JP6730683B2 - Edge-width measuring method and edge-width measuring device for angle steel - Google Patents

Edge-width measuring method and edge-width measuring device for angle steel Download PDF

Info

Publication number
JP6730683B2
JP6730683B2 JP2017106204A JP2017106204A JP6730683B2 JP 6730683 B2 JP6730683 B2 JP 6730683B2 JP 2017106204 A JP2017106204 A JP 2017106204A JP 2017106204 A JP2017106204 A JP 2017106204A JP 6730683 B2 JP6730683 B2 JP 6730683B2
Authority
JP
Japan
Prior art keywords
measured
width
angle
edge
angle steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017106204A
Other languages
Japanese (ja)
Other versions
JP2018200290A (en
Inventor
健太郎 脇田
健太郎 脇田
啓史 石川
啓史 石川
藤本 健一郎
健一郎 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017106204A priority Critical patent/JP6730683B2/en
Publication of JP2018200290A publication Critical patent/JP2018200290A/en
Application granted granted Critical
Publication of JP6730683B2 publication Critical patent/JP6730683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、等辺山形鋼や不等辺山形鋼、不等辺不等厚山形鋼等の山形鋼の辺の寸法(幅)を、搬送中(走間中)に自動測定する方法と、その測定装置に関するものである。 The present invention relates to a method for automatically measuring the side dimension (width) of an angle steel such as an equilateral angle steel, an unequal angle angle steel, and an unequal side unequal thickness angle angle steel during transportation (during running), and a measuring device therefor. It is about.

山形鋼やH形鋼、I形鋼、溝形鋼等の形鋼製品の寸法測定は、従来、検査床において、製品を静止した状態とし、ノギス等の測定器を用いた人手で行われていたが、寸法検査に長時間を要したり、測定箇所が間欠的となったりするという問題がある。そこで、検査時間を短縮するとともに、寸法を全長に亘って保証する観点から、製品全長の寸法を自動測定する技術開発がなされている。 The dimension measurement of shaped steel products such as angle steel, H-shaped steel, I-shaped steel, and channel steel has conventionally been performed manually by using a measuring instrument such as a caliper while keeping the product stationary on an inspection floor. However, there are problems that it takes a long time for the dimension inspection and the measurement points are intermittent. Therefore, from the viewpoint of shortening the inspection time and guaranteeing the dimension over the entire length, technical development has been made to automatically measure the dimension of the entire product length.

形鋼の寸法を自動測定する方法としては、複数のセンサを配置して製品が走間中に自動測定する方法と、製品を停止させた状態でセンサを走査させて自動測定する方法がある。例えば、H型鋼に関しては、特許文献1には、走間中のH形鋼のフランジに平行する方向からこのH形鋼を挟むように配設した一対の2次元距離計で前記H形鋼のフランジ幅を測定するH形鋼の寸法測定方法が提案されている。 As a method of automatically measuring the dimension of the shaped steel, there are a method of arranging a plurality of sensors and automatically measuring the product while the product is running, and a method of scanning the sensor while the product is stopped and automatically measuring it. For example, regarding the H-section steel, in Patent Document 1, a pair of two-dimensional rangefinders arranged so as to sandwich the H-section steel from a direction parallel to the flange of the H-section steel during running are described above. A dimension measuring method of H-section steel for measuring a flange width has been proposed.

また、特許文献2には、H形鋼材に対して所定の光を照射する光源部と、H形鋼材からの反射光を入力する複数個のラインセンサーと、これら各ラインセンサーからの受光信号よりH形鋼材のエッジ位置を検出するエッジ位置検出部と、H形鋼材の表面までの距離を測定する複数個の光波距離計と、上記エッジ位置検出部および光波距離計からの測定信号を入力して、H形鋼材の所定の外形寸法を演算する演算処理部とから構成した形鋼材の寸法測定装置が提案されている。 Further, in Patent Document 2, from a light source unit for irradiating H-shaped steel material with predetermined light, a plurality of line sensors for inputting reflected light from the H-shaped steel material, and light reception signals from these line sensors, An edge position detection unit that detects the edge position of the H-shaped steel material, a plurality of lightwave distance meters that measure the distance to the surface of the H-shaped steel material, and the measurement signals from the edge position detection unit and the lightwave distance meter are input. Thus, there has been proposed a dimension measuring device for a shaped steel material, which is composed of an arithmetic processing unit for computing a predetermined outer dimension of the H-shaped steel material.

一方、山形鋼に関しては、例えば、特許文献3には、停止させた山形鋼の上下左右に傾斜させた状態で配置したレーザ距離計を走査して得た距離データ、傾斜角、および走査中の位置データから山形鋼の断面形状を求め、この断面形状に基づき上記山形鋼の各部寸法を演算する山形鋼寸法演算方法が提案されている。 On the other hand, regarding the angle steel, for example, in Patent Document 3, the distance data obtained by scanning the laser rangefinder arranged in a tilted state in the vertical and horizontal directions of the stopped angle steel, the inclination angle, and the There has been proposed a chevron steel dimension calculation method in which the cross-sectional shape of the chevron steel is obtained from the position data and the dimensions of each part of the chevron steel are calculated based on this cross-sectional shape.

また、特許文献4には、長手方向に長軸を向けて延在しかつ幅方向に向けて山形形状が形成された山形鋼において、対象とする幅方向端部である計測端部に対し、計測端部の端面の上角部を中心にして上下方向に延びるシート光を第1光源から照射すると共に、計測端部の端面の下角部を中心にして上下方向に延びるシート光を第2光源から照射し、上記計測端部位置での各照射によるプロフィールを個別に撮影し、その撮影により取得した2つのプロフィールを合成して上記計測端部のプロフィールを求める山形鋼の端部形状検出方法が提案されている。 Further, in Patent Document 4, in a chevron steel extending in the longitudinal direction with its long axis oriented and having a chevron shape formed in the width direction, with respect to the measurement end portion that is the end portion in the width direction, The first light source emits sheet light extending in the vertical direction around the upper corner of the end surface of the measurement end, and the second light source emits sheet light extending in the vertical direction around the lower corner of the end surface of the measurement end. The edge shape detection method of the angle steel in which the profile obtained by irradiating from each of the measurement ends is individually photographed, and the two profiles obtained by the photographing are combined to obtain the profile of the measurement edge. Proposed.

特開2000−081311号公報JP, 2000-081311, A 特開平06−281429号公報JP, 06-281429, A 特開2008−185491号公報JP 2008-185491 A 特開2013−134198号公報JP, 2013-134198, A

ところで、H形鋼と山形鋼とでは、断面形状に違いがある。具体的には、H形鋼のフランジ両幅縁部の断面は直角で明確であるため、フランジ幅の寸法測定は比較的容易であるのに対して、山形鋼は、図1に示したように、2つの辺の先端縁部が丸みを帯び、辺の最先端部の位置が不明確で一定していない。そのため、従来の特許文献1や2のようなH形鋼の寸法測定方法では、真の最先端部以外の箇所を辺の最先端部と見做してしまう虞があり、山形鋼の辺の幅寸法測定には適用することが難しい。 By the way, there is a difference in sectional shape between the H-section steel and the chevron steel. Specifically, since the cross sections of both width edges of the flange of the H-section steel are right angles and clear, the dimension measurement of the flange width is relatively easy, while the angle steel has the same shape as shown in FIG. In addition, the tip edges of the two sides are rounded, and the positions of the leading edges of the sides are unclear and not constant. Therefore, in the dimension measuring method of the H-section steel as in the conventional patent documents 1 and 2, there is a possibility that a portion other than the true leading edge portion may be regarded as the leading edge portion of the edge, and the edge portion of the angle steel may be considered. It is difficult to apply for width dimension measurement.

一方、山形鋼の寸法を測定する特許文献3の技術は、山形鋼を停止させた状態で寸法を測定する方法であるため、搬送中(走間中)に測定するという要求には応えられない。
また、同じく山形鋼の寸法を測定する特許文献4の技術は、端部形状の検出方法で、寸法測定が目的ではなく、また、形状検出に複数のセンサを使用するため、両端縁部の寸法測定に適応しようとした場合、センサ数が増加し、設備費が嵩んでしまうという問題がある。
On the other hand, the technique of Patent Document 3 for measuring the dimensions of the angle steel is a method of measuring the dimensions in a state where the angle steel is stopped, and therefore cannot meet the demand for measurement during transportation (during running). ..
In addition, the technique of Patent Document 4 which similarly measures the dimensions of the angle steel is a method of detecting the end shape, the purpose is not to measure the dimensions, and since a plurality of sensors are used for shape detection, the dimensions of both end edges are measured. When trying to adapt to the measurement, there is a problem that the number of sensors increases and the equipment cost increases.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、山形鋼の製品寸法、特に搬送中の山形鋼の辺の寸法(幅)を二次元レーザ変位計を用いて自動測定する方法を提案するとともに、その方法に用いる測定装置を提供することにある。 The present invention has been made in view of the above problems of the prior art, and its object is to provide a two-dimensional laser displacement meter for measuring the product size of angle steel, particularly the side size (width) of angle steel during transportation. An object of the present invention is to propose a method for automatic measurement using the method and to provide a measuring device used for the method.

発明者らは、上記課題の解決に向け、二次元レーザ変位計の配設位置に着目して鋭意検討を重ねた。その結果、二次元レーザ変位計を、被測定辺の両端縁部それぞれの斜め上方かつ外側に配設することで、辺の縁部の最先端部を確実に認識し、辺の幅を精度よく測定できることを見出し、本発明を開発するに至った。 To solve the above-mentioned problems, the inventors focused their attention on the arrangement position of the two-dimensional laser displacement meter and conducted extensive studies. As a result, by arranging the two-dimensional laser displacement meter diagonally above and outside each edge of the measured side, the tip of the edge of the side can be reliably recognized and the width of the side can be accurately measured. The inventors have found that it can be measured and have developed the present invention.

すなわち、本発明は、搬送中の山形鋼の辺の幅を二次元レーザ変位計を用いて連続的に測定する方法において、上記二次元レーザ変位計を、搬送中の山形鋼の被測定辺の両端縁部それぞれの斜め上方かつ外側に配設し、それぞれの二次元レーザ変位計で得た被測定辺の両端縁部の形状データおよび両端縁部までの距離データを合成して辺の幅を算出することを特徴とする山形鋼の辺幅測定方法である。 That is, the present invention, in the method of continuously measuring the width of the side of the chevron steel during transportation using a two-dimensional laser displacement meter, the two-dimensional laser displacement meter, the measured side of the chevron steel during transportation. The side width is determined by arranging diagonally above and outside each edge, and combining the shape data of both edges of the measured side and the distance data to both edges obtained with each two-dimensional laser displacement meter. This is a method for measuring the edge width of angle steel, which is characterized in that it is calculated.

本発明の山形鋼の辺幅測定方法は、上記二次元レーザ変位計を、被測定辺の両端縁部における被測定辺に対する垂線に対して15°±5°外側に配設することを特徴とする。 The angle width measuring method for angle steel of the present invention is characterized in that the above-mentioned two-dimensional laser displacement meter is disposed outside the measured side at 15°±5° with respect to a perpendicular to the measured side. To do.

また、本発明は、搬送中の山形鋼の被測定辺の両端縁部の形状および両端縁部までの距離を測定する1対の二次元レーザ変位計と、
該1対の二次元レーザ変位計で得た被測定辺の両端縁部の形状データおよび両端縁部までの距離データを合成して辺の幅を算出する幅寸法演算部を有し、
上記1対の二次元レーザ変位計は、被測定辺の両端縁部それぞれの斜め上方かつ外側に配設されてなることを特徴とする山形鋼の辺幅測定装置である。
Further, the present invention is a pair of two-dimensional laser displacement meters for measuring the shape of both end edges and the distance to both end edges of the side to be measured of the angle steel being conveyed.
A pair of two-dimensional laser displacement meter having a width dimension calculation unit for calculating the width of the side by synthesizing shape data of both end edges of the measured side and distance data to both end edges,
The pair of two-dimensional laser displacement gauges is an angle width measuring device for angle steel, which is arranged obliquely above and outside each of both end edges of the measured side.

本発明の山形鋼の辺幅測定装置は、上記二次元レーザ変位計が被測定辺の両端縁部における被測定辺に対する垂線に対して15°±5°外側に配設されてなることを特徴とする。 The angle width measuring device for angle iron of the present invention is characterized in that the two-dimensional laser displacement meter is arranged outside the measured side by 15°±5° with respect to the perpendicular to the measured side. And

また、本発明の山形鋼の辺幅測定装置は、上記二次元レーザ変位計が2対配設され、山形鋼の2辺の幅を同時に測定可能としたことを特徴とする。 In addition, the angle steel edge width measuring device of the present invention is characterized in that two pairs of the above two-dimensional laser displacement gauges are arranged and the widths of two sides of the angle iron can be measured simultaneously.

また、本発明の山形鋼の辺幅測定装置は、山形鋼の搬送ラインに設置されてなることを特徴とする。 Further, the angle steel edge width measuring device of the present invention is characterized in that it is installed on a chevron steel conveying line.

本発明によれば、固定した1対の二次元レーザ変位計の設置位置を適正化することで、山形鋼の辺の縁部の最先端部を確実に検出することが可能となるので、山形鋼の辺の幅を高い精度で測定することができる。また、本発明によれば、辺幅測定装置を山形鋼の搬送ラインに設置することで、走間中の山形鋼の辺の幅を全長に亘って自動測定することが可能となるので、製品検査時間を大幅に短縮することができる。したがって、本発明によれば、山形鋼の品質向上や生産性向上に大いに寄与する。 According to the present invention, by optimizing the installation position of the pair of fixed two-dimensional laser displacement gauges, it becomes possible to reliably detect the tip end of the edge portion of the angle steel, so that the angle The width of the steel side can be measured with high accuracy. Further, according to the present invention, by installing the side width measuring device on the angle iron conveying line, it is possible to automatically measure the width of the side of the angle steel during running over the entire length, so that the product The inspection time can be greatly reduced. Therefore, according to the present invention, it greatly contributes to the quality improvement and the productivity improvement of the angle steel.

山形鋼の断面形状と、測定対象とする辺の幅を説明する図である。It is a figure explaining the cross-sectional shape of angle iron and the width of the side used as a measurement object. 山形鋼の辺の縁部がとり得る種々の断面形状を説明する図である。It is a figure explaining the various cross-sectional shapes which the edge part of the edge of angle iron can take. 山形鋼の辺の縁部の最先端部を測定する際の問題点を説明する図である。It is a figure explaining the problem at the time of measuring the tip part of the edge of the angle steel. 本発明の辺幅測定装置を説明する図である。It is a figure explaining the side width measuring device of this invention. 本発明の辺幅測定装置の構成を説明する図である。It is a figure explaining the structure of the side width measuring apparatus of this invention. 本発明の辺幅測定装置における測定処理フローを説明する図である。It is a figure explaining the measurement processing flow in the side width measuring device of this invention. 1対のセンサで被測定辺の両端縁部のプロファイルを測定した結果の一例を示す図である。It is a figure which shows an example of the result of having measured the profile of the both-ends edge part of a to-be-measured side with a pair of sensor. 本発明の辺幅測定装置とノギスとで測定した辺幅の測定結果を対比して示した一例図である。It is an example figure which compared and showed the measurement result of the side width measured with the side width measuring device of the present invention, and a caliper.

山形鋼やH形鋼等の熱間圧延形鋼は、JIS G 3192等において、形状および寸法の許容差が規定されており、例えば、等辺山形鋼や不等辺山形鋼、不等辺不等厚山形鋼については、図1に示したような2辺の幅A,Bや、2辺の厚さt(t,t)の他に、2辺のなす角の直角からのずれ(直角度)等の許容差等が規定されている。 Tolerances of shape and dimensions are specified in JIS G 3192 etc. for hot rolled shaped steel such as angle shaped steel and H shaped steel. For example, equilateral angle shaped steel, unequal side angle shaped steel, unequal side unequal thick type For steel, in addition to the widths A and B of the two sides as shown in FIG. 1 and the thickness t (t 1 , t 2 ) of the two sides, the deviation of the angle formed by the two sides from the right angle (squareness ) Etc. are specified.

前述したように、従来、山形鋼の寸法測定は、製造工程最後の検査ライン(検査床)において、山形鋼が静止した状態でノギス等を用いて人手で測定を行っていたため、寸法検査に長時間を要していた。そのため、寸法測定箇所が制限されるだけでなく、検査ラインでの寸法測定が律速となって、山形鋼の圧延ラインの停止を引き起こす一因ともなっていた。そこで、検査ラインの生産性向上や圧延ラインの稼働率向上ならびに製品品質の向上を目的として、山形鋼の寸法測定を自動化する、さらには、走間中に自動測定することを検討した。 As described above, in the past, dimensional measurement of angle steel was performed manually on the inspection line (inspection floor) at the end of the manufacturing process using calipers while the angle steel was stationary. It took time. Therefore, not only the dimension measurement points are limited, but also the dimension measurement on the inspection line becomes a rate-determining factor, which is one of the causes of stopping the angle steel rolling line. Therefore, for the purpose of improving the productivity of the inspection line, improving the operating rate of the rolling line, and improving the product quality, we studied to automate the dimensional measurement of the angle steel and further to measure it automatically during the running.

ここで、山形鋼の2辺の幅(A,B)を自動測定しようとするときの問題点は、山形鋼の辺の寸法(幅)を測定するには、辺の縁部の最先端位置を決定する必要があるが、辺の縁部の断面形状は丸みを有しており、さらに、辺の最先端部は、図2(a)のように過充満であったり、(c)や(d)のように未充満であったりするため、センサ等で辺の最先端部を認識するのが難しいということである。ここで、上記過充満とは、形鋼を圧延して製造する際に使用する孔型(カリバー)ロールの溝断面形状に対して得られた形鋼断面形状の方が大きく、はみ出した部分が存在する状態をいい、一方、未充満とは、孔型(カリバー)ロールの溝断面形状に対して得られた形鋼の断面形状の方が小さく、欠けた部分が存在する状態をいう。 Here, the problem when trying to automatically measure the width (A, B) of the two sides of the angle steel is to measure the side dimension (width) of the angle steel in order to measure the edge position of the edge. However, the cross-sectional shape of the edge of the side has a roundness, and the tip of the side is overfilled as shown in FIG. Since it is unfilled as shown in (d), it is difficult for the sensor or the like to recognize the leading edge of the side. Here, the above-mentioned overfilling means that the shape steel cross-sectional shape obtained is larger than the groove cross-sectional shape of the hole-type (caliber) roll used when manufacturing the shape steel by rolling, and the protruding portion is On the other hand, the unfilled state means that the cross-sectional shape of the shaped steel obtained is smaller than the groove cross-sectional shape of the hole type (caliber) roll, and a chipped portion is present.

例えば、図3(a)に示したように、測定しようとする辺(被測定辺)を挟むように辺の両側に1対のセンサ1,2を設置した場合には、辺の縁部の最先端部は認識できるものの、被測定辺の基準面を認識することができない。そのため、1対のセンサの測定データを合成して辺の幅を算出する際、誤差を生じ易い。また、山形鋼が搬送中に回転した場合には、辺の基準面と1対のセンサを結ぶ線とが平行とならないため、測定誤差が生じるという問題もある。ここで、上記「基準面」とは、山形鋼の辺の外側面のことをいい、センサで測定した形状データ等から辺の幅を算出する際に基準となる面のことである。 For example, as shown in FIG. 3A, when a pair of sensors 1 and 2 are installed on both sides of a side to be measured (side to be measured), the edges of the side are Although the leading edge can be recognized, the reference plane of the measured side cannot be recognized. Therefore, when the measurement data of the pair of sensors are combined to calculate the width of the side, an error is likely to occur. Further, when the angle steel rotates during transportation, the reference surface of the side and the line connecting the pair of sensors are not parallel to each other, which causes a problem that a measurement error occurs. Here, the above-mentioned "reference surface" refers to the outer surface of the side of the angle steel, and is the surface that serves as a reference when calculating the width of the side from the shape data and the like measured by the sensor.

また、図3(b)に示したように、被測定辺の基準面に対して上方、即ち、垂直方向に1台のセンサ3を設置した場合には、辺の縁部が未充填のときには、丸みを有する辺の最先端部を認識できない場合がある。
なお、上記図3(a)および図3(b)の問題点を解決するため、図3(a)と図3(b)の技術を組み合わせることも考えられる。しかし、この場合には、合計で3台のセンサが必要となるため、設備費が嵩んでしまう。また、山形鋼が搬送中に回転した場合には、辺の基準面とセンサ1、2を結ぶ線が平行とならない。それを補間するためにセンサ3のプロフィールを使用しようとしても、センサ1または2は、基準面を照射していないため、そのプロフィールとセンサ3のプロフィールが重なり合う部分が狭くなり、測定誤差が生じるという問題がある。
Further, as shown in FIG. 3B, when one sensor 3 is installed above the reference plane of the measured side, that is, in the vertical direction, when the edge of the side is not filled, , There are cases where the leading edge of a rounded edge cannot be recognized.
In order to solve the problems of FIGS. 3(a) and 3(b), it is possible to combine the techniques of FIGS. 3(a) and 3(b). However, in this case, a total of three sensors are required, which increases the equipment cost. Also, when the angle steel rotates during transportation, the line connecting the side reference surface and the sensors 1 and 2 is not parallel. Even if an attempt is made to use the profile of the sensor 3 to interpolate it, since the sensor 1 or 2 does not illuminate the reference plane, the overlapping portion of the profile of the sensor 3 and the profile of the sensor 3 becomes narrow, and a measurement error occurs. There's a problem.

また、上記図3(b)の問題点を解決するため、図3(c)に示したように、被測定辺の両幅縁部の上方、すなわち、被測定辺の両端縁部それぞれにおいて被測定辺に対する垂線上に2台のセンサ4,5を設置することも考えられる。しかしこの場合には、2台のセンサを正確に被測定辺の両端縁部における被測定辺に対する垂線上に正確に設置する必要があるため、センサの設置位置の調整が難しくなったり、搬送中の山形鋼が蛇行や回転したときには辺縁部の最先端部を認識できなくなったりするおそれがある。 Further, in order to solve the problem of FIG. 3(b), as shown in FIG. 3(c), as shown in FIG. 3(c), the measurement is performed above both width edges of the measured side, that is, at both end edges of the measured side. It is also conceivable to install two sensors 4, 5 on the perpendicular to the measurement side. However, in this case, since it is necessary to accurately install the two sensors on the perpendiculars to the measured sides at both end edges of the measured side, it is difficult to adjust the sensor installation position or during transportation. When the angle steel of No. 3 is meandering or rotating, the leading edge of the edge may not be recognized.

そこで、上記問題点に対応するため、本発明は、被測定辺の両端縁部の形状および両幅端部までの距離を測定する2台のセンサ6,7を、図3(d)に示したように、センサを被測定辺の両端縁部それぞれの斜め上方かつ外側に配設する、すなわち、センサを被測定辺の両端縁部における被測定辺に対する垂線に対して被測定辺の外側となる位置に配設する、言い換えれば、山形鋼の幅方向断面において、センサを、被測定辺と、センサと被測定辺の端縁部とを結ぶ線とがなす角が90°超え180°未満の範囲となるように配設することとした。上記の位置にセンサを配設することで、搬送中の山形鋼が多少の蛇行や回転を起こしたときでも、丸みを有する辺先端縁部の最先端部を確実に認識することが可能となるという効果がある。 Therefore, in order to address the above problem, the present invention shows two sensors 6 and 7 for measuring the shape of both end edges of the measured side and the distance to both width end portions, in FIG. 3(d). As described above, the sensor is disposed obliquely above and outside each of both end edges of the measured side, that is, the sensor is located outside the measured side with respect to a perpendicular to the measured side at both end edges of the measured side. In other words, in the widthwise cross section of the angle steel, the angle between the measured side and the line connecting the sensor and the edge of the measured side is more than 90° and less than 180°. It was decided to arrange so as to be within the range. By arranging the sensor at the above position, it becomes possible to reliably recognize the leading edge of the rounded edge even when the angle steel during transportation causes some meandering or rotation. There is an effect.

ここで、上記センサを設置する位置(角度)は、原理的には、被測定辺と、二次元レーザ変位センサと被測定辺縁部とを結ぶ線とがなす角が90°超え180°未満の範囲内とすればよい。しかし、上記角度が110°を超えると、被測定辺の基準面がセンサに対して斜めとなり過ぎ、形状や距離の測定精度が低下するという問題がある。一方、100°未満では、被測定辺の両端縁部における被測定辺に対する垂線に近いため、先述した図3(c)と同様の問題を抱えることになる。そこで、センサの設置角度は、被測定辺の両端縁部における被測定辺に対する垂線に対して外側に15°±5°の範囲、言い換えれば、センサと被測定辺の端縁部とを結ぶ線とがなす角が105°±5°の範囲となるように配設するのが好ましい。 Here, in principle, the position (angle) at which the sensor is installed is such that the angle formed by the measured side and the line connecting the two-dimensional laser displacement sensor and the measured side edge is more than 90° and less than 180°. It should be within the range. However, if the angle exceeds 110°, there is a problem in that the reference surface of the measured side becomes too oblique with respect to the sensor, and the measurement accuracy of the shape and the distance deteriorates. On the other hand, if it is less than 100°, it is close to the perpendicular to the side to be measured at both end edges of the side to be measured, and thus the same problem as in the above-described FIG. Therefore, the installation angle of the sensor is within a range of 15°±5° outside the normal to the measured side at both end edges of the measured side, in other words, a line connecting the sensor and the measured side edge. It is preferable to arrange so that the angle formed by and is in the range of 105°±5°.

上記のように2台のセンサを、被測定辺の基準面の上方から外側方向にずらした角度に設置する、すなわち、2台の二次元変位センサを、山形鋼の幅方向断面図において、該二次元変位センサと被測定部とを結ぶ線と被測定辺とのなす角が90°超えとなる位置、好ましくは105°±5°の範囲に設置することで、被測定辺の最先端部を確実に認識することができ、被測定辺の幅を正確に測定できる。 As described above, the two sensors are installed at an angle shifted outward from above the reference plane of the measured side, that is, the two two-dimensional displacement sensors are arranged in the widthwise sectional view of the angle steel. By installing it at a position where the angle formed by the line connecting the two-dimensional displacement sensor and the measured part and the measured side exceeds 90°, preferably in the range of 105°±5°, the tip of the measured side The width of the measured side can be accurately measured.

なお、上記センサの設置位置は、センサを設置する角度の他に、センサと被測定部との間の距離も重要である。この距離は、測定に用いるセンサが有する測定可能範囲内にあればよい。したがって、センサを設置する場所の設置スペースや被測定材(山形鋼)の寸法等から、最適な距離に決定すればよい。 In addition to the angle at which the sensor is installed, the distance between the sensor and the measured portion is important for the installation position of the sensor. This distance may be within the measurable range of the sensor used for measurement. Therefore, the optimum distance may be determined from the installation space of the place where the sensor is installed and the dimensions of the material to be measured (angle steel).

なお、被測定物である山形鋼の寸法が変化する場合には、それに合わせて、センサの設置位置を前述した最適位置に変更することが必要であるが、上記のように設置角度にはある程度の許容範囲があるので、設置位置の調整は容易である。 In addition, when the dimension of the angle steel, which is the object to be measured, changes, it is necessary to change the installation position of the sensor to the above-mentioned optimum position in accordance with it. Since there is a permissible range, it is easy to adjust the installation position.

ここで、本発明に用いる上記センサとしては、山形鋼の辺の端縁部の形状と辺端縁部までの距離を精度よく測定することができるものであればよく、特に制限はないが、例えば、半導体から発せられたレーザ光を被測定部に照射し、反射したレーザ光を受光して、被測定物の形状および被測定物までの距離を測定する非接触三角測距式の二次元レーザ式変位計が好ましく、例えばキーエンス社製のLJ−VシリーズやLJ−Gシリーズ等は好適である。 Here, the sensor used in the present invention, as long as it can accurately measure the shape of the edge portion of the angle steel and the distance to the edge portion, there is no particular limitation, For example, a two-dimensional non-contact triangulation type that irradiates a laser beam emitted from a semiconductor onto a measured part and receives the reflected laser beam to measure the shape of the measured object and the distance to the measured object. A laser displacement meter is preferable, and for example, LJ-V series and LJ-G series manufactured by Keyence Corporation are suitable.

なお、上記センサを設置する箇所は、山形鋼の製造ラインにおいて搬送される山形鋼のパスラインが一定しているところであることが好ましく、例えば、圧延機出側直後や製品鋸断前後、矯正ライン出側などの搬送ラインに設置するのが好ましい。 Incidentally, it is preferable that the position where the above-mentioned sensor is installed is such that the pass line of the chevron steel conveyed in the chevron production line is constant, for example, immediately after the rolling mill exit side, before and after product sawing, straightening line It is preferably installed on a delivery line such as a delivery side.

また、上記センサは、1つの被測定辺に対して1対(2台)のセンサが必要であり、山形鋼の2つの辺を同時に測定するには、2対のセンサが必要となる。上記2対のセンサは、搬送ラインの同一位置に設置してもよいし、異なる位置に別々に設置してもよい。 Further, the above sensor requires one pair (two units) of sensors for one side to be measured, and two pairs of sensors are required for simultaneously measuring two sides of the angle steel. The two pairs of sensors may be installed at the same position on the transfer line or separately at different positions.

因みに、図4は、形状矯正ライン出側の搬送ラインに2対のセンサを設置した例を示したものであり、上記各センサは、搬送ラインの断面上を左右上下に移動可能でかつ角度を自由に調整できる構造となっている。 Incidentally, FIG. 4 shows an example in which two pairs of sensors are installed on the conveying line on the output side of the shape correction line, and each of the above sensors can move vertically and horizontally on the cross section of the conveying line and at an angle. It has a structure that can be freely adjusted.

また、上記センサは、山形鋼の辺の端縁部の形状と辺端縁部までの距離を非接触で連続して測定することができるので、上記のような搬送ラインに設置することで、山形鋼の辺寸法を全長に亘って連続して測定することが可能となる。
なお、本発明の辺幅測定装置を山形鋼の搬送ラインに設ける場合、搬送ラインの幅方向において山形鋼の搬送位置を上記各センサに対して適切な位置に導くことを目的として、本発明の辺幅測定装置の上流側および/または下流側にガイディング装置を設けるのが好ましい。
Further, since the sensor can continuously measure the shape of the edge portion of the angle steel and the distance to the edge portion of the angle steel without contact, by installing it on the above-mentioned transport line, It becomes possible to continuously measure the side dimension of the angle steel over the entire length.
When the edge width measuring device of the present invention is provided on a chevron steel conveying line, the present invention is directed to the purpose of guiding the chevron steel conveying position in the width direction of the conveyor line to each of the sensors. It is preferable to provide a guiding device on the upstream side and/or the downstream side of the side width measuring device.

次に、上記に説明したセンサで測定した被測定辺の両端縁部の形状データと両端縁部までの距離データから辺の幅を算出する方法について説明する。
図5は、本発明の辺幅測定装置の構成を示したものであり、1対のセンサで測定した被測定辺の両端縁部の形状データおよび両端縁部までの距離データを1つの測定パソコン(測定PC)に保存し、上記保存したデータから判定パソコン(判定PC)で上記測定データから辺寸法(幅)を算出し、合否判定を行うようになっている。なお、図中に示したコントローラは、センサの光学条件や撮像条件を設定したり、測定したプロファイルデータを処理したりするものである。
Next, a method of calculating the width of the side from the shape data of the both side edges of the measured side measured by the sensor described above and the distance data to the both side edges will be described.
FIG. 5 shows the configuration of the side width measuring apparatus of the present invention, in which the shape data of both end edges of the measured side measured by a pair of sensors and the distance data to both end edges are measured by one measuring personal computer. The measurement result is stored in a (measurement PC), and the side size (width) is calculated from the measured data by the judgment personal computer (judgment PC) from the stored data, and the pass/fail judgment is performed. The controller shown in the figure is for setting the optical conditions and imaging conditions of the sensor and processing the measured profile data.

また、図6は、上記測定装置を用いて山形鋼の辺の寸法(幅)を測定し、算出するフローを説明する図であり、以下のステップからなる。
(1)ステップS01:測定対象サイズの決定
測定対象となる山形鋼の品種・仕様などを決定する。これにより、測定対象となる山形鋼のサイズも決定される。
(2)ステップS02:センサの位置・角度の設定
測定対象となる山形鋼のサイズに応じて、測定対象とする辺一つ当たり2つのセンサの位置や角度を、本発明の範囲に適合するように設定する。具体的には、一つの辺を測定対象とする場合には2つのセンサの位置・角度を、二つの辺を測定対象とする場合には4つのセンサの位置・角度を設定する。なお、過去の知見や予備試験などの結果を踏まえて、本発明の範囲に適合し、かつ、予め求められた位置・角度の条件に設定するのが好ましい。
(3)ステップS03:光学系・情報処理系の設定
測定に必要な光学系や測定系の条件を、測定対象の山形鋼のサイズに対して、予め定められた条件になるようにコントローラに設定する。さらに、測定されるプロファイルを処理する情報処理条件についても、対象となる山形鋼のサイズに応じて、予め定められた条件になるようにコントローラに設定する。
(4)ステップS04:校正
予め寸法を測定した校正試験片に対して辺幅測定を実施し、その測定結果が、校正試験片の真の辺幅寸法に対して所定の誤差範囲内に収まるように、センサの位置・角度を調整する。ここで、一つの辺を測定対象とする場合には2つのセンサの位置・角度を、二つの辺を測定対象とする場合には4つのセンサの位置・角度を調整する。
(5)ステップS05:測定
校正が完了したら、測定対象材を辺幅測定装置に搬送し、測定を実施する。
(6)ステップS06:プロファイルデータの測定PCへの保存
センサで測定した被測定辺の両端縁部におけるプロファイルデータ(両端縁部の形状データと両端縁部までの距離データ)を測定PCに保存する。なお、参考として、上記測定データの一例を図7に示す。
(7)ステップS07:判定PCによるプロファイルデータの合成と、辺寸法(幅)の計算
測定データを処理し、辺寸法(幅)を計算により求める。具体的には、まず、一辺あたり2つのセンサから得られたプロファイルデータを判定PCで合成する。次いで、被測定辺の基準面の両端縁部に被測定辺に対して垂直な線を引いて最先端部を確定する。次いで、確定した両端縁部の最先端部の間の距離を校正データに基いて演算し、これを辺寸法(幅)とする。
(8)ステップS08:次の測定対象材の有無の判断
次の測定対象材の有無を判断し、次の測定対象材がある場合には、その測定対象材を本発明の辺幅測定装置に搬送し、ステップ05以降の処理を実施する。次の対象材がない場合には、一連の測定作業が終了したと判断し、作業を完了する。
なお、上記ステップ07に続いて、求められた辺寸法(幅)に対する合否判定を実施するステップを設けてもよい。
Further, FIG. 6 is a diagram for explaining the flow of measuring and calculating the side dimension (width) of the angle steel using the above-described measuring apparatus, and includes the following steps.
(1) Step S01: Determination of measurement target size The type and specifications of the angle steel to be measured are determined. This also determines the size of the angle steel to be measured.
(2) Step S02: Setting of Position and Angle of Sensor According to the size of the angle steel to be measured, the positions and angles of the two sensors per side to be measured should be within the scope of the present invention. Set to. Specifically, the positions and angles of two sensors are set when one side is the measurement target, and the positions and angles of four sensors are set when the two sides are measurement targets. It should be noted that it is preferable to set the conditions of the position and angle that are obtained in advance and that conform to the scope of the present invention in consideration of past knowledge and results of preliminary tests.
(3) Step S03: Setting of optical system and information processing system The controller sets the conditions of the optical system and the measurement system necessary for the measurement so that the conditions are predetermined for the size of the angle steel to be measured. To do. Further, the information processing condition for processing the profile to be measured is also set in the controller so as to be a predetermined condition according to the size of the target angle steel.
(4) Step S04: Calibration The width measurement is performed on the calibration test piece whose dimensions have been measured in advance, and the measurement result is within a predetermined error range with respect to the true side width dimension of the calibration test piece. Then, adjust the position and angle of the sensor. Here, the positions and angles of the two sensors are adjusted when one side is the measurement target, and the positions and angles of the four sensors are adjusted when the two sides are the measurement target.
(5) Step S05: Measurement When the calibration is completed, the measurement object material is conveyed to the side width measuring device and measurement is performed.
(6) Step S06: Saving Profile Data in Measurement PC Profile data at both edges of the measured side measured by the sensor (shape data of both edges and distance data to both edges) are saved in the measurement PC. .. For reference, an example of the above measurement data is shown in FIG.
(7) Step S07: Synthesis of Profile Data by Judgment PC and Calculation of Side Dimension (Width) The measured data is processed and the side dimension (width) is calculated. Specifically, first, profile data obtained from two sensors per side is combined by the determination PC. Then, a line perpendicular to the measured side is drawn on both end edges of the reference surface of the measured side to determine the leading edge. Then, the determined distance between the leading edge portions of both edge portions is calculated based on the calibration data, and this is set as the side dimension (width).
(8) Step S08: Judgment of Presence/Absence of Next Measurement Target Material The presence/absence of the next measurement target material is determined, and when the next measurement target material is present, the measurement target material is set to the side width measuring device of the present invention. It is transported and the processing from step 05 onward is carried out. If there is no next target material, it is determined that a series of measurement work has been completed, and the work is completed.
After step 07, there may be provided a step of performing pass/fail judgment for the obtained side dimension (width).

形鋼製造ラインの冷却床と検査床の間にある搬送ラインに、山形鋼の辺寸法を連続して測定する本発明の辺幅測定装置を設置し、不等辺不等厚山形鋼(A×B:250mm×90mm、長さ:10m)の辺の幅を全長に亘って自動測定した。また、上記辺幅測定装置の上流側0.9mの位置に、不等辺不等厚山形鋼の位置が搬送ラインの幅方向に変動するのを抑制するためのガイディング装置を設けた。ここで、上記辺幅測定装置は、図4に示したような、長辺A測定用をセンサを2台、短辺B測定用のセンサを2台、合計4台を配設したものである。上記センサは、非接触三角測距式の二次元レーザ式変位センサ(キーエンス社製:LJ−V7300)であり、該センサの仕様は、表1に示した通りのものである。 The side width measuring device of the present invention for continuously measuring the side dimension of the angle steel is installed on the transportation line between the cooling floor and the inspection floor of the shaped steel production line, and the unequal side unequal thick angle steel (A×B: The width of the side of 250 mm×90 mm, length: 10 m) was automatically measured over the entire length. In addition, a guiding device was provided at a position 0.9 m upstream of the side width measuring device to prevent the position of the unequal side unequal thick angle steel from fluctuating in the width direction of the transport line. Here, the side width measuring device is provided with two sensors for measuring the long side A and two sensors for measuring the short side B as shown in FIG. .. The sensor is a non-contact triangulation type two-dimensional laser displacement sensor (LJ-V7300 manufactured by Keyence Corporation), and the specifications of the sensor are as shown in Table 1.

辺幅の測定に先立ち、各センサの設置角度、距離を、図6に示したフローに従って、各センサの被測定辺に対しする設置角が被測定辺の両端縁部における被測定辺に対する垂線に対して外側に15°±5°の範囲となるよう、即ち、該センサと被測定部とを結ぶ線と被測定辺とのなす角が105°±5°の範囲内となるよう、また、設置距離、即ち、センサのレーザ発光部と被測定部との間の距離が300mm±100mmの範囲内となるよう調整した。なお、上記調整には、被測定物と同じ断面形状の不等辺不等厚山形鋼(A×B:250mm×90mm、長さ500mm)であるA寸法とB寸法が既知の校正試験片を用いた。 Prior to the measurement of the side width, the installation angle of each sensor and the distance are set according to the flow shown in FIG. 6 so that the installation angle of each sensor with respect to the measured side is perpendicular to the measured side at both end edges of the measured side. On the other hand, the outside is in the range of 15°±5°, that is, the angle formed by the line connecting the sensor and the measured portion and the measured side is in the range of 105°±5°, and The installation distance, that is, the distance between the laser emitting portion of the sensor and the measured portion was adjusted to be within a range of 300 mm±100 mm. For the above adjustment, a calibration test piece having a known A dimension and B dimension, which is an unequal thickness unequal thick angle section steel (A×B: 250 mm×90 mm, length 500 mm) having the same cross-sectional shape as the object to be measured, is used. I was there.

上記辺幅測定装置による辺幅の測定は、前述した寸法の不等辺山形鋼12本について行った後、再度、検査床において、長さ方向先後端の2点と10等分点の9点(合計11点)における辺の幅をノギスで測定した。
次いで、上記辺幅測定装置による測定データから、上記ノギスで実測した位置と同位置における辺幅測定値を取り出し、該測定値とノギスで実測した測定値との測定差(本発明の辺幅測定装置の測定値−ノギスの測定値)を求め、さらに、上記測定差の平均値とその標準偏差σを求めた。
The measurement of the side width by the side width measuring device was carried out on 12 unequal angle angle steels having the above-mentioned dimensions, and then, again, at the inspection floor, two points in the length direction front and rear ends and 9 points of 10 equal points ( The width of the side at 11 points in total) was measured with a caliper.
Then, from the measurement data by the side width measuring device, a side width measurement value at the same position as the position actually measured by the caliper is taken out, and a measurement difference between the measurement value and the measurement value actually measured by the caliper (side width measurement of the present invention is measured. The measurement value of the device-measurement value of the caliper) was obtained, and further, the average value of the above measurement differences and its standard deviation σ were obtained.

なお、上記測定差の平均値と標準偏差を求めるに際しては、山形鋼最後端の測定差を除外した。これは、山形鋼の最後端より0.9m以上前の位置の辺幅を測定するときは、山形鋼がガイディング装置によって拘束された状態にあるが、最後端の辺幅を測定するときは、山形鋼がガイディング装置によって拘束されておらず、フリーな状態にあるため、測定精度が低下するためである。参考として、図8に、1本の山形鋼における、長辺Aの辺幅測定結果を示した。図8において、横軸の山形鋼topからの距離とは、山形鋼の最先端位置からの距離のことをいう。また、上記測定の結果を表2に纏めて示した。 When obtaining the average value and standard deviation of the above measurement differences, the measurement difference at the tail end of the angle steel was excluded. This is because the angle steel is in a state of being restrained by the guiding device when measuring the side width 0.9 m or more before the rear end of the angle steel, but when measuring the side width at the rear end. This is because the angle steel is not constrained by the guiding device and is in a free state, so that the measurement accuracy is reduced. For reference, FIG. 8 shows the side width measurement result of the long side A in one angle steel. In FIG. 8, the distance from the angle steel top on the horizontal axis means the distance from the tip position of the angle steel. In addition, the results of the above measurements are summarized in Table 2.

ここで、上記表2中の測定差の平均は、ノギスの測定値を正しい値(真値)としたときにおける、本発明の辺幅測定装置の測定値のずれ(正確度)を表している。このずれは、絶対値が正確にわかっている校正試験片を使った校正により補正して解消すべき、即ち、零にすべき値である。
一方、測定差の標準偏差σは、ノギスの測定値を正しい値(真値)としたときにおける、本発明の辺幅測定装置の測定値のばらつき(精密さ、精度)の程度を表し、この値が小さい程、ノギスの測定値に近い、即ち、測定精度が高いといえる。
上記の表2から、測定差の標準偏差σの3倍(±3σ)を測定誤差(測定精度)と称することとしたとき、本発明の辺幅測定装置の測定誤差は、センサの幅分解能の約2倍の±0.63mmであり、JIS G3192に規定された、辺幅が200mm以上のときの辺幅の許容差(±4mm以内)に対して十分な測定精度を有していることがわかる。
Here, the average of the measurement differences in Table 2 represents the deviation (accuracy) of the measurement values of the side width measuring device of the present invention when the caliper measurement values are correct values (true values). .. This deviation is a value that should be corrected and eliminated by calibration using a calibration test piece whose absolute value is accurately known, that is, zero.
On the other hand, the standard deviation σ of the measurement difference represents the degree of variation (precision, accuracy) of the measured value of the side width measuring device of the present invention when the measured value of the caliper is a correct value (true value). It can be said that the smaller the value, the closer to the caliper measurement value, that is, the higher the measurement accuracy.
From Table 2 above, when 3 times (±3σ) of the standard deviation σ of the measurement difference is referred to as a measurement error (measurement accuracy), the measurement error of the side width measuring device of the present invention is the width resolution of the sensor. It is about twice as large as ±0.63 mm, and has sufficient measurement accuracy with respect to the side width tolerance (within ±4 mm) defined by JIS G3192 when the side width is 200 mm or more. Recognize.

Claims (4)

搬送中の山形鋼の辺の幅を二次元レーザ変位計を用いて連続的に測定する方法において、
上記二次元レーザ変位計を、被測定辺の両端縁部それぞれの斜め上方かつ被測定辺の両端縁部における被測定辺に対する垂線に対して15°±5°外側に配設し、
それぞれの二次元レーザ変位計で得た被測定辺の両端縁部の形状データおよび両端縁部までの距離データを合成して辺の幅を算出することを特徴とする山形鋼の辺幅測定方法。
The width of the sides of the angle iron being transported, in a method for continuously measured using a two-dimensional laser displacement meter,
The two-dimensional laser displacement meter is disposed obliquely above each of both end edges of the measured side and outside the measured side by 15°±5° with respect to a perpendicular to the measured side .
Edge width measuring method for chevron steel characterized by synthesizing side width by combining shape data of both end edges of the measured side obtained by each two-dimensional laser displacement meter and distance data to both end edges ..
搬送中の山形鋼の被測定辺の両端縁部の形状および両端縁部までの距離を測定する1対の二次元レーザ変位計と、
該1対の二次元レーザ変位計で得た被測定辺の両端縁部の形状データおよび両端縁部までの距離データを合成して辺の幅を算出する幅寸法演算部を有し、
上記1対の二次元レーザ変位計は、被測定辺の両端縁部それぞれの斜め上方かつ被測定辺の両端縁部における被測定辺に対する垂線に対して15°±5°外側に配設されてなることを特徴とする山形鋼の辺幅測定装置。
A pair of two-dimensional laser displacement gauges for measuring the shape of both end edges and the distance to both end edges of the angled steel being conveyed,
A pair of two-dimensional laser displacement meter having a width dimension calculation unit for calculating the width of the side by synthesizing shape data of both end edges of the measured side and distance data to both end edges,
The pair of two-dimensional laser displacement gauges are disposed obliquely above both end edges of the measured side and outside the measured edge at 15°±5° with respect to the perpendicular to the measured side. An edge width measuring device for angle steel.
上記二次元レーザ変位計が2対配設され、山形鋼の2辺の幅を同時に測定可能としたことを特徴とする請求項に記載の山形鋼の辺幅測定装置。 3. The angle width measuring device for angle steel according to claim 2 , wherein two pairs of the two-dimensional laser displacement gauges are arranged so that the widths of two sides of the angle steel can be measured at the same time. 山形鋼の搬送ラインに設置されてなることを特徴とする請求項2または3に記載の山形鋼の辺幅測定装置。 The edge width measuring device for angle steel according to claim 2 or 3 , wherein the edge width measurement device is installed on a angle iron conveying line.
JP2017106204A 2017-05-30 2017-05-30 Edge-width measuring method and edge-width measuring device for angle steel Active JP6730683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106204A JP6730683B2 (en) 2017-05-30 2017-05-30 Edge-width measuring method and edge-width measuring device for angle steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106204A JP6730683B2 (en) 2017-05-30 2017-05-30 Edge-width measuring method and edge-width measuring device for angle steel

Publications (2)

Publication Number Publication Date
JP2018200290A JP2018200290A (en) 2018-12-20
JP6730683B2 true JP6730683B2 (en) 2020-07-29

Family

ID=64668116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106204A Active JP6730683B2 (en) 2017-05-30 2017-05-30 Edge-width measuring method and edge-width measuring device for angle steel

Country Status (1)

Country Link
JP (1) JP6730683B2 (en)

Also Published As

Publication number Publication date
JP2018200290A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US8243284B2 (en) Method for measuring the roundness of round profiles
JP5967031B2 (en) Method and apparatus for correcting the perpendicularity of H-shaped steel flange
JP5412829B2 (en) Steel plate shape straightening device
JP2013134198A (en) End shape detection method, end shape inspection method, end shape detection device, and end shape inspection device for angle steel
JP2009028772A (en) Method of calculating amount of camber of steel sheet during rolling and method of manufacturing steel sheet
JP6624121B2 (en) Steel plate shape straightening device
JP2010156622A (en) Shape measurement method and shape measurement apparatus of steel plate
JP6687134B2 (en) Steel shape measuring device and steel shape correcting device
JP6616226B2 (en) Roundness measuring method and roundness measuring apparatus for welded steel pipe
JP6730683B2 (en) Edge-width measuring method and edge-width measuring device for angle steel
JP5413271B2 (en) Surface inspection apparatus and surface inspection method
JP2013104719A (en) External surface bend measuring-method for steel pipe
JP4768055B2 (en) Hot scarf cutting amount measuring method and measuring device
JP2012170997A (en) Method of controlling drive of crop shear
JP5013730B2 (en) Thickness measuring method and thickness measuring apparatus
JP6339493B2 (en) Method for measuring plate width of continuum and method for producing steel plate
JP6645526B2 (en) Steel plate shape measuring device and steel plate shape correcting device
JP2991932B2 (en) Steel plate flatness measurement method
JP6393666B2 (en) Steel plate behavior detection method
JP2011232184A (en) Method and apparatus for determining inner pressure of can
KR20130027297A (en) Carrage measurement system and method for the same
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JP2024022851A (en) Shape measurement method for steel sheet pile and manufacturing method for steel sheet pile
KR20240030619A (en) Method and system for measuring flatness of conveying steel plate
JP2606483B2 (en) Sheet size measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R150 Certificate of patent or registration of utility model

Ref document number: 6730683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250