JP4985602B2 - 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
JP4985602B2
JP4985602B2 JP2008241880A JP2008241880A JP4985602B2 JP 4985602 B2 JP4985602 B2 JP 4985602B2 JP 2008241880 A JP2008241880 A JP 2008241880A JP 2008241880 A JP2008241880 A JP 2008241880A JP 4985602 B2 JP4985602 B2 JP 4985602B2
Authority
JP
Japan
Prior art keywords
organic
layer
light
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008241880A
Other languages
English (en)
Other versions
JP2010073590A (ja
Inventor
浩人 中條
弘明 山岸
敬吏 小西
晃 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008241880A priority Critical patent/JP4985602B2/ja
Publication of JP2010073590A publication Critical patent/JP2010073590A/ja
Application granted granted Critical
Publication of JP4985602B2 publication Critical patent/JP4985602B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子に関する。
従来、有機エレクトロルミネッセンス素子の有機層(有機化合物層等ともいい、正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層及びホール輸送層等があげられる。)の形成には、ウェットプロセス(例えば、スピンコート法、ディップコート法、キャスト法等)が用いられている。
上記のウェットプロセスでは、有機層となる低分子材料や高分子有機材料等を含む溶液(材料溶液)または分散液を基板上(又は基板上に塗布した透明電極層上)に塗布し乾燥させて有機層に形成するので、材料溶液を乾燥させる乾燥手段が用いられる。
この乾燥手段には、従来、ホットプレートを用いる方法や、赤外線等の放射熱を用いる方法が使用されている。
ホットプレートを用いる方法では、所定の温度に保たれたホットプレート上にガラス基板を配置し、ホットプレートによりガラス基板をガラス基板の裏面側から加熱することで、ホットプレートの熱を順にガラス基板、ガラス基板上に形成された透明電極層、そして、透明電極層上に塗布された有機層の材料溶液に伝導させて、塗布した材料溶液を加熱する。加熱された材料溶液は、その溶媒が蒸発して低分子有機材料や高分子有機材料だけが膜状に残り、有機層が形成される。
また、赤外線等の放射熱を用いる方法では、放射熱を、基板の上方側から基板上に塗布された材料溶液に直接に照射して、直接に材料溶液を加熱し、溶媒を蒸発させて有機層が形成される。
しかしながら、上記のホットプレートを用いた方法では、基板をホットプレート上に配置した際に、基板とホットプレートとの間に、基板の部位に応じて部分的に非接触な部分が生じてしまい、基板の部位に応じてホットプレートによる加熱・昇温の速度に差異が生じ、基板の部位に応じて塗布した材料溶液の蒸発速度が異なり、基板上で局所的に材料溶液の流動が生じ、材料溶液の塗布状態が一様に保たれなくなるので、膜厚が不均一な有機層が形成される。
結果として、有機エレクトロルミネッセンス素子の発光輝度に線状(縞状)のムラが生じるという問題がある。
他方、赤外線等の放射熱を用いる方法では、放射熱により、基板上に塗布された材料溶液を直接には一様に加熱できる。しかし、放射熱は、材料溶液を通過して、材料溶液の下層側の基板や透明電極層まで加熱してしまう特性を持ち、しかも、基板と透明電極層は、それぞれ材質が異なることから、異なる速度で加熱される。
基板上に塗布された材料溶液は、そのうち、基板上に直接に塗布された部分と透明電極層上に直接に塗布された部分とに応じて、それら加熱された基板及び透明電極層から異なる速さで加熱され、その結果、材料溶液は、部分的に乾燥する速さに差異が生じ、ホットプレートを用いた場合と同様に、膜厚が不均一な有機層が形成され、有機EL素子の発光輝度に線状(縞状)のムラが生じるという問題点があった。
上記の問題点を解決するために、製膜用材料溶液の溶媒を誘電加熱するための電磁波を発生させ基板上に塗布された製膜用材料溶液に照射するという技術が開示されている(例えば、特許文献1参照。)。
しかしながら、下記に示すように、
(a)電磁波により陽極も抵抗加熱されるため、塗膜の形状>陽極の形状の場合は塗膜を均一に加熱できない、
(b)有機エレクトロルミネッセンス素子の膜(構成層ともいう)形成中に残留する塗布溶媒や水分を気化し除去させるための加熱手段として電磁波が有効であるが、そのエネルギーは溶媒だけでなく透明導電層(陽極)にも吸収され加熱される。
一方、透明導電層(陽極)はパターニングされているため、膜平面上において、乾燥させたい塗布層が透明導電層(陽極)からはみ出ていると、塗布層を均一に加熱できない、
(c)膜平面上に直接加熱される部分とそれ以外の部分があると、乾燥時に溶媒の対流で乾燥膜がムラとなり、有機EL素子の発光輝度にムラが出てしまう、
等の問題点があった。
特開2002−359072号公報
本発明の目的は、有機エレクトロルミネッセンス素子の膜形成時の電磁波加熱において、塗布層を均一に加熱可能が有機エレクトロルミネッセンス素子の製造方法及び該製造方法により製造された発光ムラのない有機エレクトロルミネッセンス素子を提供することである。
本発明の上記目的は、下記の構成により達成された。
1.基材上にパターニングされた透明電極を有し、該透明電極上に少なくとも1層の有機層を塗布によって成膜後、該有機層に電磁波を照射することにより乾燥させる工程を有する有機エレクトロルミネッセンス素子の製造方法において、
前記有機層の前記透明電極と接していない領域に、該電磁波を吸収して発熱する部材を形成する工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
2.前記電磁波の照射が、0.4GHz〜41GHzのマイクロ波照射であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子の製造方法。
3.前記電磁波を吸収して発熱する部材の体積抵抗率が10−4Ω・m以下であることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子の製造方法。
4.前記電磁波を吸収して発熱する部材の0.4GHz〜41GHzのマイクロ波領域のエネルギー受容効率が、前記有機層のエネルギー受容効率よりも高いことを特徴とする前記1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
5.前記電磁波を吸収して発熱する部材の0.4GHz〜41GHzのマイクロ波領域のエネルギー受容効率が、透明電極のエネルギー受容効率よりも高いことを特徴とする前記1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
6.前記基材が樹脂からなることを特徴とする前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
7.前記1〜6のいずれか1項に記載の製造方法を用いて製造されたことを特徴とする有機エレクトロルミネッセンス素子。
8.基材上にパターニングされた透明電極を有し、該透明電極の上に少なくとも1層の有機層を有する有機EL素子において、
該有機層が、該基材上に塗布によって成膜された後、電磁波を照射することにより乾燥する工程を経て形成されたものであり、前記有機層の前記透明電極と接していない領域に、該電磁波を吸収して発熱する部材を有することを特徴とする有機エレクトロルミネッセンス素子。
本発明により、有機EL素子の少なくとも一つの有機層を塗布により成膜後、電磁波加熱時、塗布層を均一に加熱することが可能な有機エレクトロルミネッセンス素子の製造方法及び発光輝度のムラの少ない有機エレクトロルミネッセンス素子を提供することができた。
本発明の有機EL素子の製造方法においては、請求項1〜6のいずれか1項に記載の構成を有することにより、基材上にパターニングされた透明電極上に少なくとも1層の有機層を塗布により成膜後、該有機層に電磁波を照射することにより乾燥させる際に、前記有機層の前記透明電極と接していない領域に、該電磁波を吸収して発熱する部材を設けることにより、塗布層を均一に加熱可能な有機エレクトロルミネッセンス素子の製造方法を提供することができた。
また、発光ムラがない有機エレクトロルミネッセンス素子を提供することができた。
以下、本発明に係る各構成要素の詳細について、順次説明する。
《有機EL素子の製造方法》
本発明の有機EL素子の製造方法について説明する。尚、本発明の有機EL素子の構成層の詳細は後に詳細に説明する。
本発明は、請求項1に記載のように、基材上にパターニングされた透明電極を有し、該透明電極上に少なくとも1層の有機層を塗布によって成膜後、該有機層に電磁波を照射することにより乾燥させる工程を有する有機エレクトロルミネッセンス素子の製造方法において、
前記有機層の前記透明電極と接していない領域に、該電磁波を吸収して発熱する部材を形成する工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法である。
本発明者等は、背景技術に記載の問題点(a)、(b)及び(c)を鋭意研究の結果、有機層を塗布・成膜した後の塗膜に電磁波照射を行ったときに塗膜を均一に加熱できずに発光ムラが発生するということについては、補助受熱層(電磁波のエネルギーを吸収し加熱する層(膜))を別途設けることにより、発光ムラのない有機EL素子の製造方法が提供できることを見出した。
上記の補助受熱層を別途設けるということが、本願請求項1に記載の『有機層と透明電極とが接していない領域に、電磁波を吸収して発熱する部材を設ける』ことである。
本発明の有機EL素子の製造方法を、本発明の有機EL素子の一態様である、図7、図8の構成を用いながら説明する。
図7は、本発明の有機EL素子の一態様を示す概略断面図である。但し、図7においては、請求項1に記載の基材は図示せず、補助受熱層、透明電極(陽極)、有機層等の構成を中心に説明する。
図7において、201は、基材(図示してない)上に設けられた補助受熱層、202は、絶縁層、203は、透明電極(陽極である)、204は、有機層(有機EL素子の構成層である)、206は、陰極を表し、205は、電極幅を表す。
図7において、補助受熱層201は、基材の表面上に設けられてもよく、また、基材に埋め込まれた状態で設けられていてもよく、更には、絶縁層202において、透明電極203が設けられている面に設置されていてもよく、また、透明電極203が設けられている面の反対側の面に設けられていてもよい。
因みに、図7では、透明電極203が設けられている絶縁層202上において、透明電極203が設けられていない面(領域ともいう)の絶縁層202を介して反対側の面(領域)に補助受熱層201が設けられている態様が示されている。
補助受熱層201を構成する材料としては、後述する有機EL素子の構成層の陽極の形成に記載の材料が好ましい。
絶縁層202は、補助受熱層201を被覆するように設けられる。また、絶縁層202の形成は、大気圧プラズマ法が好ましく用いられる。
透明電極203は、絶縁層202の上にパターニングにより形成される。
透明電極203は、本発明の有機EL素子の陽極であり、そのパターニングの方法としては、従来公知のマスクパターンを用いることができる。
また、透明電極203の構成材料としては、後述する有機EL素子の構成層の陽極において記載の材料を用いて形成されることが好ましい。
有機層204は、透明電極203を被覆するように設けられる。該有機層204は、後述する有機EL素子の構成層に記載の構成層を表し、有機層204の形成方法としては、下記の塗布による成膜法が好ましく用いられる。また、塗布後に乾燥する工程を設けることが好ましい。
(有機層204の塗布による成膜)
本発明の有機EL素子の構成層として用いられる有機層204の少なくとも1層の形成方法としては、少なくとも塗布溶剤と有機EL素子材料とを含有する塗布液を用いて陽極側もしくは陰極側電極の上に、ウェットプロセス(スピンコーティング法、キャスティング法、インクジェット法、スプレー法、ディッピング法、バーコート法、ロールコート法、印刷法)を用いて塗布が行われる。
均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、スプレー法、印刷法等の塗布法による成膜が好ましい。
(有機層204の塗布・成膜後の乾燥)
本発明に係る有機層204の塗布・成膜後の乾燥としては、従来公知の温風乾燥、減圧乾燥、真空乾燥等の乾燥手段を適用することが好ましい。
温風乾燥(加熱温風乾燥ともいう)する場合には、塗布に用いた溶媒を除去するため、減圧下あるいは不活性雰囲気下(例えば、高純度窒素ガス、アルゴンガス、ヘリウムガス等)、30℃〜300℃、好ましくは60℃〜200℃の温度で加熱乾燥することが望ましい。
また、温風乾燥が用いられる場合、温風乾燥装置の温風吹き出し口から吹き出される所定の温度に調節された温風で乾燥が行われる。温風を吹き付ける態様では、温風の温度設定としては、35℃〜100℃が好ましく、更に好ましくは、40℃〜80℃である。
また、温風の風速としては、風速が0.1m/秒〜10m/秒で塗布面へ吹き付けることにより乾燥を行うことが好ましい。
(塗布溶剤(分散溶剤の場合も含む))
本発明に係る塗布液の調製に用いられる塗布溶剤(単に溶媒、溶剤等ともいう)としては、例えば、塩化メチレン(40℃)、メチルエチルケトン(79.6℃)、テトラヒドロフラン(66℃)、シクロヘキサノン(155.65℃)等のケトン類、酢酸エチル(77.111℃)等の脂肪酸エステル類、ジクロロベンゼン(m体:173.0℃、o体:180.4℃、p体:174.1℃)等のハロゲン化炭化水素類、トルエン(110.6℃)、キシレン(o体:144.4℃、m体:139.1℃、p体:138.3℃)、メシチレン(164.7℃)、シクロヘキシルベンゼン(238.9℃)等の芳香族炭化水素類、シクロヘキサン(80.77℃)、デカリン(cis体:195.7℃、trans体:187.2℃)、ドデカン(210.3℃)等の脂肪族炭化水素類、DMF(153℃)、DMSO(208℃)等の有機溶媒を用いることができる。
尚、上記溶剤の()内の数値は、大気圧下(1013hPa)での沸点を表す。
(有機層への電磁波照射)
本発明の有機EL素子の製造方法においては、有機層204の塗布・成膜後に上記のような乾燥工程の後に、電磁波を有機層に照射することが好ましく、該電磁波としては、赤外線またはマイクロ波が好ましく、特に好ましく用いられるのはマイクロ波であり、該マイクロ波を用いることにより、有機層204中の残留溶媒量を0質量%にできる。
尚、赤外線照射、マイクロ波照射等は、市販の装置を各々用いることができる。
(塗布・成膜ついで乾燥後の有機層への赤外線照射)
有機層204への赤外線(例えば、800nm〜1000nmの光である)照射としては、具体的には、赤外線ヒータが用いられる。
赤外線照射は、乾燥部を通過する有機層表面に向けて赤外線輻射熱を照射して乾燥する方法で、製造工程に赤外線ヒータを配備することが好ましい。
ここで、赤外線ヒータとしては近赤外、中赤外、遠赤外のいずれの赤外線を放射する赤外線ヒータを用いてもよい。
また、赤外線ヒータの表面温度は150℃〜260℃の範囲が好ましく、更に好ましくは200℃〜240℃である。
また、ヒータ近傍またはヒータ中に温度検出センサーを設け該センサーによる検出温度により該ヒータに流す電圧電流を変更し、該センサーを設定温度に制御するようにしてもよい。
(塗布・成膜ついで乾燥後の有機層へのマイクロ波照射)
有機層204へのマイクロ波照射としては、有機層204の内部に侵入したマイクロ波(数100MHz乃至数100GHz(例えば2.45GHz、28GHzの周波数の電圧を印加することが好ましい。))の電場によって分子振動が生じて当該振動摩擦による有機層の発熱を利用する方法である。当該加熱により、有機層204の内部に存在する残留溶媒が0質量%まで除去される。
ここで、残留溶媒量が0質量%とは、従来公知のヘッドスペース法を用いた残留溶媒の測定を行った場合に、残留溶媒のピークが観測されないことを意味する。
尚、本発明では、有機層中に含有される材料の熱伝導に依存せずに短時間で且つ、均一な加熱が行えるという観点から、熱の利用効率のよいマイクロ波照射が好ましく用いられる。
図8は、本発明の有機EL素子の別の一態様を示す概略断面図である。但し、図8においては、請求項1に記載の基材は図示していない。
図8では、基材(図示していない)上に補助受熱層201が設けられているが、図7と異なり、補助受熱層202が基材(図示されていない)上に連続的に設けられている態様を示したものである。
(補助受熱層(電磁波を吸収して発熱する部材ともいう))
本発明に係る補助受熱層は、電磁波を吸収して発熱する部材ともいい、電磁波吸収能を持つ物質としては、例えば、金属酸化物が好ましく、前記電磁波吸収能を持つ物質は導電体であることが更に好ましい。
また、前記の金属酸化物中、導電性が高いことから、少なくともIn、Sn、Znの酸化物を含むことが好ましく、より電磁波吸収能が高いことから、少なくともIn、Sn、特に、Sn酸化物を含むことが好ましい。
特に、例えば、導電体であるITO微粒子を用いたとき、In酸化物、Zn酸化物に比べSn酸化物は特に電磁波吸収能が高いので、Sn酸化物を含む電極パターン部は最初に高温になる。このような電磁波吸収能を持つ物質のパターンを形成後、例えば、この上に、機能層前駆体(例えば半導体前駆体)エリア(薄膜)を形成し、電磁波の照射を行うことで、ITOからなる電極パターン部のみでなくその近傍も高温となり、例えば、ITOにより熱変換材料層から機能材料層(例えば半導体層)への形成を同時に進行させることができる。
また、電極パターンに従い電極材料前駆体エリアを形成したのち熱変換材料を含むエリアを形成して、電磁波照射を行えば、電極、機能材料層のいずれも同時に形成される。
電磁波吸収能を持つ物質または電磁波吸収能を持つ物質を含むエリアとしては電極であることが好ましい。
電磁波吸収能をもつ物質または電磁波吸収能を持つ物質を含むエリアを電極に適用した電子デバイスとしては、例えば、薄膜トランジスタ素子が好ましい。
(体積抵抗率)
本発明に係る補助受熱層(電磁波を吸収して発熱する部材ともいう)は、体積抵抗率が10−4Ω・m以下が好ましく、更に好ましくは、10−5Ω・m以下である。
ここで、本発明に係る補助受熱層(電磁波を吸収して発熱する部材ともいう)の体積抵抗率は、JIS K 7194に規定される方法または準拠される方法により求めることができる。
(エネルギー受容効率)
本発明に係る補助受熱層(電磁波を吸収して発熱する部材ともいう)の、0.4GHz〜41GHzのマイクロ波領域におけるエネルギー受容効率は、本発明に係る有機層の受容効率よりも高いことが好ましい。
ここで、補助受熱層(電磁波を吸収して発熱する部材ともいう)、有機層のエネルギー受容効率の測定は、測定対象の層面積を5cm×5cmの層(補助受熱層、有機層)を別途作製して、測定した値を用いた。
マイクロ波の照射条件は、マルチモードタイプの2.45GHzマイクロ波照射機(四国計測工業(株)製 μ−reactor)を用いて、大気雰囲気下、大気圧条件で、400Wの出力でマイクロ波(2.45GHz)を照射し、測定対象である、補助受熱層(電磁波を吸収して発熱する部材ともいう)または有機層の温度が20℃〜400℃までに上昇する速度と定義した。
尚、マイクロ波照射時の補助受熱層(電磁波を吸収して発熱する部材ともいう)、有機層の温度は、市販の熱電対を用いて測定した。
一方、本願発明は、有機EL素子の基材としてPET(ポリエチレンテレフタレート)等を用いることが好ましく、基材を劣化させずに、有機EL素子の有機層の残留溶媒及び/または残留水分量を効率的に除去する製造方法であり、特に有機層を塗布、乾燥後に、該有機層への電磁波照射を行うことが好ましい。
《有機EL素子の層構成》
次に、本発明に係る有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
ここで、本発明に係る有機層とは、後述する陽極バッファー層、正孔注入層、正孔発光層、発光層、正孔阻止層、電子輸送層、電子注入層等を挙げることができる。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
発光層の膜厚は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm〜200nmの範囲に調整することが好ましく、更に好ましくは5nm〜100nmの範囲に調整される。
本発明の有機EL素子の発光層には、発光ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましく、発光ホスト化合物と3種以上の発光ドーパントを含有することが更に好ましい。以下に発光層に含まれるホスト化合物(発光ホスト等ともいう)と発光ドーパント(発光ドーパント化合物ともいう)について説明する。
(ホスト化合物)
本発明に用いられるホスト化合物について説明する。
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
(発光ドーパント)
本発明に係る発光ドーパントについて説明する。
本発明に係る発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明に係る有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。
(リン光発光性ドーパント)
本発明に係るリン光発光性ドーパントについて説明する。
本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こりリン光発光性ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
リン光発光性ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
本発明に係るリン光発光性ドーパントとしては、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
以下に、リン光発光性ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
Figure 0004985602
Figure 0004985602
Figure 0004985602
Figure 0004985602
Figure 0004985602
Figure 0004985602
(蛍光ドーパント(蛍光性化合物ともいう))
蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
次に、本発明に係る有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
本発明に係る有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。
また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。さらには、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm〜100nmであり、更に好ましくは5nm〜30nmである。
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については、5nm〜5μmの範囲であることが好ましく、更に好ましくは、5nm〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。
更に、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。
また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
《陽極(透明電極、透明導電層ともいう)》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
更に、膜厚は材料にもよるが、10nm〜1000nmの範囲が好ましく、更に好ましくは10nm〜200nmの範囲である。
《陰極》
陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。
このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は、10nm〜5μmの範囲が好ましく、更に好ましくは、50nm〜200nmの範囲で選ばれる。
尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
《基板》
本発明に係る有機EL素子に用いることのできる基板(以下、基体、基材、支持基板、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10−3ml/(m・24h・MPa)以下、水蒸気透過度が、10−5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
更に、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
本発明に係る有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。
ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
《封止》
本発明に用いられる有機EL素子の封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。
更には、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/m/24h以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m/24h)以下のものであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
尚、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また、有機層を挟み基板と対向する側の電極の外側に該電極と有機層を被覆し、基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
更に、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができる。
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
《保護膜、保護板》
有機層を挟み基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、有機EL素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
本発明においては、これらの方法を本発明に係る有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
本発明はこれらの手段を組み合わせることで、より高輝度あるいは耐久性に優れた有機EL素子を得ることができる。
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましく、更に好ましくは1.35以下であることが好ましい。
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。
この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
回折格子を導入する位置としては、前述のように、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。
《集光シート》
本発明に係る有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工する、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10μm〜100μmが好ましい。
これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。
プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
また、本発明に係る有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでの色温度が6500K〜2500K(黒体軌跡からの偏差Δuv=±0.03)の領域内にあることを言う。
《表示装置》
本発明の表示装置について説明する。本発明の表示装置は、本発明の有機EL素子を具備したものである。
本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。
表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2V〜40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。尚、印加する交流の波形は任意でよい。
多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
図2は表示部Aの模式図である。
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
次に、画素の発光プロセスを説明する。
図3は画素の模式図である。
画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。
画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
《照明装置》
本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザ発振をさせることにより上記用途に使用してもよい。
また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
また複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
この方法によれば、複数色の発光素子をアレイ状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
《本発明の照明装置の一態様》
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
本発明の有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。
図5は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。尚、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。
また、実施例に用いる化合物の構造式を下記に示す。尚、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
Figure 0004985602
Figure 0004985602
実施例1
《有機EL素子1の製造》:本発明(図8の構成)
以下の記載のようにして、図8に記載の構成を有する本発明の有機EL素子1を製造した。
(補助受熱層201の形成)
基材として、ポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)(厚み150μm)上に、大気圧プラズマ法によって透明導電性薄膜(ITO膜)を補助受熱層201として形成した。
補助受熱層201の形成にあたって用いたプラズマ放電装置は、特開2006−299145号公報の図4に示されているジェット方式の大気圧プラズマ放電処理装置(電極が平行平板型)のものを用い、この電極間に、補助受熱層201を有するPETフィルムを載置し、且つ、混合ガスを導入して薄膜形成を行った。
また、プラズマ発生に用いる電源としては、パール工業(株)製高周波電源CF−5000−13Mを用い、周波数13.56MHzで、5W/cmの電力を供給した。
電極間に以下の組成の混合ガスを流し、プラズマ状態とし、上記のPETフィルムを大気圧プラズマ処理し、錫ドープ酸化インジウム(ITO)膜を補助受熱層201として100nmの厚さで成膜した。
別途、5cm×5cmとして作製した補助受熱層201の体積抵抗率は10−3Ω・mであり、補助受熱層201のエネルギー受容効率は、下記の有機層(正孔注入層、正孔輸送層、発光層及び電子輸送層)よりも低くなるように調整した。
放電ガス:アルゴン 98.5体積%
反応性ガス1:水素 0.25体積%
反応性ガス2:インジウムアセチルアセトナート 1.2体積%
反応性ガス3:ジブチル錫ジアセテート 0.05体積%
(絶縁層202の形成)
補助受熱層201(ITO膜)を形成したPETフィルム100mm×100mm上に、下記のようにして酸化珪素膜を絶縁層202として形成した。
PETフィルム上に、下記の塗工液をバーコーターで塗布し、80℃、5分間乾燥させた。
次いで、高圧水銀ランプ(80W)で紫外線を0.5W/cmの照射量で照射時間をかえて照射後、更に40kHzの高周波電源により生成したコロナ放電を0.3W/cmの照射量で照射時間をかえて照射した。
(塗工液)
テトラエトキシシラン加水分解物* 27g
γ−メタクリロキシプロピルトリメトキシシラン 0.8g
アルミニウムトリスエチルアセトアセテート 0.8g
シクロヘキサノン 50ml
フッ素系界面活性剤 0.1g
(メガファックF−172 大日本インキ社製)
*テトラエトキシシラン加水分解物の調製方法
テトラエトキシシラン250gにエタノール380mlを加え、この溶液に3gの塩酸(12モル/リットル)を235gの水に溶解した塩酸水溶液を室温で、ゆっくり滴下した。滴下後、3時間室温にて攪拌して、調製した。
(透明電極203の形成)
絶縁層202上に、補助受熱層201の形成においてパターニングを行う以外は同様にして、ITO膜を透明電極203として設けた。次いで、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
(有機EL素子構成層の形成)
PETフィルム(図示していない)上に、補助受熱層201、絶縁層202及び透明電極203(陽極を表す)を形成した後、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P AI 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、180℃にて30分間乾燥した後、マイクロ波照射(2.45GHz)を30分行い、膜厚30nmの正孔注入層を設けた。
この基板を窒素雰囲気下に移し、20mgのα−NPDを5mlのテトラヒドロフランに溶解した溶液を1500rpm、30秒でスピンコート法により成膜した後、80℃で30分間乾燥した後、マイクロ波照射(2.45GHz)を30分行い、膜厚20nmの正孔輸送層とした。
更に、下記組成の発光層組成物を2000rpm、30秒でスピンコート法により成膜した後、80℃で30分間乾燥した後、マイクロ波照射(2.45GHz)を30分行い、膜厚40nmの発光層を形成した。
(発光層組成物)
H−A 1.0質量部
Ir−A 0.1質量部
テトラヒドロフラン 100質量部
続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにET−AとCsFをそれぞれ入れたものを真空蒸着装置に取り付け、真空槽を4×10−4Paまで減圧した後、前記ボートに通電して加熱してET−Aを蒸着速度0.2nm/秒、CsFを0.03nm/秒で前記発光層上に共蒸着して、膜厚40nmの電子輸送層を形成した。引き続き、アルミニウム110nmを蒸着して陰極を形成し、有機EL素子1を製造した。
《有機EL素子2〜4の製造》:本発明
有機EL素子1の製造において、補助受熱層の体積抵抗率及び補助受熱層のエネルギー受容効率と有機層のエネルギー受容効率との関係を下記のように変更した以外は同様にして有機EL素子2〜4を各々製造した。
《有機EL素子5の製造》:本発明(図7の構成)
有機EL素子1の製造において、素子構成を図7から図8のように変更した以外は同様にして有機EL素子5を製造した。
《有機EL素子6の製造》:比較例(電磁波照射なし)
有機EL素子1の製造において、正孔注入層、正孔輸送層、発光層の形成において、マイクロ波照射を各々行わなかった以外は同様にして、比較の有機EL素子3を製造した。
《有機EL素子の評価》
得られた有機EL素子1〜6の各々について、発光ムラの評価を行った。
(発光ムラ)
素子を室温下、2.5mA/cmの定電流条件下による連続点灯を行い、素子点灯時の発光ムラを、目視観察により下記基準で評価した。
◎:発光が均一であり、まったく、ムラがない、
○:発光が均一であるが、きわめてわずかにムラが観察される、
△:うっすらムラが見えるが実用可である、
×:ムラが見える、
得られた結果を以下に示す。
素子No. 体積抵抗率 エネルギー 発光ムラ 備考
No. (補助受熱層) 受容効率(※)
1 10−3 < △ 本発明
2 10−3 > ○ 本発明
3 10−4 < ○ 本発明
4 10−4 > ◎ 本発明
5 10−3 < ○ 本発明
6 10−3 − × 比較例
(※):補助受熱層と有機層の大小関係を示すものであり、
>:補助受熱層のエネルギー受容効率が有機層よりも高い、
<:補助受熱層のエネルギー受容効率が有機層よりも低い、
ことを示す。
上記から、比較に比べて、本発明の有機EL素子は、発光ムラが少ないことが明らかである。
有機EL素子から構成される表示装置の一例を示した模式図である。 表示部Aの模式図である。 画素の模式図である。 パッシブマトリクス方式フルカラー表示装置の模式図である。 照明装置の概略図である。 照明装置の模式図である。 本発明の有機EL素子の一態様を示す概略断面図である。 本発明の有機EL素子の一態様を示す概略断面図である。
符号の説明
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサ
A 表示部
B 制御部
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤

Claims (8)

  1. 基材上にパターニングされた透明電極を有し、該透明電極上に少なくとも1層の有機層を塗布によって成膜後、該有機層に電磁波を照射することにより乾燥させる工程を有する有機エレクトロルミネッセンス素子の製造方法において、
    前記有機層の前記透明電極と接していない領域に、該電磁波を吸収して発熱する部材を形成する工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
  2. 前記電磁波の照射が、0.4GHz〜41GHzのマイクロ波照射であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  3. 前記電磁波を吸収して発熱する部材の体積抵抗率が10−4Ω・m以下であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子の製造方法。
  4. 前記電磁波を吸収して発熱する部材の0.4GHz〜41GHzのマイクロ波領域のエネルギー受容効率が、前記有機層のエネルギー受容効率よりも高いことを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  5. 前記電磁波を吸収して発熱する部材の0.4GHz〜41GHzのマイクロ波領域のエネルギー受容効率が、透明電極のエネルギー受容効率よりも高いことを特徴とする請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  6. 前記基材が樹脂からなることを特徴とする請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  7. 請求項1〜6のいずれか1項に記載の製造方法を用いて製造されたことを特徴とする有機エレクトロルミネッセンス素子。
  8. 基材上にパターニングされた透明電極を有し、該透明電極の上に少なくとも1層の有機層を有する有機EL素子において、
    該有機層が、該基材上に塗布によって成膜された後、電磁波を照射することにより乾燥する工程を経て形成されたものであり、前記有機層の前記透明電極と接していない領域に、該電磁波を吸収して発熱する部材を有することを特徴とする有機エレクトロルミネッセンス素子。
JP2008241880A 2008-09-20 2008-09-20 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子 Expired - Fee Related JP4985602B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241880A JP4985602B2 (ja) 2008-09-20 2008-09-20 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241880A JP4985602B2 (ja) 2008-09-20 2008-09-20 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子

Publications (2)

Publication Number Publication Date
JP2010073590A JP2010073590A (ja) 2010-04-02
JP4985602B2 true JP4985602B2 (ja) 2012-07-25

Family

ID=42205170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241880A Expired - Fee Related JP4985602B2 (ja) 2008-09-20 2008-09-20 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子

Country Status (1)

Country Link
JP (1) JP4985602B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725001B (zh) 2014-10-14 2021-04-21 日商荏原製作所股份有限公司 用於離心式泵浦之葉輪總成

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003582B2 (ja) * 2012-11-27 2016-10-05 コニカミノルタ株式会社 透明電極の製造方法
JP6136551B2 (ja) * 2013-05-09 2017-05-31 コニカミノルタ株式会社 パターン形成方法及び塗布液
JP7113085B2 (ja) * 2018-10-02 2022-08-04 パイオニア株式会社 発光装置の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162313B2 (ja) * 1997-01-20 2001-04-25 工業技術院長 薄膜製造方法および薄膜製造装置
JP2002359072A (ja) * 2001-05-31 2002-12-13 Auto Network Gijutsu Kenkyusho:Kk 薄膜形成装置及びこの薄膜形成装置により形成された有機el素子
JP4413535B2 (ja) * 2002-09-19 2010-02-10 大日本印刷株式会社 インクジェット法による有機el表示装置及びカラーフィルターの製造方法、製造装置
JP2007207546A (ja) * 2006-02-01 2007-08-16 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法及び製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725001B (zh) 2014-10-14 2021-04-21 日商荏原製作所股份有限公司 用於離心式泵浦之葉輪總成

Also Published As

Publication number Publication date
JP2010073590A (ja) 2010-04-02

Similar Documents

Publication Publication Date Title
JP5810529B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5549053B2 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP5413459B2 (ja) 白色発光有機エレクトロルミネッセンス素子
JP2009135183A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010045281A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007189002A (ja) 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンスディスプレイ
JP5180429B2 (ja) 有機エレクトロルミネッセンス素子
JP5186757B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2011132550A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010192369A (ja) 有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子
JP5589852B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP4985602B2 (ja) 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
JP5181920B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2009252944A (ja) 有機エレクトロルミネセンス素子とその製造方法
JPWO2009116414A1 (ja) 有機エレクトロルミネッセンス素子
JP2009152435A (ja) 白色有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP2009152033A (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010272286A (ja) 白色発光有機エレクトロルミネッセンス素子の製造方法
JP2009289716A (ja) 有機エレクトロルミネセンス素子及びその製造方法
JP2008305613A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2010177338A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5472107B2 (ja) 有機エレクトロルミネセンス素子の製造方法
WO2018116923A1 (ja) 透明電極及び電子デバイス
JP5152331B2 (ja) 有機エレクトロルミネセンス素子およびその製造方法
WO2010084816A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4985602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees