JP5003447B2 - 空燃比制御装置 - Google Patents

空燃比制御装置 Download PDF

Info

Publication number
JP5003447B2
JP5003447B2 JP2007316748A JP2007316748A JP5003447B2 JP 5003447 B2 JP5003447 B2 JP 5003447B2 JP 2007316748 A JP2007316748 A JP 2007316748A JP 2007316748 A JP2007316748 A JP 2007316748A JP 5003447 B2 JP5003447 B2 JP 5003447B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio sensor
valve mechanism
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007316748A
Other languages
English (en)
Other versions
JP2008190522A (ja
Inventor
佳幸 大嶽
靖二 石塚
正揮 古賀
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007316748A priority Critical patent/JP5003447B2/ja
Priority to US11/961,075 priority patent/US7536999B2/en
Priority to EP08150080.3A priority patent/EP1944491B1/en
Priority to CN200810002636.4A priority patent/CN101220778B/zh
Publication of JP2008190522A publication Critical patent/JP2008190522A/ja
Application granted granted Critical
Publication of JP5003447B2 publication Critical patent/JP5003447B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、エンジンの空燃比を制御する空燃比制御装置に関する。
車両のエンジンから流出した排気を浄化する床下触媒は、エンジンから離れた位置の排気通路に設置すると、十分な浄化作用が得られるように活性するまでに時間が掛かる。また、この床下触媒を、エンジンに近い位置の排気通路に設置すると、熱劣化によって耐久性が低下するという問題がある。
特許文献1に記載の発明では、排気通路のメイン通路の下流側に床下触媒を設置し、床下触媒よりも上流側のバイパス通路にバイパス触媒を設置する。また、床下触媒よりも上流側のメイン通路には、排気の流れがメイン通路又はバイパス通路を通るように切り換える切換バルブを設ける。これにより、床下触媒が活性するまでの間は排気をバイパス通路に流し、早期に活性化するバイパス触媒によって排気を浄化することで、車両の排気の浄化効率を向上させることができる。
特開平5−321644号公報
しかしながら、特許文献1に記載の発明では、切換バルブが閉弁状態にある場合に、切換バルブの近傍のメイン通路の内部にエンジンからの排気の一部が滞留(以下「滞留ガス」という。)する。この滞留ガスは、切換バルブなどを介して放熱するので、エンジンからの排出直後の排気と比較して低温となる。このように滞留ガスが切換バルブで冷却されると、滞留ガス中の水分が凝縮して切換バルブに付着することが分かった。この水分が切換バルブの開弁時に下流に流され、メイン通路の下流に設置された空燃比センサに付着すると、この水分により空燃比センサが急激に冷却されて、空燃比センサのセンサ素子割れが発生するという問題があることが分かった。
そこで、本発明は、空燃比センサのセンサ素子割れを抑制できる空燃比制御装置を提供することを目的とする。
本発明は、以下のような解決手段によって前記課題を解決する。なお、理解を容易にするために本発明の実施形態に対応する符号を付するが、これに限定されるものではない。
本発明は、メイン触媒(38)が配置される排気通路(32)と、バイパス触媒(35)が配置されメイン触媒上流側の排気通路(32)の分岐部(33)から分岐して、メイン触媒(38)よりも上流側の合流部(34)で再合流するバイパス通路(31)とを流れる排気ガスを、排気通路(32)の分岐部(33)と合流部(34)との間に設置される弁機構(37)を開閉することで排気ガスの経路を切り換えるエンジンの空燃比制御装置において、弁機構(37)よりも下流の排気通路(32)に設置される第1空燃比センサ(39)を備え、弁機構(37)が閉弁状態から開弁状態へと切り換えられた際に、切り替えタイミングから所定期間は、第1空燃比センサ(39)の素子温度を所定温度以下にする、ことを特徴とする。
本発明によれば、弁機構が閉弁状態から開弁状態へと切り換えられてから所定期間が経過するまでは、第1空燃比センサのセンサ素子を所定温度以下にするので、弁機構開弁時に流れる水分が第1空燃比センサを急激に冷却するのを抑制することができ、第1空燃比センサのセンサ素子割れを抑制することが可能となる。
(第1実施形態)
以下、図面を参照にして本発明の第1の実施の形態を説明する。
図1は、エンジン1の空燃比を制御する空燃比制御装置100の第1実施形態を示す図である。
エンジン1は、吸気系20及び排気系30を備える。
エンジン1は、外部から取り込んだ吸気を流す吸気ポート12と、エンジン1からの排気を流す排気ポート13とをシリンダヘッド10に備える。
シリンダヘッド10は、図示しないピストンとシリンダブロックとによって、燃料を燃焼させる燃焼室11を有する。このシリンダヘッド10には、吸気ポート12内に突出するように燃料噴射弁14が設置される。また、燃焼室11の天井面側のシリンダヘッド10には、燃焼室11の内部に突出するように点火プラグ15が設置される。
燃料噴射弁14は、車両の運転状態に応じて燃料を吸気ポート内に噴射する。そして、この燃料と外部から取り込まれた吸気とによって混合気が形成される。
点火プラグ15は、所定のタイミングで火花放電することによって燃焼室11の内部の混合気に点火し、混合気を燃焼させる。
シリンダヘッド10に形成される吸気ポート12には、外部から新気を取り込む吸気系20の吸気通路21が接続する。吸気通路21は、その途中にスロットルチャンバ22とコレクタタンク23とを備える。
スロットルチャンバ22は、吸気通路21の上流側に設けられる。このスロットルチャンバ22には、吸気通路21を流れる吸気量を制御するためのスロットルバルブ24が設置される。スロットルバルブ24は、車両の運転状態に応じて、その開度を調整することで吸気量を制御する。
スロットルチャンバ22の上流側の吸気通路21には、エアフローメータ25が設置される。エアフローメータ25は、外部から取り込まれる新気の吸気量を検知する。また、スロットルバルブ24の下流側の吸気通路21にはコレクタタンク23が設置される。このコレクタタンク23は、上流から流れてきた吸気を一時的に蓄える。
一方、シリンダヘッド10に形成される排気ポート13には、エンジン1から排出される排気を流す排気系30のメイン通路32が接続する。排気系30は、バイパス通路31及びメイン通路32を備える。
バイパス通路31は、メイン通路32よりも小径の通路であって、メイン通路32の上流側の分岐部33で分岐して下流側の合流部34で再びメイン通路32に合流する。このバイパス通路31は、バイパス触媒35及び空燃比センサ(以下「第2空燃比センサ」という。)36を備える。
バイパス触媒35は、早期に活性するようにエンジン1に近いバイパス通路31の上流に設置される。バイパス触媒35は、後述する床下触媒38よりも容量が小さい触媒であって、低温活性に優れた触媒等を用いる。
第2空燃比センサ36は、バイパス触媒35よりも上流のバイパス通路31に設置される。この第2空燃比センサ36は、バイパス通路31の内部を流れる排気中の酸素濃度を検知し、酸素濃度に比例した出力を得ることができる。この第2空燃比センサ36のセンサ素子は、ヒータ51によって昇温される。
一方、メイン通路32は、切換バルブ37、床下触媒38及び空燃比センサ(以下「第1空燃比センサ」という。)39を備える。メイン通路32は、バイパス通路31よりも大径の通路であるため、バイパス通路31よりも排気の流れを阻害する通路抵抗が小さい。
切換バルブ37は、メイン通路32の分岐部33と合流部34との間に設置される。この切換バルブ37は、車両の運転状況に応じてメイン通路32を開閉し、エンジン1から排出される排気が流れる通路を切り換える。
床下触媒38は、合流部34よりも下流のメイン通路32に設置される。この床下触媒38は、バイパス触媒35よりも容量が大きい三元触媒であって、メイン通路32を流れる排気を浄化する。また、床下触媒38には、触媒温度を検出する触媒温度センサ38aが設置される。
第1空燃比センサ39は、床下触媒38の上流のメイン通路32に設置される。この第1空燃比センサ39は、バイパス通路31に設置される第2空燃比センサ36と同様に、メイン通路32を流れる排気中の酸素濃度を検知する。この第1空燃比センサ39のセンサ素子は、ヒータ50によって昇温される。
コントローラ40は、CPU、ROM、RAM及びI/Oインタフェースを備える。
コントローラ40には、エアフローメータ25、触媒温度センサ38a、第2空燃比センサ36及び第1空燃比センサ39等の車両の運転状態を検出する各種センサの出力が入力する。
このコントローラ40は、後述するように床下触媒38の触媒温度に基づいて切換バルブ37を開閉し、エンジン1から排出される排気が流れる通路を切り換える。また、コントローラ40は、第2空燃比センサ36及び第1空燃比センサ39のセンサ素子抵抗値に基づいてヒータの印加電圧を制御し、センサ素子を所定温度まで昇温する。さらに、コントローラ40は、第2空燃比センサ36及び第1空燃比センサ39からの出力値に基づいて、スロットルバルブ24の開度や燃料噴射弁14の燃料噴射量を制御し、エンジン1の空燃比を調整する。
図2は、エンジン1から排出される排気の流れを示す図である。図2(A)は、切換バルブ37が閉弁状態にあるときの排気の流れを示す。また、図2(B)は、切換バルブ37が開弁状態にあるときの排気の流れを示す。なお、排気流れを図中の矢印で示し、排気の流量をその線の太さで示す。
エンジン1の始動直後など、エンジン温度や排気温度が低い場合には、図2(A)に示すように、切換バルブ37は閉弁されており、メイン通路32は遮断されている。そのため、エンジン1から排出された排気は、その全量が分岐部33からバイパス通路31を通り、バイパス触媒35で浄化される。バイパス触媒35はエンジン1に近い位置に設置されているので、速やかに活性化し、早期に排気を浄化することができる。そして、バイパス触媒35で浄化された排気は、バイパス通路31の下流へ流れ、合流部34からメイン通路32に流れ込み、外部に放出される。
切換バルブ37が閉弁状態にある場合には、排気はバイパス通路31を流れるので、バイパス通路31に設置された第2空燃比センサ36がバイパス通路31を流れる排気の酸素濃度を検出する。そして、コントローラ40は、第2空燃比センサ36の検出値に基づいてスロットルバルブ開度や燃料噴射量を制御し、エンジン1の運転状態に応じて空燃比を調整する。
一方、床下触媒38がエンジン1からの排気によって昇温され活性した場合には、図2(B)に示すように、切換バルブ37が開弁する。切換バルブ37が開弁すると、エンジン1から排出された排気のほとんどはメイン通路32を流れる。排気の一部はバイパス通路31にも流れ込むが、バイパス通路31はメイン通路32よりも通路断面積が小さいので、バイパス通路31を流れる排気の排気流量はメイン通路32よりも少なくなる。そのため、高温の排気がバイパス触媒35を通過することによるバイパス触媒35の熱劣化が抑制される。そして、メイン通路32とバイパス通路31とを流れた排気は、床下触媒38で浄化されて、外部に放出される。
切換バルブ37が開弁している場合には、メイン通路32を流れる排気の排気流量がバイパス通路31よりも大きくなるため、バイパス通路31に設置された第2空燃比センサ36からメイン通路32に設置された第1空燃比センサ39に切り換えることで排気中の酸素濃度を精度よく検出する。そして、第1空燃比センサ39の検出値に基づいて、スロットルバルブ開度や燃料噴射量を制御し、エンジン1の運転状況に応じて空燃比を調整する。
切換バルブ37の閉弁時には、切換バルブ37の近傍のメイン通路32の内部にエンジン1からの排気の一部が滞留する。滞留している排気(滞留ガス)は、その滞留時に切換バルブ37を介して放熱するので、エンジン1からの排出直後の排気と比較して低温となる。滞留ガスが切換バルブ37などで冷却されると、滞留ガス中の水分が凝縮して切換バルブ37などに付着する。この水分は、切換バルブ37の開弁時に下流に向かって流され、活性温度まで昇温している第1空燃比センサ39に付着し、第1空燃比センサ39を急激に冷却する。このように急激に冷却されると、第1空燃比センサ39のセンサ素子割れが発生し、排気中の酸素濃度を正確に検出できないという問題が生じる可能性がある。
そこで、第1実施形態では、切換バルブ37の閉弁時にはヒータ50への印加電圧を制限して、第1空燃比センサ39のセンサ素子を活性温度よりも低い、素子割れを生じない所定温度(例えば100℃)まで予熱する。そして、切換バルブ37の開弁後に、ヒータ50の印加電圧を増加して、第1空燃比センサ39のセンサ素子を活性温度まで昇温させる。
本実施形態では、第1空燃比センサ39が素子割れを生じない所定温度までヒータ50による予熱を行うこととしている。他の実施形態としては、閉弁中(開弁前)は、ヒータ50による予熱をすることなく所定温度よりも十分に低い温度としておき、開弁後の所定時間経過後にヒータ50による加熱を開始するようにしてもよい。この場合でも、もちろん第1空燃比センサ39の素子割れを回避することができる。
それに加えて、開弁前に素子割れを生じない所定温度までヒータ50による予熱を行うこととした場合には、切換バルブ37の開弁前は素子割れを生じる温度まで素子温度が上昇することがないので第1空燃比センサ39の素子割れを防止できるとともに、素子割れを生じない所定温度まで加熱しておくことで、切換バルブ開弁後の第1空燃比センサ39のセンサ素子温度からセンサ活性温度まで上昇させる温度差を小さくしておくことができ、切換バルブ開弁後より素早くセンサ活性温度に到達させることができる。
第1実施形態では、ヒータ50の印加電圧を制御することによって、第1空燃比センサ39のセンサ素子を昇温する。つまり、ヒータ50の印加電圧を増加することによってヒータ温度を高くし、第1空燃比センサ39のセンサ素子を加熱する。そして、このセンサ素子温度は、第1空燃比センサ39のセンサ素子抵抗値に基づいて設定される。
図3は、第1空燃比センサ39におけるセンサ素子温度‐センサ素子抵抗値特性を示す図である。横軸は第1空燃比センサ39のセンサ素子抵抗値を示し、縦軸はセンサ素子温度を示す。
図3に示すように、第1空燃比センサ39のセンサ素子抵抗値は、センサ素子温度が高くなるにしたがって小さくなる。
そこで、切換バルブ37の閉弁時には、第1空燃比センサ39のセンサ素子抵抗値がR1となるようにヒータ50への印加電圧を制御し、水分が付着しても第1空燃比センサ39のセンサ素子が素子割れしない温度T1(センサ素子の種類に応じて設定される50℃〜150℃程度の所定温度)に設定する。
そして、切換バルブ37が開弁して水分が下流に流れ、その水分が第1空燃比センサ39を通過した後に、センサ素子抵抗値がR2となるようにヒータ50への印加電圧を増加させ、第1空燃比センサ39が活性するセンサ素子温度T2(センサ素子の種類に応じて異なるが、例えば200℃程度の温度)に達するように制御する。
これにより、閉弁時に切換バルブ37に付着していた水分が開弁時に下流に流れても、第1空燃比センサ39はセンサ素子割れしない程度に暖められているので、第1空燃比センサ39のセンサ素子割れが抑制される。
ここで、水分が第1空燃比センサ39を通過したか否かは、例えば予め設定されたエンジン1の始動時水温と水分の通過時間との関係を示すマップに基づいて設定する。
図4は、エンジン1の始動時水温と水分の通過時間との関係を示す図である。横軸は、エンジン1の冷却水の始動時水温を示す。また、縦軸は、水分が第1空燃比センサ39を通過する通過時間を示す。
図4に示すように、通過時間は、始動時水温が高くなるにしたがって短くなるように設定する。つまり、エンジン1の冷間時など、エンジン始動時の水温が低い場合には、切換バルブ37の温度は低く、滞留ガスが冷却されやすいので、切換バルブ37に付着する水分量が多くなる。そのため、始動時水温が低い場合には、切換バルブ37の開弁時の水分の通過時間を長く設定する。
これに対して、エンジン始動時の水温が高い場合には、滞留ガスも切換バルブ37によってあまり冷却されないので、切換バルブ37に付着する水分も少なくなる。そのため、水分が第1空燃比センサ39を通過する通過時間を、始動時水温が低い場合と比較して短く設定する。
ここで、コントローラ40で行われる第1実施形態の空燃比制御装置100の制御内容について、図5に基づいて説明する。
図5は、第1実施形態の空燃比制御装置100の制御ルーチンを示すフローチャートである。この制御はエンジン1の運転開始ともに実行され、一定周期、例えば10ミリ秒周期のもとで、第1空燃比センサ39による空燃比制御を開始するまで実施される。
ステップS1において、コントローラ40は、切換バルブ37がメイン通路32を閉弁しているか否かを判断する。ここで、切換バルブ37が閉弁状態にある場合にはステップS2に移り、切換バルブ37が開弁状態にある場合にはステップS7に移る。
ステップS2において、コントローラ40は、第2空燃比センサ36及び第1空燃比センサ39のセンサ素子を昇温するヒータ50、51に電圧を印加する。そして、第2空燃比センサ36のセンサ素子は活性温度まで昇温される。第1空燃比センサ39のセンサ素子は、ヒータの印加電圧が制限され、切換バルブ37が開弁して水分が第1空燃比センサ39に付着してもセンサ素子割れが発生しない温度(例えば100℃)まで昇温される。
ステップS3において、コントローラ40は、第2空燃比センサ36が活性したか否かを判断する。この活性判定は、第2空燃比センサ36のセンサ素子温度に基づいて判断する。第2空燃比センサ36が活性していると判断した場合には、ステップS4に移る。第2空燃比センサ36が活性していないと判断した場合には、この処理を一旦抜ける。
ステップS4において、コントローラ40は、第2空燃比センサ36の検出値に基づいてエンジン1の空燃比を制御する。つまり、切換バルブ37が閉弁している場合には、燃焼室11からの排気はバイパス通路31を流れるので、ステップS4ではバイパス通路31に設置された第2空燃比センサ36によって、バイパス通路31を流れる排気の酸素濃度を検出し、この検出値に基づいてエンジン1の運転状態に応じた空燃比に制御する。
ステップS5において、コントローラ40は、床下触媒38が活性しているか否かを、触媒温度センサ38aで検出した触媒温度に基づいて判断する。
バイパス通路31を流れた排気は、バイパス触媒35で浄化されて、合流部34でメイン通路32に流れ込む。そして、メイン通路に流れ込んだ排気は、メイン通路32の下流に設置された床下触媒38を通過するので、床下触媒38は触媒活性温度まで徐々に昇温される。ここで、床下触媒38が活性温度にまで達している場合にはステップS6に移り、床下触媒38が活性温度にまで達していない場合には、この処理を一旦抜ける。床下触媒38が活性している場合には、ステップS6において、コントローラ40は、切換バルブ37を閉弁状態から開弁し、排気が流れる通路を切り換える。
なお、床下触媒38の活性判定前であっても、運転者がアクセル操作によってトルク要求して排気量が増加する場合に切換バルブ37を開弁するようにしてもよい。
ステップS7において、コントローラ40は、第2空燃比センサ36でエンジン1の空燃比を制御する第2空燃比センサ制御モードであるのか、第1空燃比センサ39でエンジン1の空燃比を制御する第1空燃比センサ制御モードであるのかを判定する。この制御モード判定の詳細については後述する。
ステップS8において、コントローラ40は、第1空燃比センサ制御モードか否かを判断する。ここで、第2空燃比センサ制御モードの場合にはステップS10に移り、ステップS10において、コントローラ40は第2空燃比センサ36の検出値に基づいてエンジン1の空燃比を制御し、この処理を抜ける。また、第1空燃比センサ制御モードである場合には、ステップS9に移る。
ステップS9において、コントローラ40は、第1空燃比センサ39の検出値に基づいてスロットルバルブ開度及び燃料噴射量に調整し、エンジン1の運転状態に応じて空燃比を制御し、ステップS11に移る。
第1空燃比センサ39によってエンジン1の空燃比制御を開始した後は、ステップS11において、第2空燃比センサ36を昇温するヒータへの電圧の印加をやめて、処理を終了する。
次に、図6に従って制御モード判定について説明する。
図6は、ステップS7における制御モード判定の制御ルーチンを示すフローチャートである。
まず、ステップS71において、コントローラ40は、閉弁時の切換バルブ37に付着していた水分が開弁時に下流に流され、その水分が第1空燃比センサ39を通過したか否かを判断する。この判断は、切換バルブ37が開弁してからの時間taが、所定の基準値である通過時間tbを経過したか否かで判断する。基準値となる通過時間tbは、図4に示したように、予め実験などによって得られた始動時水温‐通過時間特性から設定する。例えば、排気量2000ccのエンジンで始動時水温が10℃の場合には、0.3秒から0.5秒程度の通過時間tbを設定する。そして、ta≧tbの場合には、水分が第1空燃比センサ39を通過したと判断し、ステップS72に移る。また、ta<tbの場合には、水分がまだ第1空燃比センサ39の上流に残留していると判断し、ステップS75に移る。
そして、ta≧tbの場合には、ステップS72において、コントローラ40は、第1空燃比センサ39のセンサ素子を昇温するヒータへの印加電圧の制限を解除する。つまり、ヒータ50の印加電圧を増加して、第1空燃比センサ39が活性温度になるまで昇温する。
ステップS73において、コントローラ40は、第1空燃比センサ39が活性しているか否かを判断する。第1空燃比センサ39の活性は、センサ素子温度に基づいて判断する。そして、第1空燃比センサ39が活性している場合には、ステップS74に移る。また、活性していない場合には、ステップS75に移る。
ステップS74において、コントローラ40は、第1空燃比センサ39の検出値に基づいてエンジン1の空燃比を制御する第1空燃比制御モードに設定する。
ステップS75において、コントローラ40は、第2空燃比センサ36の検出値に基づいてエンジン1の空燃比を制御する第2空燃比制御モードに設定する。
そして、ステップS71からステップS75において制御モード判定を実行した後に、図5に示すステップS8に移る。
図7は、第1実施形態の空燃比制御装置100の動作を示すタイムチャートである。
エンジン1の始動後、時刻t1において第2空燃比センサ36及び第1空燃比センサ39のセンサ素子を昇温するヒータ50、51に電圧を印加する(図7(D)及び図7(E))。第2空燃比センサ36のセンサ素子は、活性温度まで昇温させる。また、第1空燃比センサ39のセンサ素子は、ヒータ50の印加電圧を制限して(図7(E))、水分が付着してもセンサ素子割れが発生しない温度まで昇温させる。そして、メイン通路32に設置された床下触媒38が活性温度T0まで昇温すると(図7(A))、時刻t2において切換バルブ37を開弁し(図7(B))、排気の通路を切り換る。
切換バルブ37が開弁すると、切換バルブ37に付着していた水分が、メイン通路32の下流に設置されている第1空燃比センサ39に向かって流れる。そこで、切換バルブ37が開弁してから通過時間tbが経過した時刻t3で、第1空燃比センサ39のセンサ素子を昇温させるヒータ50の印加電圧を増加し、第1空燃比センサ39のセンサ素子を活性温度まで昇温させる(図7(E))。このように、切換バルブ37の開弁後、水分が通過するのを待って第1空燃比センサ39を昇温することで、第1空燃比センサ39の素子割れを抑制する。
そして、第1空燃比センサ39が活性温度に達していることを確認した後に、時刻t4において第2空燃比センサ36のヒータ51への電圧の印加をやめて(図7(D))、第2空燃比センサ36から第1空燃比センサ39に切り換えて、第1空燃比センサ39の検出値に基づいてエンジン1の空燃比を制御する。
以上により、第1実施形態の空燃比制御装置100は下記の効果を得ることができる。
第1実施形態の制御モード判定では、ステップS71において、切換バルブ37が開弁してから所定の通過時間tbを経過したか否かを判定し、第1空燃比センサ39の上流に残留している水分が第1空燃比センサ39を通過した後に、第1空燃比センサ39のセンサ素子を活性温度まで加熱させる。そのため、水分が第1空燃比センサ39を急激に冷却するのを抑制することができ、第1空燃比センサ39のセンサ素子割れを抑制することが可能となる。
また、第1空燃比センサ39は、切換バルブ37の開弁後にセンサ素子割れが発生しない温度から活性温度まで昇温するので、早期に第1空燃比センサ39の活性化を図ることが可能となる。
さらに、制御モード判定のステップS73では、第1空燃比センサ39が活性しているか否かを判定し、第1空燃比センサ39が活性している場合に、第2空燃比センサ36から第1空燃比センサ39に切り換える。そのため、活性状態にある第1空燃比センサ39の検出値に基づいてエンジン1の空燃比を正確に制御することができる。
(第2実施形態)
図8及び図9に従って、空燃比制御装置100の第2実施形態を説明する。
第2実施形態の構成は、第1実施形態と基本構成はほぼ同様であるが、制御モード判定において一部相違する。つまり、第1空燃比センサ39の上流に残留する水分量を推定するようにしたもので、以下にその相違点を中心に説明する。
図8は、第2実施形態における制御モード判定の制御ルーチンを示すフローチャートである。なお、ステップS72からS75の制御は、第1実施形態と同様であるため説明の便宜上省略する。
ステップS76、S77において、コントローラ40は、第1空燃比センサ39の昇温判定を実施する。
まず、ステップS76において、コントローラ40は、切換バルブ37の開弁後に第1空燃比センサ39の上流に残留している水分の水分量W1を、切換バルブ37の閉弁時に発生する水分の水分量W2と切換バルブ37の開弁時に蒸発する水分の水分蒸発量W3とから(1)式に基づいて算出する。
ここで、切換バルブ37に付着した水分は、その一部がエンジン1から排出された高温の排気によって蒸発したり、下流に流されたりするので、水分量W1は時間の経過とともに徐々に変化する。
1=W2−W3・・・(1)
1:第1空燃比センサ39の上流に残留する水分量
2:切換バルブ37の閉弁時に発生する水分量
3:切換バルブ37の開弁時に蒸発する水分蒸発量
なお、切換バルブ37の閉弁時に発生する水分量W2は、エンジン1の始動時水温や回転速度、負荷から推定される切換バルブ37の温度と、吸気通路21の上流に設置される湿度センサが検出する吸気の湿度とから推定する。また、切換バルブ37の開弁時に蒸発する水分蒸発量W3は、切換バルブ37の開弁時におけるメイン通路32を流れる排気の流速と、その排気が水分に与える供給熱量とから推定する。
ステップS76において、コントローラ40は、水分量W1が、車両の運転状態に応じて設定される所定値W0以下となっているか否かを判断する。つまり、第1空燃比センサ39の上流に残留している水分が、第1空燃比センサ39のセンサ素子を急激に冷却しない程度まで減少しているか否かを判断する。
そして、W1≦W0の場合には、十分に水分量W1が減少したと判断して、ステップS72に移り、ヒータ50の印加電圧を増加させて第1空燃比センサ39のセンサ素子を活性温度まで昇温する。その後の処理は、第1実施形態と同様である。一方、W1>W0の場合には、水分量が十分に減少しておらず、このまま第2空燃比センサ36から第1空燃比センサ39に切り換えると、第1空燃比センサ39に素子割れが発生すると判断し、ステップS75に移って第2空燃比センサ制御モードに設定する。
図9は、第2実施形態の空燃比制御装置100の動作を示すタイムチャートである。
エンジン1の始動後、時刻t1において第2空燃比センサ36及び第1空燃比センサ39のセンサ素子を昇温するヒータ50、51に電圧を印加する(図9(D)及び図9(E))。第2空燃比センサ36のセンサ素子は活性温度まで昇温させる。一方、第1空燃比センサ39のセンサ素子は、ヒータ50の印加電圧を制限して(図9(E))、水分が付着してもセンサ素子割れが発生しない温度まで昇温させる。そして、メイン通路32に設置された床下触媒38が活性温度T0まで昇温すると(図9(A))、時刻t2において切換バルブ37が開弁する(図9(B))。
切換バルブ37が開弁すると、切換バルブ37に付着していた水分が、メイン通路32の下流に設置されている第1空燃比センサ39に向かって流れる。そこで、第2実施形態では、第1空燃比センサ39の上流に残留している水分の水分量W1を推定する。そして、その水分量W1が所定値W0よりも小さくなった後に(図9(C))、時刻t3で第1空燃比センサ39のセンサ素子を活性温度まで昇温させる。これにより、第1空燃比センサ39の素子割れを抑制する。
そして、第1空燃比センサ39が活性温度に達していることを確認した後に、時刻t4において第2空燃比センサ36のヒータ51への電圧の印加をやめて(図9(D))、第2空燃比センサ36から第1空燃比センサ39に切り換えて、第1空燃比センサ39の検出値に基づいてエンジン1の空燃比を制御する。
以上により、第2実施形態の空燃比制御装置100は、下記の効果を得ることができる。
第2実施形態の制御モード判定では、切換バルブ37の開弁後、第1空燃比センサ39の上流に残留する水分の水分量W1が所定値W0よりも小さくなった場合に、第1空燃比センサ39が活性温度になるようにヒータ50の印加電圧を制御する。このように、第1空燃比センサ39の上流に残留する水分の水分量W1が十分に少なくなった後に第1空燃比センサ39のセンサ素子を昇温するので、より確実に第1空燃比センサ39のセンサ素子割れを抑制することが可能となる。
本発明は上記した実施形態に限定されずに、その技術的な思想の範囲内において種々の変更がなし得ることは明白である。
例えば、第1実施形態及び第2実施形態において、第2空燃比センサ36や第1空燃比センサ39ではなく、酸素センサによって排気中の酸素濃度を検出し、その検出値に基づいてエンジン1の空燃比を制御するようにしてもよい。
また、切換バルブ37の閉弁時にはヒータに電圧を印加せず、切換バルブ37の開弁後にヒータに電圧を印加して、第1空燃比センサ39のセンサ素子を活性温度まで昇温するようにしてもよい。
エンジンの空燃比を制御する空燃比制御装置の第1実施形態を示す図である。 エンジンから排出される排気の流れを示す図である。 空燃比センサのセンサ素子温度とセンサ素子抵抗値との関係を示す図である。 エンジンの始動時水温と水分の通過時間との関係を示す図である。 第1実施形態の空燃比制御装置の制御ルーチンを示すフローチャートである。 第1実施形態の制御モード判定の制御ルーチンを示すフローチャートである。 第1実施形態の空燃比制御装置の動作を示すタイムチャートである。 第2実施形態の制御モード判定の制御ルーチンを示すフローチャートである。 第2実施形態の空燃比制御装置の動作を示すタイムチャートである。
符号の説明
100 空燃比制御装置
1 エンジン
21 吸気通路
31 バイパス通路
32 メイン通路(排気通路)
33 分岐部
34 合流部
35 バイパス触媒
36 第2空燃比センサ
37 切換バルブ(弁機構)
38 床下触媒(メイン触媒)
39 第1空燃比センサ
40 コントローラ
50 ヒータ
51 ヒータ
ステップS4 第2空燃比制御手段
ステップS73 活性判定手段
ステップS9 第1空燃比制御手段

Claims (13)

  1. メイン触媒が配置される排気通路と、バイパス触媒が配置され前記メイン触媒上流側の前記排気通路の分岐部から分岐して、前記メイン触媒よりも上流側の合流部で再合流するバイパス通路とを流れる排気ガスを、前記排気通路の分岐部と合流部との間に設置される弁機構を開閉することで排気ガスの経路を切り換えるエンジンの空燃比制御装置において、
    前記弁機構よりも下流の排気通路に設置される第1空燃比センサを備え、
    前記弁機構が閉弁状態から開弁状態へと切り換えられた際に、切り替えタイミングから所定期間は、前記第1空燃比センサの素子温度を所定温度以下にする、
    ことを特徴とする空燃比制御装置。
  2. 前記弁機構が閉弁状態から開弁状態へと切り換えられる直前の前記弁機構閉弁中に、前記所定温度まで前記第1空燃比センサを予熱する、
    ことを特徴とする請求項1に記載の空燃比制御装置。
  3. 前記所定温度は、前記第1空燃比センサの活性温度よりも低い温度であって、前記第1空燃比センサの素子割れを生じることを回避可能な上限温度である、
    ことを特徴とする請求項1又は請求項2に記載の空燃比制御装置。
  4. 前記バイパス通路に設置される第2空燃比センサと、
    前記弁機構の開弁時に、前記第1空燃比センサの出力に基づいて空燃比を制御する第1空燃比制御手段と、
    前記弁機構の閉弁時に、前記第2空燃比センサの出力に基づいて空燃比を制御する第2空燃比制御手段と、を備え、
    前記弁機構が閉弁状態から開弁状態へと切り換えられたときは、切り換えから前記所定期間経過後に前記第1空燃比センサへの加熱量を大きくするとともに、前記第2空燃比制御手段による空燃比の制御から前記第1空燃比制御手段による空燃比の制御へと制御モードを切り換える、
    ことを特徴とする請求項1に記載の空燃比制御装置。
  5. 前記バイパス通路に設置される第2空燃比センサと、
    前記弁機構の開弁時に、前記第1空燃比センサの出力に基づいて空燃比を制御する第1空燃比制御手段と、
    前記弁機構の閉弁時に、前記第2空燃比センサの出力に基づいて空燃比を制御する第2空燃比制御手段と、
    前記弁機構が閉弁状態から開弁状態へと切り換えられ、かつ前記所定期間経過後に前記第1空燃比センサの活性判定を行う活性判定手段と、を備え、
    前記弁機構が閉弁状態から開弁状態へと切り換えられたときは、切り換えから前記所定期間経過後に前記第1空燃比センサへの加熱量を大きくし、かつ前記第1空燃比センサが活性したときに前記第2空燃比制御手段による空燃比の制御から前記第1空燃比制御手段による空燃比の制御へと制御モードを切り換える、
    ことを特徴とする請求項1に記載の空燃比制御装置。
  6. 前記所定期間は、前記弁機構閉弁時に前記分岐部から前記弁機構までの排気通路部分にあるガスが、前記弁機構開弁後、前記第1空燃比センサを通過するまでに要する時間に基づいて設定される期間である、
    ことを特徴とする請求項1から請求項5のいずれか一つに記載の空燃比制御装置。
  7. 前記所定期間は、前記弁機構閉弁時に前記分岐部から前記弁機構までの排気通路部分で生じる凝縮水が、前記弁機構開弁後、前記第1空燃比センサを通過するまでに要する時間に基づいて設定される期間である、
    ことを特徴とする請求項1から請求項5のいずれか一つに記載の空燃比制御装置。
  8. 前記所定期間は、前記エンジンの始動時の冷却水温度に基づいて設定される、
    ことを特徴とする請求項1から請求項5のいずれか一つに記載の空燃比制御装置。
  9. 前記所定期間は、前記弁機構の開弁後に前記第1空燃比センサの上流に残留する水分の水分量が所定値以下となるまでの期間である、
    ことを特徴とする請求項1から請求項5のいずれか一つに記載の空燃比制御装置。
  10. 前記所定値は、車両の運転状態に基づいて設定される、
    ことを特徴とする請求項9に記載の空燃比制御装置。
  11. メイン触媒が配置される排気通路と、バイパス触媒が配置され前記メイン触媒上流側の前記排気通路の分岐部から分岐して、前記メイン触媒よりも上流側の合流部で再合流するバイパス通路とを流れる排気ガスを、前記排気通路の分岐部と合流部との間に設置される弁機構を開閉することで排気ガスの経路を切り換えるエンジンの空燃比を制御する方法において、
    前記弁機構よりも下流の排気通路に設置される第1空燃比センサの素子温度を、弁機構が閉弁状態から開弁状態へと切り換えられたタイミングから所定期間は、所定温度以下に制限する工程を有する、
    ことを特徴とする空燃比制御方法。
  12. メイン触媒が配置される排気通路と、バイパス触媒が配置され前記メイン触媒上流側の前記排気通路の分岐部から分岐して、前記メイン触媒よりも上流側の合流部で再合流するバイパス通路とを流れる排気ガスを、前記排気通路の分岐部と合流部との間に設置される弁機構を開閉することで排気ガスの経路を切り換えるエンジンにおいて、
    前記弁機構よりも下流の排気通路に設置される第1空燃比センサと、
    前記弁機構が閉弁状態から開弁状態へと切り換えられた際に、切り替えタイミングから所定期間は、前記第1空燃比センサの素子温度を所定温度以下に制限する手段と、
    を備えることを特徴とするエンジン。
  13. メイン触媒が配置される排気通路と、バイパス触媒が配置され、前記メイン触媒上流側の前記排気通路の分岐部から分岐して、前記メイン触媒上流側の前記排気通路の合流部に合流するバイパス通路と、前記排気通路の分岐部と合流部との間に設置される弁機構と、を備え、前記弁機構を開閉することで排気ガスの経路を切り換えるエンジンの空燃比制御装置において、
    前記弁機構の開弁時に、前記弁機構よりも下流の排気通路に設置される第1空燃比センサの出力に基づいて空燃比を制御する第1空燃比制御手段と、
    前記弁機構の閉弁時に、前記バイパス通路に設置される第2空燃比センサの出力に基づいて空燃比を制御する第2空燃比制御手段と、を備え、
    前記弁機構が閉弁状態から開弁状態へと切り換えられたときは、切り換えから所定期間経過後に前記第1空燃比センサへの加熱量を大きくするとともに、前記第2空燃比制御手段による空燃比の制御から前記第1空燃比制御手段による空燃比の制御へと制御モードを切り換える、
    ことを特徴とする空燃比制御装置。
JP2007316748A 2007-01-12 2007-12-07 空燃比制御装置 Expired - Fee Related JP5003447B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007316748A JP5003447B2 (ja) 2007-01-12 2007-12-07 空燃比制御装置
US11/961,075 US7536999B2 (en) 2007-01-12 2007-12-20 Air-fuel ratio control apparatus
EP08150080.3A EP1944491B1 (en) 2007-01-12 2008-01-08 Air-fuel ratio control apparatus
CN200810002636.4A CN101220778B (zh) 2007-01-12 2008-01-14 空燃比控制装置以及方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007004552 2007-01-12
JP2007004552 2007-01-12
JP2007316748A JP5003447B2 (ja) 2007-01-12 2007-12-07 空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2008190522A JP2008190522A (ja) 2008-08-21
JP5003447B2 true JP5003447B2 (ja) 2012-08-15

Family

ID=39630809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316748A Expired - Fee Related JP5003447B2 (ja) 2007-01-12 2007-12-07 空燃比制御装置

Country Status (2)

Country Link
JP (1) JP5003447B2 (ja)
CN (1) CN101220778B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8631645B2 (en) * 2011-03-02 2014-01-21 GM Global Technology Operations LLC Thermal management systems for efficient lean operating engines
JP5587838B2 (ja) 2011-07-19 2014-09-10 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US10208644B2 (en) * 2016-11-08 2019-02-19 Ford Global Technologies, Llc Methods and systems for operating an exhaust oxygen sensor based on water contact at the sensor
CN113924408B (zh) * 2019-05-09 2023-11-14 康明斯排放处理公司 用于分流式紧密联接催化剂的阀门装置
CN117101377B (zh) * 2023-10-23 2024-02-13 内蒙古包钢低碳产业科技发展有限公司 一种烟气捕集组件及碳中和施用系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2294556B (en) * 1994-10-25 1997-01-15 Nissan Motor Exhaust emission control system for internal combustion engine
JPH08254145A (ja) * 1995-03-17 1996-10-01 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2003083152A (ja) * 2001-09-05 2003-03-19 Toyota Motor Corp 空燃比センサ
JP4135380B2 (ja) * 2002-03-14 2008-08-20 日産自動車株式会社 排気ガスセンサのヒータ制御装置
JP2003328821A (ja) * 2002-05-15 2003-11-19 Suzuki Motor Corp 酸素センサの加熱制御装置
JP4462100B2 (ja) * 2005-04-21 2010-05-12 日産自動車株式会社 内燃機関の排気装置および内燃機関の制御方法
JP4225303B2 (ja) * 2005-07-29 2009-02-18 トヨタ自動車株式会社 内燃機関の排気浄化システム

Also Published As

Publication number Publication date
CN101220778B (zh) 2014-10-22
JP2008190522A (ja) 2008-08-21
CN101220778A (zh) 2008-07-16

Similar Documents

Publication Publication Date Title
US9297292B2 (en) Engine cooling device
US7536999B2 (en) Air-fuel ratio control apparatus
JP5003447B2 (ja) 空燃比制御装置
JP6550689B2 (ja) 排出ガスセンサのヒータ制御装置
JP4905291B2 (ja) 空燃比制御装置
JP2007120390A (ja) 排出ガスセンサのヒータ制御装置
JP4894523B2 (ja) 空燃比制御装置
JP4706928B2 (ja) 排出ガスセンサのヒータ制御装置
JP2008014235A (ja) 排気センサのヒータ制御装置
JP4992935B2 (ja) 排気ガスセンサの活性化制御装置
JP2007113920A (ja) 排出ガスセンサのヒータ制御装置
JP4993314B2 (ja) 排出ガスセンサのヒータ制御装置
JP5041341B2 (ja) 排出ガスセンサのヒータ制御装置
WO2014080846A1 (ja) ガス濃度センサとその昇温方法
JP2008286153A (ja) 車両の制御装置
JP4225303B2 (ja) 内燃機関の排気浄化システム
JP2009091949A (ja) ガスセンサ制御装置
JP2009168769A (ja) 排出ガスセンサのヒータ制御装置
JP2010077848A (ja) 内燃機関の空燃比制御装置
JP4692478B2 (ja) オイル温度推定装置及びオイル温度推定方法
JP2008184955A (ja) 内燃機関の触媒劣化抑制装置
JP2000019148A (ja) 内燃機関の空燃比センサ活性化制御装置
JP6237158B2 (ja) 内燃機関の排水制御装置
JP5084708B2 (ja) 内燃機関の空燃比制御方法
JP2010121588A (ja) 内燃機関の排気装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees