JP2011196755A - Radiation measuring instrument - Google Patents

Radiation measuring instrument Download PDF

Info

Publication number
JP2011196755A
JP2011196755A JP2010062125A JP2010062125A JP2011196755A JP 2011196755 A JP2011196755 A JP 2011196755A JP 2010062125 A JP2010062125 A JP 2010062125A JP 2010062125 A JP2010062125 A JP 2010062125A JP 2011196755 A JP2011196755 A JP 2011196755A
Authority
JP
Japan
Prior art keywords
coating
thickness
sheet
radiation
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010062125A
Other languages
Japanese (ja)
Other versions
JP5467517B2 (en
Inventor
Minoru Akutsu
実 阿久津
Kazuaki Uehata
一晃 上畠
Yoshihiko Ohigata
祐彦 大日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2010062125A priority Critical patent/JP5467517B2/en
Publication of JP2011196755A publication Critical patent/JP2011196755A/en
Application granted granted Critical
Publication of JP5467517B2 publication Critical patent/JP5467517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation measuring instrument for measuring the thickness of a coating in the same position of each coating block to measure a coating size by detecting the starting position of a coating end, the ending position thereof, or the left and right ends of the coating block in a measurement processor.SOLUTION: This radiation measuring instrument consists of: a radiation source, a sensor disposed opposite to the radiation source, and sheets conveyed in proximity to the sensor between the radiation source and the sensor. This measuring instrument is for detecting the physical characteristics of the sheets based on the intensity of radiations coming from the radiation source, passing through the sheets, and reaching the sensor. In this instrument, a line sensor is used as the sensor while each of the sheets is intermittently coated with a coating material lengthwise of the sheet. The line sensor is structured so as to detect at least any one of the thickness of the sheet, the coating end of the coating material, the coating thickness thereof, and the coating block thereof.

Description

本発明は、例えばラインセンサを用いた放射線測定装置に関し、シート状の基材(以下、単にシートという)に間欠的に塗工された塗工剤の厚さ、塗工部の面積及び塗工間隔の測定精度の向上を図った放射線測定装置に関する。   The present invention relates to a radiation measurement apparatus using, for example, a line sensor, and relates to a thickness of a coating agent applied intermittently to a sheet-like base material (hereinafter simply referred to as a sheet), an area of a coating portion, and coating The present invention relates to a radiation measurement apparatus that improves the measurement accuracy of intervals.

例えば電池やコンデンサなどの電子部品の製造に際してシートに塗工を施した部材を使用したものが用いられる。
シートに塗られた塗工厚を求めるためには、塗工の前後においてそれぞれの厚さを測定し、その差分を以って塗工厚を求める手法が多く用いられている。
For example, in the production of electronic components such as batteries and capacitors, those using a member coated on a sheet are used.
In order to obtain the coating thickness applied to the sheet, a method is often used in which the thickness is measured before and after the coating, and the coating thickness is obtained using the difference.

図3(a)はシート1に間欠的に塗工された塗工ブロック(A,B,C・・・)の一例を示すもので、イの位置で塗工が開始され、ロの位置で塗工厚さを測定する工程が繰り返されていることを示している。   FIG. 3 (a) shows an example of the coating blocks (A, B, C...) Intermittently applied to the sheet 1, and the coating is started at the position “a”, and at the position “b”. It shows that the process of measuring the coating thickness is repeated.

図3(b)は厚さ測定手段5のブロック構成図を示すもので、厚さ測定手段5に塗工開始信号やシートの厚さデータ、シート速度信号が入力され塗工厚さ演算部6で演算された塗工剤厚さデータが出力されている。   FIG. 3B is a block diagram of the thickness measuring means 5. When the coating start signal, the sheet thickness data, and the sheet speed signal are input to the thickness measuring means 5, the coating thickness calculating unit 6 is used. The coating agent thickness data calculated in is output.

図3(c)はシート1上にブロック状に塗工された塗工厚さを測定するためのスキャン型厚さ測定装置の要部斜視図である。フレーム2に線源(下ヘッド)3と電離箱(上ヘッド)4が取り付けられ、それらの間をシート1が非接触で搬送されている。そして上下ヘッドが同期してフレームを幅方向に走査してジグザグ状に測定が行われる。   FIG. 3C is a perspective view of a main part of a scanning type thickness measuring apparatus for measuring the coating thickness applied on the sheet 1 in a block shape. A radiation source (lower head) 3 and an ionization chamber (upper head) 4 are attached to the frame 2, and the sheet 1 is conveyed in a non-contact manner between them. The measurement is performed in a zigzag pattern by scanning the frame in the width direction in synchronization with the upper and lower heads.

上述の測定方法では、シートの流れ方向および幅方向について塗工前後で正確に位置を揃えて測定することが測定精度を確保するために重要である。
具体的には、スキャン型厚さ測定装置において、表裏に間欠塗工されたシートの厚さを同一位置で測定する場合、塗工装置(図示省略)からアナログ出力やパルス出力によりシートの速度信号を受け取り、これから巻き長(シートの走行距離)を割り出し、各測定点を通過するシートの搬送時間に応じた測定タイミングを見計らって同一位置での測定演算を行っている。
In the measurement method described above, it is important to ensure measurement accuracy by aligning the positions accurately before and after coating in the sheet flow direction and the width direction.
Specifically, in a scanning type thickness measuring device, when measuring the thickness of a sheet intermittently coated on the front and back at the same position, the sheet speed signal is output from the coating device (not shown) by analog output or pulse output. From this, the winding length (sheet travel distance) is determined, and the measurement calculation at the same position is performed by measuring the measurement timing according to the conveyance time of the sheet passing through each measurement point.

またはシート速度やシートの搬送時間を設定値として与えて同一位置の測定演算を行ったり、塗工開始信号が入力されたタイミングで、厚さ演算処理を行っている。
複数の測定位置で同期を取って測定する場合に限らず、測定タイミングは塗工開始位置が入力されたタイミングだけではなく、ある遅延時間後に測定したい場合もある。シート速度信号よりシート速度が得られる場合は、シート速度を考慮した遅延時間にすることで塗工端よりシート速度によらず同一位置で測定することができる。
Alternatively, the thickness calculation processing is performed at the timing when the measurement calculation at the same position is performed by giving the sheet speed and the sheet conveyance time as set values and the coating start signal is input.
The measurement timing is not limited to the case where measurement is performed at a plurality of measurement positions, and there are cases where the measurement timing is not limited to the timing at which the coating start position is input, but may be measured after a certain delay time. When the sheet speed can be obtained from the sheet speed signal, it is possible to measure at the same position from the coating end regardless of the sheet speed by setting the delay time in consideration of the sheet speed.

塗工装置からの信号ではなく、塗工開始信号の代わりに塗工開始位置を検出するセンサ(以下、塗工端検出センサ)を設置してこうした要求に応えることもできる。
塗工された幅、長さ、それぞれの位置を測定する場合、カメラまたは光学系の厚さ計を用いたり、別の寸法測定装置で行っていた。
Instead of a signal from the coating apparatus, a sensor that detects a coating start position (hereinafter referred to as a coating end detection sensor) can be installed instead of the coating start signal to meet such a demand.
When measuring the coated width and length, and the respective positions, a camera or an optical system thickness gauge was used, or another dimension measuring device was used.

特開2002−148214JP 2002-148214 A

しかし、シート速度を塗工機側から受ける場合、ロールとシートの滑りやロールを介して搬送されるときの塗膜の厚み増加によるパス長変化やノイズ等によって、シートの速度信号と実際のシートの搬送距離に差を生じる場合があった。このような場合には、同一位置を正確に測れないことから測定誤差を生じやすい。これらは、表裏塗工等の複層塗工において特に問題を生じ易い。こうした問題を回避するためには、もう一段正確な位置情報を得るためのセンサとして塗工端検出センサ等が必要であった。   However, when the sheet speed is received from the coating machine side, the sheet speed signal and the actual sheet are caused by slippage between the roll and the sheet, or by path length change or noise due to the increase in the thickness of the coating film when conveyed through the roll. There may be a difference in the transport distance. In such a case, a measurement error tends to occur because the same position cannot be measured accurately. These are particularly likely to cause problems in multilayer coating such as front and back coating. In order to avoid such a problem, a coating end detection sensor or the like is required as a sensor for obtaining more accurate position information.

即ち、各塗工ブロックの同一位置で厚さを測定する場合、塗工装置や塗工端検出センサより、塗工開始信号をもらう必要があった。その場合、測定誤差を生じ易くするか、あるいは回避のために新たな設備投資やランニングコストを発生させるという課題があった。
また、塗工幅、長さ、それぞれの位置を測定する場合、カメラや別の寸法測定装置を使用する必要があるため、新たな設備投資やランニングコストが高くなるという課題があった。
That is, when measuring the thickness at the same position of each coating block, it is necessary to receive a coating start signal from the coating device or the coating end detection sensor. In that case, there has been a problem that a measurement error is likely to occur or a new capital investment and a running cost are generated to avoid the measurement error.
In addition, when measuring the coating width and length, and the respective positions, it is necessary to use a camera or another dimension measuring device, and there is a problem that new equipment investment and running cost increase.

本発明は上記従来装置の課題を解決するためになされたもので、塗工装置からの塗工開始信号の入力が必要なく、測定処理装置内で塗工開始位置を検出することにより、各塗工ブロックの同一位置で塗工の厚さを測定することを目的とし、
また、測定処理装置内で塗工端の開始位置や終了位置や塗工ブロックの左右端を検出することで、塗工幅、長さ、それぞれの位置を測定することを目的としている。
The present invention has been made in order to solve the above-described problems of the conventional apparatus. There is no need to input a coating start signal from the coating apparatus, and each coating is detected by detecting the coating start position in the measurement processing apparatus. The purpose is to measure the coating thickness at the same position on the work block,
Another object of the present invention is to measure the coating width, the length, and the respective positions by detecting the start and end positions of the coating end and the left and right ends of the coating block in the measurement processing apparatus.

このような課題を達成するために、本発明の請求項1の放射線測定装置は、
放射線源と、この放射線源に対向して配置されたセンサと、前記放射線源と前記センサの間であって、前記センサに近接して搬送されるシートからなり、前記放射線源から前記シートを透過して前記センサに到達する放射線の強度に基づいて前記シートの物理特性を検出する放射線測定装置において、
前記センサとしてラインセンサを用いると共に、前記シートにはシートの長さ方向に間欠的に塗工剤が塗布され、前記ラインセンサは少なくとも前記シートの厚さ、前記塗工剤の塗工端、塗工厚さ、塗工ブロックのいずれか一つを検出するように構成したことを特徴とする。
In order to achieve such a problem, a radiation measuring apparatus according to claim 1 of the present invention is provided.
A radiation source; a sensor disposed opposite the radiation source; and a sheet conveyed between the radiation source and the sensor and in proximity to the sensor. The sheet is transmitted from the radiation source. In the radiation measuring apparatus for detecting the physical characteristics of the sheet based on the intensity of the radiation reaching the sensor,
A line sensor is used as the sensor, and a coating agent is intermittently applied to the sheet in the length direction of the sheet. The line sensor includes at least a thickness of the sheet, a coating end of the coating agent, and a coating. The present invention is characterized in that any one of the work thickness and the coating block is detected.

請求項2においては請求項1に記載の放射線測定装置において、
前記シートの厚さ、前記塗工剤の塗工端、塗工厚さ、塗工幅、長さ、それぞれの位置のいずれか一つを検出するに際しては、測定値の微分処理または差分処理後のデータ、および平滑化処理後のデータに閾値を用いて行うことを特徴とする。
In Claim 2, in the radiation measuring apparatus according to Claim 1,
When detecting any one of the thickness of the sheet, the coating end of the coating agent, the coating thickness, the coating width, the length, and each position, after the differential processing or differential processing of the measured value And a data after smoothing using a threshold value.

請求項3においては請求項1または2に記載の放射線測定装置において、
前記ラインセンサは検出した塗工開始信号を得て所定時間経過後に厚さ測定処理を行うことを特徴とする。
In Claim 3, In the radiation measuring device of Claim 1 or 2,
The line sensor obtains the detected coating start signal and performs a thickness measurement process after a predetermined time has elapsed.

請求項4においては請求項1乃至3のいずれかに記載の放射線測定装置において、
前記塗工ブロックの位置データを管理することで各フレーム間の同一位置で厚さ測定処理を行うことを特徴とする。
In Claim 4, In the radiation measuring device in any one of Claims 1 thru | or 3,
The thickness measurement process is performed at the same position between the frames by managing the position data of the coating block.

請求項5においては請求項1乃至4のいずれかに記載の放射線測定装置において、
複数の放射線測定装置を用いて塗工剤の厚さ演算を同期して行う場合、設定値や外部入力値で同期位置の粗調を行い、塗工端検出処理により同期位置の微調を行うことを特徴とする。
In Claim 5, in the radiation measuring apparatus in any one of Claims 1 thru | or 4,
When performing coating agent thickness calculations in synchronization using multiple radiation measurement devices, perform coarse adjustment of the synchronization position using the set value and external input value, and fine adjustment of the synchronization position using the coating edge detection process. It is characterized by.

請求項6においては請求項1乃至5のいずれかに記載の放射線測定装置において、
非塗工部と塗工部を検出し、それぞれの厚さの演算を行い、その差分で塗工剤の厚さを演算することを特徴とする。
In Claim 6, in the radiation measuring apparatus in any one of Claim 1 thru | or 5,
A non-coating part and a coating part are detected, each thickness is calculated, and the thickness of the coating agent is calculated from the difference.

ラインセンサが塗工端を認識することで、塗工開始信号が不要になる。これは、新たな設備投資を抑制し、導入の敷居を下げることが可能である。
また、特に表裏面等複数の塗工層を持つプロセスにおいて複数センサによる塗工剤測定を行う場合に測定位置の同期を容易にし、測定精度を高め易くする。これは品質管理・歩留まりの向上に効果がある。て
When the line sensor recognizes the coating end, the coating start signal becomes unnecessary. This can reduce new capital investment and lower the threshold for introduction.
In particular, in the case where the coating agent measurement is performed by a plurality of sensors in a process having a plurality of coating layers such as the front and back surfaces, the measurement positions can be easily synchronized and the measurement accuracy can be easily increased. This is effective in improving quality control and yield. The

本発明の実施形態の一例を示す放射線測定装置の概略構成図(a)、ラインセンサにおける塗工ありの部分と塗工なしの部分の信号強度の模式図(b),厚さ測定手段のブロック構成図(c)、塗工端検出処理手段の一例を示すブロック構成図である。BRIEF DESCRIPTION OF THE DRAWINGS Schematic block diagram (a) of the radiation measuring apparatus which shows an example of embodiment of this invention, the schematic diagram (b) of the signal strength of the part with coating in a line sensor, and the part without coating, Block of thickness measuring means It is a block block diagram which shows an example of a block diagram (c) and a coating edge detection process means. 図1(c)に示す厚さ測定手段にブロックデータ管理装置を付加したブロック構成図(a)、データ内で塗工部と非塗工部を検出し、その差分により厚さを演算するためのブロック構成図(b)である。Block configuration diagram (a) in which a block data management device is added to the thickness measuring means shown in FIG. 1 (c), in order to detect the coated part and the non-coated part in the data, and to calculate the thickness from the difference It is a block block diagram (b) of FIG. シート1に間欠的に塗工された塗工ブロックの一例を示す図(a)、厚さ測定手段のブロック構成を示す図(b)、シート上にブロック状に塗工された塗工厚さを測定するためのスキャン型厚さ測定装置の従来例を示す要部斜視図(c)である。The figure (a) which shows an example of the coating block applied to the sheet | seat 1 intermittently, The figure (b) which shows the block structure of a thickness measurement means, The coating thickness coated on the sheet | seat in block shape It is a principal part perspective view (c) which shows the prior art example of the scanning type thickness measuring apparatus for measuring this.

以下本発明を、図面を用いて詳細に説明する。図1(a)は本発明の実施形態の一例を示す放射線測定装置の模式的な概略構成図である。
図1(a)において、図3(c)に示す従来例とは放射線源3の位置と照射方向および放射線検出器としてラインセンサ8を用いた点のみが異なっている。
Hereinafter, the present invention will be described in detail with reference to the drawings. Fig.1 (a) is a typical schematic block diagram of the radiation measuring device which shows an example of embodiment of this invention.
FIG. 1A differs from the conventional example shown in FIG. 3C only in the position and irradiation direction of the radiation source 3 and the point that the line sensor 8 is used as a radiation detector.

本発明においては、シート1の搬送方向に略直角に配置されたラインセンサ8の略全幅にわたって上方に配置された放射線源から扇状に放射線が照射される。シートには所定間隔を隔てて矩形状の塗工ブロックA,B,C・・・が塗工されている。
ラインセンサ8には例えば数百個の検出素子8aが直線状に配置されており、それぞれの検出素子がシート1を透過して到達する放射線の強度を電気信号に変換し、図示しない厚さ測定手段に送出する。なお、矢印P方向はシートの搬送方向を示している。
In the present invention, radiation is radiated in a fan shape from a radiation source disposed above substantially the entire width of the line sensor 8 disposed substantially perpendicular to the conveyance direction of the sheet 1. The sheet is coated with rectangular coating blocks A, B, C... At a predetermined interval.
For example, several hundreds of detection elements 8a are linearly arranged in the line sensor 8, and each detection element converts the intensity of the radiation that passes through the sheet 1 into an electric signal, and measures a thickness (not shown). Send to means. An arrow P direction indicates a sheet conveyance direction.

図1(b)はラインセンサ8における塗工ありの部分と塗工なしの部分の信号強度の模式図である。図に示すように塗工なしの部分であるシート部では強い信号強度となり、塗工が開始される塗工開始位置イから信号強度が弱くなっている。   FIG. 1B is a schematic diagram of the signal intensity of the portion with and without coating in the line sensor 8. As shown in the figure, the sheet portion, which is a portion without coating, has a strong signal strength, and the signal strength is weak from the coating start position a where coating is started.

図1(c)は厚さ測定手段5aのブロック構成図を示すもので、厚さ測定手段5aにはシート速度信号や放射線強度のほかに、塗工端検出装置からシート幅a、塗工幅b、塗工長さc、ブロック間隔dを示す信号が送られてくる。塗工厚さ演算部6aはそれらの信号からそれぞれの値を演算する。その場合、シートの厚さ信号は塗工開始信号イから所定の遅れ時間が経過したロの時点のデータで演算するように予め設定されている。   FIG. 1 (c) shows a block diagram of the thickness measuring means 5a. In addition to the sheet speed signal and the radiation intensity, the thickness measuring means 5a includes the sheet width a and the coating width from the coating edge detection device. A signal indicating b, coating length c, and block interval d is sent. The coating thickness calculator 6a calculates each value from these signals. In this case, the sheet thickness signal is set in advance so as to be calculated using data at a point in time when a predetermined delay time has elapsed from the coating start signal a.

なお、シート厚、塗工厚は必ずしも同一に形成されておらず、ばらつきが生じている場合がある。ラインセンサ8から厚さ測定手段5aに送られる信号にはそのばらつきに応じた信号が送られる。
従って、塗工端検出装置8で平滑化処理を行うことが有効である。
Note that the sheet thickness and the coating thickness are not necessarily formed the same and may vary. A signal corresponding to the variation is sent to the signal sent from the line sensor 8 to the thickness measuring means 5a.
Therefore, it is effective to perform the smoothing process by the coating end detection device 8.

図1(d)は塗工端検出装置8の一例を示すブロック構成図である。
平滑化の手段としてはメディアン処理や移動平均処理などの平滑化手法を用いて行う。処理内容は順番を前後させたり、微分処理または差分処理、平滑化処理というような複合処理にしたりすることも可能である。
FIG. 1 (d) is a block diagram showing an example of the coating end detection device 8.
Smoothing is performed using a smoothing method such as median processing or moving average processing. The processing contents can be changed in order, or can be combined processing such as differentiation processing, difference processing, and smoothing processing.

上述の構成によれば、ラインセンサ8が塗工端を認識することで、従来のような塗工開始信号が不要になり、装置を簡略化することができる。また、特に表裏面等複数の塗工層を持つプロセスにおいて複数センサによる塗工剤測定を行う場合に測定位置の同期を容易にし、測定精度の向上を図ることができ、品質管理や歩留まりの向上に効果を図ることができる。   According to the above-described configuration, since the line sensor 8 recognizes the coating end, a conventional coating start signal becomes unnecessary, and the apparatus can be simplified. In addition, when performing coating agent measurement with multiple sensors, especially in processes with multiple coating layers such as front and back surfaces, it is possible to facilitate measurement position synchronization and improve measurement accuracy, and to improve quality control and yield. Can be effective.

図2(a)は図1(c)に示す厚さ測定手段にブロックデータ管理装置9を付加したブロック構成図である。ブロックデータ管理装置9は各ブロックの順番を管理する機能と、各ブロックの厚さ測定に使用したデータを管理する機能を有している。   FIG. 2A is a block configuration diagram in which a block data management device 9 is added to the thickness measuring means shown in FIG. The block data management device 9 has a function of managing the order of each block and a function of managing data used for measuring the thickness of each block.

各ブロックの順番を管理する機能は、塗工開始からのブロックの番号付けや塗工の順番を管理することを行う。各ブロックの厚さ測定に使用したデータを管理する機能は、各ブロックの塗工端データである塗工開始位置や塗工終了位置や塗工左右端の位置、シート幅、ブロック間隔を管理する。
裏面の厚さ測定の際、表面で測定位置をブロックデータ管理装置から入手し、裏面での位置を特定し測定する。
The function of managing the order of each block manages the numbering of blocks from the start of coating and the order of coating. The function to manage the data used to measure the thickness of each block is to manage the coating start position, coating end position, coating left and right edge positions, sheet width, and block spacing, which are the coating edge data of each block. .
When measuring the thickness of the back surface, the measurement position on the front surface is obtained from the block data management device, and the position on the back surface is specified and measured.

このことにより、従来フレーム間同期制御のために行っているセンサの走査位置の制御を省略することができる。また、フレーム設置時の調整作業において設置位置の調整を簡略化したり、走査スピードの合わせ込み作業を省略することができる。   Thereby, it is possible to omit the control of the scanning position of the sensor, which is conventionally performed for the inter-frame synchronization control. Further, the adjustment of the installation position can be simplified in the adjustment work at the time of installing the frame, and the work of adjusting the scanning speed can be omitted.

また、複数のセンサにより複層厚の検出を行う場合、シート速度やシート輸送遅れ時間の設定値、塗工機からの出力等を得て同期に必要な大まかな位置を求め、上述した塗工端検出処理により更に演算位置の微調を行って正確な同期位置を求めても良い。   When multiple layers are detected by multiple sensors, the rough position required for synchronization is obtained by obtaining set values of sheet speed and sheet transport delay time, output from the coating machine, etc. The precise synchronization position may be obtained by further finely adjusting the calculation position by the edge detection process.

図2(b)はデータ内で塗工部と非塗工部を検出し、その差分により塗工部厚さを演算するためのブロック構成図である。ここでは非塗工部厚さ格納部10にシート1のデータを格納しておき、塗工厚さ演算部において、塗工端検出装置で検出した信号からシート1のデータを差し引いて塗工部の厚さを演算する。   FIG. 2B is a block configuration diagram for detecting the coating part and the non-coating part in the data, and calculating the coating part thickness based on the difference therebetween. Here, the sheet 1 data is stored in the non-coating portion thickness storage unit 10, and the coating thickness calculation unit subtracts the sheet 1 data from the signal detected by the coating end detection device. Calculate the thickness.

上述の構成によれば、塗工されていないシートの厚さを測定する工程を省くことができる。   According to the above-described configuration, the step of measuring the thickness of the uncoated sheet can be omitted.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。例えば放射線源にX線やβ線やγ線にも基本的な考え方は適用可能である。また、実施例では塗工部の形状を方形として表示したが円形若しくは三角形などであっても良い。
従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. For example, the basic concept can be applied to X-rays, β rays, and γ rays as a radiation source. In the embodiment, the shape of the coating part is displayed as a square, but it may be a circle or a triangle.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

1 シート
2 フレーム
3 線源
4 電離箱
5 厚さ測定手段
6 塗工厚さ演算部
8 塗工端検出装置
9 ブロックデータ管理装置
10 非塗工部厚さ格納部
DESCRIPTION OF SYMBOLS 1 Sheet 2 Frame 3 Radiation source 4 Ionization chamber 5 Thickness measurement means 6 Coating thickness calculating part 8 Coating edge detection apparatus 9 Block data management apparatus 10 Non-coating part thickness storage part

Claims (6)

放射線源と、この放射線源に対向して配置されたセンサと、前記放射線源と前記センサの間であって、前記センサに近接して搬送されるシートからなり、前記放射線源から前記シートを透過して前記センサに到達する放射線の強度に基づいて前記シートの物理特性を検出する放射線測定装置において、
前記センサとしてラインセンサを用いると共に、前記シートにはシートの長さ方向に間欠的に塗工剤が塗布され、前記ラインセンサは少なくとも前記シートの厚さ、前記塗工剤の塗工端、塗工厚さ、塗工ブロックのいずれか一つを検出するように構成したことを特徴とする放射線測定装置。
A radiation source; a sensor disposed opposite the radiation source; and a sheet conveyed between the radiation source and the sensor and in proximity to the sensor. The sheet is transmitted from the radiation source. In the radiation measuring apparatus for detecting the physical characteristics of the sheet based on the intensity of the radiation reaching the sensor,
A line sensor is used as the sensor, and a coating agent is intermittently applied to the sheet in the length direction of the sheet. The line sensor includes at least a thickness of the sheet, a coating end of the coating agent, and a coating. A radiation measuring apparatus configured to detect any one of a work thickness and a coating block.
前記シートの厚さ、前記塗工剤の塗工端、塗工厚さ、塗工幅、長さ、それぞれの位置のいずれか一つを検出するに際しては、測定値の微分処理または差分処理後のデータ、および平滑化処理後のデータに閾値を用いて行うことを特徴とする請求項1に放射線測定装置。   When detecting any one of the thickness of the sheet, the coating end of the coating agent, the coating thickness, the coating width, the length, and each position, after the differential processing or differential processing of the measured value 2. The radiation measurement apparatus according to claim 1, wherein a threshold value is used for the data and the data after the smoothing process. 前記ラインセンサは検出した塗工開始信号を得て所定時間経過後に厚さ測定処理を行うことを特徴とする請求項1または2に記載の放射線測定装置。   The radiation measuring apparatus according to claim 1, wherein the line sensor obtains a detected coating start signal and performs a thickness measurement process after a predetermined time has elapsed. 前記塗工ブロックの位置データを管理することで各フレーム間の同一位置で厚さ測定処理を行うことを特徴とする請求項1乃至3のいずれかに記載の放射線測定装置。   The radiation measurement apparatus according to any one of claims 1 to 3, wherein thickness measurement processing is performed at the same position between the frames by managing position data of the coating block. 複数の放射線測定装置を用いて塗工剤の厚さ演算を同期して行う場合、設定値や外部入力値で同期位置の粗調を行い、塗工端検出処理により同期位置の微調を行うことを特徴とする請求項1乃至4のいずれかに記載の放射線測定装置。   When performing coating agent thickness calculations in synchronization using multiple radiation measurement devices, perform coarse adjustment of the synchronization position using the set value and external input value, and fine adjustment of the synchronization position using the coating edge detection process. The radiation measuring apparatus according to any one of claims 1 to 4. 非塗工部と塗工部を検出し、それぞれの厚さの演算を行い、その差分で塗工剤の厚さを演算することを特徴とする請求項1乃至5のいずれかに記載の放射線測定装置。   The radiation according to any one of claims 1 to 5, wherein a non-coated portion and a coated portion are detected, the thicknesses of each are calculated, and the thickness of the coating agent is calculated based on the difference between them. measuring device.
JP2010062125A 2010-03-18 2010-03-18 Radiation measurement equipment Active JP5467517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062125A JP5467517B2 (en) 2010-03-18 2010-03-18 Radiation measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062125A JP5467517B2 (en) 2010-03-18 2010-03-18 Radiation measurement equipment

Publications (2)

Publication Number Publication Date
JP2011196755A true JP2011196755A (en) 2011-10-06
JP5467517B2 JP5467517B2 (en) 2014-04-09

Family

ID=44875185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062125A Active JP5467517B2 (en) 2010-03-18 2010-03-18 Radiation measurement equipment

Country Status (1)

Country Link
JP (1) JP5467517B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168353A (en) * 2016-03-17 2017-09-21 株式会社Screenホールディングス Coating inspection device, coating inspection method and manufacturing device of film/catalyst layer assembly
JP2018156915A (en) * 2017-03-21 2018-10-04 本田技研工業株式会社 Electrode manufacturing method and device
JP2019122928A (en) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 Coating apparatus
WO2024045682A1 (en) * 2022-09-02 2024-03-07 宁德时代新能源科技股份有限公司 Surface density measurement method, surface density measurement system and computer device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127882A (en) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd Method and instrument for measuring thickness or face density
JP2008267927A (en) * 2007-04-19 2008-11-06 Yokogawa Electric Corp Apparatus for measuring physical quantity of sheet
JP2009285354A (en) * 2008-05-30 2009-12-10 Fujifilm Corp Radiation imaging apparatus and radiation imaging method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127882A (en) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd Method and instrument for measuring thickness or face density
JP2008267927A (en) * 2007-04-19 2008-11-06 Yokogawa Electric Corp Apparatus for measuring physical quantity of sheet
JP2009285354A (en) * 2008-05-30 2009-12-10 Fujifilm Corp Radiation imaging apparatus and radiation imaging method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN1008500167; *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168353A (en) * 2016-03-17 2017-09-21 株式会社Screenホールディングス Coating inspection device, coating inspection method and manufacturing device of film/catalyst layer assembly
WO2017158895A1 (en) * 2016-03-17 2017-09-21 株式会社Screenホールディングス Coated membrane inspection device, coated membrane inspection method, and catalyst-coated membrane production device
JP2018156915A (en) * 2017-03-21 2018-10-04 本田技研工業株式会社 Electrode manufacturing method and device
CN108630952A (en) * 2017-03-21 2018-10-09 本田技研工业株式会社 Electrode manufacturing method and device
US10476083B2 (en) 2017-03-21 2019-11-12 Honda Motor Co., Ltd. Electrode manufacturing method
CN108630952B (en) * 2017-03-21 2021-03-02 本田技研工业株式会社 Electrode manufacturing method and apparatus
JP2019122928A (en) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 Coating apparatus
WO2024045682A1 (en) * 2022-09-02 2024-03-07 宁德时代新能源科技股份有限公司 Surface density measurement method, surface density measurement system and computer device

Also Published As

Publication number Publication date
JP5467517B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2013099870A1 (en) Thickness measurement system and thickness measurement method
JP5467517B2 (en) Radiation measurement equipment
JP6082885B2 (en) Method and apparatus for manufacturing battery electrode sheet
JP2011196782A (en) Sheet processing device
JP5423705B2 (en) Radiation inspection equipment
US10184784B2 (en) Device and method for measuring the width and thickness of a flat object
JP2011038856A (en) Film thickness measuring device and film thickness measuring method
ITUD20100017A1 (en) SPEED MEASUREMENT DEVICE, IN PARTICULAR METALLIC LAMINATE PRODUCTS IN A LAMINATION LINE, AND ITS PROCEDURE
JP2009280401A5 (en)
JP5186460B2 (en) Accumulator vibration measuring device
KR101752801B1 (en) Apparatus and Method for measuring size of thick plate
JP4599728B2 (en) Non-contact film thickness measuring device
JP4131843B2 (en) Chatter mark detector
CN108243306B (en) Optical film width on-line measuring method
JP6128009B2 (en) Method and apparatus for measuring thickness of striped steel sheet
JP2004294368A (en) Apparatus and method for measuring thickness
JP5013730B2 (en) Thickness measuring method and thickness measuring apparatus
JP2011242254A (en) Steel plate thickness measuring instrument and calibration method thereof
JP2020076715A (en) Method for measuring coating weight
JP2016125857A (en) Width measuring device for continua, width measuring method for continua, and manufacturing method for steel plates/sheets
JP2013003117A (en) Thickness measuring method of sheet-like material, and conveyance device of sheet-like material
JP2006266959A (en) Instrument and method for measuring color of object surface
JP2001201335A (en) Measuring method and measuring device for both end positions in width direction of sheet material
CN219776673U (en) Novel sheet plane vision detection and thickness detection system
US20060061370A1 (en) Method for measuring thickness of print products passing spaced apart at specific distances in a conveying flow through a measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5467517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140119