における先端部が第1変位計21以外の変位計2のレーザ光20の少なくとも一部を遮ることを抑制又は防止できる。但し、この例示は、たとえば図4Aのように、台部12aが錐体形状である構成を排除しない。 As shown in FIG. 3, the base portion 12 of the present embodiment has a frustum shape. By doing so, the size of the pedestal portion 12 in the first direction D1 can be reduced as compared with the case where the pedestal portion 12a has a cone shape as shown in FIG. 4A, for example. Therefore, when the measuring jig 1 rotates about a predetermined rotation axis, the centrifugal force acting on the base 12 can be made smaller, so that the measuring jig 1 moves outward in the radial direction with respect to the rotation axis. It becomes difficult to shift. Further, when the measuring jig 1 is greatly rotated, it is possible to suppress or prevent the tip portion of the base portion 12 in the first direction D1 from blocking at least a part of the laser beam 20 of the displacement meter 2 other than the first displacement meter 21. .. However, this example does not exclude the configuration in which the base portion 12a has a cone shape, as shown in FIG. 4A, for example.
 また、台部12は、第1軸A1を基準とする径方向において、第1軸A1から離れる。つまり、台部12の径方向内端部は、第1軸A1から離れる。こうすれば、たとえば図4Bのように台部12bの径方向内端部が第1軸A1に接する構成と比べて、台部12の体積を小さくできる。従って、計測治具1が所定の回転軸を中心に回転する際に、台部12に作用する遠心力をより小さくできるので、その回転軸を基準とする径方向外方に計測治具1がずれ難くなる。 Further, the base portion 12 is separated from the first axis A1 in the radial direction with respect to the first axis A1. That is, the radial inner end portion of the base portion 12 is separated from the first axis A1. By doing so, the volume of the base portion 12 can be reduced as compared with the configuration in which the radial inner end portion of the base portion 12b is in contact with the first axis A1 as shown in FIG. 4B, for example. Therefore, when the measuring jig 1 rotates about a predetermined rotation axis, the centrifugal force acting on the base 12 can be made smaller, so that the measuring jig 1 moves outward in the radial direction with respect to the rotation axis. It becomes difficult to shift.
 但し、この例示に限定されず、たとえば図4Bのように、台部12bの径方向内端部は、第1軸A1に接してもよい。こうすれば、第1軸A1を基準として台部12bを配置できる。従って、台部12bを平面11上に配置し易くなるので、計測治具1が製造し易くなる。 However, the present invention is not limited to this example, and the radial inner end portion of the base portion 12b may be in contact with the first axis A1 as shown in FIG. 4B, for example. In this way, the base portion 12b can be arranged with the first axis A1 as a reference. Therefore, since the base portion 12b can be easily arranged on the flat surface 11, the measuring jig 1 can be easily manufactured.
 或いは、台部12の一部が第2領域112から第4領域114の少なくともいずれかの一部の上にも配置され、第1軸A1が台部12を通ってもよい。 Alternatively, a part of the base portion 12 may be arranged on at least a part of the second region 112 to the fourth region 114, and the first axis A1 may pass through the base portion 12.
 好ましくは、台部12は、中空である。たとえば図4Cに示すように、台部12cは、斜面120cを有する板部材121と、板部材121を支える柱部122と、を有してもよい。こうすれば、台部12cを軽量化できる。従って、計測治具1が所定の回転軸を中心に回転する際に、台部12cに作用する遠心力をより小さくできるので、その回転軸を基準とする径方向外方に計測治具1がずれ難くなる。よって、傾き計測装置100は、可動体201の傾きをより正確に計測できる。 Preferably, the base 12 is hollow. For example, as shown in FIG. 4C, the base portion 12c may have a plate member 121 having a slope 120c and a pillar portion 122 supporting the plate member 121. By doing so, the weight of the base portion 12c can be reduced. Therefore, when the measuring jig 1 rotates about a predetermined rotation axis, the centrifugal force acting on the base portion 12c can be made smaller, so that the measuring jig 1 moves outward in the radial direction with respect to the rotation axis. It becomes difficult to shift. Therefore, the inclination measuring device 100 can measure the inclination of the movable body 201 more accurately.
 次に、斜面120は、第1軸A1を基準とする径方向外方を向く。こうすれば、揺動中心CPを通る第1軸A1に台部12の配置位置を近づけることができるので、計測治具1が第1回転方向DR1に回転する際、遠心力が台部12に作用しても、第1軸A1を基準とする径方向外方に計測治具1がずれ難くなる。従って、計測治具1の傾きの計測精度を向上できる。 Next, the slope 120 faces outward in the radial direction with respect to the first axis A1. By doing so, the arrangement position of the base portion 12 can be brought closer to the first axis A1 passing through the swing center CP, so that when the measuring jig 1 rotates in the first rotation direction DR1, the centrifugal force is applied to the base portion 12. Even if it acts, the measuring jig 1 is less likely to shift outward in the radial direction with respect to the first axis A1. Therefore, the accuracy of measuring the inclination of the measuring jig 1 can be improved.
 但し、上述の例示に限定されず、斜面120は、径方向外方を向いていなくてもよい。たとえば図4Dに示すように、斜面120dは、第1軸A1を基準とする径方向内方を向いてもよい。第1軸A1を基準とする径方向において、斜面120dの第1方向一方端部は、斜面120dの第1方向他方端部よりも径方向内方にあってもよい。なお、図4Dにおいて、第1方向D1から見て、台部12dの第1軸A1を基準とする径方向外端部は、計測治具1の外周縁部に配置されてもよい。さらに、第1方向D1から見て、台部12dの第1軸A1を基準とする第2方向一方端部及び/又は第3方向一方端部は、計測治具1の外周縁部に配置されてもよい。こうすれば、計測治具1の外周縁部を基準として台部12dを配置できる。従って、台部12dが配置し易くなる。 However, the slope 120 does not have to face outward in the radial direction without being limited to the above example. For example, as shown in FIG. 4D, the slope 120d may face inward in the radial direction with respect to the first axis A1. In the radial direction with respect to the first axis A1, the one end portion in the first direction of the slope 120d may be radially inward from the other end portion in the first direction of the slope 120d. In FIG. 4D, the radial outer end portion of the base portion 12d with respect to the first axis A1 may be arranged on the outer peripheral edge portion of the measuring jig 1 when viewed from the first direction D1. Further, when viewed from the first direction D1, one end in the second direction and / or one end in the third direction with respect to the first axis A1 of the base portion 12d are arranged on the outer peripheral edge of the measuring jig 1. You may. By doing so, the base portion 12d can be arranged with the outer peripheral edge portion of the measuring jig 1 as a reference. Therefore, the base portion 12d can be easily arranged.
 また、第1軸A1を基準とする径方向において、斜面120の第1方向一方端部は、斜面120の第1方向他方端部よりも径方向外方にある。第1方向から見て、第1変位計21のレーザ光20の第1照射位置P1は、斜面120の第1方向一方端部と第1方向他方端部との間にある。たとえば図3及び図4Aから図4Cでは、第1照射位置P1は、斜面120,120a,120b,120cの第1方向一方D1aにおける端部よりも径方向内方、或いは同じ径方向位置である。さらに、第1照射位置P1は、斜面120,120a,120b,120cの第1方向他方D1bにおける端部よりも径方向外方、或いは同じ径方向位置である。また、図4Dでは、第1照射位置P1は、斜面120dの第1方向一方D1aにおける端部よりも径方向外方、或いは同じ径方向位置である。さらに、第1照射位置P1は、斜面120dの第1方向他方D1bにおける端部よりも径方向内方、或いは同じ径方向位置である。こうすれば、計測治具1が第1回転方向DR1に回転する際、第1照射位置P1が斜面120から外れることを防止できる。 Further, in the radial direction with respect to the first axis A1, the one end portion in the first direction of the slope 120 is radially outer than the other end portion in the first direction of the slope 120. When viewed from the first direction, the first irradiation position P1 of the laser beam 20 of the first displacement meter 21 is between one end of the slope 120 in the first direction and the other end of the first direction. For example, in FIGS. 3 and 4A to 4C, the first irradiation position P1 is a radial inward position or the same radial position from the end portion in the first direction of the slopes 120, 120a, 120b, 120c, while D1a. Further, the first irradiation position P1 is radially outward from the end portion of the slope 120, 120a, 120b, 120c in the first direction and the other D1b, or at the same radial position. Further, in FIG. 4D, the first irradiation position P1 is radially outward from the end portion in the first direction of the slope 120d, while D1a, or is the same radial position. Further, the first irradiation position P1 is radially inward from the end portion of the slope 120d in the first direction and the other D1b, or at the same radial position. By doing so, it is possible to prevent the first irradiation position P1 from deviating from the slope 120 when the measuring jig 1 rotates in the first rotation direction DR1.
 好ましくは、斜面120は、平面11から延びる。たとえば、斜面120の第1方向一方端部は、平面11に接続される。第1方向D1から見て、計測治具1が静止した状態における第1照射位置P1は、斜面120の第1方向一方端部と平面11との接続部123と重なる。なお、斜面120の第1方向一方端部は、斜面120の第1方向D1における平面11側の端部である。こうすれば、計測治具1が静止した状態における第1照射位置P1を第1変位計21が計測する変位の基準とすることができる。従って、第1回転方向DR1における計測治具1の回転角度が計算し易くなる。なお、上述の例示は、斜面120が平面11から延びない構成を排除しない。たとえば、斜面120の特に第1方向一方端部は、平面11よりも第1方向他方D1bに離れてもよい。 Preferably, the slope 120 extends from the plane 11. For example, one end of the slope 120 in the first direction is connected to the plane 11. Seen from the first direction D1, the first irradiation position P1 in a state where the measuring jig 1 is stationary overlaps with the connecting portion 123 between one end of the slope 120 in the first direction and the plane 11. The one end of the slope 120 in the first direction is the end of the slope 120 on the plane 11 side in the first direction D1. In this way, the first irradiation position P1 when the measuring jig 1 is stationary can be used as a reference for the displacement measured by the first displacement meter 21. Therefore, it becomes easy to calculate the rotation angle of the measuring jig 1 in the first rotation direction DR1. It should be noted that the above example does not exclude the configuration in which the slope 120 does not extend from the plane 11. For example, one end of the slope 120 in particular in the first direction may be separated from the plane 11 by the other D1b in the first direction.
 好ましくは、斜面120の第1斜面方向Ds1は、第4方向D4と垂直である。なお、第4方向D4は、第1軸A1を基準とする径方向外方の1つであり、平面11と平行である。第4方向D4は、第1軸A1と垂直である。さらに、第4方向D4は、第1軸A1から、計測治具1が静止した状態における第1照射位置P1に向かう。こうすれば、第1回転方向DR1における計測治具1の回転角度がより計算し易くなる。たとえば、図3及び図4Aから図4Cのように斜面120,120a,120b,120cが径方向外方を向く場合、計測治具1が第1回転方向DR1のどちら側に回転しても、第1照射位置P1は、第1方向D1において平面11から離れる第1方向他方D1bに変位する。或いは、図4Dのように斜面120dが径方向内方を向く場合(後述する図5参照)には、計測治具1が第1回転方向DR1のどちら側に回転しても、第1照射位置P1は第1方向D1において平面11に近づく第1方向一方D1aに変位する。従って、計測治具1が第1回転方向DR1のどちら側に回転しても、第1照射位置P1は第1方向D1の同じ側に変位するので、同様の算出方法によって計測治具1の第1回転方向DR1における回転角度を算出できる。 Preferably, the first slope direction Ds1 of the slope 120 is perpendicular to the fourth direction D4. The fourth direction D4 is one of the radial directions with respect to the first axis A1 and is parallel to the plane 11. The fourth direction D4 is perpendicular to the first axis A1. Further, the fourth direction D4 goes from the first axis A1 to the first irradiation position P1 in a state where the measuring jig 1 is stationary. This makes it easier to calculate the rotation angle of the measuring jig 1 in the first rotation direction DR1. For example, when the slopes 120, 120a, 120b, 120c face radially outward as shown in FIGS. 3 and 4A to 4C, no matter which side of the first rotation direction DR1 the measuring jig 1 rotates, the first 1 The irradiation position P1 is displaced in the first direction D1 to the other D1b in the first direction away from the plane 11. Alternatively, when the slope 120d faces inward in the radial direction as shown in FIG. 4D (see FIG. 5 described later), the first irradiation position regardless of which side of the first rotation direction DR1 the measuring jig 1 rotates. P1 is displaced in the first direction D1 toward D1a in the first direction approaching the plane 11. Therefore, regardless of which side of the first rotation direction DR1 the measuring jig 1 is rotated, the first irradiation position P1 is displaced to the same side of the first direction D1. The rotation angle in one rotation direction DR1 can be calculated.
 このほか、たとえば図4Eに示すように、斜面120eは、第1軸A1を基準とする第1回転方向DR1を向いてもよい。図4Eでは、第1斜面方向Ds1は、第1方向D1と垂直であるとともに、第1軸A1を基準とする径方向と斜めに交わる。さらに、第1斜面方向Ds1は、図4Eのように第3方向D3と平行であってもよい。第2斜面方向Ds2は、第1斜面方向Ds1と垂直であるとともに、第1方向D1と斜めに交わる。こうすれば、第1照射位置P1の第1方向D1における変位の向きにから計測治具1が第1回転方向DR1のどちらに回転したかを検出できる。たとえば、図4Eにおいて、第1回転方向DR1のうちの第1領域111から第2領域112への向きに計測治具1が回転すると、第1照射位置P1は、第1方向一方D1aに変位する。また、第1回転方向DR1のうちの第1領域111から第3領域113への向きに計測治具1が回転すると、第1照射位置P1は、第1方向他方D1bに変位する。従って、第1変位計21の計測結果から第1回転方向DR1における計測治具1の回転の向きを検出できる。 In addition, as shown in FIG. 4E, for example, the slope 120e may face the first rotation direction DR1 with respect to the first axis A1. In FIG. 4E, the first slope direction Ds1 is perpendicular to the first direction D1 and diagonally intersects the radial direction with respect to the first axis A1. Further, the first slope direction Ds1 may be parallel to the third direction D3 as shown in FIG. 4E. The second slope direction Ds2 is perpendicular to the first slope direction Ds1 and diagonally intersects the first slope direction D1. By doing so, it is possible to detect in which direction the measuring jig 1 is rotated in the first rotation direction DR1 from the direction of the displacement of the first irradiation position P1 in the first direction D1. For example, in FIG. 4E, when the measuring jig 1 rotates in the direction from the first region 111 to the second region 112 in the first rotation direction DR1, the first irradiation position P1 is displaced to one D1a in the first direction. .. Further, when the measuring jig 1 rotates in the direction from the first region 111 to the third region 113 in the first rotation direction DR1, the first irradiation position P1 is displaced to the other D1b in the first direction. Therefore, the direction of rotation of the measuring jig 1 in the first rotation direction DR1 can be detected from the measurement result of the first displacement meter 21.
 なお、図4Eにおいて、斜面120eの第3方向一方D3a側の領域は、平面11よりも第1方向一方D1aに配置され、つまり、第1方向一方D1aに凹む凹部13の内側面に配置される。なお、計測治具1は、凹部13を有する。凹部13は、平面11の第1領域111に配置される。また、斜面120eの第3方向他方D3b側の領域は平面11よりも第1方向他方D1bに配置され、つまり、第1領域111において平面11から第1方向他方D1bに突出する台部12に配置される。 In FIG. 4E, the region of the slope 120e on the D3a side in the third direction is arranged on the D1a in the first direction rather than the plane 11, that is, is arranged on the inner surface of the recess 13 recessed in the D1a in the first direction. .. The measuring jig 1 has a recess 13. The recess 13 is arranged in the first region 111 of the plane 11. Further, the region of the slope 120e on the other D3b side in the third direction is arranged on the other D1b in the first direction rather than the plane 11, that is, arranged on the base portion 12 protruding from the plane 11 to the other D1b in the first direction in the first region 111. Will be done.
 <1-3.計測治具の回転角度>
 次に、計測治具の回転角度の算出例を説明する。
<1-3. Rotation angle of measuring jig>
Next, an example of calculating the rotation angle of the measuring jig will be described.
  <1-3-1.第1回転方向における第1回転角度>
 まず、図5及び図6を参照して、計測治具1の第1回転角度の算出例を説明する。図5は、第1回転方向DR1に回転させた計測治具1の斜面120付近の上面図である。図6は、回転後の第1照射位置P1の位置関係を示す概念図である。なお、図5及び図6において、「計測治具1A」,「平面11A」,「台部12A」,及び「斜面120A」はそれぞれ回転前の計測治具1,平面11,台部12,及び斜面120であり、「計測治具1B」,「平面11B」,「台部12B」,及び「斜面120B」はそれぞれ回転後の計測治具1,平面11,台部12,及び斜面120である。また、以下では、また、回転前の第1照射位置P1を「第1照射位置P1a」と呼び、回転後の第1照射位置P1を「第1照射位置P1b」と呼ぶことがある。
<1-3-1. First rotation angle in the first rotation direction>
First, a calculation example of the first rotation angle of the measuring jig 1 will be described with reference to FIGS. 5 and 6. FIG. 5 is a top view of the vicinity of the slope 120 of the measuring jig 1 rotated in the first rotation direction DR1. FIG. 6 is a conceptual diagram showing the positional relationship of the first irradiation position P1 after rotation. In addition, in FIGS. 5 and 6, "measurement jig 1A", "plane 11A", "base 12A", and "slope 120A" are the measurement jig 1, plane 11, base 12, and before rotation, respectively. The slope 120, and the “measurement jig 1B”, the “plane 11B”, the “base 12B”, and the “slope 120B” are the measurement jig 1, the plane 11, the base 12, and the slope 120 after rotation, respectively. .. Further, in the following, the first irradiation position P1 before rotation may be referred to as “first irradiation position P1a”, and the first irradiation position P1 after rotation may be referred to as “first irradiation position P1b”.
 図5及び図6において、点Oは、第1軸A1と平面11との交点である。点Oから延びる2つの仮想線をLx,Lyと呼ぶ。なお、仮想線Lx,Lyは、平面11を含む仮想の平面に含まれる。回転前の仮想線Lxは第2方向一方D2aに延び、回転前の仮想線Lyは第3方向一方D3aに延びる。また、第1方向D1から見て、回転後の仮想線Lxが第2方向D2と成す最小の角度、及び、回転後の仮想線Lyが第3方向D3と成す最小の角度はそれぞれ後述の第1回転角度θ1である。また、第1軸A1と仮想線Lxとを含む仮想平面をPLと呼ぶ。斜面120Aを含む仮想の平面と第1軸A1との交点を点Aと呼び、回転後の斜面120Aを含む仮想の平面と回転後の仮想線Lxとの交点を点Bと呼ぶ。 In FIGS. 5 and 6, the point O is the intersection of the first axis A1 and the plane 11. The two virtual lines extending from the point O are called Lx and Ly. The virtual lines Lx and Ly are included in the virtual plane including the plane 11. The virtual line Lx before rotation extends to D2a in the second direction, and the virtual line Ly before rotation extends to D3a in the third direction. Further, when viewed from the first direction D1, the minimum angle formed by the rotated virtual line Lx with the second direction D2 and the minimum angle formed by the rotated virtual line Ly with the third direction D3 are described later. One rotation angle θ1. Further, the virtual plane including the first axis A1 and the virtual line Lx is called PL. The intersection of the virtual plane including the slope 120A and the first axis A1 is called a point A, and the intersection of the virtual plane including the rotated slope 120A and the rotated virtual line Lx is called a point B.
 図5及び図6では、計測治具1は、第1回転方向DR1のうちの第1照射位置P1から仮想線Lxへの向きに回転する。第1回転方向DR1における計測治具1の第1回転角度はθ1である。また、第1方向D1から見て、回転前の第1照射位置P1aと回転前の仮想線Lxとの間の間隔、及び、回転前の第1照射位置P1aと回転前の仮想線Lyとの間の間隔はともにaである。また、平面11と斜面120とが成す最小の角度は、45°である。また、回転前において、第1照射位置P1は、第1軸A1から第4方向D4にある。つまり、回転前において、第1照射位置P1及び点Oを通る線と仮想平面PLとが成す最小の角度は、45°である。 In FIGS. 5 and 6, the measuring jig 1 rotates in the direction from the first irradiation position P1 in the first rotation direction DR1 to the virtual line Lx. The first rotation angle of the measuring jig 1 in the first rotation direction DR1 is θ1. Further, when viewed from the first direction D1, the distance between the first irradiation position P1a before rotation and the virtual line Lx before rotation, and the first irradiation position P1a before rotation and the virtual line Ly before rotation. The intervals between them are both a. The minimum angle formed by the plane 11 and the slope 120 is 45 °. Further, before the rotation, the first irradiation position P1 is in the fourth direction D4 from the first axis A1. That is, before rotation, the minimum angle formed by the line passing through the first irradiation position P1 and the point O and the virtual plane PL is 45 °.
 計測治具1が上述のように第1回転方向DR1に回転すると、第1照射位置P1は、第1方向D1に変位する。なお、第1変位計21のレーザ光20の位置は変化しないので、第1照射位置P1は、第2方向D2及び第3方向D3には変位しない。 When the measuring jig 1 rotates in the first rotation direction DR1 as described above, the first irradiation position P1 is displaced in the first direction D1. Since the position of the laser beam 20 of the first displacement meter 21 does not change, the first irradiation position P1 does not displace in the second direction D2 and the third direction D3.
 第1回転角度θ1は、第1変位計21が検出する第1照射位置P1の第1方向D1における変位Δd1から算出できる。以下にその算出方法を説明する。 The first rotation angle θ1 can be calculated from the displacement Δd1 in the first direction D1 of the first irradiation position P1 detected by the first displacement meter 21. The calculation method will be described below.
 まず、回転後の第1照射位置P1bから回転後の仮想平面PLに垂線を伸ばし、この垂線と回転後の仮想平面PLとの交点を点Cと呼ぶ。また、点Cから第1軸A1に垂線を延ばし、この垂線と第1軸A1との交点を点Dと呼ぶ。三点P1b,C,Dを頂点とする図形は、直角三角形となる。回転後の第1照射位置P1b及び点C間を結ぶ線分と、回転後の第1照射位置P1b及び点D間を結ぶ線分とが成す最小の角度は、(45°-θ)となる。ここで、回転後の第1照射位置P1bと第1軸A1との間隔は、回転前の第1照射位置P1aと第1軸A1との間隔と同じく、(√2×a)である。従って、点C及び点D間を結ぶ線分CDの長さは、{(√2×a)sin(45°-θ1)}となる。また、三点A,C,Dを頂点とする図形は直角二等辺三角形であるので、点A及び点D間を結ぶ線分ADの長さは、線分CDと同じく、{(√2×a)sin(45°-θ1)}となる。 First, a perpendicular line is extended from the first irradiation position P1b after rotation to the virtual plane PL after rotation, and the intersection of this perpendicular line and the virtual plane PL after rotation is called a point C. Further, a perpendicular line is extended from the point C to the first axis A1, and the intersection of this perpendicular line and the first axis A1 is referred to as a point D. A figure having three points P1b, C, and D as vertices is a right triangle. The minimum angle formed by the line segment connecting the first irradiation position P1b and the point C after rotation and the line segment connecting the first irradiation position P1b and the point D after rotation is (45 ° -θ). .. Here, the distance between the first irradiation position P1b after rotation and the first axis A1 is (√2 × a), which is the same as the distance between the first irradiation position P1a and the first axis A1 before rotation. Therefore, the length of the line segment CD connecting the points C and D is {(√2 × a) sin (45 ° −θ1)}. Further, since the figure having the three points A, C, and D as vertices is an isosceles right triangle, the length of the line segment AD connecting the points A and D is {(√2 ×), which is the same as the line segment CD. a) sin (45 ° -θ1)}.
 一方、点D及び点O間を結ぶ線分DOの長さは、第1方向D1における第1照射位置P1の変位Δd1と同じである。従って、第1方向D1における第1照射位置P1の変位Δd1は、点A及び点O間を結ぶ線分AOの長さから線分ADの長さとの差となり、次の数式1で表すことができる。
   Δd1={a-(√2×a)sin(45°-θ1)}   (数1)
On the other hand, the length of the line segment DO connecting the point D and the point O is the same as the displacement Δd1 of the first irradiation position P1 in the first direction D1. Therefore, the displacement Δd1 of the first irradiation position P1 in the first direction D1 is the difference from the length of the line segment AO connecting the points A and O to the length of the line segment AD, and can be expressed by the following mathematical formula 1. can.
Δd1 = {a- (√2 × a) sin (45 ° -θ1)} (Equation 1)
 数式1の変形により、次の数式2が得られる。
   θ1=[45°-sin-1{(Δd1-a)/(√2×a)}]   (数2)
By modifying the formula 1, the following formula 2 is obtained.
θ1 = [45 ° -sin -1 {(Δd1-a) / (√2 × a)}] (Equation 2)
 第1方向D1における第1照射位置P1の変位Δd1は、回転前の第1照射位置P1aの第1方向位置と回転後の第1照射位置P1bの第1方向位置との差から検出できる。従って、上述の数式2から、第1回転角度θ1を算出できる。 The displacement Δd1 of the first irradiation position P1 in the first direction D1 can be detected from the difference between the first direction position of the first irradiation position P1a before rotation and the first direction position of the first irradiation position P1b after rotation. Therefore, the first rotation angle θ1 can be calculated from the above-mentioned mathematical formula 2.
  <1-3-2.第2回転方向における第2回転角度>
 次に、図7を参照して、計測治具1の第2回転角度の算出例を説明する。図7は、第2回転方向DR2に回転させた計測治具1を第2方向D2から見た側面図である。なお、図7において、一点鎖線は回転後の計測治具1の平面11を示す。図7では、第2回転方向DR2における計測治具1の第2回転角度はθ2である。また、第3方向D3において、第2照射位置P2及び第3照射位置P3間の間隔はL2である。
<1-3-2. Second rotation angle in the second rotation direction>
Next, an example of calculating the second rotation angle of the measuring jig 1 will be described with reference to FIG. 7. FIG. 7 is a side view of the measuring jig 1 rotated in the second rotation direction DR2 as viewed from the second direction D2. In FIG. 7, the alternate long and short dash line indicates the plane 11 of the measuring jig 1 after rotation. In FIG. 7, the second rotation angle of the measuring jig 1 in the second rotation direction DR2 is θ2. Further, in the third direction D3, the distance between the second irradiation position P2 and the third irradiation position P3 is L2.
 また、図7において、回転前の平面11を「平面11a」と呼び、回転後の平面11を「平面11b」と呼ぶ。また、回転前の第2照射位置P2を「第2照射位置P2a」と呼び、回転後の第2照射位置P2を「第2照射位置P2b」と呼ぶことがある。また、回転前の第3照射位置P3を「第3照射位置P3a」と呼び、回転後の第3照射位置P3を「第3照射位置P3b」と呼ぶことがある。 Further, in FIG. 7, the plane 11 before rotation is referred to as "plane 11a", and the plane 11 after rotation is referred to as "plane 11b". Further, the second irradiation position P2 before rotation may be referred to as "second irradiation position P2a", and the second irradiation position P2 after rotation may be referred to as "second irradiation position P2b". Further, the third irradiation position P3 before rotation may be referred to as "third irradiation position P3a", and the third irradiation position P3 after rotation may be referred to as "third irradiation position P3b".
 計測治具1が第2回転方向DR2に傾くと、回転前の第2照射位置P2aの第1方向位置と回転後の第2照射位置P2bの第1方向位置との差から、第2照射位置P2はたとえば第1方向一方D1aにΔd2a変位したことが検出できる。また、回転前の第3照射位置P3aの第1方向位置と回転後の第3照射位置P3bの第1方向位置との差から、第3照射位置P3はたとえば第1方向他方D1bにΔd3b変位したことが検出できる。なお、第2変位計22及び第3変位計23のレーザ光20の位置は変化しないので、第2照射位置P2及び第3照射位置P3は、第2方向D2及び第3方向D3には変位しない。 When the measuring jig 1 is tilted in the second rotation direction DR2, the second irradiation position is determined by the difference between the first direction position of the second irradiation position P2a before rotation and the first direction position of the second irradiation position P2b after rotation. It can be detected that P2 is displaced by Δd2a to D1a in one of the first directions, for example. Further, the third irradiation position P3 is displaced by Δd3b to, for example, the other D1b in the first direction due to the difference between the first direction position of the third irradiation position P3a before rotation and the first direction position of the third irradiation position P3b after rotation. Can be detected. Since the positions of the laser beam 20 of the second displacement meter 22 and the third displacement meter 23 do not change, the second irradiation position P2 and the third irradiation position P3 do not displace in the second direction D2 and the third direction D3. ..
 従って、次の数式3から、第2回転角度θ2を算出できる。
   θ2=tan-1{(Δd2a+Δd2b)/L2}   (数3)
Therefore, the second rotation angle θ2 can be calculated from the following mathematical formula 3.
θ2 = tan -1 {(Δd2a + Δd2b) / L2} (number 3)
  <1-3-3.第3回転方向における第3回転角度>
 次に、図8を参照して、計測治具1の第3回転角度の算出例を説明する。図8は、第3回転方向DR3に回転させた計測治具1を第3方向D3から見た側面図である。なお、図8において、一点鎖線は回転後の計測治具1の平面11を示す。図8では、第3回転方向DR3における計測治具1の第3回転角度は、θ3である。また、第2方向D2における第3照射位置P3及び第4照射位置P4間の間隔はL3である。
<1-3-3. Third rotation angle in the third rotation direction>
Next, an example of calculating the third rotation angle of the measuring jig 1 will be described with reference to FIG. FIG. 8 is a side view of the measuring jig 1 rotated in the third rotation direction DR3 as viewed from the third direction D3. In FIG. 8, the alternate long and short dash line indicates the plane 11 of the measuring jig 1 after rotation. In FIG. 8, the third rotation angle of the measuring jig 1 in the third rotation direction DR3 is θ3. Further, the distance between the third irradiation position P3 and the fourth irradiation position P4 in the second direction D2 is L3.
 また、図8において、回転前の平面11を「平面11a」と呼び、回転後の平面11を「平面11b」と呼ぶ。また、回転前の第3照射位置P3を「第3照射位置P3a」と呼び、回転後の第3照射位置P3を「第3照射位置P3b」と呼ぶことがある。また、回転前の第4照射位置P4を「第4照射位置P4a」と呼び、回転後の第4照射位置P4を「第4照射位置P4b」と呼ぶことがある。 Further, in FIG. 8, the plane 11 before rotation is referred to as "plane 11a", and the plane 11 after rotation is referred to as "plane 11b". Further, the third irradiation position P3 before rotation may be referred to as "third irradiation position P3a", and the third irradiation position P3 after rotation may be referred to as "third irradiation position P3b". Further, the fourth irradiation position P4 before rotation may be referred to as "fourth irradiation position P4a", and the fourth irradiation position P4 after rotation may be referred to as "fourth irradiation position P4b".
 計測治具1が第3回転方向DR3に傾くと、回転前の第3照射位置P3aの第1方向位置と回転後の第3照射位置P3bの第1方向位置との差から、第3照射位置P3はたとえば第1方向一方D1aにΔd3a変位したことが検出できる。また、回転前の第4照射位置P4aの第1方向位置と回転後の第4照射位置P4bの第1方向位置との差から、第4照射位置P4はたとえば第1方向他方D1bにΔd3b変位したことが検出できる。なお、第3変位計23及び第4変位計24のレーザ光20の位置は変化しないので、第3照射位置P3及び第4照射位置P4は、第2方向D2及び第3方向D3には変位しない。 When the measuring jig 1 is tilted in the third rotation direction DR3, the third irradiation position is obtained from the difference between the first direction position of the third irradiation position P3a before rotation and the first direction position of the third irradiation position P3b after rotation. It can be detected that P3 is displaced by Δd3a to D1a in one of the first directions, for example. Further, the fourth irradiation position P4 is displaced by Δd3b to, for example, the other D1b in the first direction due to the difference between the first direction position of the fourth irradiation position P4a before rotation and the first direction position of the fourth irradiation position P4b after rotation. Can be detected. Since the positions of the laser beam 20 of the third displacement meter 23 and the fourth displacement meter 24 do not change, the third irradiation position P3 and the fourth irradiation position P4 do not displace in the second direction D2 and the third direction D3. ..
 従って、次の数式4から、第3回転角度θ3を算出できる。
   θ3=tan-1{(Δd3a+Δd3b)/L3}   (数4)
Therefore, the third rotation angle θ3 can be calculated from the following mathematical formula 4.
θ3 = tan -1 {(Δd3a + Δd3b) / L3} (number 4)
 <1-4.傾き計測方法>
 次に、図9を参照して、揺動可能な可動体201の傾きを計測する傾き計測方法を説明する。図9は、計測治具1の傾き計測方法を説明するためのフローチャートである。以下に説明する傾き計測方法は、傾き計測装置100を用いて実施される。たとえば、計測治具1は、可動体201に保持されて、可動体201とともに揺動可能である。傾き計測方法では、計測治具1にレーザ光20を照射する変位計2で、計測治具1の変位を計測する。そして、変位の計測結果に基づいて、可動体201の傾きが算出される。
<1-4. Inclination measurement method>
Next, with reference to FIG. 9, a tilt measuring method for measuring the tilt of the swingable movable body 201 will be described. FIG. 9 is a flowchart for explaining a method of measuring the inclination of the measuring jig 1. The inclination measuring method described below is carried out by using the inclination measuring device 100. For example, the measuring jig 1 is held by the movable body 201 and can swing together with the movable body 201. In the inclination measuring method, the displacement of the measuring jig 1 is measured by the displacement meter 2 that irradiates the measuring jig 1 with the laser beam 20. Then, the inclination of the movable body 201 is calculated based on the measurement result of the displacement.
 なお、以下において、可動体201の「基準状態」とは、第1回転方向DR1,第2回転方向DR2,第3回転方向DR3に可動体201を回転させていない状態を示す。つまり、基準状態での可動体201の第1回転方向DR1,第2回転方向DR2,第3回転方向DR3における回転角度はいずれも0°である。 In the following, the "reference state" of the movable body 201 means a state in which the movable body 201 is not rotated in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3. That is, the rotation angles of the movable body 201 in the reference state in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3 are all 0 °.
 計測治具1が光学ユニット200の可動体201に装着され(ステップS101)、光学ユニット200が傾き計測装置100に取り付けられる(ステップ102)。この際、可動体201が静止した状態において、計測治具1の平面11の法線方向は、可動体201に装着予定の光学モジュールの光軸と平行とされる。計測治具1が搭載された可動体201の揺動中心CPは、光学モジュールが搭載された場合の可動体201の揺動中心と同じ位置とされる。なお、ここでの「同じ位置」とは、両者の位置関係に本発明の主旨を逸脱しない程度のずれがある状態を含む。 The measuring jig 1 is attached to the movable body 201 of the optical unit 200 (step S101), and the optical unit 200 is attached to the tilt measuring device 100 (step 102). At this time, when the movable body 201 is stationary, the normal direction of the plane 11 of the measuring jig 1 is parallel to the optical axis of the optical module to be mounted on the movable body 201. The swing center CP of the movable body 201 on which the measuring jig 1 is mounted is set to the same position as the swing center of the movable body 201 when the optical module is mounted. The term "same position" as used herein includes a state in which the positional relationship between the two is deviated to the extent that the gist of the present invention is not deviated.
 次に、第1変位計21は、回転前の第1照射位置P1の第1方向D1における位置を検出する(ステップS111)。駆動機構202は、計測治具1とともに可動体201を第1回転方向DR1に回転させ、その後に停止させる(ステップS112)。第1変位計21は、回転後の第1照射位置P1の第1方向D1における位置を検出する(ステップS113)。 Next, the first displacement meter 21 detects the position of the first irradiation position P1 before rotation in the first direction D1 (step S111). The drive mechanism 202 rotates the movable body 201 in the first rotation direction DR1 together with the measuring jig 1, and then stops the movable body 201 (step S112). The first displacement meter 21 detects the position of the first irradiation position P1 after rotation in the first direction D1 (step S113).
 算出部41は、回転前後における第1変位計21の計測結果に基づいて、可動体201の第1回転方向DR1における傾きを算出する(ステップS114)。詳細には、算出部41は、ステップS111における第1変位計21の計測結果と、ステップS113における第1変位計21の計測結果とに基づいて、第1照射位置P1の第1方向D1における変位量を算出する。さらに、算出部41は、算出した変位量から第1回転方向DR1における計測治具1の第1回転角度θ1を算出する。算出された第1回転角度θ1は、可動体201の第1回転方向DR1における傾きとされる。 The calculation unit 41 calculates the inclination of the movable body 201 in the first rotation direction DR1 based on the measurement results of the first displacement meter 21 before and after rotation (step S114). Specifically, the calculation unit 41 displaces the first irradiation position P1 in the first direction D1 based on the measurement result of the first displacement meter 21 in step S111 and the measurement result of the first displacement meter 21 in step S113. Calculate the amount. Further, the calculation unit 41 calculates the first rotation angle θ1 of the measuring jig 1 in the first rotation direction DR1 from the calculated displacement amount. The calculated first rotation angle θ1 is the inclination of the movable body 201 in the first rotation direction DR1.
 その後、駆動機構202は、第1回転方向DR1における可動体201の傾きを解除して、可動体201を第1回転方向DR1に傾けた状態から基準状態に戻す(ステップS115)。 After that, the drive mechanism 202 releases the tilt of the movable body 201 in the first rotation direction DR1 and returns the movable body 201 from the state tilted in the first rotation direction DR1 to the reference state (step S115).
 次に、第2変位計22及び第3変位計23はそれぞれ、回転前の第2照射位置P2及び第3照射位置P3の第1方向D1における位置を検出する(ステップS121)。駆動機構202は、計測治具1とともに可動体201を第2回転方向DR2に回転させ、その後に停止させる(ステップS122)。第2変位計22及び第3変位計23はそれぞれ、回転後の第2照射位置P2及び第3照射位置P3の第1方向D1における位置を検出する(ステップS123)。 Next, the second displacement meter 22 and the third displacement meter 23 detect the positions of the second irradiation position P2 and the third irradiation position P3 before rotation in the first direction D1 (step S121), respectively. The drive mechanism 202 rotates the movable body 201 in the second rotation direction DR2 together with the measuring jig 1, and then stops the movable body 201 (step S122). The second displacement meter 22 and the third displacement meter 23 detect the positions of the second irradiation position P2 and the third irradiation position P3 after rotation in the first direction D1, respectively (step S123).
 算出部41は、回転前後における第2変位計22及び第3変位計23の計測結果に基づいて、可動体201の第2回転方向DR2における傾きを算出する(ステップS124)。詳細には、算出部41は、ステップS121における第2変位計22及び第3変位計23の計測結果と、ステップS123における第2変位計22及び第3変位計23の計測結果とに基づいて、第2照射位置P2の第1方向D1における変位量と、第3照射位置P3の第1方向D1における変位量とを算出する。さらに、算出部41は、算出した変位量から第2回転方向DR2における計測治具1の第2回転角度θ2を算出する。算出された第2回転角度θ2は、可動体201の第2回転方向DR2における傾きとされる。 The calculation unit 41 calculates the inclination of the movable body 201 in the second rotation direction DR2 based on the measurement results of the second displacement meter 22 and the third displacement meter 23 before and after rotation (step S124). Specifically, the calculation unit 41 is based on the measurement results of the second displacement meter 22 and the third displacement meter 23 in step S121 and the measurement results of the second displacement meter 22 and the third displacement meter 23 in step S123. The displacement amount of the second irradiation position P2 in the first direction D1 and the displacement amount of the third irradiation position P3 in the first direction D1 are calculated. Further, the calculation unit 41 calculates the second rotation angle θ2 of the measuring jig 1 in the second rotation direction DR2 from the calculated displacement amount. The calculated second rotation angle θ2 is the inclination of the movable body 201 in the second rotation direction DR2.
 その後、駆動機構202は、第2回転方向DR2における可動体201の傾きを解除して、可動体201を第2回転方向DR2に傾けた状態から基準状態に戻す(ステップS125)。 After that, the drive mechanism 202 releases the tilt of the movable body 201 in the second rotation direction DR2, and returns the movable body 201 from the state tilted in the second rotation direction DR2 to the reference state (step S125).
 次に、第3変位計23及び第4変位計24はそれぞれ、回転前の第3照射位置P3及び第4照射位置P4の第1方向D1における位置を検出する(ステップS131)。駆動機構202は、計測治具1とともに可動体201を第3回転方向DR3に回転させ、その後に停止させる(ステップS132)。第3変位計23及び第4変位計24はそれぞれ、回転後の第3照射位置P3及び第4照射位置P4の第1方向D1における位置を検出する(ステップS133)。 Next, the third displacement meter 23 and the fourth displacement meter 24 detect the positions of the third irradiation position P3 and the fourth irradiation position P4 before rotation in the first direction D1 (step S131), respectively. The drive mechanism 202 rotates the movable body 201 in the third rotation direction DR3 together with the measuring jig 1 and then stops the movable body 201 (step S132). The third displacement meter 23 and the fourth displacement meter 24 detect the positions of the third irradiation position P3 and the fourth irradiation position P4 after rotation in the first direction D1 (step S133), respectively.
 算出部41は、回転前後における第3変位計23及び第4変位計24の計測結果に基づいて、可動体201の第3回転方向DR3における傾きを算出する(ステップS134)。詳細には、算出部41は、ステップS131における第3変位計23及び第4変位計24の計測結果と、ステップS133における第3変位計23及び第4変位計24の計測結果とに基づいて、第3照射位置P3の第1方向D1における変位量と、第4照射位置P4の第1方向D1における変位量とを算出する。さらに、算出部41は、算出した変位量から第3回転方向DR3における計測治具1の第3回転角度θ3を算出する。算出された第3回転角度θ3は、可動体201の第3回転方向DR3における傾きとされる。 The calculation unit 41 calculates the inclination of the movable body 201 in the third rotation direction DR3 based on the measurement results of the third displacement meter 23 and the fourth displacement meter 24 before and after rotation (step S134). Specifically, the calculation unit 41 is based on the measurement results of the third displacement meter 23 and the fourth displacement meter 24 in step S131 and the measurement results of the third displacement meter 23 and the fourth displacement meter 24 in step S133. The displacement amount of the third irradiation position P3 in the first direction D1 and the displacement amount of the fourth irradiation position P4 in the first direction D1 are calculated. Further, the calculation unit 41 calculates the third rotation angle θ3 of the measuring jig 1 in the third rotation direction DR3 from the calculated displacement amount. The calculated third rotation angle θ3 is the inclination of the movable body 201 in the third rotation direction DR3.
 その後、駆動機構202は、第3回転方向DR3における可動体201の傾きを解除して、可動体201を第3回転方向DR3に傾けた状態から基準状態に戻す(ステップS135)。 After that, the drive mechanism 202 releases the tilt of the movable body 201 in the third rotation direction DR3, and returns the movable body 201 from the state tilted in the third rotation direction DR3 to the reference state (step S135).
 次に、光学ユニット200が傾き計測装置100から取り外され(ステップS141)、計測治具1が光学ユニット200の可動体201から取り外される(ステップS142)。そして、傾き計測方法は終了する。 Next, the optical unit 200 is removed from the tilt measuring device 100 (step S141), and the measuring jig 1 is removed from the movable body 201 of the optical unit 200 (step S142). Then, the inclination measurement method ends.
 なお、図9の傾き計測方法において、ステップS111からS115、ステップS121からS125、及びステップS131からS135の順序は、互いに入れ替わってもよい。 In the inclination measuring method of FIG. 9, the order of steps S111 to S115, steps S121 to S125, and steps S131 to S135 may be interchanged with each other.
 また、図9の傾き計測方法では、第1回転方向DR1,第2回転方向DR2,及び第3回転方向DR3における可動体201の傾きを独立して計測した。但し、この例示に限定されず、第1回転方向DR1,第2回転方向DR2,及び第3回転方向DR3のうちの少なくとも2方向に回転した可動体201の傾きを一度に計測してもよい。 Further, in the inclination measuring method of FIG. 9, the inclination of the movable body 201 in the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3 was independently measured. However, the present invention is not limited to this example, and the inclination of the movable body 201 rotated in at least two of the first rotation direction DR1, the second rotation direction DR2, and the third rotation direction DR3 may be measured at one time.
 上述の傾き計測方法によれば、変位計2で計測治具1の変位を計測するステップは、斜面120に向かってレーザ光20を照射する第1変位計21で、レーザ光20の斜面120上における第1照射位置P1の第1方向D1における変位を計測するステップを有する。計測治具1が可動体201とともに揺動することによって第1回転方向DR1に回転すると、第1変位計21から出射されるレーザ光20の第1照射位置P1が、第1方向D1に変位する。そのため、第1変位計21が第1照射位置P1の変位を計測した結果に基づいて、第1回転方向DR1における計測治具1の回転角度を可動体201の第1回転角度θ1として算出できる。つまり、第1回転方向DR1における計測治具1の第1回転角度θ1を得るための計測を1つの第1変位計21で実施できる。従って、複数の変位計の計測結果から第1回転方向DR1における計測治具1の第1回転角度θ1を計測する通常の構成と比べて、変位計2の増加を抑制して、より簡素な構成で可動体201の傾きを計測することができる。 According to the above-mentioned inclination measuring method, the step of measuring the displacement of the measuring jig 1 with the displacement meter 2 is the first displacement meter 21 that irradiates the laser beam 20 toward the slope 120 on the slope 120 of the laser beam 20. It has a step of measuring the displacement of the first irradiation position P1 in the first direction D1 in the above. When the measuring jig 1 swings together with the movable body 201 to rotate in the first rotation direction DR1, the first irradiation position P1 of the laser beam 20 emitted from the first displacement meter 21 is displaced in the first direction D1. .. Therefore, the rotation angle of the measuring jig 1 in the first rotation direction DR1 can be calculated as the first rotation angle θ1 of the movable body 201 based on the result of the first displacement meter 21 measuring the displacement of the first irradiation position P1. That is, the measurement for obtaining the first rotation angle θ1 of the measurement jig 1 in the first rotation direction DR1 can be performed by one first displacement meter 21. Therefore, as compared with the normal configuration in which the first rotation angle θ1 of the measuring jig 1 in the first rotation direction DR1 is measured from the measurement results of the plurality of displacement meters, the increase of the displacement meter 2 is suppressed and the configuration is simpler. The inclination of the movable body 201 can be measured with.
<2.その他>
 以上、本発明の実施形態を説明した。なお、本発明の範囲は上述の実施形態に限定されない。本発明は、発明の主旨を逸脱しない範囲で上述の実施形態に種々の変更を加えて実施することができる。また、上述の実施形態で説明した事項は、矛盾を生じない範囲で適宜任意に組み合わせることができる。
<2. Others>
The embodiment of the present invention has been described above. The scope of the present invention is not limited to the above-described embodiment. The present invention can be implemented by making various modifications to the above-described embodiments without departing from the gist of the invention. In addition, the matters described in the above-described embodiments can be arbitrarily combined as long as they do not cause a contradiction.
 たとえば、図3及び図4Aから図4Eに示す構成は、特に矛盾の生じない限りにおいて、任意に組み合わせることができる。 For example, the configurations shown in FIGS. 3 and 4A to 4E can be arbitrarily combined as long as there is no particular contradiction.
 本発明は、計測対象の回転角度を計測する装置、及び方法に有用である。 The present invention is useful for a device and a method for measuring the rotation angle of a measurement target.
 100・・・傾き計測装置、200・・・光学ユニット、201・・・可動体、202・・・駆動機構、203・・・ホルダ、1・・・計測治具、11,11a,11b・・・平面、111・・・第1領域、112・・・第2領域、113・・・第3領域、114・・・第4領域、12,12a,12b,12c,12d・・・台部、120,120a,120b,120c,120d・・・斜面、121・・・板部材、122・・・柱部、123・・・接続部、13・・・、凹部、2・・・変位計、20・・・レーザ光、21・・・第1変位計、22・・・第2変位計、23・・・第3変位計、24・・・第4変位計、3・・・記憶部、4・・・制御部、41・・・算出部、CP・・・揺動中心、P1,P1a,P1b・・・第1照射位置、P2,P2a,P2b・・・第2照射位置、P3,P3a,P3b・・・第3照射位置、P4,P4a,P4b・・・第4照射位置、A1・・・第1軸、A2・・・第2軸、A3・・・第3軸、D1・・・第1方向、D1a・・・第1方向一方、D1b・・・第1方向他方、D2・・・第2方向、D2a・・・第2方向一方、D1b・・・第2方向他方、D3・・・第3方向、D1a・・・第3方向一方、D1b・・・第3方向他方、D4・・・第4方向、DR1・・・第1回転方向、DR2・・・第2回転方向、DR3・・・第3回転方向、Ds1・・・第1斜面方向、Ds2・・・第2斜面方向 100 ... tilt measuring device, 200 ... optical unit, 201 ... movable body, 202 ... drive mechanism, 203 ... holder, 1 ... measuring jig, 11, 11a, 11b ... Plane, 111 ... 1st region, 112 ... 2nd region, 113 ... 3rd region, 114 ... 4th region, 12, 12a, 12b, 12c, 12d ... base, 120, 120a, 120b, 120c, 120d ... slope, 121 ... plate member, 122 ... pillar part, 123 ... connection part, 13 ..., recess, 2 ... displacement meter, 20 ... laser beam, 21 ... 1st displacement meter, 22 ... 2nd displacement meter, 23 ... 3rd displacement meter, 24 ... 4th displacement meter, 3 ... storage unit, 4 ... Control unit, 41 ... Calculation unit, CP ... Swing center, P1, P1a, P1b ... First irradiation position, P2, P2a, P2b ... Second irradiation position, P3, P3a , P3b ... 3rd irradiation position, P4, P4a, P4b ... 4th irradiation position, A1 ... 1st axis, A2 ... 2nd axis, A3 ... 3rd axis, D1 ... 1st direction, D1a ... 1st direction one, D1b ... 1st direction other, D2 ... 2nd direction, D2a ... 2nd direction one, D1b ... 2nd direction other, D3 ... 3rd direction, D1a ... 3rd direction one, D1b ... 3rd direction the other, D4 ... 4th direction, DR1 ... 1st rotation direction, DR2 ... 2nd rotation direction , DR3 ... 3rd rotation direction, Ds1 ... 1st slope direction, Ds2 ... 2nd slope direction

Claims (12)

  1.  揺動可能な可動体の傾きを計測する傾き計測装置であって、
     前記可動体に保持されて前記可動体とともに揺動可能な計測治具と、
     前記計測治具にレーザ光を照射して前記計測治具の変位を計測する変位計と、を備え、
     前記計測治具は、平面と、前記平面上に配置される台部と、を有し、
      前記計測治具が静止した状態における前記平面は、前記計測治具の揺動中心を通って
    第1方向に延びる第1軸と垂直であり、
      前記台部は、第1斜面方向と第2斜面方向とに広がる斜面を有し、
       前記第1斜面方向は、前記第1方向と垂直であるとともに、前記第1軸を基準とする径方向と交わり、
       前記第2斜面方向は、前記第1斜面方向と垂直であるとともに、前記第1方向と斜めに交わり、
     前記変位計は、前記斜面に向かって前記レーザ光を照射する第1変位計を有し、
      前記第1変位計は、前記斜面上における前記レーザ光の第1照射位置の前記第1方向における変位を計測する、傾き計測装置。
    It is a tilt measuring device that measures the tilt of a movable body that can swing.
    A measuring jig that is held by the movable body and can swing together with the movable body,
    The measuring jig is provided with a displacement meter that irradiates the measuring jig with a laser beam to measure the displacement of the measuring jig.
    The measuring jig has a flat surface and a base portion arranged on the flat surface.
    The plane in a stationary state of the measuring jig is perpendicular to the first axis extending in the first direction through the swing center of the measuring jig.
    The pedestal has a slope extending in the first slope direction and the second slope direction.
    The first slope direction is perpendicular to the first direction and intersects the radial direction with respect to the first axis.
    The second slope direction is perpendicular to the first slope direction and diagonally intersects with the first slope direction.
    The displacement meter has a first displacement meter that irradiates the laser beam toward the slope.
    The first displacement meter is a tilt measuring device that measures the displacement of the first irradiation position of the laser beam on the slope in the first direction.
  2.  前記変位計の計測結果に基づいて、前記計測治具の傾きを算出する算出部を備え、
      前記算出部は、
       所定の第1時点における前記第1変位計の第1計測結果と、前記第1時点よりも後の第2時点における前記第1変位計の第2計測結果とに基づいて、前記第1照射位置の前記第1方向における変位量を算出するとともに、
       前記変位量から前記第1回転方向における前記計測治具の回転角度を算出する、請求項1に記載の傾き計測装置。
    A calculation unit for calculating the inclination of the measuring jig based on the measurement result of the displacement meter is provided.
    The calculation unit
    The first irradiation position is based on the first measurement result of the first displacement meter at a predetermined first time point and the second measurement result of the first displacement meter at the second time point after the first time point. While calculating the amount of displacement in the first direction of
    The inclination measuring device according to claim 1, wherein the rotation angle of the measuring jig in the first rotation direction is calculated from the displacement amount.
  3.  前記斜面は、前記第1軸を基準とする径方向外方を向く、請求項1又は請求項2に記載の傾き計測装置。 The inclination measuring device according to claim 1 or 2, wherein the slope faces outward in the radial direction with respect to the first axis.
  4.  前記斜面の前記第1方向における前記平面側の端部は、前記平面に接続され、
     前記第1方向から見て、前記計測治具が静止した状態における前記第1照射位置は、前記斜面の前記第1方向における前記平面側の端部と前記平面との接続部と重なる、請求項3に記載の傾き計測装置。
    The end of the slope on the plane side in the first direction is connected to the plane.
    The first irradiation position when the measuring jig is stationary when viewed from the first direction overlaps with the end portion of the slope on the plane side in the first direction and the connection portion between the planes. 3. The tilt measuring device according to 3.
  5.  前記第1斜面方向は、第4方向と垂直であり、
      前記第4方向は、前記第1軸と垂直であるとともに、前記第1軸から前記計測治具が静止した状態における前記第1照射位置に向かう、請求項1から請求項4のいずれか1項に記載の傾き計測装置。
    The first slope direction is perpendicular to the fourth direction, and is
    One of claims 1 to 4, wherein the fourth direction is perpendicular to the first axis and is directed from the first axis toward the first irradiation position in a state where the measuring jig is stationary. The tilt measuring device described in.
  6.  前記斜面の前記第1方向の一方における端部は、前記斜面の前記第1方向の他方における端部よりも径方向外方にあり、
     前記第1方向から見て、前記第1照射位置は、
      前記斜面の前記第1方向の一方における端部よりも径方向内方、或いは同じ径方向位置であり、
      前記斜面の前記第1方向の他方における端部よりも径方向外方、或いは同じ径方向位置である、請求項1から請求項5のいずれか1項に記載の傾き計測装置。
    The end of the slope in one of the first directions is radially outward of the end of the slope in the other of the first direction.
    When viewed from the first direction, the first irradiation position is
    It is inward in the radial direction from the end of the slope in one of the first directions, or at the same radial position.
    The inclination measuring device according to any one of claims 1 to 5, which is radially outward from the other end of the slope in the first direction or at the same radial position.
  7.  前記台部は、錐台形状である、請求項1から請求項6のいずれか1項に記載の傾き計測装置。 The inclination measuring device according to any one of claims 1 to 6, wherein the base portion has a frustum shape.
  8.  前記台部は中空である、請求項1から請求項7のいずれか1項に記載の傾き計測装置。 The inclination measuring device according to any one of claims 1 to 7, wherein the base portion is hollow.
  9.  前記変位計は、
      前記平面に向かって前記レーザ光を照射して、前記平面上における前記レーザ光の第2照射位置の前記第1方向における変位を計測する第2変位計と、
      前記平面に向かって前記レーザ光を照射して、前記平面上における前記レーザ光の第3照射位置の前記第1方向における変位を計測する第3変位計と、
      前記平面に向かって前記レーザ光を照射して、前記平面上における前記レーザ光の第4照射位置の前記第1方向における変位を計測する第4変位計と、
    をさらに有し、
     前記平面において、
      前記第2照射位置及び前記第3照射位置は、前記第1方向と垂直な第2方向に並び、
      前記第3照射位置及び前記第4照射位置は、前記第1方向と垂直であって前記第2方向と交わる第3方向に並ぶ、請求項1から請求項8のいずれか1項に記載の傾き計測装置。
    The displacement meter is
    A second displacement meter that irradiates the laser beam toward the plane and measures the displacement of the second irradiation position of the laser beam on the plane in the first direction.
    A third displacement meter that irradiates the laser beam toward the plane and measures the displacement of the third irradiation position of the laser beam on the plane in the first direction.
    A fourth displacement meter that irradiates the laser beam toward the plane and measures the displacement of the fourth irradiation position of the laser beam on the plane in the first direction.
    Have more
    In the plane
    The second irradiation position and the third irradiation position are arranged in a second direction perpendicular to the first direction.
    The inclination according to any one of claims 1 to 8, wherein the third irradiation position and the fourth irradiation position are arranged in a third direction perpendicular to the first direction and intersecting the second direction. Measuring device.
  10.  前記平面は、
      前記第2方向一方側且つ前記第3方向一方側の第1領域と、
      前記第2方向一方側且つ前記第3方向他方側の第2領域と、
      前記第2方向他方側且つ前記第3方向他方側の第3領域と、
      前記第2方向他方側且つ前記第3方向一方側の第4領域と、
    を含み、
     前記台部は、前記第1領域に配置され、
     前記第2変位計の前記レーザ光は、前記第2領域に照射され、
     前記第3変位計の前記レーザ光は、前記第3領域に照射され、
     前記第4変位計の前記レーザ光は、前記第4領域に照射される、請求項9に記載の傾き計測装置。
    The plane is
    The first region on one side in the second direction and one side in the third direction,
    The second region on one side in the second direction and the other side in the third direction,
    The third region on the other side of the second direction and the other side of the third direction,
    The fourth region on the other side of the second direction and on the other side of the third direction,
    Including
    The pedestal is arranged in the first region.
    The laser beam of the second displacement meter is applied to the second region.
    The laser beam of the third displacement meter is applied to the third region.
    The tilt measuring device according to claim 9, wherein the laser beam of the fourth displacement meter irradiates the fourth region.
  11.  前記第1変位計、前記第2変位計、前記第3変位計、及び前記第4変位計はいずれも、
    前記第1方向に沿って前記レーザ光を照射する、請求項9又は請求項10に記載の傾き計測装置。
    The first displacement meter, the second displacement meter, the third displacement meter, and the fourth displacement meter are all included.
    The inclination measuring device according to claim 9 or 10, wherein the laser beam is irradiated along the first direction.
  12.  揺動可能な可動体の傾きを計測する傾き計測方法であって、
     前記可動体に保持されて前記可動体とともに揺動可能な計測治具にレーザ光を照射する変位計で、前記計測治具の変位を計測するステップを備え、
     前記計測治具は、平面と、前記平面上に配置される台部と、を有し、
      前記計測治具が静止した状態における前記平面は、前記計測治具の揺動中心を通って第1方向に延びる第1軸と垂直であり、
      前記台部は、第1斜面方向と第2斜面方向とに広がる斜面を有し、
       前記第1斜面方向は、前記第1方向と垂直であるとともに、前記第1軸を基準とする径方向と交わり、
       前記第2斜面方向は、前記第1斜面方向と垂直であるとともに、前記第1方向と斜めに交わり、
     前記計測するステップは、前記斜面に向かって前記レーザ光を照射する第1変位計で、
    前記レーザ光の前記斜面上における第1照射位置の前記第1方向における変位を計測するステップを有する、傾き計測方法。
    It is a tilt measurement method that measures the tilt of a movable body that can swing.
    A displacement meter that irradiates a measuring jig that is held by the movable body and swings together with the movable body with a laser beam is provided with a step of measuring the displacement of the measuring jig.
    The measuring jig has a flat surface and a base portion arranged on the flat surface.
    The plane in a stationary state of the measuring jig is perpendicular to the first axis extending in the first direction through the swing center of the measuring jig.
    The pedestal has a slope extending in the first slope direction and the second slope direction.
    The first slope direction is perpendicular to the first direction and intersects the radial direction with respect to the first axis.
    The second slope direction is perpendicular to the first slope direction and diagonally intersects with the first slope direction.
    The measurement step is a first displacement meter that irradiates the laser beam toward the slope.
    A tilt measuring method comprising a step of measuring the displacement of the first irradiation position on the slope of the laser beam in the first direction.
PCT/JP2020/047552 2020-09-30 2020-12-18 Tilt measurement device and tilt measurement method WO2022070439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165237 2020-09-30
JP2020-165237 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070439A1 true WO2022070439A1 (en) 2022-04-07

Family

ID=80951533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047552 WO2022070439A1 (en) 2020-09-30 2020-12-18 Tilt measurement device and tilt measurement method

Country Status (1)

Country Link
WO (1) WO2022070439A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212052A (en) * 2002-12-26 2004-07-29 Mitsubishi Fuso Truck & Bus Corp Non-contact three-dimensional relative displacement measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212052A (en) * 2002-12-26 2004-07-29 Mitsubishi Fuso Truck & Bus Corp Non-contact three-dimensional relative displacement measuring apparatus

Similar Documents

Publication Publication Date Title
CN1829899B (en) Method for checking or calibrating the angle-dependent alignment of a high-precision test piece
CN111580072B (en) Surveying instrument and method of calibrating a surveying instrument
JP6101584B2 (en) Shape measuring method and apparatus
JP2007071852A (en) Apparatus and method for measuring deep hole
CN109655837B (en) Laser ranging method and laser range finder
US6747733B2 (en) Electronic distance meter
US5548396A (en) Method and apparatus for measuring eccentricity of aspherical lens having an aspherical surface on only one lens face
JP6368933B2 (en) Overhead wire position measuring apparatus and method
JP2018179889A (en) Calibration piece, calibration method, shape measurement system and shape measurement method
WO2022070439A1 (en) Tilt measurement device and tilt measurement method
JP6924953B2 (en) Shape measuring device and shape measuring method
JP2007064701A (en) Rotating laser system and rotational wobble detection system using this
JP5601699B2 (en) Calibration device
JP2018059733A (en) Three-dimentional shape measurement system
KR100728353B1 (en) the tilt angle measuring method using a 3-D auto collimator
JPH1194700A (en) Measuring device and method for lens
JP3623885B2 (en) Laser surveying equipment
JP2000046554A (en) Laser measuring instrument
JP4877938B2 (en) Diameter measuring device
JP7432872B2 (en) laser radar
JP3748479B2 (en) Eccentricity measuring apparatus, eccentricity measuring method, and processing apparatus
JP2006267085A (en) Instrument and method for measuring eccentricity of aspherical lens
JPH05332735A (en) Three-dimensional form measuring device, and measuring method of three-dimensional form using same
JP2017009336A (en) Measuring method, and measuring device
JP2018200213A (en) Behavior measurement device of roller bearing and behavior measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP