JP5003957B2 - ガスセンサ及びその製造方法 - Google Patents

ガスセンサ及びその製造方法 Download PDF

Info

Publication number
JP5003957B2
JP5003957B2 JP2007308925A JP2007308925A JP5003957B2 JP 5003957 B2 JP5003957 B2 JP 5003957B2 JP 2007308925 A JP2007308925 A JP 2007308925A JP 2007308925 A JP2007308925 A JP 2007308925A JP 5003957 B2 JP5003957 B2 JP 5003957B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
gas
gas sensor
electrolyte body
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007308925A
Other languages
English (en)
Other versions
JP2009133679A (ja
Inventor
将司 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007308925A priority Critical patent/JP5003957B2/ja
Publication of JP2009133679A publication Critical patent/JP2009133679A/ja
Application granted granted Critical
Publication of JP5003957B2 publication Critical patent/JP5003957B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、被測定ガス中の特定ガス成分の濃度を検出するガスセンサとその製造方法に関する。
近年、自動車の排気ガス規制が強化され、自己診断規制により三元触媒コンバータなどの排気ガス抑制関連部品の故障を検知してドライバに認識させることが義務づけられるようになった。このような三元触媒コンバータの劣化診断技術としては、三元触媒コンバータを配置した排気管の上流と下流とにそれぞれ酸素濃度センサを設けたいわゆる2Oセンサシステムが知られている。
しかし、排気ガス規制がさらに強化されるにしたがって、エンジン排ガスを浄化する触媒システムの性能は飛躍的に向上し、触媒下流での排気ガス雰囲気中のHC、CO、NOx、Oなどの排ガス成分の濃度は極めて低くなってきた。このため、従来の2Oセンサシステムの触媒下流側に設置されているガスセンサでは検出能力が不十分であり、このような極低濃度排気ガス雰囲気下(ppmオーダ)において酸素濃度を高感度に検出するセンサの開発が望まれるようになった。
図8に示すように、酸素ガスセンサの起電力特性は、このような極低濃度排気ガス雰囲気下(CO:50ppm)では、高濃度排気ガス雰囲気下(CO:1%)に比べて、高濃度空燃比(リッチ)領域から低濃度空燃比(リーン)領域に変化したときのセンサ出力と、低濃度空燃比(リーン)領域から高濃度空燃比(リッチ)領域に変化したときのセンサ出力とが異なるというヒステリシスが増加すること、および、空気過剰率λ(=実空燃比/理論空燃比)が1近辺におけるλ変化点の傾きが緩やかになることが知られている(例えば、特許文献1参照)。
このようにセンサ出力にヒステリシスが生じるのは、検知電極上に吸着したガスにより、検知電極上のガス濃度と被測定ガス中のガス濃度との間に差異が生じることが原因であると考えられている。すなわち、ガス雰囲気がリッチ領域からリーン領域へ変化する場合には、検知電極上に可燃性ガスが吸着するため、リーン領域になっても検知電極上に可燃性ガスが残存する。従って、検知電極上の可燃性ガス濃度が被測定ガスの可燃性ガス濃度より高くなり、λ点がリーン領域側にシフトするわけである。また、ガス雰囲気がリーン領域からリッチ領域へ変化する場合には、検知電極上に酸素が吸着するため、リッチ領域になっても検知電極上に酸素が残存する。従って、検知電極上の酸素濃度が被測定ガスの酸素濃度より高くなり、λ点がリッチ領域側にシフトするわけである。
このため、特許文献1では、検出対象ガスに対して吸着性の異なる2種類の検知電極を設けることを提案している。また、排気ガス成分(HC、CO、NOx)を直接検出するガス検出装置についても、例えば、特許文献2などの提案がなされている。
しかし、いずれの場合もその適用範囲や信頼性、あるいはコストなどの観点から必ずしも満足できるものではなかった。
ところで、触媒下流側に設けられるガスセンサの周囲には、多くの水分(HO)が発生している。このため機関の始動時には外気中の水分がセンサ素子に多量に付着することになる。一般にセンサ素子は、ジルコニアやチタニアなどの伝熱性の良好なセラミック素子であるので、水分が付着した状態でセンサ素子のヒータを通電して加熱すると、付着した水分がセンサ素子表面から蒸発してセンサ素子の内外の温度差が大きくなり、熱衝撃で割れ(サーマルクラック)が生じることがある。このような熱衝撃によるクラックの発生を抑制するために、ヒータ加熱のタイミングの適正化や被水カバーの採用などの対策がなされているが、未だ十分な成果が得られているとはいえない。
特開2005−345451号公報 特開2001−108649号公報
本発明は、上記の問題を解決するためにされたものであり、ppmオーダの極低濃度排気ガス雰囲気においてもヒステリシスの少ない、且つ、熱衝撃によるクラック発生を防止することのできるガスセンサを提供することを主な目的とするものである。
本発明者は、検知電極に隣接する固体電解質体の結晶粒度を微細化することで、三相界面を大幅に増加させて吸着ガスの反応確率を増大できることに着目した。
すなわち、本発明のガスセンサは、被測定ガス中の検出対象ガスの濃度に応じて生じる起電力により検出対象ガスの濃度を検出するガスセンサであって、酸素について伝導性を有する固体電解質体と、固体電解質体の一表面に形成される基準電極と、この基準電極に対向して固体電解質体の他表面に形成される検知電極と、固体電解質体を加熱する加熱手段と、を有し、固体電解質体は、基準電極から検知電極に向かって固体電解質体の結晶粒径が順次微細になる傾斜微細化構造を有すること特徴とする。
本発明のガスセンサにおいて、基準電極に隣接する固体電解質体の結晶粒径は、1〜10μmであり、検知電極に隣接する固体電解質体の結晶粒径は、100〜500nmであることが望ましい。
このような本発明のガスセンサにおいては、固体電解質体は、結晶粒径の異なる複数の電解質焼結層を有する積層体とすることができる。ここで、検知電極に隣接する電解質焼結層の厚さは、50〜300μmとすることが望ましい。
また、固体電解質体を積層体とした場合には、検知電極に隣接する前記電解質焼結層は、電解質を100体積%として、5〜50体積%のパラジウムを含有することが好ましい。
上記の本発明のガスセンサにおいて、検出対象ガスは酸素であることが望ましい。
また、本発明のガスセンサの製造方法は、被測定ガス中の検出対象ガスの濃度に応じて基準電極と検知電極との間に生じる起電力差により該検出対象ガスの濃度を検出するガスセンサの製造方法であって、分級した所定の原料粉末をゴム型に充填して所定形状となし、焼成して前記基準電極に隣接する第1電解質焼結層を形成する第1工程と、該第1電解質焼結層の前記検知電極側の一表面に前記原料粉末と同一組成で該原料粉末よりも微細である粉末からなる微粉末層を形成し、焼成して第2電解質焼結層を形成する第2工程と、直前工程の焼成により形成された電解質焼結層の表面に対して該第2工程と同様の工程を所望回数繰り返して複数の電解質焼結層で構成される固体電解質体を得る第3工程と、を含み、各前記工程の前記焼成温度は直前工程の焼成温度よりも低いことを特徴とする。
ここで、第1電解質焼成層の焼成温度は、1400〜1700℃であり、最終の電解質焼成層の焼成温度は、1200〜1300℃であることが望ましい。
本発明のガスセンサは、検知電極に隣接する固体電解質体の結晶粒径が微細であるので、検知電極上における吸着ガスの反応確率が高く、検知電極上に吸着ガスが残存しにくくなる。これにより、起電力特性におけるヒステリシスは小さくなり、また、ほぼ理論空燃比でセンサ出力が急変する特性を有する高感度のガスセンサとすることができる。
また、本発明のガスセンサの固体電解質体の検知電極側では、結晶粒がサブミクロンオーダと極めて微細であるので高い焼結性を有し、クラックの基点となりうる空孔などの欠陥が極めて少ない。そして、基準電極から検知電極に向かって固体電解質体の結晶粒径が順次微細になる傾斜微細化構造を有しているので、固体電解質体はクラック進行の停止効果を備えている。それ故、本発明のガスセンサは、被水などの熱衝撃や熱応力に対する耐性が大きい。また、結晶粒径の傾斜化により相界面のマクロ的接合強度も増大するので、外部からの衝撃力を緩和するとともに、高い機械的強度を有する。これらのクラック防止対策は、ヒータ加熱のタイミングを適正に制御するといった複雑な制御や被水カバーなどの構造上の被水対策を必要としないため、従来のガスセンサに比べてコスト面でも優位である。
また、本発明のガスセンサにおいて、固体電解質体を結晶粒径の異なる電解質焼結層の積層体とすることで、傾斜微細化構造を有する固体電解質体を容易に得ることができる。ここで、検知電極に隣接する電解質焼結層を金属パラジウム相を含むマトリックスとし、パラジウムを体積組成50%以下で、且つパーコレーションを維持できる範囲で分散配置させることで、マトリックス中に導電網の形成と界面抵抗(分極)の現象を実現できる。これは、パラジウムと電極によって形成される三相界面の二次元的な密度が増大し、至る所が反応場になるため電極界面での電解質中の電流が分散して結果的に電極過電圧が減少すると共に多くの電流を流通させることが可能になるからであると考えられる。
これにより、吸着ガスの反応場をさらに増大することができ、極低濃度排気ガス雰囲気でのガスセンサ特性の精度やガス検出感度(検出限界、分解能など)を一層向上させることができる。さらに、パラジウムの微細粒子は、転移の移動を拘束する粒子分散強化や体積効果、弾性率向上及びクラックデフレクション効果などによる粒子強化に効果的に作用するので、固体電解質体の機械的強度をより一層を増大することができる。なお、この効果は、検知電極に隣接する電解質焼結層のみにパラジウムを配合すれば得ることができるので、パラジウムを効率的に使用することができコスト低減に寄与できる。
以下、本発明の実施の形態について図を参照しながら説明する。ここでは、検出対象ガス成分として酸素を検出する酸素センサであって、自動車などの内燃機関から排出される排気ガス中の酸素濃度検出に使用する酸素センサについて説明する。
(ガスセンサ)
本発明の実施の形態に係るガスセンサの構成の一例を図1に示す。図1は、円筒型ガスセンサの例である。図1(a)はガスセンサ1の外観を示す一部断面側面図であり、図1(b)は図1(a)のA部の電極部分を拡大した断面模式図である。
ガスセンサ1は、固体電解質体10、基準電極12、検知電極14、保護層16および加熱手段としてのヒータ18等を含んで構成される。
固体電解質体10は、酸素イオン等の検出対象ガス成分に対して伝導性を示す金属酸化物等を含んで構成され、有底円筒型の形状となっている。固体電解質体10は、イオン伝導性、構造の安定性の点から、ジルコニア(ZrO)にイットリア(Y)等を配合した安定化ジルコニア(YSZ)を用いることが好ましい。
ここで、固体電解質体10は、図2に示すように、固体電解質体10の結晶粒径が基準電極12側から検知電極14側に向かって順次微細になる傾斜微細化構造を有する。
検知電極14に隣接する固体電解質体10の結晶粒を微細化することで、検知電極14表面でのガス反応場が増加して酸素ガスの反応性が増大する。このため、検知電極14表面における吸着ガスの影響を低減することができる。
また、微細焼結体は高い焼結性を有するのでクラックの基点となる欠陥が少ない。従って、排気ガス中に含まれる水分の付着によるクラック発生を回避することができる。さらに、固体電解質体10は、基準電極12側に向かって結晶粒が粗大化する傾斜微細化構造を有しているので、発生したクラックの内部への進行を阻止するクラック停止効果を備えている。従って、本実施形態の固体電解質体10は、単一の結晶粒度分布を有する従来の固体電解質体に比べて被水などのサーマルショックに対する耐性が大きく、また、外部からの衝撃を緩和することができるので機械的強度も大きい。
上記のような固体電解質体10において、基準電極12に隣接する固体電解質体10aの結晶粒径は、1〜10μmであることが好ましい。固体電解質体10aの結晶粒径が1μm未満では緻密化できない場合があり、10μmを越えて粗大になるとイオンの拡散経路の中で粒界や表面の占める割合が低下して結晶粒内の拡散が支配的になることがあるので適当ではない。より好ましくは、2〜6μmである。
また、検知電極14に隣接する固体電解質体10bは可能な限り結晶粒成長を抑制して緻密化することが望まれるので、その結晶粒径は100〜500nmであることが好ましい。
このような固体電解質体10は、結晶粒径の異なる複数の電解質焼結層を積層した積層体として形成してもよい。結晶粒径の異なる電解質焼結層を積層することで結晶粒の傾斜微細化構造を容易に形成することが出来る。固体電解質体10は、基準電極12に隣接する粗大粒径の電解質焼結層10aと検知電極14に隣接する微細粒径の電解質焼結層10bとの少なくとも2層の積層体であればよいが、更に多層としてもよい。積層体は、傾斜微細化構造の傾斜勾配と積層体形成の工数などを考慮して3〜5層構造とすることが適当である。
固体電解質体10の厚さは特に制限されないが、例えば、0.5mm〜2mmの範囲にするとよい。また、固体電解質体10を上記のような積層体とした場合には、基準電極12に隣接する電解質焼結層10aの厚さは、0.3〜1mm、検知電極14に隣接する電解質焼結層10bの厚さは、50〜300μmとするとよい。電解質焼結層10bの厚さが50μm未満では作製が困難であるとともに機械的にリークする虞があり、300μmを越えて厚いとイオン伝導性を悪化させたり、素子サイズによっては多層化に支障を来したりすることがあるので適当ではない。より好ましくは100〜200μmである。その他の電解質焼結層の厚さは特に限定はないが、結晶粒度の勾配ができるだけ緩やかになるように設定すればよく、積層数に応じて、概ね50〜300μmとすればよい。
また、検知電極14に隣接する電解質焼結層10bは、電解質を100体積%として、5〜50体積%の触媒金属を均一に分散させて含有することができる。触媒金属としては、Pd、Pt、Rh、Ni等を例示することができるが、なかでもPdを好適に用いることができる。電解質焼結層にパラジウムを分散配置することで、電解質焼結層に導電性のネットワークが形成され、検知電極14表面における酸素ガス反応性をさらに増大させることができる。パラジウムが5体積%未満では、電解質焼結層に良好な導電性を付与することができない(パーコレーションを維持できない。)。また、50体積%を越えて多量に含有させると、電解質焼結層の酸素イオン導電性を低下させる虞があるので適当ではない。より好ましくは、20〜30体積%である。
基準電極12は、大気等の基準ガスGsと接触する電極であり、円筒形の固体電解質体10の内表面に形成され、好ましくは固体電解質体10の内表面の内周に沿って帯状に形成される。基準電極12は、Pt、Au、Ag、Pd、Ir、Ru、Rh等を主成分として構成され、安定化ジルコニア固体電解質体と熱膨張率が近いことから、また、固体電解質体からはがれにくいことから、Ptを主成分として構成されることが好ましい。基準電極12の厚さは特に制限されないが、通常1〜10μmの範囲にある。
検知電極14は、被測定ガスGeと接触する電極であり、円筒形の固体電解質体10の外周面に形成され、好ましくは固体電解質体10の外表面の外周に沿って帯状に形成される。検知電極14の構成材料としては、酸素に対して吸着性が高い金属または金属酸化物を含んで構成されるものであれば特に限定されないが、例えば、Rh、Pd、Pt等を主成分として構成され、安定化ジルコニア固体電解質体と熱膨張率が近いことから、また、固体電解質体からはがれにくいことから、Ptを主成分として構成されることが好ましい。検知電極14の厚さは特に制限されないが、1〜10μm程度にするとよい。
上記の基準電極12と検知電極14は、通常、スクリーン印刷等の印刷法、めっき法、スパッタリング法等により成膜することができる。
保護層16は、電極の被毒防止等のために設けられ、固体電解質体10の外表面で検知電極14を覆うように形成される。ポーラスであることから、アルミナ、マグネシア、スピネル等を主成分として構成されることが好ましい。保護層16の厚さは特に制限はされないが、通常10〜500μmの範囲にある。
ヒータ18は、固体電解質体10を加熱し、所定の温度に加熱保持するための素子であり、このような特性を有するものであれば、特に限定されない。ヒータ18は、通常、タングステン等を主成分とするヒータ線と、アルミナ等を主成分にする母材とを含んで構成される。ヒータ18は、固体電解質体に一部接触してもよいし、非接触でもよい。固体電解質体10が、円筒形である場合には、丸棒状、平板状等の棒状ヒータ素子を使用することができる。ヒータ18は、通常、内部に発熱抵抗体と、この発熱抵抗体から延設されたリード部とを備える。発熱抵抗体は、リード部を伝わって外部から印加された電圧により発熱する。ヒータ18により固体電解質体10は、通常400〜700℃程度まで加熱される。
また、ガスセンサは、図3に示すような積層型としてもよい。積層型のガスセンサ3は、固体電解質体10、基準電極12、検知電極14、保護層16、ヒータ層20等を含んで構成される。この場合、それぞれの構成層の膜厚は特に制限はないが、通常固体電解質体の膜厚は10〜200μmの範囲、基準電極12の膜厚は1〜20μmの範囲、検知電極の膜厚は1〜10μmの範囲、保護層16の膜厚は10〜500μmの範囲、ヒータ層20の膜厚は10〜1000μmの範囲である。
ヒータ層20は、積層体の一部として備えてもよく、固体電解質体10の近傍に備えてもよい。ヒータ層20は、Pt等を主成分として構成される。ダクト層22は、基準電極12に大気などの基準ガスを接触させるために設けられ、アルミナ、ジルコニア(絶縁必要)などを主成分として、空間を有する層として構成される。ダクト層22は、厚さは特に制限はされないが、通常50〜1000μmの範囲にある。
このような積層型のガスセンサにおいても、本発明では上記と同様に、固体電解質体10は結晶粒径が基準電極12側から検知電極14側に向かって順次微細になる傾斜微細化構造を有する。一般に、酸素センサとしては、積層型に比べて円筒型の方が出力の強度と機械的強度が高いため、円筒形の方が好ましい。
ガスセンサ1においては、固体電解質体10の内面に形成された基準電極12と、固体電解質体10の外周面に形成された検知電極14とにより酸素濃淡電池を形成し、基準電極12と検知電極14との間の酸素濃度の違いによる起電力差を検出して被測定ガス中の酸素濃度を測定することができる。
本発明のガスセンサ1によれば、検知電極14に隣接する固体電解質体の結晶粒径が微細であり、且つ、パーコレーションを維持できる範囲でパラジウムが均一分散されているので、検知電極14表面における吸着ガスの反応が促進され検知電極14表面に吸着ガスが残存することがない。従って、リッチ領域からリーン領域へガス雰囲気が変化した場合には、検知電極14上に吸着した可燃性ガスと酸素との反応が促進され、リーン領域になっても電極上に可燃性ガスが残存しにくくなり、ヒステリシスを低減することができる。また、同時に、空気過剰率λが1近辺におけるλ変化点の傾きが急峻となる。
また、リーン領域からリッチ領域へガス雰囲気が変化した場合には、検知電極14上に吸着した酸素と可燃性ガスとの反応が促進され、リッチ領域になっても電極上に酸素が残存しにくくなり、ヒステリシスを低減することができる。また、同時に、空気過剰率λが1近辺におけるλ変化点の傾きが急峻になる。
(ガスセンサの製造方法)
次に、前記実施形態に係るガスセンサ1を作製する作製方法の実施形態について説明する。
固体電解質体の原料粉末であるイットリア安定化ジルコニア(以下、単にYSZという。)粉体と、このYSZ粉末を液相混合法により合成した微粉末にバインダなどを加えたスラリを準備する。
まず、所定のゴム型に分級したYSZ粉体を充填して有底円筒形の成形体を得、この成形体を第1焼成温度T1=1400〜1700℃で2〜10時間焼成して第1電解質焼結層を形成する(第1工程)。次に、この第1電解質焼結層の外周側に上記スラリを塗布(又はディピング)し、第2焼成温度T2=1300〜1400℃で2〜10時間焼成して第2電解質焼結層を形成する(第2工程)。
以後、焼成後の電解質焼結層にスラリを塗布し焼成する工程を繰り返し、第n焼成温度Tn=1200〜1300℃で2時間焼成して第n電解質焼結層を形成し、n=3〜5層の電解質焼成層を有する固体電解質体(積層体)を得る(第3工程)。
一般に、原料粉末が同じであれば、焼結温度が高いほど、また、焼結時間が長いほど焼結体の結晶粒度は粗大化する。従って、各工程における焼成温度Tは、T1>T2>・・・・>Tnのように徐々に低くなるように設定する。そして、第n電解質焼結層が最も微細な結晶粒を有する傾斜微細構造の固体電解質体とする。なお、最後の第n電解質焼結層はYSZ相に対するパラジウム金属相を50%以下で、かつパーコレーションを維持できる範囲の体積組成で均一混合したスラリを用いて形成してもよい。
以上のようにして得られた固体電解質体の内表面と外表面とに、上記の基準電極と検知電極とを形成する。続いて、検知電極の表面に前記の保護層を形成し、その後、所定の箇所に前記の加熱手段を配置する。このようにして基準電極から検知電極に向かって固体電解質体の結晶粒径が順次微細になる傾斜微細化構造の固体電解質体を有するガスセンサを得ることができる。なお、基準電極、検知電極、保護層の形成や加熱手段の配置などは、従来行われている通常の方法で実施すればよい。
本実施形態に係るセンサは、未燃炭化水素(HC)や一酸化炭素(CO)等の可燃性ガスの濃度がppmオーダ、つまり1000ppm未満である低濃度排気ガス雰囲気で使用されることが好ましいが、100ppm以下のガス雰囲気中で使用されることがより好ましく、50ppm以下の極低濃度排気ガス雰囲気中で使用されることがさらに好ましい。
本実施形態に係るセンサは、未燃炭化水素(HC)や一酸化炭素(CO)等の可燃性ガスの濃度がppmオーダである極低濃度排気ガス雰囲気で使用されることが好ましいが、可燃性ガスの濃度が%オーダである高濃度排気ガス雰囲気で使用されてもよい。
以上の説明において、被測定ガスとして、自動車用エンジンから排出される排気ガスについての使用について説明したが、本実施形態に係るガスセンサは、例えば、ボイラ、バーナ等の燃焼制御等についても使用することができる。
以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
(ガスセンサ1の作製)
4.5モル%のYを含有するYSZの原料粉末をジェットミルあるいはボールミルなどで粉砕・分級し、粒径が1〜2μmの粉末を得た。次に、この粉末を公知の液相混合法により合成して粒径が数十nmの微粉末とし、さらにバインダとしてポリビニルアセタール系樹脂を10重量部加えてスラリaとした。また、前記微粉末にPdを45体積%加えて同様にバインダを加えてスラリbとした。
まず粒径が1〜2μmの粉末を所定のゴム型に充填して加圧成形し、外径:4.8mm、内径:4.0mm、長さ50mmの有底円筒形の粉末成形体を得た。そして、得られた粉末成形体を1500℃で2時間焼成して、厚さが0.4mmの第1電解質焼結層を形成した(第1工程)。
次に、第1電解質焼結層の外表面(底部から30mmの範囲)に前記スラリaを塗布して、第1電解質焼結層とともに約500℃で脱脂し、1400℃で2時間の焼結焼成を施して厚さが80μmの第2電解質焼結層を形成した(第2工程)。
続いて、第2電解質焼結層の外周面に同様にスラリaを塗布して、第1、第2電解質焼結層とともに約500℃で脱脂し、1300℃で2時間の焼結焼成を施して厚さが80μmの第3電解質焼結層を形成した。
最後に、第3電解質焼結層の外周面に前記スラリbを塗布して、第1、第2、第3電解質焼結層とともに約500℃で脱脂し、1200℃で2時間の焼結焼成を施して厚さが80μmの第4電解質焼結層を形成して、4層の電解質焼結層からなる内径が4.0mmで厚さが0.64mm、長さ50mmの有底円筒形の固体電解質体を得た(第3工程)。なお、上記の脱脂及び焼結焼成は大気雰囲気中で実施した。
次に、得られた固体電解質体の積層部の内表面と外表面の全面にそれぞれ厚さ約1μmの白金めっきを施し、基準電極と検知電極とを形成した。続いて、検知電極の表面にスピネルを溶射して厚さが50μmの保護層を形成した。その後、先端部が固体電解質体の内底部に接するようにヒータ(材質:タングステン(ヒータ線)/アルミナ)を配置して、実施例のガスセンサ1を得た。
このようにして得られたガスセンサ1の固体電解質体における各電解質焼結層の平均結晶粒径は、基準電極に隣接する第1電解質焼結層では5μm、第2電解質焼結層では3μm、第3電解質焼結層では1μmであり、検知電極に隣接する第4電解質焼結層では約500nmであった。すなわち、得られた固体電解質体は結晶の傾斜微細化構造を有していることが確認された。なお、平均結晶粒径は、得られた固体電解質体をその軸線に対して直角に切断して各電解質焼結層の横断面をXRDあるいはTEMによって横断法で測定した。
(ガスセンサ2の作製)
固体電解質体を実施例の第1電解質焼結層のみとした以外は、実施例と同様にして比較例のガスセンサ2を得た。
(起電力特性)
上記のガスセンサ1及びガスセンサ2を用いて、モデルガス評価装置中で下記の条件でガス濃度をCO濃度50ppmとして、センサ出力を測定した。測定は、下記の条件でOガス量を可変させる(スイープ)ことにより空燃比を変化させ、その時のセンサ出力特性を評価した。結果を図5と図6に示す。
(測定条件)
素子温度:600℃
ガス温度:500℃
ガス成分:N、CO、O(0.2λ/minでスイープ)
ガス量:2L/min
図5に示すように、実施例のガスセンサ1においては、ヒステリシスはほとんど生じていない。一方、比較例のガスセンサ2では、図6に示すようにヒステリシスが生じ、λが1近辺におけるλ変化点の傾きが緩やかになっている。ガスセンサ1は、ガスセンサ2に比べてヒステリシス、及びλ変化点の傾きがともに改善されていることが確認された。
(応答時間の確認)
上記のガスセンサ1及びガスセンサ2を用いて、モデルガス評価装置中で上記の条件で、暴露ガス(CO:50ppm)をリーンガス領域のガス(λ=2)からリッチ領域のガス(λ=0.5)に切り替えたときの経過時間に対するセンサ出力を測定した。結果を図7に示す。
図7に示すように、ガスセンサ1においては、暴露ガス(CO:50ppm)をリーン領域のガス(λ=2)からリッチ領域のガス(λ=0.5)に切り替えたときの応答時間が約0.1秒と短いが、ガスセンサ2では、応答時間が0.5秒と長くなっており、ガスセンサ1は従来のガスセンサ2に比べて応答時間が改善されていることが確認された。
(機械的強度)
ガスセンサ1(実施例)とガスセンサ2(比較例)の各固体電解質体(但し保護膜は形成されていない)の機械的強度を、水滴滴下によるクラック発生の有無によって評価した。
まず、図4に示すように、軸芯線Lを水平にして保持した基準電極12と検知電極14とを形成した固体電解質体10の検知電極14の直上に、水滴24の滴下手段22(ここではマイクロシリンジ)を配置する。次に、固体電解質体10をヒータ18で所定温度に加熱し、加熱されている固体電解質体10の検知電極面14aに、径が約0.1μmの水滴を滴下した。なお、滴下位置は加熱された固体電解質体10の最高温度ポイントとする。加熱温度を300、500、700、900℃の4水準として、各加熱温度における割れ発生の有無を観察した。なお、割れ発生の有無は滴下直後の音で判断できるが、滴下終了後、各滴下点をSEMで観察して割れ発生の有無とクラックの進行状態とを観察して確認した。結果を表1に示す。
Figure 0005003957
表1から分かるように、加熱温度が300℃では実施例、比較例とも割れの発生は認められなかったが、500℃では比較例に割れが発生した。これに対して、本実施例では700℃で初めて割れ発生が認められ、本実施例は水滴付着に対する耐性が高く、機械的強度に優れていることが分かる。
なお、滴下による割れ発生の有無は、カラーチェックや固体電解質体10の絶縁抵抗の変化を測定することでも知ることができる。例えば、アドバンテスト社製(R8340)等を用いた超絶縁抵抗試験を適用してもよい。
以上のように、本発明のガスセンサは、検知電極に隣接する固体電解質体の結晶粒径が微細であるので、検知電極上における吸着ガスの反応確率が高く、検知電極上に吸着ガスが残存しにくくなる。これにより、起電力特性におけるヒステリシスは小さくなり、また、ほぼ理論空燃比でセンサ出力が急変する特性を有する高感度のガスセンサとすることができる。
また、本発明のガスセンサの固体電解質体の検知電極側では、結晶粒がサブミクロンオーダと極めて微細であり、かつ、基準電極から検知電極に向かって固体電解質体の結晶粒径が順次微細になる傾斜微細化構造を有しているので、被水などの熱衝撃や熱応力に対する耐性が大きく、高い機械的強度を有する。
また、検知電極に隣接する電解質焼結層のみにパラジウムを配合するだけで、ガス検出感度をより一層向上させることができるので、パラジウムを効率的に使用することができコスト低減に寄与できる。
本発明のガスセンサは、極低濃度排気ガス雰囲気中の酸素濃度を検出する検出センサとして好適である。特に、三元触媒コンバータの劣化診断に用いられる2Oセンサシステムの下流側の酸素濃度センサとして有用である。
実施形態の円筒型ガスセンサの構成を示す概要図である。(a)はガスセンサ1の外観を示す一部断面側面図であり、(b)は(a)中のAの電極部分を拡大した断面模式図である。 実施形態のガスセンサの構成を模式的に示す断面図であり、図1(b)のB部拡大図である。 本発明のガスセンサの他の実施形態を説明する断面模式図である。 水滴滴下試験方法を示す概念図である。 実施例であるガスセンサ1の起電力特性の一例を示すグラフである。 比較例であるガスセンサ2の起電力特性の一例を示すグラフである。 実施例と比較例における、経過時間とセンサ出力との関係を示すグラフである。 極低濃度排気ガス雰囲気(CO:50ppm)及び高濃度排気ガス雰囲気(CO:1%)における、従来の酸素センサの起電力特性を示すグラフである。
符号の説明
1:ガスセンサ 10:固体電解質体 12:基準電極 14:検知電極 16:保護層 18、20:ヒータ(加熱手段)

Claims (8)

  1. 被測定ガス中の検出対象ガスの濃度に応じて生じる起電力により該検出対象ガスの濃度を検出するガスセンサであって、
    酸素について伝導性を有する固体電解質体と、
    該固体電解質体の一表面に形成される基準電極と、
    該基準電極に対向して前記固体電解質体の他表面に形成される検知電極と、
    前記固体電解質体を加熱する加熱手段と、を有し、
    前記固体電解質体は、該固体電解質体の断面における該固体電解質体の結晶粒径が前記基準電極から前記検知電極に向かって順次微細になる傾斜微細化構造を有することを特徴とするガスセンサ。
  2. 前記基準電極に隣接する前記固体電解質体の結晶粒径は、1〜10μmであり、前記検知電極に隣接する前記固体電解質体の結晶粒径は、100〜500nmである請求項1に記載のガスセンサ。
  3. 前記固体電解質体は、結晶粒径の異なる複数の電解質焼結層を有する積層体である請求項2に記載のガスセンサ。
  4. 前記検知電極に隣接する前記電解質焼結層の厚さは、50〜300μmである請求項3に記載のガスセンサ。
  5. 前記検知電極に隣接する前記電解質焼結層は、該電解質を100体積%として、5〜50体積%のパラジウムを含有する請求項3又は4に記載のガスセンサ。
  6. 前記検出対象ガスは酸素である請求項1〜5のいずれかに記載のガスセンサ。
  7. 被測定ガス中の検出対象ガスの濃度に応じて基準電極と検知電極との間に生じる起電力により該検出対象ガスの濃度を検出するガスセンサの製造方法であって、
    分級した所定の原料粉末をゴム型に充填して所定形状となし、焼成して前記基準電極に隣接する第1電解質焼結層を形成する第1工程と、
    該第1電解質焼結層の前記検知電極側の一表面に前記原料粉末と同一組成で該原料粉末よりも微細である粉末からなる微粉末層を形成し、焼成して第2電解質焼結層を形成する第2工程と、
    直前工程の焼成により形成された電解質焼結層の表面に対して該第2工程と同様の工程を所望回数繰り返して複数の電解質焼結層で構成される固体電解質体を得る第3工程と、を含み、
    前記工程の前記焼成温度は直前工程の焼成温度よりも低いことを特徴とするガスセンサの製造方法。
  8. 前記第1電解質焼結層の焼成温度は、1400〜1700℃であり、最終の電解質焼結層の焼成温度は、1200〜1300℃である請求項7に記載のガスセンサの製造方法。
JP2007308925A 2007-11-29 2007-11-29 ガスセンサ及びその製造方法 Expired - Fee Related JP5003957B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308925A JP5003957B2 (ja) 2007-11-29 2007-11-29 ガスセンサ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308925A JP5003957B2 (ja) 2007-11-29 2007-11-29 ガスセンサ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2009133679A JP2009133679A (ja) 2009-06-18
JP5003957B2 true JP5003957B2 (ja) 2012-08-22

Family

ID=40865704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308925A Expired - Fee Related JP5003957B2 (ja) 2007-11-29 2007-11-29 ガスセンサ及びその製造方法

Country Status (1)

Country Link
JP (1) JP5003957B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752171B2 (ja) * 1987-05-30 1995-06-05 日本碍子株式会社 電気化学的素子
JP3525601B2 (ja) * 1995-11-27 2004-05-10 東陶機器株式会社 セラミック緻密薄膜の形成方法
JP3673501B2 (ja) * 2002-02-05 2005-07-20 京セラ株式会社 酸素センサ素子
JP4593979B2 (ja) * 2004-06-07 2010-12-08 トヨタ自動車株式会社 ガスセンサ及びガス検出方法
EP2003706B1 (en) * 2006-03-07 2018-05-02 Kyocera Corporation Method for manufacturing ceramic member, and ceramic member for gas sensor, fuel cell, and multi-layer piezoelectric device

Also Published As

Publication number Publication date
JP2009133679A (ja) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4923948B2 (ja) ガスセンサ素子
JP4409581B2 (ja) 酸素センサ素子
US7329844B2 (en) Prismatic ceramic heater for heating gas sensor element, prismatic gas sensor element in multilayered structure including the prismatic ceramic heater, and method for manufacturing the prismatic ceramic heater and prismatic gas sensor element
US8597481B2 (en) Gas sensor element and gas sensor equipped with the same
JP5059332B2 (ja) サーミスタ素子、これを用いた温度センサ、及びサーミスタ素子の製造方法
JP2011089796A (ja) ガスセンサ素子及びその製造方法、並びにガスセンサ
JP5187417B2 (ja) ガスセンサ素子及びその製造方法
EP1996926A2 (en) Oxygen sensor with a protective layer
EP1191333A1 (en) Multi-layer gas sensor element and gas sensor comprising the same
JP4583187B2 (ja) セラミックヒータ素子及びそれを用いた検出素子
JP5003957B2 (ja) ガスセンサ及びその製造方法
JP2019158554A (ja) センサ素子及びガスセンサ
JP2009008435A (ja) ガスセンサ素子
JP3981307B2 (ja) 酸素センサ素子
JP2010266379A (ja) 積層型ガスセンサ、及びその製造方法
JP2004325196A (ja) 酸素センサ素子
JP5693421B2 (ja) 積層型ガスセンサ素子および積層型ガスセンサ
JP2011169757A (ja) 抵抗型酸素センサ素子
US4835009A (en) Method of producing oxygen sensing element
JP4084505B2 (ja) ヒータ一体型酸素センサ素子
JP6919996B2 (ja) ガスセンサ素子
JP6859926B2 (ja) 固体電解質、その製造方法、ガスセンサ
JP4324439B2 (ja) セラミックヒータおよびセラミックヒータ構造体
JPWO2020067318A1 (ja) セラミックス構造体およびガスセンサのセンサ素子
JP4533159B2 (ja) セラミックヒーターおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5003957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees