JP4982094B2 - Membrane filtration controller - Google Patents

Membrane filtration controller Download PDF

Info

Publication number
JP4982094B2
JP4982094B2 JP2006075032A JP2006075032A JP4982094B2 JP 4982094 B2 JP4982094 B2 JP 4982094B2 JP 2006075032 A JP2006075032 A JP 2006075032A JP 2006075032 A JP2006075032 A JP 2006075032A JP 4982094 B2 JP4982094 B2 JP 4982094B2
Authority
JP
Japan
Prior art keywords
membrane
water
membrane filtration
load
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006075032A
Other languages
Japanese (ja)
Other versions
JP2007245084A (en
Inventor
武士 松代
潮子 栗原
清一 村山
雅永 新山
由紀夫 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006075032A priority Critical patent/JP4982094B2/en
Publication of JP2007245084A publication Critical patent/JP2007245084A/en
Application granted granted Critical
Publication of JP4982094B2 publication Critical patent/JP4982094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、精密ろ過膜(MF)、限外ろ過膜(UF)、ナノろ過膜(NF)、逆浸透膜(R0)などの膜エレメントにより構成される膜モジュール、複数本の膜モジュールから構成される膜ユニット、または膜ユニットを複数台有する膜ろ過設備の運転を制御する膜ろ過制御装置に関する。   The present invention comprises a membrane module constituted by membrane elements such as a microfiltration membrane (MF), an ultrafiltration membrane (UF), a nanofiltration membrane (NF), a reverse osmosis membrane (R0), and a plurality of membrane modules. The present invention relates to a membrane filtration control apparatus that controls the operation of a membrane filtration unit or a membrane filtration facility having a plurality of membrane units.

浄水場では、河川や貯水池などの水源から原水を取水し、凝集、フロック形成、沈殿、ろ過および殺菌の5つの単位プロセスによって、懸濁質、コロイド質の除去、および細菌等の無害化などを行い、需要家に清澄な水道水を供給している。   In the water treatment plant, raw water is taken from water sources such as rivers and reservoirs, and suspended solids, colloids are removed, and bacteria are rendered harmless by the five unit processes of aggregation, flock formation, precipitation, filtration and sterilization. And supply clear tap water to consumers.

凝集、フロック形成、沈殿、ろ過による一連の除濁処理には、凝集剤を用いる方法が一般的であり、凝集剤には鉄やアルミニウム等の無機金属塩が通常用いられる。凝集剤の効果はさまざまな物理的、生物化学的な影響を受け、最適凝集条件は、多くの因子によって定まる複雑な平衡の上に成り立っているため、一定の処理水質を確保するには熟練を要する。   For a series of turbidity treatment by agglomeration, flock formation, precipitation, and filtration, a method using an aggregating agent is generally used, and an inorganic metal salt such as iron or aluminum is usually used as the aggregating agent. The effect of the flocculant is influenced by various physical and biochemical factors, and the optimum flocculation condition is based on a complex equilibrium determined by many factors. Cost.

一方、平成8年10月に厚生省(現厚生労働省)より通達された「水道におけるクリプトスポリジウム暫定対策指針」によって、ろ過池出口の濁度を常時把握し、ろ過池出口の濁度を“0.1度”以下に維持することが制定され、浄水場における濁度管理が重要な課題となっている。   On the other hand, according to the “Provisional Guidelines for Cryptosporidium in Waterworks” issued by the Ministry of Health and Welfare (currently the Ministry of Health, Labor and Welfare) in October 1996, the turbidity at the outlet of the filtration basin is constantly grasped, and the turbidity at the outlet of the filtration basin is set to “0. It is enacted to maintain the temperature below 1 degree, and turbidity management at the water purification plant is an important issue.

このような背景のもと、膜ろ過技術に関する研究開発が進み、我が国の浄水場において、膜ろ過システムが急速に普及し始めており、海外においては既に日量数十万トン規模の膜ろ過システムが稼動している。
特開平11−156161号公報 特開2003−126855号公報
Against this background, research and development related to membrane filtration technology has progressed, and membrane filtration systems have begun to spread rapidly in water treatment plants in Japan. Overseas, membrane filtration systems with a daily volume of several hundred thousand tons are already available. It is operating.
Japanese Patent Laid-Open No. 11-156161 JP 2003-126855 A

ところで、このような膜ろ過システムでは、確実に濁質物を除去できるため、良好な処理水質が確実に得られるという利点がある一方、膜ろ過処理により、目詰まりが生じて、膜間差圧が上昇し、膜モジュールに過大な負荷をかけてしまうという問題があった。   By the way, in such a membrane filtration system, turbid matters can be surely removed, so that there is an advantage that good treated water quality can be surely obtained.On the other hand, the membrane filtration treatment causes clogging, and the transmembrane pressure difference is increased. There was a problem that the membrane module increased and an excessive load was applied to the membrane module.

そこで、膜ろ過システムでは、予め設定された周期あるいは膜間差圧がある一定値に達した時点で物理洗浄を実施し、膜表面または膜内部の付着物のうち、可逆的なものを除去している。さらに、膜間差圧がある程度、高くなったときには、薬品洗浄を実施して、膜表面または膜内部の付着物のうち、不可逆的なものを除去して膜間差圧の回復をはかっている。さらに、薬品洗浄を行っても、十分に膜間差圧が回復しなくなった場合には、膜モジュールが劣化したと判断して、膜モジュールの交換を行っている。   Therefore, in a membrane filtration system, physical cleaning is performed when a preset period or transmembrane pressure reaches a certain value, and reversible substances are removed from the membrane surface or inside the membrane. ing. Furthermore, when the transmembrane pressure becomes high to some extent, chemical cleaning is performed to remove irreversible deposits on the membrane surface or inside the membrane to restore the transmembrane pressure. . Further, if the transmembrane pressure difference does not sufficiently recover even after chemical cleaning, it is determined that the membrane module has deteriorated, and the membrane module is replaced.

物理洗浄、薬品洗浄、膜モジュール交換などを行わせる場合には、膜ろ過システムの運転を一時的に停止させなければならないことから、物理洗浄、薬品洗浄の回数、膜モジュールの交換回数をなるべく少なくして、膜ろ過システムの運転コストを低減させるとともに、洗浄によって排出される膜ろ過水量を低減させて、膜ろ過システムの回収率を高くすることが望まれている。   When performing physical cleaning, chemical cleaning, membrane module replacement, etc., the operation of the membrane filtration system must be temporarily stopped, so the number of physical cleaning, chemical cleaning, and membrane module replacement should be minimized. And while reducing the operating cost of a membrane filtration system, reducing the amount of membrane filtration water discharged | emitted by washing | cleaning is desired to raise the recovery rate of a membrane filtration system.

そこで、このような問題を解決する方法として、特許文献1に記載の“中空糸モジュールの運転方法”では、膜の目詰まり状態に応じて、逆洗浄の頻度を変えて、運転コストを低減するようにしている。しかし、このような運転方法では、膜供給水の水質を考慮していないことから、膜供給水の水質変動に対応しきれない恐れがあった。   Therefore, as a method for solving such a problem, the “operating method of the hollow fiber module” described in Patent Document 1 reduces the operating cost by changing the frequency of backwashing according to the clogged state of the membrane. I am doing so. However, in such an operation method, since the quality of the membrane feed water is not taken into consideration, there is a fear that the quality of the membrane feed water cannot be fully accommodated.

また、特許文献2に記載の“膜濾過システム”では、蛍光分析計などの水質検出手段を用いて、供給水の水質変動を検知し、この検知結果に基づき、膜ろ過水の水質負荷量の積算値を求めて、運転内容を変更するようにしている。しかし、このような運転方法では、膜ろ過システム全体の運転計画を修正して、最適化することが難しいという問題があった。   Further, in the “membrane filtration system” described in Patent Document 2, the water quality variation of the feed water is detected using a water quality detection means such as a fluorescence analyzer, and the water load of the membrane filtration water is determined based on the detection result. The operation value is changed by obtaining the integrated value. However, such an operation method has a problem that it is difficult to optimize and optimize the operation plan of the entire membrane filtration system.

本発明は上記の事情に鑑み、需要家側で必要とした過去の水需要と膜ユニットへの膜供給水質負荷量などに応じて、膜ろ過設備の運用計画を最適化することで、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数を最少に抑えることができ、膜ろ過設備の消費電力、ランニングコストを低く抑えることができる膜ろ過制御装置を提供することを目的としている。ここで、運用計画とは、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期、膜供給水流量、膜供給時間、物理洗浄水流量、物理洗浄時間、薬品洗浄流量、薬品洗浄時間など、膜ろ過システムの運転に関わる機器の動作計画のことをいう。   In view of the above circumstances, the present invention optimizes the operation plan of the membrane filtration equipment according to the past water demand required on the customer side and the membrane supply water load amount to the membrane unit, etc. It is an object of the present invention to provide a membrane filtration control device that can minimize the number of times of washing, the number of times of chemical cleaning, and the number of exchanges of membrane modules, and can keep the power consumption and running cost of membrane filtration equipment low. Here, the operation plan is the physical cleaning start time of the membrane unit, chemical cleaning start time, membrane module replacement time, membrane supply water flow rate, membrane supply time, physical cleaning water flow rate, physical cleaning time, chemical cleaning flow rate, chemical cleaning It refers to the operation plan of equipment related to the operation of the membrane filtration system such as time.

上記の目的を達成するために本発明は、複数本の膜モジュールから構成される膜ユニットを一台または複数台有する膜ろ過設備の運転を制御する膜ろ過制御装置において、
膜供給水の濁度を測定する濁度計、膜供給水の蛍光強度を測定する蛍光分析計、膜供給水の吸光度を測定する吸光度計、膜供給水の全有機炭素濃度を測定する全有機炭素計、膜供給水の金属イオン成分濃度を測定する連続測定型イオンクロマトグラフィの少なくとも1つの計測値に基づき膜ろ過設備の水質を検知する水質検出装置で得られた水質情報、流量計で得られた膜供給水の流量とに基づき、膜ユニットに対する膜供給水質負荷量を演算する水質情報演算部と、
過去の水需要実績を記憶する水需要実績記憶部と、
この水需要実績記憶部に記憶されている水需要実績に基づいて、将来の水需要を予測する水需要予測部と、
この水需要予測部により予測された水需要量に基づいて、前記膜ろ過設備の運用計画を求めるとともに、前記水質情報演算部で得られた膜供給水質負荷量に基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくとも1つを加味して、前記運用計画を修正する膜ろ過システム運用計画部と、
前記膜ろ過システム運用計画部で作成された運用計画に基づいて、前記膜ろ過設備を制御するろ過膜システム制御部と、を備え
前記水質情報演算部は、前記水質検知装置で得られた水質情報、および流量計で得られた膜供給水の流量に基づき、膜ユニットに供給される膜供給水に関する膜供給水濁度負荷量積算値、膜供給水蛍光強度負荷量積算値、膜供給水吸光度負荷量積算値、膜供給水全有機炭素濃度負荷量積算値、膜供給水金属イオン濃度負荷量積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値を演算し、
前記膜ろ過システム運用計画部は、前記水質情報演算部で得られた膜供給水濁度負荷量積算値、膜供給水蛍光強度負荷量積算値、膜供給水吸光度負荷量積算値、膜供給水全有機炭素濃度負荷量積算値、膜供給水金属イオン濃度負荷量積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値に基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくても1つを加味して、前記運用計画を修正する、ことを特徴としている。
また、本発明の他の態様は、複数本の膜モジュールから構成される膜ユニットを一台または複数台有する膜ろ過設備の運転を制御する膜ろ過制御装置において、
膜供給水および膜ろ過水の濁度を測定する濁度計、膜供給水および膜ろ過水の蛍光強度を測定する蛍光分析計、膜供給水および膜ろ過水の吸光度を測定する吸光度計、膜供給水および膜ろ過水の全有機炭素濃度を測定する全有機炭素計、膜供給水および膜ろ過水の金属イオン成分濃度を測定する連続測定型イオンクロマトグラフィの少なくとも1つの計測値に基づき膜ろ過設備の水質を検知する水質検出装置で得られた水質情報と、流量計で得られた膜供給水および膜ろ過水の流量とに基づき、膜ユニットに対する膜供給水質負荷量と膜ろ過水質負荷量との差分積算値を演算する水質情報演算部と、
過去の水需要実績を記憶する水需要実績記憶部と、
この水需要実績記憶部に記憶されている水需要実績に基づいて、将来の水需要を予測する水需要予測部と、
この水需要予測部により予測された水需要量に基づいて、前記膜ろ過設備の運用計画を求めるとともに、前記水質情報演算部で得られた膜供給水質負荷量と膜ろ過水質負荷量との差分積算値に基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくとも1つ以上を加味して、前記運用計画を修正する膜ろ過システム運用計画部と、
前記膜ろ過システム運用計画部で作成された運用計画に基づいて、前記膜ろ過設備を制御するろ過膜システム制御部と、を備え、
前記水質情報演算部は、膜供給水濁度負荷量と膜ろ過水濁度負荷量との差分積算値、膜供給水蛍光強度負荷量と膜ろ過水蛍光強度負荷量との差分積算値、膜供給水吸光度負荷量と膜ろ過水吸光度負荷量との差分積算値、膜供給水全有機炭素濃度負荷量と膜ろ過水全有機炭素濃度負荷量との差分積算値、膜供給水金属イオン濃度負荷量と膜ろ過水金属イオン濃度負荷量との差分積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値を演算し、
前記膜ろ過システム運用計画部は、前記水需要予測部により予測された水需要量に基づいて、前記膜ろ過設備の運用計画を求めるとともに、前記水質情報演算部で得られた膜供給水濁度負荷量と膜ろ過水濁度負荷量との差分積算値、膜供給水蛍光強度負荷量と膜ろ過水蛍光強度負荷量との差分積算値、膜供給水吸光度負荷量と膜ろ過水吸光度負荷量との差分積算値、膜供給水全有機炭素濃度負荷量と膜ろ過水全有機炭素濃度負荷量との差分積算値、膜供給水金属イオン濃度負荷量と膜ろ過水金属イオン濃度負荷量との差分積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値に基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくても1つ以上を加味して、前記運用計画を修正する、ことを特徴としている。
In order to achieve the above object, the present invention provides a membrane filtration control device for controlling the operation of a membrane filtration facility having one or more membrane units composed of a plurality of membrane modules.
A turbidimeter that measures the turbidity of the membrane feed water, a fluorescence analyzer that measures the fluorescence intensity of the membrane feed water, an absorptiometer that measures the absorbance of the membrane feed water, a total organic that measures the total organic carbon concentration of the membrane feed water Obtained with a flow meter and water quality information obtained by a water quality detection device that detects the water quality of a membrane filtration facility based on at least one measurement value of a carbon ion meter or a continuous measurement type ion chromatography that measures the concentration of metal ion components in membrane feed water based on the flow rate of the membrane feed water is, the water quality information calculator for calculating a film supply water load with respect to the film unit,
A water demand record storage unit for storing past water demand results;
A water demand forecasting unit for forecasting future water demand based on the water demand results stored in the water demand record storage unit;
Based on the water demand predicted by the water demand prediction unit, obtain an operation plan for the membrane filtration facility, and start physical cleaning of the membrane unit based on the membrane supply water quality load obtained by the water quality information calculation unit. time, chemical cleaning start time, at least the membrane module replacement time by adding one, and the membrane filtration system operation plan unit for modifying the operational plan,
Based on the operation plan created by the membrane filtration system operation planning unit, comprising a filtration membrane system control unit for controlling the membrane filtration equipment ,
The water quality information calculation unit is based on the water quality information obtained by the water quality detection device and the flow rate of the membrane feed water obtained by the flow meter, and the membrane supply water turbidity load amount related to the membrane feed water supplied to the membrane unit Integrated value, membrane supply water fluorescence intensity load integrated value, membrane supply water absorbance load integrated value, membrane supply water total organic carbon concentration load integrated value, membrane supply water metal ion concentration load integrated value, or Calculate the total value combining any of these integrated values,
The membrane filtration system operation planning unit includes a membrane supply water turbidity load integrated value, a membrane supply water fluorescence intensity load integrated value, a membrane supply water absorbance load integrated value, a membrane supply water obtained by the water quality information calculation unit. Based on the total organic carbon concentration load integrated value, the membrane feed water metal ion concentration load integrated value, or the total value of any combination of these integrated values, the physical cleaning start time of the membrane unit, chemicals The operation plan is corrected in consideration of at least one of the cleaning start time and the membrane module replacement time .
In addition, another aspect of the present invention is a membrane filtration control apparatus for controlling the operation of a membrane filtration facility having one or more membrane units composed of a plurality of membrane modules.
Turbidimeter for measuring turbidity of membrane supply water and membrane filtration water, Fluorescence analyzer for measuring fluorescence intensity of membrane supply water and membrane filtration water, Absorbance meter for measuring absorbance of membrane supply water and membrane filtration water, membrane Membrane filtration equipment based on at least one measurement value of a total organic carbon meter that measures the total organic carbon concentration of the feed water and membrane filtration water, and a continuous measurement type ion chromatography that measures the metal ion component concentration of the membrane feed water and membrane filtration water Based on the water quality information obtained by the water quality detection device that detects the water quality of the water and the flow rate of the membrane supply water and the membrane filtration water obtained by the flow meter, the membrane supply water load amount and the membrane filtration water quality load amount for the membrane unit Water quality information calculation unit for calculating the difference integrated value of,
A water demand record storage unit for storing past water demand results;
A water demand forecasting unit for forecasting future water demand based on the water demand results stored in the water demand record storage unit;
Based on the water demand predicted by the water demand prediction unit, the operation plan of the membrane filtration facility is obtained, and the difference between the membrane supply water load and the membrane filtration water load obtained by the water quality information calculation unit Based on the integrated value, taking into account at least one of the physical cleaning start time of the membrane unit, the chemical cleaning start time, and the membrane module replacement time, the membrane filtration system operation planning unit for correcting the operation plan,
Based on the operation plan created by the membrane filtration system operation planning unit, comprising a filtration membrane system control unit for controlling the membrane filtration equipment,
The water quality information calculation unit includes a difference integrated value between a membrane supply water turbidity load amount and a membrane filtration water turbidity load amount, a difference integration value between a membrane supply water fluorescence intensity load amount and a membrane filtration water fluorescence intensity load amount, a membrane Difference integrated value between feed water absorbance load and membrane filtrate absorbency load, integrated difference between membrane feed water total organic carbon concentration load and membrane filtrate total organic carbon concentration load, membrane feed water metal ion concentration load Calculate the total sum of at least one of the difference integrated value between the amount and the membrane filtrate water metal ion concentration load, or a combination of any of these integrated values,
The membrane filtration system operation planning unit obtains an operation plan for the membrane filtration facility based on the water demand predicted by the water demand prediction unit, and the membrane supply water turbidity obtained by the water quality information calculation unit Difference integrated value between load amount and membrane filtration water turbidity load amount, difference integrated value between membrane supply water fluorescence intensity load amount and membrane filtration water fluorescence intensity load amount, membrane supply water absorbance load amount and membrane filtration water absorbance load amount Of the difference between the total organic carbon concentration load of the membrane feed water and the total organic carbon concentration load of the membrane filtration water, and the difference between the membrane feed water metal ion concentration load and the membrane filtration water metal ion concentration load Based on at least one of the integrated difference values, or a total value obtained by combining any of these integrated values, at least one of the physical unit cleaning start time, chemical cleaning start time, and membrane module replacement time is required. In addition, the luck To modify the plan, it is characterized in that.

本発明によれば、需要家側で必要とした過去の水需要や膜ユニットの膜供給水質負荷量などに応じて、膜ろ過設備の運用計画を最適化することで、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数を最少に抑えることができ、膜ろ過設備の消費電力、ランニングコストを低く抑えることができる。   According to the present invention, by optimizing the operation plan of the membrane filtration equipment according to the past water demand required on the customer side, the membrane supply water load of the membrane unit, etc., the number of physical washing, the chemical washing The number of times and the number of exchanges of the membrane module can be minimized, and the power consumption and running cost of the membrane filtration equipment can be kept low.

《実施形態の説明》
図1は本発明による膜ろ過制御装置が適用される膜ろ過システムを示す膜ろ過設備の概略構成図、図2は本発明による膜ろ過制御装置の実施形態を示すブロック図である。
<< Description of Embodiment >>
FIG. 1 is a schematic configuration diagram of a membrane filtration facility showing a membrane filtration system to which a membrane filtration control device according to the present invention is applied, and FIG. 2 is a block diagram showing an embodiment of the membrane filtration control device according to the present invention.

<全体説明>
図1、図2に示す膜ろ過システム1は、複数の膜ユニット2を使用して、水道水源3から取水した水をろ過した後、給水網4を介し、需要家へ送水する膜ろ過設備5と、需要家に供給された膜ろ過水に関する過去の情報(過去の水需要実績、曜日情報)、各膜ユニット2に供給される膜供給水、または各膜ユニット2から排出される膜ろ過水、または各膜ユニット2を逆洗浄処理したとき排出される逆洗浄水などの水質情報、各膜ユニット2の破断有無情報、ファウリングの有無情報などに応じた最適な運用計画を作成して、膜ろ過設備5の運転を制御する膜ろ過制御装置6とを備えている。そして、膜ろ過設備5によって、過去、需要家に供給された曜日毎の水需要実績、各膜ユニット2に供給される膜供給水、または各膜ユニット2から排出される膜ろ過水、または各膜ユニット2を逆洗浄処理したとき排出される逆洗浄水などの水質などを測定、検知するとともに、膜ろ過制御装置6によって、これらの各測定結果、各検知結果に応じた最適な運用計画を作成して、消費電力、ランニングコストを低く抑えながら、膜ろ過設備5を運転し、需要家に対し、必要な分だけ、膜ろ過水を供給する。
<Overall explanation>
A membrane filtration system 1 shown in FIGS. 1 and 2 uses a plurality of membrane units 2 to filter water taken from a tap water source 3, and then sends the water to customers via a water supply network 4. And past information on membrane filtrate supplied to consumers (past water demand results, day of week information), membrane supply water supplied to each membrane unit 2, or membrane filtrate discharged from each membrane unit 2 Or, create an optimal operation plan according to water quality information such as backwash water discharged when each membrane unit 2 is backwashed, information on whether or not each membrane unit 2 is broken, and information on the presence or absence of fouling, A membrane filtration control device 6 that controls the operation of the membrane filtration equipment 5 is provided. And by the membrane filtration equipment 5, the water demand results for each day of the week supplied to customers in the past, the membrane supply water supplied to each membrane unit 2, the membrane filtrate discharged from each membrane unit 2, or each Water quality such as backwash water discharged when the membrane unit 2 is backwashed is measured and detected, and an optimum operation plan corresponding to each measurement result and each detection result is determined by the membrane filtration control device 6. The membrane filtration equipment 5 is operated while keeping the power consumption and running cost low, and the membrane filtrate is supplied to the customer as much as necessary.

<膜ろ過設備5の説明>
膜ろ過設備5は、水道水源3から取水した水(原水)を前処理して、濁質、スケール、シリカ、金属酸化物、有機物、微生物などのファウリング物質を除去し、各膜ユニット2内の各膜モジュール7のファウリングを抑制する複数の前処理装置8と、各前処理装置8で前処理された水(膜供給水)を貯留する複数の膜供給水槽9とを備えている。また、各膜供給水槽9に貯留されている膜供給水の温度を測定する温度計、膜供給水の蛍光強度を測定する蛍光分析計、膜供給水の濁度を測定する濁度計、膜供給水の吸光度を測定する吸光度計、膜供給水の全有機炭素濃度を測定する全有機炭素計、鉄イオン成分、マンガンイオン濃度などの金属イオン成分量を測定する連続測定型イオンクロマトグラフィなどによって構成され、膜供給水槽9に貯留されている膜供給水の水質を検出する水質検知装置10を備えている。さらに、膜ろ過制御装置6からの制御信号に基づき、各膜供給水槽9から膜供給水を取り込む複数の膜供給水ポンプ11と、各膜供給水ポンプ11から吐出される膜供給水の流量を測定する複数の流量計12とを備えている。さらに、膜モジュール7にかかる圧力差(膜間差圧)を測定する差圧計、膜表面の電荷を測定するゼータ電位計などの各センサ13を持ち、各流量計12を介して供給される膜供給水を各膜モジュール(例えば、精密ろ過膜(MF)、限外ろ過膜(UF)、ナノろ過膜(NF)、逆浸透膜(R0)などを持つ膜モジュール)7に導いて、クロスフロー方式(膜面に沿って膜供給水を流し、膜供給水の流れと、直角な方向に膜ろ過水を吐出する膜ろ過方式)で、膜供給水をろ過し、膜ろ過水を吐出させながら、膜供給水と、膜ろ過水との膜間差圧などを測定し、測定信号を出力する複数の膜ユニット2を備えている。また、膜供給水の水質によっては、膜供給水ポンプ11から排出される膜供給水の全量を膜ユニット2に供給するデットエンド方式で膜供給水をろ過することもできる。さらに、各膜ユニット2を逆洗浄するとき、各膜供給水槽9と各膜ユニット2との間を遮断する複数のバルブ15と、各膜ユニット2から排出される膜ろ過水の流量、または各膜ユニット2に供給される膜ろ過水、薬品の流量などを測定する複数の流量計16と、膜ろ過制御装置6から供給される制御信号で指定された流量だけ、各膜ユニット2に供給された膜供給水の一部を通過させ、各膜供給水槽9に戻す複数のバルブ17と、各バルブ17を介して、膜供給水槽9に戻される膜供給水の流量を測定する複数の流量計18とを備えている。
<Description of membrane filtration equipment 5>
The membrane filtration facility 5 pretreats water (raw water) taken from the tap water source 3 to remove fouling substances such as turbidity, scale, silica, metal oxide, organic matter, and microorganisms, and in each membrane unit 2 A plurality of pretreatment devices 8 that suppress fouling of each membrane module 7 and a plurality of membrane supply water tanks 9 that store water (membrane supply water) pretreated by each pretreatment device 8 are provided. Further, a thermometer for measuring the temperature of the membrane feed water stored in each membrane feed water tank 9, a fluorescence analyzer for measuring the fluorescence intensity of the membrane feed water, a turbidimeter for measuring the turbidity of the membrane feed water, and the membrane Consists of an absorptiometer that measures the absorbance of the feed water, a total organic carbon meter that measures the total organic carbon concentration of the membrane feed water, and a continuous measurement ion chromatography that measures the amount of metal ion components such as iron ion components and manganese ion concentrations And a water quality detection device 10 that detects the quality of the membrane supply water stored in the membrane supply water tank 9. Furthermore, based on a control signal from the membrane filtration control device 6, a plurality of membrane feed water pumps 11 that take in the membrane feed water from each membrane feed water tank 9, and the flow rates of the membrane feed water discharged from each membrane feed water pump 11 And a plurality of flow meters 12 for measurement. Further, each membrane 13 has a sensor 13 such as a differential pressure meter that measures a pressure difference (transmembrane differential pressure) applied to the membrane module 7 and a zeta electrometer that measures the charge on the membrane surface, and is supplied through each flow meter 12. Supply water to each membrane module (for example, membrane module with microfiltration membrane (MF), ultrafiltration membrane (UF), nanofiltration membrane (NF), reverse osmosis membrane (R0), etc.) 7 and cross flow While filtering the membrane feed water and discharging the membrane filtered water using the method (membrane filtration method in which the membrane feed water flows along the membrane surface and the membrane filtered water is discharged in a direction perpendicular to the flow of the membrane feed water) A plurality of membrane units 2 that measure a transmembrane pressure difference between the membrane supply water and the membrane filtrate and output a measurement signal are provided. Further, depending on the quality of the membrane feed water, the membrane feed water can be filtered by a dead end method in which the entire amount of the membrane feed water discharged from the membrane feed water pump 11 is supplied to the membrane unit 2. Furthermore, when each membrane unit 2 is back-washed, a plurality of valves 15 that shut off between each membrane supply water tank 9 and each membrane unit 2, and the flow rate of membrane filtrate discharged from each membrane unit 2, or each Only the flow rate specified by the control signal supplied from the plurality of flowmeters 16 for measuring the membrane filtration water and the chemical flow rate supplied to the membrane unit 2 and the membrane filtration control device 6 is supplied to each membrane unit 2. A plurality of valves 17 for passing a part of the membrane feed water and returning it to each membrane feed water tank 9, and a plurality of flow meters for measuring the flow rate of the membrane feed water returned to the membrane feed water tank 9 via each valve 17 18.

さらに、膜ろ過設備5は、ファウリング物質を除去するのに必要な水酸化ナトリウムのようなアルカリ剤や硫酸、塩酸などの無機酸、次亜塩素酸ナトリウムなどの酸化剤、シュウ酸、クエン酸のような有機酸を貯留する薬品貯留槽19を備えている。また、膜ろ過制御装置6から供給される制御信号によって、通常運転が指示されているとき、各流量計16を介して、各膜ユニット2から吐出される膜ろ過水を取り込み、流量を調整しながら、通過させ、また逆洗浄運転が指示されているとき、膜ろ過水の流れを逆にして、各流量計16に膜ろ過水(逆洗浄水)を供給し、各膜ユニット2の各膜モジュール7を逆洗浄し、また各膜ユニット2の各膜モジュール7を物理洗浄しても、各膜モジュール7の膜ろ過機能が回復せず、薬品浄運転が指示されたとき、薬品貯留槽19に貯留されている薬品を取り込んで、各流量計16に供給し、各膜ユニット2の各膜モジュール7を薬品洗浄する複数のバルブ20を備えている。さらに、各バルブ20を介して、各膜ユニット2でろ過された膜ろ過水を取り込んで、貯留する複数の膜ろ過水槽21を備えている。さらに、各膜ろ過水槽21に貯留されている膜ろ過水の温度を測定する温度計、膜ろ過水の蛍光強度を測定する蛍光分析計、膜ろ過水の濁度を測定する濁度計、膜ろ過水の吸光度を測定する吸光度計、膜ろ過水の全有機炭素濃度を測定する全有機炭素計、鉄イオン成分、マンガンイオン濃度などの金属イオン成分量を測定する連続測定型イオンクロマトグラフィなどによって構成され、膜ろ過水槽21に貯留されている膜ろ過水の水質を検出する水質検知装置22を備えている。さらに、各膜ろ過水槽21から需要家に供給される膜ろ過水の流量を測定する流量計23と、膜ろ過制御装置6から供給される制御信号によって、逆洗浄運転が指示されているとき、各膜ろ過水槽21に貯留されている膜ろ過水の一部を取り込んで、逆洗浄水として、各バルブ20に戻し、各膜ユニット2の各膜モジュール7を物理洗浄する複数の逆洗浄水ポンプ24と、各膜ユニット2の各膜モジュール7が逆洗浄されているとき、または薬品洗浄されているとき、各膜ユニット2から排出される逆洗浄水、薬品の流量を測定する複数の流量計25と、膜ろ過制御装置6から逆洗浄時のブロア運転が指示されているとき、空気を取り込み、各膜ユニット2の各膜モジュール7に供給し、逆洗浄を補助する複数のブロア26とを備えている。   Further, the membrane filtration equipment 5 is provided with an alkaline agent such as sodium hydroxide, an inorganic acid such as sulfuric acid and hydrochloric acid, an oxidizing agent such as sodium hypochlorite, oxalic acid and citric acid necessary for removing the fouling substances. The chemical | medical agent storage tank 19 which stores such organic acids is provided. Further, when normal operation is instructed by the control signal supplied from the membrane filtration control device 6, the membrane filtrate discharged from each membrane unit 2 is taken in via each flow meter 16 to adjust the flow rate. However, when the reverse washing operation is instructed, the flow of the membrane filtrate is reversed, and the membrane filtrate (backwash water) is supplied to each flow meter 16, and each membrane of each membrane unit 2 is supplied. Even if the module 7 is back-washed and each membrane module 7 of each membrane unit 2 is physically washed, the membrane filtration function of each membrane module 7 is not recovered, and when the chemical cleaning operation is instructed, the chemical reservoir 19 Are provided with a plurality of valves 20 for taking in the chemicals stored in and supplying them to the flowmeters 16 and cleaning the membrane modules 7 of the membrane units 2. Furthermore, a plurality of membrane filtration water tanks 21 that take in and store the membrane filtrate filtered by each membrane unit 2 through each valve 20 are provided. Furthermore, a thermometer for measuring the temperature of the membrane filtrate stored in each membrane filtration water tank 21, a fluorescence analyzer for measuring the fluorescence intensity of the membrane filtrate, a turbidimeter for measuring the turbidity of the membrane filtrate, and a membrane Consists of an absorptiometer that measures the absorbance of filtered water, a total organic carbon meter that measures the total organic carbon concentration of membrane filtered water, and a continuous measurement ion chromatography that measures the amount of metal ion components such as iron ion components and manganese ion concentrations And a water quality detection device 22 that detects the quality of the membrane filtrate stored in the membrane filtration tank 21. Furthermore, when the reverse cleaning operation is instructed by the flow meter 23 for measuring the flow rate of the membrane filtrate supplied from each membrane filtration water tank 21 to the consumer and the control signal supplied from the membrane filtration controller 6, A plurality of backwash water pumps that take in a part of the membrane filtrate stored in each membrane filtration water tank 21 and return it to each valve 20 as backwash water to physically wash each membrane module 7 of each membrane unit 2 24 and a plurality of flowmeters for measuring the flow rate of backwash water and chemicals discharged from each membrane unit 2 when each membrane module 7 of each membrane unit 2 is backwashed or when chemicals are washed. 25 and a plurality of blowers 26 that take in air and supply it to each membrane module 7 of each membrane unit 2 to assist reverse cleaning when the membrane filtration control device 6 is instructed to perform a reverse operation during reverse cleaning. I have.

そして、膜ろ過制御装置6から供給される制御信号によって、通常運転などの運転が指示されているとき、各水質検知装置10、22を構成する温度計、蛍光分析計、濁度計、吸光度計、全有機炭素計、連続測定型イオンクロマトグラフィなどによって、膜供給水、膜ろ過水の温度、蛍光強度、濁度、吸光度、全有機炭素濃度、鉄イオン成分、マンガンイオン濃度などの金属イオン成分量などを測定し、さらに各膜ユニット2に設けられた各センサ13によって、膜モジュールのファウリングの有無を判断するために、膜供給時と膜洗浄時の膜間差圧、ゼータ電位などを測定し、これらの測定動作で得られた測定信号を膜ろ過制御装置6に供給する。   Then, when an operation such as a normal operation is instructed by a control signal supplied from the membrane filtration control device 6, a thermometer, a fluorescence analyzer, a turbidimeter, and an absorptiometer constituting each water quality detection device 10, 22. Amount of metal ion components such as temperature, fluorescence intensity, turbidity, absorbance, total organic carbon concentration, iron ion component, manganese ion concentration by membrane organic water meter, continuous measurement ion chromatography, etc. In addition, each sensor 13 provided in each membrane unit 2 measures the transmembrane pressure difference, zeta potential, etc. during membrane supply and membrane cleaning to determine the presence or absence of membrane module fouling. Then, the measurement signal obtained by these measurement operations is supplied to the membrane filtration control device 6.

この際、蛍光分析計によって、膜供給水、膜ろ過水などの水質を最も良く測定できる波長の励起光、例えば波長“340〜350nm”の間にある特定波長の励起光と、波長“420〜430nm”の間にある特定の蛍光を使用して、膜供給水、膜ろ過水などの蛍光強度を測定するとともに、各水質検知装置10、22を構成する吸光度計によって、膜供給水、膜ろ過水などの水質を最も良く測定できる特定波長、例えば波長“250〜270nm”の間にある特定波長、または波長“380〜400nm”の間にある特定波長の光に対する吸光度を使用して、膜供給水、膜ろ過水などの吸光度を測定する。   At this time, excitation light having a wavelength that can best measure water quality such as membrane supply water and membrane filtered water by a fluorescence analyzer, for example, excitation light having a specific wavelength between wavelengths “340 to 350 nm” and wavelength “420 to The specific fluorescence between 430 nm "is used to measure the fluorescence intensity of the membrane supply water, membrane filtration water, etc., and the membrane supply water, membrane filtration is measured by the absorptiometers constituting each water quality detection device 10,22. Use a specific wavelength that can best measure water quality such as water, for example, a specific wavelength between wavelengths “250-270 nm”, or an absorbance for light of a specific wavelength between wavelengths “380-400 nm” to supply the membrane Measure the absorbance of water, membrane filtered water, etc.

また、この動作と並行し、膜ろ過制御装置6から供給される制御信号によって、通常運転が指示されているとき、膜ユニット2毎に、水道水源3から取水し、前処理装置8で前処理を行い、濁質、スケール、シリカ、金属酸化物、有機物、微生物などのファウリング物質を除去した後、膜供給水として、膜供給水槽9に貯留するとともに、膜供給水ポンプ11を動作させて、膜供給水槽9→膜供給水ポンプ11→流量計12→膜ユニット2の各膜モジュール7→バルブ17→流量計18→膜供給水槽9なる経路で、膜供給水の一部を循環させて、膜間差圧、膜ろ過水生成量などを調整しながら、膜ユニット2の各膜モジュール7→流量計16→バルブ20→膜ろ過水槽21→流量計23→給水網4→需要家なる経路で、膜ユニット2の各膜モジュール7によって生成された膜ろ過水を需要家に供給する。また、膜供給水の水質によっては、膜モジュール7→バルブ17→流量計18→膜供給水槽9なる経路を省略して、膜供給水ポンプ11から排出される膜供給水の全量を膜ユニット2に供給するデットエンド方式で膜供給水をろ過することもできる。また、この動作と並行し、各流量計12、18、16、23によって、膜供給水槽9→流量計12→膜ユニット2なる経路で、膜ユニット2に供給される膜供給水の流量、膜ユニット2→バルブ17→流量計18→膜供給水槽9に戻される膜供給水の流量、膜ユニット2→流量計16→バルブ20→膜ろ過水槽21なる経路で、膜ろ過水槽21に供給される膜ろ過水の流量、膜ろ過水槽21→流量計23→給水網4→需要家なる経路で、需要家に供給される膜ろ過水の流量を各々、測定して、測定結果(計測信号)を膜ろ過制御装置6に供給する。   In parallel with this operation, when normal operation is instructed by a control signal supplied from the membrane filtration control device 6, water is taken from the tap water source 3 for each membrane unit 2 and pretreated by the pretreatment device 8. After removing fouling substances such as turbidity, scale, silica, metal oxide, organic matter, and microorganisms, the membrane supply water is stored in the membrane supply water tank 9 and the membrane supply water pump 11 is operated. , A part of the membrane feed water is circulated in the path of the membrane feed water tank 9 → the membrane feed water pump 11 → the flow meter 12 → the membrane modules 7 of the membrane unit 2 → the valve 17 → the flow meter 18 → the membrane feed water tank 9. The membrane module 7 of the membrane unit 2 → the flow meter 16 → the valve 20 → the membrane filtration water tank 21 → the flow meter 23 → the water supply network 4 → the customer's route while adjusting the transmembrane pressure difference, the amount of membrane filtrate water, etc. In the membrane unit 2, each membrane module Supplied to customers membrane filtration water produced by Yuru 7. Depending on the quality of the membrane feed water, the path of the membrane module 7 → valve 17 → flow meter 18 → membrane feed water tank 9 may be omitted, and the total amount of the membrane feed water discharged from the membrane feed water pump 11 may be reduced to the membrane unit 2. The membrane feed water can also be filtered by a dead end system that feeds the water. In parallel with this operation, the flow rate of the membrane supply water supplied to the membrane unit 2 through the path of the membrane supply water tank 9 → the flow meter 12 → the membrane unit 2 by each flow meter 12, 18, 16, 23. The flow rate of the membrane feed water returned to the unit 2 → the valve 17 → the flow meter 18 → the membrane feed water tank 9, and the membrane unit 2 → the flow meter 16 → the valve 20 → the membrane filtration water tank 21 is supplied to the membrane filtration water tank 21. The flow rate of the membrane filtration water, the membrane filtration water tank 21 → the flow meter 23 → the water supply network 4 → the route of the customer, respectively, the flow rate of the membrane filtration water supplied to the customer is measured, and the measurement result (measurement signal) is obtained. It supplies to the membrane filtration control apparatus 6.

また、膜ろ過制御装置6から供給される制御信号によって、逆洗浄運転が指示されているとき、逆洗浄運転に指定された膜ユニット2の膜供給水ポンプ11を運転停止するとともに、各バルブ15、17を閉状態にした後、バルブ20の流入、吐出方向を切り替えて、逆洗浄水ポンプ24と、ブロア26とを運転する。これにより、膜ろ過水槽21→逆洗浄水ポンプ24→バルブ20→流量計16→膜ユニット2の各膜モジュール7なる経路で、逆洗浄運転が指示された膜ユニット2の各膜モジュール7に膜ろ過水(逆洗浄水)が供給されるとともに、ブロア26→膜ユニット2の各膜モジュール7なる経路で、空気が供給されて、膜ユニット2の各膜モジュール7が逆洗浄され、膜ユニット2の各膜モジュール7→流量計25→排水槽なる経路で、膜ユニット2から出る逆洗浄水が排出される。また、この動作と並行し、各流量計16、25によって、膜ユニット2に供給された逆洗浄水の流量、膜ユニット2から排出される逆洗浄水の流量を各々、測定して、測定結果(計測信号)を膜ろ過制御装置6に供給する。   When the reverse cleaning operation is instructed by the control signal supplied from the membrane filtration control device 6, the operation of the membrane supply water pump 11 of the membrane unit 2 designated for the reverse cleaning operation is stopped, and each valve 15 , 17 are closed, and the backwash water pump 24 and the blower 26 are operated by switching the inflow and discharge directions of the valve 20. Accordingly, the membrane module 7 of the membrane unit 2 in which the reverse cleaning operation is instructed through the path of the membrane filtration water tank 21 → the reverse washing water pump 24 → the valve 20 → the flow meter 16 → the membrane module 2 is designated as a membrane While filtered water (backwash water) is supplied, air is supplied through a path of each membrane module 7 of the blower 26 → the membrane unit 2, and each membrane module 7 of the membrane unit 2 is backwashed. The backwash water discharged from the membrane unit 2 is discharged through the path of each membrane module 7 → flow meter 25 → drainage tank. In parallel with this operation, the flow rate of backwash water supplied to the membrane unit 2 and the flow rate of backwash water discharged from the membrane unit 2 are measured by the flow meters 16 and 25, respectively. (Measurement signal) is supplied to the membrane filtration control device 6.

また、膜ろ過制御装置6から供給される制御信号によって、薬品洗浄運転が指示されているとき、薬品洗浄運転に指定された膜ユニット2の膜供給水ポンプ11を運転停止するとともに、各バルブ15、17を閉状態にした後、バルブ20の流入、吐出方向を切り替える。これにより、薬品貯留槽19→バルブ20→流量計16→膜ユニット2の各膜モジュール7なる経路で、薬品洗浄運転が指示された膜ユニット2の各膜モジュール7に薬品が供給されて、膜ユニット2の各膜モジュール7が薬品洗浄され、膜ユニット2の各膜モジュール7→流量計25→排水槽なる経路で、薬品洗浄運転が指示された膜ユニット2から出る薬品が排出される。また、この動作と並行し、各流量計16、25によって、膜ユニット2に供給された薬品の流量、膜ユニット2から排出される薬品の流量を各々、測定し、これらの各測定動作で得られた測定信号を膜ろ過制御装置6に供給する。   When the chemical cleaning operation is instructed by the control signal supplied from the membrane filtration control device 6, the membrane supply water pump 11 of the membrane unit 2 designated for the chemical cleaning operation is stopped, and each valve 15 , 17 are closed, and the inflow and discharge directions of the valve 20 are switched. Thus, the chemical is supplied to each membrane module 7 of the membrane unit 2 in which the chemical cleaning operation is instructed through the path of the chemical storage tank 19 → the valve 20 → the flow meter 16 → the membrane unit 2. Each membrane module 7 of the unit 2 is cleaned with chemicals, and the chemicals exiting from the membrane unit 2 for which the chemical cleaning operation is instructed are discharged through the path of each membrane module 7 of the membrane unit 2 → flow meter 25 → drainage tank. In parallel with this operation, the flow rate of the chemical supplied to the membrane unit 2 and the flow rate of the chemical discharged from the membrane unit 2 are measured by the flow meters 16 and 25, respectively. The obtained measurement signal is supplied to the membrane filtration control device 6.

<膜ろ過制御装置6の説明>
また、膜ろ過制御装置6は、膜ろ過設備5に対し、計測信号の取り込み、制御信号の供給を行うプロセス入出力部27と、プロセス入出力部27で取り込まれた計測信号に基づき、膜ろ過設備5で処理される膜供給水、膜ろ過水、逆洗浄水などの水質を検知して水質情報を演算する水質情報演算部28と、膜ろ過設備5の稼働状況を画面表示しながら、オペレータが入力した当日の曜日情報、指示情報などを取り込むヒューマン・インタフェース入出力部29と、プロセス入出力部27で取り込まれた計測信号に基づき、膜ろ過設備5から需要家に供給された膜ろ過水の水需要実績(温度、圧力、流量などの実績情報)を曜日情報とともに記憶するとともに、水質情報演算部28の演算結果などを記憶する水需要実績記憶部30と、ヒューマン・インタフェース入出力部29から出力される当日の曜日情報、指示情報に基づき、水需要実績記憶部30に記憶されている各曜日別の水需要実績(過去の水需要実績)などを統計処理して、当日の水需要を予測し、水需要予測値を算出する水需要予測部31と、水需要予測部31の予測結果、水需要実績記憶部30に記憶されている水質情報演算部28の演算結果などに基づき、膜ろ過設備5の運用計画を作成する膜ろ過システム運用計画部32と、プロセス入出力部27で取り込まれた計測信号に基づき、膜ろ過設備5に設けられた各膜供給水ポンプ11、各逆洗浄水ポンプ24、各バルブ15、17、20などの各機器の運転内容を判断することによって、膜ろ過システム運用計画部32から出力される運用計画を実現するのに必要な制御信号を生成して、プロセス入出力部27から膜ろ過設備5に供給し、膜ろ過設備5に設けられた各膜供給水ポンプ11、各逆洗浄水ポンプ24、各バルブ15、17、20などの運転を制御する膜ろ過システム制御部33とを備えている。
<Description of Membrane Filtration Control Device 6>
Further, the membrane filtration control device 6 receives the measurement signal from the membrane filtration equipment 5 and supplies the control signal to the membrane input / output unit 27, and the membrane filtration based on the measurement signal fetched by the process input / output unit 27. The water quality information calculation unit 28 that detects the water quality of the membrane supply water, membrane filtrate water, backwash water, and the like processed by the facility 5 and calculates the water quality information, and the operation status of the membrane filtration facility 5 are displayed on the screen. Based on the measurement signal fetched by the human interface input / output unit 29 and the process input / output unit 27 for fetching the day information, instruction information, etc. of the day of the day inputted by the membrane filtration water supplied to the customer from the membrane filtration equipment 5 Water demand record (actual information such as temperature, pressure, flow rate, etc.) is stored together with the day of the week information, and the water demand record storage unit 30 for storing the calculation result of the water quality information calculation unit 28 and the human Based on the day of the week information and instruction information output from the interface input / output unit 29, statistical processing is performed on the water demand results (past water demand results) for each day of the week stored in the water demand result storage unit 30. The water demand prediction unit 31 that predicts the water demand of the day and calculates the water demand prediction value, the prediction result of the water demand prediction unit 31, and the water quality information calculation unit 28 stored in the water demand result storage unit 30 Based on the calculation result, the membrane filtration system operation planning unit 32 for creating the operation plan of the membrane filtration facility 5 and the membrane supply provided in the membrane filtration facility 5 based on the measurement signal taken in by the process input / output unit 27 Necessary for realizing the operation plan output from the membrane filtration system operation planning unit 32 by judging the operation content of each device such as the water pump 11, each backwash water pump 24, each valve 15, 17, 20. A control signal is generated and supplied from the process input / output unit 27 to the membrane filtration equipment 5, and each membrane supply water pump 11, each backwash water pump 24, and each valve 15, 17, 20 provided in the membrane filtration equipment 5. The membrane filtration system control part 33 which controls operation | movement of these is provided.

そして、プロセス入出力部27によって、膜ろ過設備5に設けられた各水質検知装置10、22、各センサ13、各流量計12、16、18、25などから出力される計測信号を取り込み、曜日毎の水需要実績(温度、圧力、流量などの実績情報)を水需要実績記憶部30に記憶するとともに、水質情報演算部28などに計測信号を各々、解析し、解析処理で得られる水質情報を水需要実績記憶部30に記憶する。また、この動作と並行し、ヒューマン・インタフェース入出力部29に膜ろ過設備5の稼働内容などを画面表示しながら、ヒューマン・インタフェース入出力部29に入力された当日の曜日情報、指示内容などに基づき、水需要実績記憶部30に記憶されている曜日毎の水需要実績(過去の水需要実績)のうち、当日の曜日に対応する過去の水需要実績と、過去数十日〜数百日分の水需要実績とを読み出し、水需要予測部31に統計処理し、当日の水需要予測値を算出するとともに、この水需要予測値に基づき、膜ろ過システム運用計画部32に所定時間毎、例えば1時間毎の運用計画を作成した後、水需要実績記憶部30に記憶されている水質情報などに応じて、運用計画を修正する。   The process input / output unit 27 captures measurement signals output from the water quality detection devices 10 and 22, the sensors 13, the flow meters 12, 16, 18, and 25 provided in the membrane filtration facility 5, Each water demand record (actual information such as temperature, pressure, flow rate, etc.) is stored in the water demand record storage unit 30, and each measurement signal is analyzed in the water quality information calculation unit 28, and the water quality information obtained by analysis processing. Is stored in the water demand record storage unit 30. In parallel with this operation, the operation information of the membrane filtration equipment 5 is displayed on the human interface input / output unit 29 on the screen while the day of the week information and instruction content input to the human interface input / output unit 29 are displayed. Based on the water demand results (past water demand results) for each day of the week stored in the water demand result storage unit 30, the past water demand results corresponding to the day of the day and the past several tens to several hundreds days And the water demand forecasting unit 31 is statistically processed to calculate the water demand forecast value for the day, and based on the water demand forecast value, the membrane filtration system operation planning unit 32 is given at predetermined intervals. For example, after creating an operation plan for every hour, the operation plan is corrected according to the water quality information stored in the water demand record storage unit 30.

また、この動作と並行し、プロセス入出力部27で取り込まれた計測信号を膜ろ過システム制御部33に解析し、膜ろ過設備5に設けられた各膜供給水ポンプ11、各逆洗浄水ポンプ24、各バルブ15、17、20、各ブロア26などの各機器の運転内容を判断することによって、膜ろ過システム運用計画部32から出力される運用計画を実現するのに必要な制御信号を生成して、プロセス入出力部27から膜ろ過設備5に供給し、膜ろ過設備5に設けられた各膜供給水ポンプ11、各逆洗浄水ポンプ24、各バルブ15、17、20、各ブロア26などの運転内容を制御し、膜ろ過水生成運転、物理洗浄運転、薬品洗浄運転、膜モジュール7の交換作業などを行わせる。   In parallel with this operation, the measurement signal taken in by the process input / output unit 27 is analyzed by the membrane filtration system control unit 33, and each membrane supply water pump 11 and each backwash water pump provided in the membrane filtration equipment 5 are analyzed. 24. Generate control signals necessary to realize the operation plan output from the membrane filtration system operation planning unit 32 by judging the operation content of each device such as the valves 15, 17, 20, and the blowers 26. Then, each membrane supply water pump 11, each backwash water pump 24, each valve 15, 17, 20, each blower 26 provided to the membrane filtration facility 5 is supplied from the process input / output unit 27. The operation content such as membrane filtration water generation operation, physical cleaning operation, chemical cleaning operation, and replacement operation of the membrane module 7 are performed.

<膜モジュール7の物理洗浄、薬品洗浄、交換時期の説明>
次に、数式を使用し、膜ろ過制御装置6に設けられた水質情報演算部28の演算内容について、さらに説明する。
<Explanation of physical cleaning, chemical cleaning and replacement of membrane module 7>
Next, the calculation contents of the water quality information calculation unit 28 provided in the membrane filtration control device 6 will be further described using mathematical expressions.

[単一膜供給水質負荷積算値が指定された場合]
まず、ヒューマン・インタフェース入出力部29が操作されて、1種類の水質情報に対する膜供給水質負荷積算値の演算指示が入力されたときには、水質情報演算部28によって、N個ある膜ユニット2の1つ、例えばk番目の膜ユニット2が選択されて、流量計12で検知された膜供給水量“Qk,1”と、水質検知装置10で検知された1種類の水質情報、例えば膜供給水濁度“Ck,1”とが取り込まれて、次式に示す演算が行われ、k番目の膜ユニット2に対する膜供給水質負荷量“Lk,1”が算出される。
[When single membrane supply water quality load integrated value is specified]
First, when the human interface input / output unit 29 is operated to input a calculation instruction of the membrane supply water quality load integrated value for one type of water quality information, the water quality information calculation unit 28 sets 1 of N membrane units 2. For example, when the k-th membrane unit 2 is selected, the amount of water supplied to the membrane “Q k, 1 ” detected by the flow meter 12, and one type of water quality information detected by the water quality detection device 10, for example, membrane supply water The turbidity “C k, 1 ” is taken in and the calculation shown in the following equation is performed to calculate the membrane supply water quality load “L k, 1 ” for the k th membrane unit 2.

k,1=Qk,1×Ck,1 …(1)
但し、k:k=1,…,N
k,1:k番目の膜ユニット2に対する膜供給水質負荷量
k,1:膜供給水量
k,1:膜供給水濁度
次に、次式に示す演算が行われて、今回の膜供給水質負荷量“Lk,1”、水需要実績記憶部30に記憶されている水質情報(前回までの膜供給水質負荷量の積算値“Sk,1”)から膜供給水質負荷量の積算値“Sk,1”が算出され、これが今回の水質情報として、水需要実績記憶部30に記憶される。
L k, 1 = Q k, 1 × C k, 1 (1)
Where k: k = 1,..., N
L k, 1 : Membrane supply water quality load quantity for the k-th membrane unit 2 Q k, 1 : Membrane supply water quantity C k, 1 : Membrane supply water turbidity Membrane supply water load “L k, 1 ”, water quality information stored in the water demand record storage unit 30 (integrated value “S k, 1 ” of the membrane supply water load up to the previous time) The integrated value “S k, 1 ” is calculated and stored in the water demand record storage unit 30 as the current water quality information.

k,1=mΣLk,1 …(2)
但し、k=1,…,N
k,1:k番目の膜ユニット2に対する膜供給水質負荷量の積算値(単一 膜供給水質負荷積算値)
:ファウリングに与える影響度合いを示す比例定数
k,1:膜供給水質負荷量
そして、水需要予測部31の統計処理で得られた過去の水需要に基づき、膜ろ過システム運用計画部32によって、所定時間毎、例えば1時間毎の運用計画が作成されたとき、水需要実績記憶部30に記憶されている水質情報などに応じて、運用計画が修正される。
S k, 1 = m 1 ΣL k, 1 (2)
Where k = 1,..., N
S k, 1 : Integrated value of the membrane water supply load for the kth membrane unit 2 (single membrane supply water load integrated value)
m 1 : Proportional constant indicating the degree of influence on fouling L k, 1 : Membrane supply water quality load amount Based on the past water demand obtained by the statistical processing of the water demand prediction unit 31, the membrane filtration system operation planning unit When an operation plan is created every predetermined time, for example, every hour, the operation plan is modified according to the water quality information stored in the water demand record storage unit 30.

これにより、水質情報演算部28で得られた膜供給水質負荷量の積算値“Sk,1”が所定値を越える毎に、物理洗浄、薬品洗浄、膜モジュール交換のどれが必要か判定され、この判定結果に応じて、膜ろ過設備5の運用計画が最適化されて、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数が最少に抑えられ、膜ろ過設備5の消費電力、ランニングコストが低く抑えられる。 Thus, every time the integrated value “S k, 1 ” of the membrane supply water quality load obtained by the water quality information calculation unit 28 exceeds a predetermined value, it is determined whether physical cleaning, chemical cleaning, or membrane module replacement is necessary. Depending on the determination result, the operation plan of the membrane filtration equipment 5 is optimized, the number of physical cleaning times, the number of chemical cleaning times, and the number of membrane module replacements are minimized, and the power consumption and running cost of the membrane filtration equipment 5 are reduced. Is kept low.

また、ファウリングに最も影響を与える濁度については、前処理などにより、濁度が低くなっていることがあり、濁度だけでは、物理洗浄開始時期を判断できないことがある。   In addition, the turbidity that most affects fouling may be low due to pretreatment or the like, and the physical cleaning start time may not be determined by turbidity alone.

例えば、図3に示すように、膜供給水中の濁度と、蛍光強度と、膜間差圧上昇率との関係を見れば分かるように、膜供給水の濁度が高くなるほど、膜間差圧上昇率が増大する。しかし、膜供給水の濁度が同じ場合でも、蛍光強度が高くなるほど、膜間差圧上昇率が増大することがある。   For example, as shown in FIG. 3, as the turbidity in the membrane feed water, the fluorescence intensity, and the rate of increase in the transmembrane pressure difference are understood, the greater the turbidity of the membrane feed water, The rate of pressure increase increases. However, even when the turbidity of the membrane supply water is the same, the increase in transmembrane pressure difference may increase as the fluorescence intensity increases.

このような場合には、膜供給水中の溶存性有機物などの全有機物濃度、蛍光強度、吸光度、鉄イオン成分、マンガンイオン濃度などの金属イオン成分量などのうち、いずれか1つが選択されて、k番目の膜ユニット2に対する膜供給水質負荷量“Lk,1”が演算され、これが水質情報として、水需要実績記憶部30に記憶され、運用計画が修正される。 In such a case, any one of the total organic matter concentration such as dissolved organic matter in the membrane supply water, fluorescence intensity, absorbance, iron ion component, metal ion component amount such as manganese ion concentration, etc. is selected, The membrane supply water quality load amount “L k, 1 ” for the k-th membrane unit 2 is calculated, and this is stored as water quality information in the water demand record storage unit 30 to correct the operation plan.

[単一水質負荷差分積算値が指定された場合]
また、ヒューマン・インタフェース入出力部29が操作されて、1種類の水質情報に対応する差分積算値の演算する指示が入力されたときには、水質情報演算部28によって、N個ある膜ユニット2の1つ、例えばk番目の膜ユニット2が選択されて、各流量計11、16で検知された膜供給水量“Qk,1”、膜ろ過水量“Qk,2”、各水質検知装置10、22で検知された1種類の水質情報、例えば膜供給水濁度“Ck,1”、膜ろ過水濁度“Ck,1’”と、水需要実績記憶部30に記憶されている前回までの水質情報(前回までの膜供給水質負荷量と、膜ろ過水質負荷量との差分値“Sk,2”)とが取り込まれて、次式に示す演算が行われ、膜供給水質負荷量と、膜ろ過水質負荷量との差分値“Sk,2”が求められ、今回の水質情報として、水需要実績記憶部30に記憶される。
[When single water quality load difference integrated value is specified]
In addition, when the human interface input / output unit 29 is operated and an instruction to calculate a difference integrated value corresponding to one type of water quality information is input, the water quality information calculation unit 28 sets 1 of N membrane units 2. For example, when the k-th membrane unit 2 is selected, the membrane supply water amount “Q k, 1 ” detected by the flow meters 11, 16, the membrane filtration water amount “Q k, 2 ”, the water quality detection devices 10, One type of water quality information detected at 22, for example, membrane supply water turbidity “C k, 1 ”, membrane filtered water turbidity “C k, 1 ′ ”, and the previous time stored in the water demand record storage unit 30 Up to the previous time (the difference value “S k, 2 ” between the membrane supply water load and the membrane filtration water load up to the previous time) is taken and the calculation shown in the following equation is performed, and the membrane supply water load The difference value “S k, 2 ” between the amount and the membrane filtration water load is calculated It is stored in the water demand record storage unit 30 as the water quality information of the times.

k,2=nΣ(Qk,1×Ck,1−Qk,2×Ck,1’)…(3)
但し、k=1,…,N
k,1:k番目の膜ユニット2に対する膜供給水質負荷量と、膜ろ過 水質負荷量との差分積算値(単一水質負荷差分積算値)
:ファウリングに与える影響度合いを示す比例定数
k,1:膜供給水量
k,1:膜供給水濁度
k,2:膜ろ過水量
k,1’:膜ろ過水濁度
そして、水需要予測部31の統計処理で得られた過去の水需要に基づき、膜ろ過システム運用計画部32によって、所定時間毎、例えば1時間毎の運用計画が作成されたとき、水需要実績記憶部30に記憶されている水質情報などに応じて、運用計画が修正される。
S k, 2 = n 1 Σ (Q k, 1 × C k, 1 −Q k, 2 × C k, 1 ′ ) (3)
Where k = 1,..., N
k, 1 : The difference integrated value between the membrane water supply load amount for the k-th membrane unit 2 and the membrane filtration water load amount (single water load difference integrated value)
n 1 : Proportional constant indicating the degree of influence on fouling Q k, 1 : Membrane feed water amount C k, 1 : Membrane feed water turbidity Q k, 2 : Membrane filtrate water amount C k, 1 ' : Membrane filtrate water turbidity And when the operation plan for every predetermined time, for example, every hour, is created by the membrane filtration system operation plan part 32 based on the past water demand obtained by the statistical processing of the water demand prediction part 31, the water demand record The operation plan is modified according to the water quality information stored in the storage unit 30.

これにより、図4に示すように、膜ユニット2に対する膜供給水質負荷量と、膜ろ過水質負荷量との差分値“Sk,2”に応じて、物理洗浄>薬品洗浄>膜モジュール交換の順で、物理洗浄、薬品洗浄、膜モジュール交換されるように、膜ろ過設備5の運用計画が最適化されて、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数が最少に抑えられ、膜ろ過設備5の消費電力、ランニングコストが低く抑えられる。 Accordingly, as shown in FIG. 4, according to the difference value “S k, 2 ” between the membrane water supply load amount and the membrane filtration water load amount for the membrane unit 2, physical cleaning> chemical cleaning> membrane module replacement The operation plan of the membrane filtration equipment 5 is optimized so that the physical cleaning, chemical cleaning, and membrane module replacement are performed in order, and the number of physical cleaning times, chemical cleaning times, and membrane module replacement times are minimized. The power consumption and running cost of the filtration facility 5 can be kept low.

この場合にも、前処理などにより、濁度が低くなり、濁度だけで、物理洗浄開始時期を判断できないときには、膜供給水中の溶存性有機物などの全有機物濃度、蛍光強度、吸光度、鉄イオン成分、マンガンイオン濃度などの金属イオン成分量などのうち、いずれか1つが選択されて、k番目の膜ユニット2に対する膜供給水質負荷量と、膜ろ過水質負荷量との差分値“Sk,2”が演算され、これが水質情報として、水需要実績記憶部30に記憶され、運用計画が修正される。 In this case as well, if the turbidity is low due to pretreatment, etc., and it is not possible to determine the physical cleaning start time based on turbidity alone, the concentration of total organic matter such as dissolved organic matter in the membrane feed water, fluorescence intensity, absorbance, iron ion Any one of the component and the metal ion component amount such as manganese ion concentration is selected, and the difference value “S k, between the membrane supply water load amount and the membrane filtration water load amount for the k th membrane unit 2 is selected . 2 "is calculated and stored in the water demand record storage unit 30 as water quality information, and the operation plan is corrected.

[総合膜供給水質負荷積算値]
また、ファウリング因子として様々な水質情報が関与している場合などのように、ヒューマン・インタフェース入出力部29が操作され、総合膜供給水質負荷積算値の演算指示が入力されたときには、水質情報演算部28によって、N個ある膜ユニット2の1つ、例えばk番目の膜ユニット2が選択されて、流量計11で検知された膜供給水量“Qk,1”と、水質検知装置10で検知された複数種類の水質情報、例えば膜供給水濁度“Ck,1”、膜供給水蛍光強度“Ck,2”、膜供給水吸光度“Ck,3”、膜供給水全有機炭素濃度“Ck,4”、膜供給水金属イオン濃度“Ck,5”などと、水需要実績記憶部30に記憶されている前回までの水質情報(前回までの総合膜供給水質負荷量の積算値“Sk,T1”)とが取り込まれて、次式に示す演算が行われ、k番目の膜ユニット2に対する総合膜供給水質負荷量の積算値“Sk,T1”が求められ、水質情報として、水需要実績記憶部30に記憶される。
[Integrated membrane supply water quality load integrated value]
Further, when the human interface input / output unit 29 is operated and a calculation instruction for the integrated membrane supply water quality load integrated value is input, such as when various types of water quality information are involved as fouling factors, the water quality information One of the N membrane units 2, for example, the k-th membrane unit 2 is selected by the arithmetic unit 28, and the membrane supply water amount “Q k, 1 ” detected by the flow meter 11 and the water quality detection device 10 Plural kinds of detected water quality information, for example, membrane feed water turbidity “C k, 1 ”, membrane feed water fluorescence intensity “C k, 2 ”, membrane feed water absorbance “C k, 3 ”, membrane feed water total organic Carbon concentration “C k, 4 ”, membrane supply water metal ion concentration “C k, 5 ”, and the like, and water quality information up to the previous time stored in the water demand record storage unit 30 (total membrane supply water quality load up to the previous time) of the integrated value "S k, T1") Togato Filled-in, it performs the operation shown in the following equation, the integrated value of the total film feed water loading for the k-th film unit 2 "S k, T1" is obtained, as the water quality information, the water demand record storage unit 30 Remembered.

k,T1=mΣ(Qk,1×Ck,1
十mΣ(Qk,1×Ck,2
十mΣ(Qk,1×Ck,3
十mΣ(Qk,1×Ck,4
十mΣ(Qk,1×Ck,5) …(4)
但し、k=1,…,N
k,T1:k番目の膜ユニット2に対する総合膜供給水質負荷量の積算値 (総合膜供給水質負荷積算値)
k,1:膜供給水量
k,1:膜供給水濁度
k,2:膜供給水蛍光強度
k,3:膜供給水吸光度
k,4:膜供給水全有機炭素濃度
k,5:膜供給水金属イオン濃度
:ファウリングに与える影響度合いを示す比例定数
:ファウリングに与える影響度合いを示す比例定数
:ファウリングに与える影響度合いを示す比例定数
:ファウリングに与える影響度合いを示す比例定数
:ファウリングに与える影響度合いを示す比例定数
そして、水需要予測部31の統計処理で得られた過去の水需要に基づき、膜ろ過システム運用計画部32によって、所定時間毎、例えば1時間毎の運用計画が作成されたとき、水需要実績記憶部30に記憶されている水質情報などに応じて、運用計画が修正される。
S k, T1 = m 1 Σ (Q k, 1 × C k, 1 )
10 m 2 Σ (Q k, 1 × C k, 2 )
Ten m 3 Σ (Q k, 1 × C k, 3 )
Ten m 4 Σ (Q k, 1 × C k, 4 )
Ten m 5 Σ (Q k, 1 × C k, 5 ) (4)
Where k = 1,..., N
S k, T1 : Integrated value of total membrane supply water quality load amount for k-th membrane unit 2 (total membrane supply water quality load integration value)
Q k, 1 : Membrane feed water amount C k, 1 : Membrane feed water turbidity C k, 2 : Membrane feed water fluorescence intensity C k, 3 : Membrane feed water absorbance C k, 4 : Membrane feed water total organic carbon concentration C k, 5 : Membrane supply water metal ion concentration m l : proportional constant indicating the degree of influence on fouling m 2 : proportional constant indicating the degree of influence on fouling m 3 : proportional constant indicating the degree of influence on fouling m 4 : Proportional constant indicating the degree of influence on fouling m 5 : Proportional constant indicating the degree of influence on fouling And, based on the past water demand obtained by the statistical processing of the water demand forecasting unit 31, operation of the membrane filtration system When the operation plan is created every predetermined time, for example, every hour, by the planning unit 32, the operation plan is corrected according to the water quality information stored in the water demand record storage unit 30.

これにより、膜ユニット2の総合膜供給水質負荷量の積算値“Sk,T1”に応じて、膜ろ過設備5の運用計画が最適化されて、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数が最少に抑えられ、膜ろ過設備5の消費電力、ランニングコストが低く抑えられる。 As a result, the operation plan of the membrane filtration equipment 5 is optimized according to the integrated value “S k, T1 ” of the total membrane supply water quality load of the membrane unit 2, and the number of physical cleaning times, the number of chemical cleaning times, The number of exchanges can be minimized, and the power consumption and running cost of the membrane filtration equipment 5 can be kept low.

[総合水質負荷差分積算値]
また、ファウリング因子として様々な水質情報が関与している場合などのように、ヒューマン・インタフェース入出力部29が操作され、総合膜供給水質負荷差分積算値の演算指示が入力されたときには、N個ある膜ユニット2の1つ、例えばk番目の膜ユニット2が選択されて、各流量計12、16で検知された膜供給水量“Qk,1”、膜ろ過水量“Qk,2”と、各水質検知装置10、22で検知された複数種類の水質情報、例えば膜供給水濁度“Ck,1”、膜ろ過水濁度“Ck,1’”、膜供給水蛍光強度“Ck,2”、膜ろ過水蛍光強度“Ck,2’”、膜供給水吸光度“Ck,3”、膜ろ過水吸光度“Ck,3’”、膜供給水全有機炭素濃度“Ck,4”、膜ろ過水全有機炭素濃度“Ck,4’”、膜供給水金属イオン濃度“Ck,5”膜ろ過水金属イオン濃度“Ck,5’”などと、水需要実績記憶部30に記憶されている前回までの水質情報(前回までの総合水質情報差分負荷量の積算値“Sk,T2”)とが取り込まれて、次式に示す演算が行われ、k番目の膜ユニット2に対する総合水質情報差分負荷量の積算値“Sk,T2”が求められ、水質情報として、水需要実績記憶部30に記憶される。
[Total integrated water quality load difference]
Further, when the human interface input / output unit 29 is operated and a calculation instruction for the integrated membrane supply water quality load difference integrated value is input, such as when various water quality information is involved as a fouling factor, N One of the membrane units 2, for example, the k-th membrane unit 2 is selected, and the membrane supply water amount “Q k, 1 ” and the membrane filtration water amount “Q k, 2 ” detected by the flow meters 12, 16. And a plurality of types of water quality information detected by each of the water quality detection devices 10 and 22, for example, membrane supply water turbidity “C k, 1 ”, membrane filtration water turbidity “C k, 1 ′ ”, and membrane supply water fluorescence intensity “C k, 2 ”, membrane filtration water fluorescence intensity “C k, 2 ′ ”, membrane feed water absorbance “C k, 3 ”, membrane filtrate water absorbance “C k, 3 ′ ”, membrane feed water total organic carbon concentration "C k, 4", membrane filtration water total organic carbon concentration "C k, 4 '", the film feed water metal ions And such concentration "C k, 5" membrane filtration water metal ion concentration "C k, 5 '", up to the previous time stored in the water demand record storage unit 30 the water quality information (comprehensive quality information difference load up to the previous time Integrated value “S k, T2 ”) and the calculation shown in the following equation is performed, and an integrated value “S k, T2 ” of the total water quality information differential load amount for the k th membrane unit 2 is obtained, It is stored in the water demand record storage unit 30 as water quality information.

k,T2=nΣ(Qk,1×Ck,1−Qk,2×Ck,1’
十nΣ(Qk,1×Ck,2−Qk,2×Ck,2’
十nΣ(Qk,1×Ck,3×Qk,2×Ck,3’
十nΣ(Qk,1×Ck,4−Qk,2×Ck,4’
十nΣ(Qk,1×Ck,5−Qk,2×Ck,5’) …(5)
但し、k:k=1,…,N
k,T2:k番目の膜ユニット2に対する総合水質情報差分負荷量の積算 値(総合水質負荷差分積算値)
k,1:膜供給水量
k,1:膜供給水濁度
k,2:膜ろ過水量
k,1’:膜ろ過水濁度
k,2:膜供給水蛍光強度
k,2’:膜ろ過水蛍光強度
k,3:膜供給水吸光度
k,3’:膜ろ過水吸光度
k,4:膜供給水全有機炭素濃度
k,4’:膜ろ過水全有機炭素濃度
k,5:膜供給水金属イオン濃度
k,5’:膜ろ過水金属イオン濃度
:ファウリングに与える影響度合いを示す比例定数
:ファウリングに与える影響度合いを示す比例定数
:ファウリングに与える影響度合いを示す比例定数
:ファウリングに与える影響度合いを示す比例定数
:ファウリングに与える影響度合いを示す比例定数
そして、水需要予測部31の統計処理で得られた過去の水需要に基づき、膜ろ過システム運用計画部32によって、所定時間毎、例えば1時間毎の運用計画が作成されたとき、水需要実績記憶部30に記憶されている水質情報などに応じて、運用計画が修正される。
S k, T2 = n 1 Σ (Q k, 1 × C k, 1 −Q k, 2 × C k, 1 ′ )
10 n 2 Σ (Q k, 1 × C k, 2 −Q k, 2 × C k, 2 ′ )
Ten n 3 Σ (Q k, 1 × C k, 3 × Q k, 2 × C k, 3 ′ )
Ten n 4 Σ (Q k, 1 × C k, 4 −Q k, 2 × C k, 4 ′ )
Ten n 5 Σ (Q k, 1 × C k, 5 −Q k, 2 × C k, 5 ′ ) (5)
Where k: k = 1,..., N
S k, T2 : Integrated value of total water quality information differential load amount for k th membrane unit 2 (total water quality load differential integrated value)
Q k, 1 : Membrane supply water amount C k, 1 : Membrane supply water turbidity Q k, 2 : Membrane filtration water amount C k, 1 ' : Membrane filtration water turbidity C k, 2 : Membrane supply water fluorescence intensity C k, 2 ′ : Membrane filtration water fluorescence intensity C k, 3 : Membrane feed water absorbance C k, 3 ′ : Membrane filtrate water absorbance C k, 4 : Membrane feed water total organic carbon concentration C k, 4 ′ : Membrane filtrate water total organic Carbon concentration C k, 5 : Membrane supply water metal ion concentration C k, 5 ′ : Membrane filtration water metal ion concentration n 1 : Proportional constant indicating the degree of influence on fouling n 2 : Proportion indicating the degree of influence on fouling Constant n 3 : Proportional constant indicating the degree of influence on fouling n 4 : Proportional constant indicating the degree of influence on fouling n 5 : Proportional constant indicating the degree of influence on fouling and statistical processing of water demand prediction unit 31 Based on the past water demand obtained in Filtration system operation plan unit 32, every predetermined time, for example, when the operation plan hourly is created, depending on the water quality information stored in the water demand record storage unit 30, operation plan is modified.

これにより、膜ユニット2の総合水質負荷差分積算値“Sk,T2”に応じて、膜ろ過設備5の運用計画が最適化され、図5に示すように、k番目の膜ユニット2に対する総合水質負荷差分積算値“Sk,T2”が所定値を超える毎に、物理洗浄、…、薬品洗浄、…、膜モジュール交換が行われて、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数が最少に抑えられ、膜ろ過設備5の消費電力、ランニングコストが低く抑えられる。 Thereby, the operation plan of the membrane filtration equipment 5 is optimized according to the integrated water quality load difference integrated value “S k, T2 ” of the membrane unit 2, and as shown in FIG. Every time the water load difference integrated value “S k, T2 ” exceeds a predetermined value, physical cleaning,..., Chemical cleaning, .. membrane module replacement is performed, physical cleaning frequency, chemical cleaning frequency, membrane module replacement frequency. Can be minimized, and the power consumption and running cost of the membrane filtration equipment 5 can be kept low.

<効果の説明>
このように、この実施形態では、水需要実績記億部30に記憶されている過去の水需要実績に基づき、水需要予測部31に当日の水需要を予測するとともに、水質検知装置10で得られた膜供給水の水質情報、例えば膜供給水濁度“Ck,1”と、流量計12で検知された膜供給水量“Qk,1”とに基づき、水質情報演算部28に膜供給水質負荷量の積算値“Sk,1”を演算し、これら水需要量、膜供給水質負荷量の積算値“Sk,1”に基づき、膜ろ過システム運用計画部32に膜ろ過設備5の運用計画を求め、この運用計画に基づき、膜ろ過システム制御部33に膜ろ過設備5を制御するようにしている。このため、需要家側で必要とした過去の水需要、膜ユニット2の膜供給水質負荷量に応じて、膜ろ過設備5の運用計画を最適化して、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数を最少に抑え、膜ろ過設備の消費電力、ランニングコストを低く抑えることができる。
<Description of effects>
As described above, in this embodiment, the water demand prediction unit 31 predicts the water demand on the day based on the past water demand record stored in the water demand record storage unit 30 and is obtained by the water quality detection device 10. Based on the obtained water quality information of the membrane feed water, for example, the membrane feed water turbidity “C k, 1 ” and the membrane feed water amount “Q k, 1 ” detected by the flow meter 12, The integrated value “S k, 1 ” of the supply water quality load is calculated, and the membrane filtration equipment is installed in the membrane filtration system operation planning unit 32 based on the water demand and the integrated value “S k, 1 ” of the membrane supply water quality load. 5 is obtained, and the membrane filtration system 5 is controlled by the membrane filtration system controller 33 based on this operation plan. For this reason, the operation plan of the membrane filtration equipment 5 is optimized according to the past water demand required on the customer side and the membrane water supply load of the membrane unit 2, and the number of physical washings, the number of chemical washings, the membrane module The number of replacements can be minimized, and the power consumption and running cost of the membrane filtration equipment can be kept low.

また、この実施形態では、水需要実績記億部30に記憶されている過去の水需要実績に基づき、水需要予測部31に当日の水需要を予測するとともに、水質検知装置10、22で得られた1種類の水質情報、例えば膜供給水濁度“Ck,1”、膜ろ過水濁度“Ck,1’”と、各流量計11、16で検知された膜供給水量“Qk,1”、膜ろ過水量“Qk,2”とに基づき、水質情報演算部28に膜供給水質負荷量と、膜ろ過水質負荷量との差分値“Sk,2”を演算し、これら水需要量、膜供給水質負荷量と、膜ろ過水質負荷量との差分値“Sk,2”に基づき、膜ろ過システム運用計画部32に膜ろ過設備5の運用計画を求め、この運用計画に基づき、膜ろ過システム制御部33に膜ろ過設備5を制御するようにしている。このため、需要家側で必要とした過去の水需要、膜供給水質負荷量と、膜ろ過水質負荷量との差分値“Sk,2”に応じて、膜ろ過設備5の運用計画を最適化して、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数を最少に抑え、膜ろ過設備5の消費電力、ランニングコストを低く抑えることができる。 Further, in this embodiment, based on the past water demand record stored in the water demand record storage unit 30, the water demand prediction unit 31 predicts the water demand of the day, and the water quality detection devices 10 and 22 obtain it. One kind of water quality information obtained, for example, membrane supply water turbidity “C k, 1 ”, membrane filtration water turbidity “C k, 1 ′ ”, and membrane supply water amount “Q” detected by each flow meter 11, 16 Based on k, 1 ”and membrane filtration water amount“ Q k, 2 ”, the water quality information calculation unit 28 calculates a difference value“ S k, 2 ”between the membrane supply water load amount and the membrane filtration water load amount, Based on the difference value “S k, 2 ” between the water demand, the membrane supply water quality load, and the membrane filtration water quality load, the membrane filtration system operation planning unit 32 is requested to obtain an operation plan for the membrane filtration equipment 5. Based on the plan, the membrane filtration system 5 is controlled by the membrane filtration system controller 33. For this reason, the operation plan of the membrane filtration equipment 5 is optimized according to the difference value “S k, 2 ” between the past water demand required by the customer, the membrane water supply load, and the membrane filtration water load. Therefore, the number of physical cleaning times, the number of chemical cleaning times, and the number of membrane module replacements can be minimized, and the power consumption and running cost of the membrane filtration equipment 5 can be kept low.

また、この実施形態では、各水質検知装置10、22に濁度計を配置して、膜供給水濁度“Ck,1”と、膜ろ過水濁度“Ck,1’”とを測定し、これら膜供給水濁度“Ck,1”と、膜ろ過水濁度“Ck,1’”とを指標にして、水質情報演算部28に膜ユニット2の膜供給水質負荷量、または膜ろ過水質負荷量などを演算するようにしている。このため、需要家側で必要とした過去の水需要に応じて、膜ろ過設備5の運用計画を算出するとき、濁度分析処理で現在の水質情報を算出し、この水質情報と、過去の水質情報とを加味して、物理洗浄回数、薬品洗浄回数、膜ユニットの交換回数などを低く抑える最適な運用計画を算出し、膜ろ過設備の消費電力、ランニングコストを低く抑えることができる。 In this embodiment, a turbidity meter is arranged in each water quality detection device 10, 22, and the membrane supply water turbidity “C k, 1 ” and the membrane filtration water turbidity “C k, 1 ′ ” are set. Using the measured membrane supply water turbidity “C k, 1 ” and the membrane filtration water turbidity “C k, 1 ′ ” as an index, the water quality information calculation unit 28 sends the membrane supply water quality load of the membrane unit 2 Or the membrane filtration water quality load amount is calculated. For this reason, when calculating the operation plan of the membrane filtration equipment 5 according to the past water demand required on the customer side, the current water quality information is calculated by the turbidity analysis process, and the water quality information and the past Taking into account the water quality information, it is possible to calculate an optimal operation plan that keeps the number of times of physical cleaning, the number of times of chemical cleaning, the number of replacements of the membrane unit, etc. low, and the power consumption and running cost of the membrane filtration equipment can be kept low.

また、この実施形態では、膜ろ過設備5の各水質検知装置10、22に蛍光分析計を配置し、水質情報を検知するとき、波長“340〜350nm”の間にある特定波長の励起光と、波長“420〜430nm”の間にある特定の蛍光を使用して、膜供給水、膜ろ過水の蛍光強度を測定し、膜供給水の膜供給水蛍光強度“Ck,2”、膜ろ過水の膜ろ過水蛍光強度“Ck,2’”を指標にして、水質情報演算部28に膜ユニット2の膜供給水質負荷量、または膜ろ過水質負荷量などを演算するようにしている。このため、需要家側で必要とした過去の水需要に応じて、膜ろ過設備5の運用計画を算出するとき、蛍光分析処理で現在の水質情報を算出し、この水質情報と、過去の水質情報とを加味して、物理洗浄回数、薬品洗浄回数、膜ユニットの交換回数などを低く抑える最適な運用計画を算出することで、膜ろ過設備5の消費電力、ランニングコストを低く抑えることができる。 Moreover, in this embodiment, when a fluorescence analyzer is arranged in each water quality detection device 10, 22 of the membrane filtration equipment 5 and water quality information is detected, excitation light having a specific wavelength between wavelengths “340 to 350 nm” , The fluorescence intensity of the membrane feed water and the membrane filtration water is measured using a specific fluorescence between wavelengths “420 to 430 nm”, and the membrane feed water fluorescence intensity “C k, 2 ”, the membrane feed water Using the membrane filtered water fluorescence intensity “C k, 2 ′ ” as an index, the water quality information calculation unit 28 calculates the membrane supply water load amount or the membrane filtration water load amount of the membrane unit 2. . For this reason, when calculating the operation plan of the membrane filtration equipment 5 according to the past water demand required on the customer side, the current water quality information is calculated by the fluorescence analysis process, and this water quality information and the past water quality are calculated. By taking into account the information, calculating the optimum operation plan that keeps the number of physical washings, chemical washings, membrane unit exchanges, etc. low can reduce the power consumption and running cost of the membrane filtration equipment 5. .

また、この実施形態では、膜ろ過設備5の水質検知装置10、22に吸光分析計を配置し、水質情報を検知するとき、波長“250〜270nm”の間にある特定波長、または波長“380〜400nm”の間にある特定波長の光に対する吸光度を使用して、膜供給水、膜ろ過水の吸光度を測定し、膜供給水の膜供給水吸光度“Ck,3”、膜ろ過水の膜ろ過水吸光度“Ck,3’”を指標にして、水質情報演算部28に膜ユニット2の膜供給水質負荷量、または膜ろ過水質負荷量などを演算するようにしている。このため、需要家側で必要とした過去の水需要に応じて、膜ろ過設備5の運用計画を算出するとき、吸光分析処理で現在の水質情報を算出し、この水質情報と、過去の水質情報とを加味して、物理洗浄回数、薬品洗浄回数、膜ユニットの交換回数などを低く抑える最適な運用計画を算出することで、膜ろ過設備5の消費電力、ランニングコストを低く抑えることができる。 Further, in this embodiment, when an absorption spectrometer is disposed in the water quality detection devices 10 and 22 of the membrane filtration facility 5 and water quality information is detected, a specific wavelength between wavelengths “250 to 270 nm” or a wavelength “380” Measure the absorbance of the membrane feed water and membrane filtration water using the absorbance for light of a specific wavelength between ˜400 nm ”and the membrane feed water absorbance“ C k, 3 ”, membrane filtration water. Using the membrane filtered water absorbance “C k, 3 ′ ” as an index, the water quality information calculation unit 28 calculates the membrane supply water load amount or the membrane filtration water load amount of the membrane unit 2. For this reason, when calculating the operation plan of the membrane filtration equipment 5 according to the past water demand required by the customer side, the current water quality information is calculated by the absorption analysis process, and the water quality information and the past water quality are calculated. By taking into account the information, calculating the optimum operation plan that keeps the number of physical washings, chemical washings, membrane unit exchanges, etc. low can reduce the power consumption and running cost of the membrane filtration equipment 5. .

また、この実施形態では、膜ろ過設備5の水質検知装置10、22に全有機炭素計を配置して、膜供給水、膜ろ過水の全有機炭素濃度を測定し、膜供給水の膜供給水全有機炭素濃度“Ck,4”、膜ろ過水の膜ろ過水全有機炭素濃度“Ck,4’”を指標にして、水質情報演算部28に膜ユニット2の膜供給水質負荷量、または膜ろ過水質負荷量などを演算するようにしている。このため、需要家側で必要とした過去の水需要に応じて、膜ろ過設備5の運用計画を算出するとき、全有機炭素濃度分析処理で現在の水質情報を算出し、この水質情報と、過去の水質情報とを加味して、物理洗浄回数、薬品洗浄回数、膜ユニットの交換回数などを低く抑える最適な運用計画を算出することで、膜ろ過設備の消費電力、ランニングコストを低く抑えることができる。 Moreover, in this embodiment, the total organic carbon meter is arrange | positioned in the water quality detection apparatuses 10 and 22 of the membrane filtration equipment 5, the total organic carbon density | concentration of membrane supply water and membrane filtration water is measured, and membrane supply of membrane supply water Using the water total organic carbon concentration “C k, 4 ” and the membrane filtration water total organic carbon concentration “C k, 4 ′ ” as an index, the water quality information calculation unit 28 sends the membrane unit 2 water supply water quality load. Or the membrane filtration water quality load amount is calculated. For this reason, when calculating the operation plan of the membrane filtration equipment 5 according to the past water demand required on the customer side, the current water quality information is calculated by the total organic carbon concentration analysis process, Considering the past water quality information, calculating the optimal operation plan that keeps the number of physical washings, chemical washings, membrane unit exchanges low, etc., keeps the power consumption and running cost of membrane filtration equipment low. Can do.

また、この実施形態では、膜ろ過設備5の水質検知装置10、22に連続測定型イオンクロマトグラフィを配置し、膜供給水、膜ろ過水の鉄イオン成分濃度、またはマンガンイオン成分濃度などを測定し、膜供給水の膜供給水金属イオン濃度“Ck,5”、膜ろ過水の膜ろ過水金属イオン濃度“Ck,5’”を指標にして、水質情報演算部28に膜ユニット2の膜供給水質負荷量、または膜ろ過水質負荷量などを演算するようにしている。このため、需要家側で必要とした過去の水需要に応じて、膜ろ過設備5の運用計画を算出するとき、金属イオン成分分析処理で現在の水質情報を算出し、この水質情報と、過去の水質情報とを加味して、物理洗浄回数、薬品洗浄回数、膜ユニットの交換回数などを低く抑える最適な運用計画を算出することで、膜ろ過設備5の消費電力、ランニングコストを低く抑えることができる。 In this embodiment, continuous measurement type ion chromatography is arranged in the water quality detection devices 10 and 22 of the membrane filtration equipment 5 to measure the iron ion component concentration or the manganese ion component concentration of the membrane supply water and the membrane filtration water. , Using the membrane feed water metal ion concentration “C k, 5 ” and the membrane filtration water metal ion concentration “C k, 5 ′ ” as indicators, The membrane supply water load or the membrane filtration water load is calculated. For this reason, when calculating the operation plan of the membrane filtration equipment 5 according to the past water demand required on the customer side, the current water quality information is calculated by the metal ion component analysis processing, and the water quality information and the past By taking into account the water quality information, it is possible to keep the power consumption and running cost of the membrane filtration equipment 5 low by calculating the optimal operation plan that keeps the number of physical washings, chemical washings, membrane unit exchanges, etc. low. Can do.

また、この実施形態では、膜ろ過設備5の水質検知装置10で得られた膜供給水濁度“Ck,1”、膜供給水蛍光強度“Ck,2”、膜供給水吸光度“Ck,3”、膜供給水全有機炭素濃度“Ck,4”、膜供給水金属イオン濃度“Ck,5”、流量計12で得られた膜供給水量“Qk,1”に基づき、膜ユニット2に供給される膜供給水の膜供給水濁度負荷量積算値、膜供給水蛍光強度負荷量積算値、膜供給水吸光度負荷量積算値、膜供給水全有機炭素濃度負荷量積算値、膜供給水金属イオン濃度負荷量積算値の少なくともいずれか1つ、または組み合わせの総和値(総合膜供給水質負荷積算値“Sk,T1”)を演算するようにしている。このため、需要家側で必要とした過去の水需要に応じて、膜ろ過設備5の運用計画を算出するとき、膜供給水濁度負荷量積算値、膜供給水蛍光強度負荷量積算値、膜供給水吸光度負荷量積算値、膜供給水全有機炭素濃度負荷量積算値、膜供給水金属イオン濃度負荷量積算値の少なくともいずれか1つ、または組み合わせの総和値に基づき、現在の水質情報を算出し、この水質情報と、過去の水質情報とを加味して、物理洗浄回数、薬品洗浄回数、膜ユニットの交換回数などを低く抑える最適な運用計画を算出することで、膜ろ過設備5の消費電力、ランニングコストを低く抑えることができる。 In this embodiment, the membrane supply water turbidity “C k, 1 ”, the membrane supply water fluorescence intensity “C k, 2 ”, and the membrane supply water absorbance “C” obtained by the water quality detection device 10 of the membrane filtration facility 5 are also shown. k, 3 ”, membrane feed water total organic carbon concentration“ C k, 4 ”, membrane feed water metal ion concentration“ C k, 5 ”, membrane feed water amount“ Q k, 1 ”obtained by the flow meter 12 , Membrane feed water turbidity load integrated value, membrane feed water fluorescence intensity load integrated value, membrane feed water absorbance load integrated value, membrane feed water total organic carbon concentration load amount supplied to membrane unit 2 At least one of the integrated value, the membrane supply water metal ion concentration load integrated value, or the total value of the combination (total membrane supply water quality load integrated value “S k, T1 ”) is calculated. For this reason, when calculating the operation plan of the membrane filtration equipment 5 according to the past water demand required on the customer side, the membrane supply water turbidity load integrated value, the membrane supply water fluorescence intensity load integrated value, Current water quality information based on the total value of the membrane feed water absorbance load integrated value, membrane feed water total organic carbon concentration load integrated value, membrane feed water metal ion concentration load integrated value, or a combination Membrane filtration equipment 5 is calculated by taking into account this water quality information and past water quality information, and calculating an optimal operation plan that keeps the number of physical cleaning times, chemical cleaning times, membrane unit replacement times low, etc. Power consumption and running costs can be kept low.

また、この実施形態では、膜ろ過設備5の各水質検知装置10、22で得られた膜供給水濁度“Ck,1”、膜ろ過水濁度“Ck,1’”、膜供給水蛍光強度“Ck,2”、膜ろ過水蛍光強度“Ck,2’”、膜供給水吸光度“Ck,3”、膜ろ過水吸光度“Ck,3’”、膜供給水全有機炭素濃度“Ck,4”、膜ろ過水全有機炭素濃度“Ck,4’”、膜供給水金属イオン濃度“Ck,5”、膜ろ過水金属イオン濃度“Ck,5’”、各流量計12、16で得られた膜供給水量“Qk,1”、膜ろ過水量“Qk,2”に基づき、膜供給水濁度負荷量と膜ろ過水濁度負荷量との差分積算値、膜供給水蛍光強度負荷量と膜ろ過水蛍光強度負荷量との差分積算値、膜供給水吸光度負荷量と膜ろ過水吸光度負荷量との差分積算値、膜供給水全有機炭素濃度負荷量と膜ろ過水全有機炭素濃度負荷量との差分積算値、膜供給水金属イオン濃度負荷量と膜ろ過水金属イオン濃度負荷量との差分積算値の少なくともいずれか1つ、または組み合わせの総和値(総合水質負荷差分積算値“Sk,T2”)を演算するようにしている。 Moreover, in this embodiment, the membrane supply water turbidity “C k, 1 ”, the membrane filtration water turbidity “C k, 1 ′ ” obtained by the water quality detection devices 10 and 22 of the membrane filtration equipment 5, and the membrane supply Water fluorescence intensity “C k, 2 ”, membrane filtration water fluorescence intensity “C k, 2 ′ ”, membrane feed water absorbance “C k, 3 ”, membrane filtrate water absorbance “C k, 3 ′ ”, membrane feed water total Organic carbon concentration “C k, 4 ”, membrane filtered water total organic carbon concentration “C k, 4 ′ ”, membrane supply water metal ion concentration “C k, 5 ”, membrane filtered water metal ion concentration “C k, 5 ′” "Membrane supply water turbidity load amount and membrane filtration water turbidity load amount based on the membrane supply water amount" Q k, 1 "and membrane filtration water amount" Q k, 2 "obtained by the respective flow meters 12 and 16 Difference integrated value of membrane feed water fluorescence intensity load amount and membrane filtrate water fluorescence intensity load amount, difference integrated value of membrane feed water absorbance load amount and membrane filtrate water absorbance load amount, membrane feed water At least one of the difference integrated value between the water total organic carbon concentration load and the membrane filtered water total organic carbon concentration load, and the difference integrated value between the membrane feed water metal ion concentration load and the membrane filtered water metal ion concentration load Or a total sum of the combinations (total water quality load difference integrated value “S k, T2 ”) is calculated.

これにより、需要家側で必要とした過去の水需要に応じて、膜ろ過設備5の運用計画を算出するとき、膜供給水濁度負荷量と膜ろ過水濁度負荷量との差分積算値、膜供給水蛍光強度負荷量と膜ろ過水蛍光強度負荷量との差分積算値、膜供給水吸光度負荷量と膜ろ過水吸光度負荷量との差分積算値、膜供給水全有機炭素濃度負荷量と膜ろ過水全有機炭素濃度負荷量との差分積算値、膜供給水金属イオン濃度負荷量と膜ろ過水金属イオン濃度負荷量との差分積算値の少なくともいずれか1つ、または組み合わせの総和値に基づき、現在の水質情報を算出し、この水質情報と、過去の水質情報とを加味して、物理洗浄回数、薬品洗浄回数、膜ユニットの交換回数などを低く抑える最適な運用計画を算出することで、膜ろ過設備5の消費電力、ランニングコストを低く抑えることができる。   Thereby, when calculating the operation plan of the membrane filtration equipment 5 according to the past water demand required on the customer side, the difference integrated value between the membrane supply water turbidity load amount and the membrane filtration water turbidity load amount , Difference integrated value of membrane feed water fluorescence intensity load amount and membrane filtrate water fluorescence intensity load amount, difference integrated value of membrane feed water absorbance load amount and membrane filtrate water absorbance load amount, membrane feed water total organic carbon concentration load amount Difference value between the total organic carbon concentration load amount and the membrane filtrate water total load, the total difference value of the difference between the membrane feed water metal ion concentration load amount and the membrane filtrate water metal ion concentration load amount, or the total value of the combination Based on the above, the current water quality information is calculated, and this water quality information and past water quality information are taken into account to calculate the optimum operation plan that keeps the number of physical cleaning times, chemical cleaning times, membrane unit replacement times low, etc. Therefore, the power consumption of the membrane filtration equipment 5, Rani Gukosuto can be kept low.

《他の実施形態》
また、上述した実施形態では、単一膜供給水質負荷積算値“Sk,1”、単一水質負荷差分積算値“Sk,2”、総合膜供給水質負荷積算値“Sk,T1”、総合水質負荷差分積算値“Sk,T2”などが所定値(SA)を超えた時点で、物理洗浄、…、薬品洗浄、…、膜モジュール交換を行うようにしているが、単一膜供給水質負荷積算値“Sk,1”、単一水質負荷差分積算値“Sk,2”、総合膜供給水質負荷積算値“Sk,T1”、総合水質負荷差分積算値“Sk,T2”などが所定値(SB)を超えたとき、膜供給水ポンプ11の流量調整または一次停止によって、図6に示すように、物理洗浄開始時期、…、薬品洗浄開始時期、…、膜ユニット2の交換時期をシフトさせたり、図7に示すように、物理洗浄開始時期、…、薬品洗浄開始時期、…、膜ユニット2の交換時期をシフトさせたりしても良い。
<< Other embodiments >>
In the above-described embodiment, the single membrane supply water load integrated value “S k, 1 ”, the single water supply load differential integrated value “S k, 2 ”, and the total membrane supply water load integrated value “S k, T1 ”. When the integrated water quality load difference integrated value “S k, T2 ” exceeds a predetermined value (SA), physical cleaning, chemical cleaning, membrane module replacement is performed. Integrated water quality load integrated value “S k, 1 ”, Single water quality load differential integrated value “S k, 2 ”, Total membrane supplied water quality load integrated value “S k, T1 ”, Total water quality load differential integrated value “S k, When T2 ″ or the like exceeds a predetermined value (SB), the flow rate of the membrane feed water pump 11 is adjusted or temporarily stopped, as shown in FIG. 6, the physical cleaning start time,..., The chemical cleaning start time,. 2 or the physical cleaning start time, as shown in FIG. ..., chemical cleaning start time, ..., membrane unit 2 replacement time may be shifted.

これにより、膜ろ過設備5の浄水能力に余裕がある夜間などに、物理洗浄、…、薬品洗浄、…、膜モジュール交換を行わせて、需要家側の水需要を満たしながら、夜間電力を有効活用し、物理洗浄作業、薬品洗浄作業、膜モジュール交換作業を低コスト化することができる。   This makes it possible to carry out physical cleaning, ..., chemical cleaning, ..., membrane module replacement at night when the water purification capacity of the membrane filtration equipment 5 has a margin, and to effectively use nighttime power while meeting the water demand on the customer side. By utilizing this, physical cleaning work, chemical cleaning work, and membrane module replacement work can be reduced in cost.

また、上述した実施形態では、複数の流量計12、16を使用して、膜ユニット2に供給される膜供給水の膜供給水量“Qk,1”、膜ユニット2から排出される膜ろ過水の膜ろ過水量“Qk,2”を測定するようにしているが、膜供給水ポンプ11の運転時間に基づき、膜ユニット2に供給される膜供給水の膜供給水量“Qk,1”、膜ユニット2から排出される膜ろ過水の膜ろ過水量“Qk,2”を測定するようにしても良い。 In the above-described embodiment, the membrane supply water amount “Q k, 1 ” supplied to the membrane unit 2 and the membrane filtration discharged from the membrane unit 2 using the plurality of flow meters 12 and 16 are used. Although the membrane filtration water amount “Q k, 2 ” of water is measured, the membrane supply water amount “Q k, 1 ” supplied to the membrane unit 2 based on the operation time of the membrane supply water pump 11. “The amount of membrane filtration water“ Q k, 2 ”discharged from the membrane unit 2 may be measured.

このようにすることにより、流量計の使用数を少なくして、設備コストを低く抑えながら、需要家側で必要とした過去の水需要、膜ユニット2の単一膜供給水質負荷積算値“Sk,1”、単一水質負荷差分積算値“Sk,2”、総合膜供給水質負荷積算値“Sk,T1”、総合水質負荷差分積算値“Sk,T2”などに応じて、膜ろ過設備5の運用計画を最適化して、物理洗浄回数、薬品洗浄回数、膜モジュールの交換回数を最少に抑えて、膜ろ過設備5の消費電力、ランニングコストを低く抑えることができる。 By doing so, while the number of flow meters used is reduced and the equipment cost is kept low, the past water demand required on the customer side, the single membrane supply water quality load integrated value “S” of the membrane unit 2 k, 1 ", single water quality load difference integrated value" S k, 2 ", total membrane supply water quality load integrated value" S k, T1 ", total water quality load differential integrated value" S k, T2 ", etc. By optimizing the operation plan of the membrane filtration equipment 5, the number of physical washings, the number of chemical washings, and the number of exchanges of membrane modules can be minimized, and the power consumption and running cost of the membrane filtration equipment 5 can be kept low.

また、上述した実施形態では、膜ろ過設備5の各水質検知装置10、22で得られた水質情報、各流量計12、16で得られた膜供給水の流量、膜ろ過水の流量をそのまま使用して、演算を行わせるようにしているが、水質情報演算部28にチェック機能を設け、膜ろ過設備5の各水質検知装置10、22で得られた水質情報、各流量計12、16で得られた膜供給水の流量、膜ろ過水の流量が異常値であるかどうかをチェックし、異常値であるとき、これを補正して、膜ユニット2の単一膜供給水質負荷積算値“Sk,1”、単一水質負荷差分積算値“Sk,2”、総合膜供給水質負荷積算値“Sk,T1”、総合水質負荷差分積算値“Sk,T2”などを演算するようにしても良い。 Moreover, in embodiment mentioned above, the water quality information obtained by each water quality detection apparatus 10 and 22 of the membrane filtration equipment 5, the flow rate of the membrane supply water obtained by each flow meter 12 and 16, and the flow rate of the membrane filtration water are used as they are. However, the water quality information calculation unit 28 is provided with a check function, and the water quality information obtained by the water quality detection devices 10 and 22 of the membrane filtration equipment 5 and the flow meters 12 and 16 are provided. Check whether the flow rate of the membrane feed water and the flow rate of the membrane filtrate water obtained in step 1 are abnormal values, and if they are abnormal values, correct these values and integrate the single membrane feed water quality load integrated value of the membrane unit 2 “S k, 1 ”, single water quality load differential integrated value “S k, 2 ”, total membrane supply water quality load integrated value “S k, T1 ”, total water quality load differential integrated value “S k, T2 ”, etc. You may make it do.

このように構成することにより、膜ろ過設備5の各水質検知装置10、22で得られた水質情報、各流量計12、16で得られた膜供給水の流量、膜ろ過水の流量が一時的に異常値になっても、需要家側で必要とした過去の水需要、膜ユニット2の単一膜供給水質負荷積算値“Sk,1”、単一水質負荷差分積算値“Sk,2”、総合膜供給水質負荷積算値“Sk,T1”、総合水質負荷差分積算値“Sk,T2”などに誤差が入り込まないようにして、正確な運用計画を作成し、膜ろ過設備5の消費電力、ランニングコストを低く抑えることができる。 By comprising in this way, the water quality information obtained by each water quality detection apparatus 10 and 22 of the membrane filtration equipment 5, the flow rate of membrane supply water obtained by each flow meter 12 and 16, and the flow rate of membrane filtration water are temporarily. Even if it becomes an abnormal value in the past, the past water demand required on the customer side, the single membrane supply water quality load integrated value “S k, 1 ” of the membrane unit 2, and the single water quality load differential integrated value “S k , 2 ", integrated membrane supply water quality integrated load value" Sk, T1 ", integrated water quality load differential integrated value" Sk, T2 ", etc. The power consumption and running cost of the facility 5 can be kept low.

また、上述した実施形態では、総合膜供給水質負荷積算値“Sk,T1”、または総合水質負荷差分積算値“Sk,T2”が所定値を超える毎に、物理洗浄、…、薬品洗浄、…、膜モジュール交換を行わせるようにしているが、総合膜供給水質負荷積算値“Sk,T1”、または総合水質負荷差分積算値“Sk,T2”と、各センサ13で検知された膜間差圧値またはゼータ電位とに基づき、物理洗浄時期、…、薬品洗浄時期、…、膜モジュール交換時期を判断するようにしても良い。 In the above-described embodiment, every time the integrated membrane supply water quality load integrated value “S k, T1 ” or the total water quality load differential integrated value “S k, T2 ” exceeds a predetermined value, physical cleaning,. , ..., the membrane module is exchanged. The integrated membrane supply water quality load integrated value “S k, T1 ” or the total water quality load differential integrated value “S k, T2 ” is detected by each sensor 13. The physical cleaning time,..., Chemical cleaning time,..., The membrane module replacement time may be determined based on the transmembrane pressure value or zeta potential.

これにより、何らかの原因で、膜ユニット2の膜間差圧値またはゼータ電位が上昇したとき、直ちに物理洗浄、…、薬品洗浄、…、膜モジュール交換などを行わせて、重大事故などが発生しないようにすることができる。   As a result, when the transmembrane pressure difference value or zeta potential of the membrane unit 2 rises for some reason, the physical cleaning,..., Chemical cleaning,.. Can be.

また、上述した実施形態では、単一膜供給水質負荷積算値“Sk,1”、単一水質負荷差分積算値“Sk,2”、総合膜供給水質負荷積算値“Sk,T1”、総合水質負荷差分積算値“Sk,T2”などを求める際、逆洗浄水によって膜ユニット2からファウリング物質が剥離された量を無視し、制御を簡素化するようにしているが、逆洗浄水によって膜ユニット2からファウリング物質が剥離された量を考慮して、単一膜供給水質負荷積算値“Sk,1”、単一水質負荷差分積算値“Sk,2”、総合膜供給水質負荷積算値“Sk,T1”、総合水質負荷差分積算値“Sk,T2”などを求めるようにしても良い。 In the above-described embodiment, the single membrane supply water load integrated value “S k, 1 ”, the single water supply load differential integrated value “S k, 2 ”, and the total membrane supply water load integrated value “S k, T1 ”. When calculating the integrated water quality load difference integrated value “S k, T2 ”, etc., the amount of fouling substances peeled from the membrane unit 2 by the backwash water is ignored, and the control is simplified. In consideration of the amount of fouling substances peeled from the membrane unit 2 by the wash water, the single membrane supply water load integrated value “S k, 1 ”, the single water quality load differential integrated value “S k, 2 ”, The membrane supply water quality load integrated value “S k, T1 ”, the total water quality load differential integrated value “S k, T2 ”, etc. may be obtained.

これにより、膜ユニット2に付着しているファウリング物質の量をより正確に把握して、物理洗浄開始時期、…、薬品洗浄開始時期、…、膜モジュール交換の時期を高い精度で、求めることができる。   As a result, the amount of fouling substance adhering to the membrane unit 2 can be grasped more accurately, and the physical cleaning start time,..., Chemical cleaning start time,. Can do.

また、上述した各実施形態では、各膜ユニット2の各膜モジュール7の表面にファウリング物質が付着したとき、各逆洗浄水ポンプ24を動作させて、ろ過時の通水方向とは逆方向から各膜ユニット2に膜ろ過水を流すとともに、膜モジュール7に空気を取り込むことで、各膜モジュール7の表面に付着したファウリング物質を剥離するようにしているが、他の物理洗浄法、例えばフラッシング法、機械的洗浄法などを用いて、各膜モジュール7の表面に付着したファウリング物質を剥離するようにしても良い。   Moreover, in each embodiment mentioned above, when a fouling substance adheres to the surface of each membrane module 7 of each membrane unit 2, each reverse washing water pump 24 is operated and it is a direction opposite to the water flow direction at the time of filtration. The membrane filtration water is allowed to flow from the membrane module 2 to the membrane module 7 and air is taken into the membrane module 7 so that the fouling substances attached to the surface of each membrane module 7 are peeled off. For example, the fouling material adhering to the surface of each membrane module 7 may be peeled off by using a flushing method, a mechanical cleaning method, or the like.

また、上述した各実施形態では、大規模な膜ろ過システム、または中規模な膜ろ過システムでは、現場の薬品貯留槽からオンライン方式で、各膜モジュール7を薬品洗浄するようにしているが、小規模な膜ろ過システムなどのように各膜モジュール7の数が少ないときには、膜ろ過設備5から各膜モジュール7を取り外し、膜ろ過設備5内、または膜ろ過設備5外で、各膜モジュール7を薬品洗浄するようにしても良い。   Further, in each of the above-described embodiments, in a large-scale membrane filtration system or a medium-scale membrane filtration system, each membrane module 7 is cleaned with chemicals from an on-site chemical storage tank. When the number of each membrane module 7 is small as in a membrane filtration system or the like, each membrane module 7 is removed from the membrane filtration equipment 5, and each membrane module 7 is installed inside the membrane filtration equipment 5 or outside the membrane filtration equipment 5. You may make it carry out chemical cleaning.

図1は本発明による膜ろ過システムの一実施形態を示す膜ろ過設備の概略構成図。FIG. 1 is a schematic configuration diagram of membrane filtration equipment showing one embodiment of a membrane filtration system according to the present invention. 図1に示す膜ろ過設備を制御する膜ろ過制御装置の回路構成例を示すブロック図。The block diagram which shows the circuit structural example of the membrane filtration control apparatus which controls the membrane filtration installation shown in FIG. 図1に示す膜ユニットに供給される膜供給水の濁度と、蛍光強度と、膜間差圧上昇率との関係例を示す模式図。The schematic diagram which shows the example of relationship between the turbidity of the membrane supply water supplied to the membrane unit shown in FIG. 1, fluorescence intensity, and a transmembrane differential pressure | voltage increase rate. 図1に示す膜ユニットに対する膜供給水質負荷量と膜ろ過水質負荷量との差分値“Sk,2”と、物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期との関係例を示す模式図。An example of the relationship between the difference value “S k, 2 ” between the membrane water supply load amount and the membrane filtration water load amount for the membrane unit shown in FIG. 1 and the physical cleaning start time, chemical cleaning start time, and membrane module replacement time is shown. Pattern diagram. 図1に示す膜ユニットの総合水質負荷差分積算値“Sk,T2”と、物理洗浄開始時期、…、薬品洗浄開始時期、…、膜モジュール交換時期との関係例を示す模式図。FIG. 2 is a schematic diagram showing an example of the relationship between the integrated water quality load difference integrated value “S k, T2 ” of the membrane unit shown in FIG. 1 and the physical cleaning start time,..., Chemical cleaning start time,. 図1に示す膜ユニットの総合膜供給水質負荷積算値“Sk,T1”、または総合水質負荷差分積算値“Sk,T2”と、物理洗浄開始時期、…、薬品洗浄開始時期、…、膜モジュール交換時期との他の関係例を示す模式図。The integrated water supply load integrated value “S k, T1 ” or the integrated water load differential integrated value “S k, T2 ” of the membrane unit shown in FIG. 1 and the physical cleaning start time,..., Chemical cleaning start time,. The schematic diagram which shows the other example of a relationship with a membrane module exchange time. 図1に示す膜ユニットの総合膜供給水質負荷積算値“Sk,T1”、または総合水質負荷差分積算値“Sk,T2”と、物理洗浄開始時期、…、薬品洗浄開始時期、…、膜モジュール交換時期との他の関係例を示す模式図。The integrated water supply load integrated value “S k, T1 ” or the integrated water load differential integrated value “S k, T2 ” of the membrane unit shown in FIG. 1 and the physical cleaning start time,..., Chemical cleaning start time,. The schematic diagram which shows the other example of a relationship with a membrane module exchange time.

符号の説明Explanation of symbols

1:膜ろ過システム
2:膜ユニット
3:水道水源
4:給水網
5:膜ろ過設備
6:膜ろ過制御装置
7:膜モジュール
8:前処理装置
9:膜供給水槽
10,22:水質検知装置
11:膜供給水ポンプ
12,16,18,23,25:流量計
13:センサ
15,17,20:バルブ
19:薬品貯留槽
21:膜ろ過水槽
24:逆洗浄水ポンプ
26:ブロア
27:プロセス入出力部
28:水質情報演算部
29:ヒューマン・インタフェース入出力部
30:水需要実績記憶部
31:水需要予測部
32:膜ろ過システム運用計画部
33:膜ろ過システム制御部
1: Membrane filtration system 2: Membrane unit 3: Tap water source 4: Water supply network 5: Membrane filtration equipment 6: Membrane filtration control device 7: Membrane module 8: Pretreatment device 9: Membrane supply water tank 10, 22: Water quality detection device 11 : Membrane supply water pump 12, 16, 18, 23, 25: Flow meter 13: Sensor 15, 17, 20: Valve 19: Chemical storage tank 21: Membrane filtration water tank 24: Backwash water pump 26: Blower 27: Process input Output unit 28: Water quality information calculation unit 29: Human interface input / output unit 30: Water demand record storage unit 31: Water demand prediction unit 32: Membrane filtration system operation planning unit 33: Membrane filtration system control unit

Claims (10)

複数本の膜モジュールから構成される膜ユニットを一台または複数台有する膜ろ過設備の運転を制御する膜ろ過制御装置において、
膜供給水の濁度を測定する濁度計、膜供給水の蛍光強度を測定する蛍光分析計、膜供給水の吸光度を測定する吸光度計、膜供給水の全有機炭素濃度を測定する全有機炭素計、膜供給水の金属イオン成分濃度を測定する連続測定型イオンクロマトグラフィの少なくとも1つの計測値に基づき膜ろ過設備の水質を検知する水質検出装置で得られた水質情報、流量計で得られた膜供給水の流量とに基づき、膜ユニットに対する膜供給水質負荷量を演算する水質情報演算部と、
過去の水需要実績を記憶する水需要実績記憶部と、
この水需要実績記憶部に記憶されている水需要実績に基づいて、将来の水需要を予測する水需要予測部と、
この水需要予測部により予測された水需要量に基づいて、前記膜ろ過設備の運用計画を求めるとともに、前記水質情報演算部で得られた膜供給水質負荷量に基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくとも1つを加味して、前記運用計画を修正する膜ろ過システム運用計画部と、
前記膜ろ過システム運用計画部で作成された運用計画に基づいて、前記膜ろ過設備を制御するろ過膜システム制御部と、を備え
前記水質情報演算部は、前記水質検知装置で得られた水質情報、および流量計で得られた膜供給水の流量に基づき、膜ユニットに供給される膜供給水に関する膜供給水濁度負荷量積算値、膜供給水蛍光強度負荷量積算値、膜供給水吸光度負荷量積算値、膜供給水全有機炭素濃度負荷量積算値、膜供給水金属イオン濃度負荷量積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値を演算し、
前記膜ろ過システム運用計画部は、前記水質情報演算部で得られた膜供給水濁度負荷量積算値、膜供給水蛍光強度負荷量積算値、膜供給水吸光度負荷量積算値、膜供給水全有機炭素濃度負荷量積算値、膜供給水金属イオン濃度負荷量積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値に基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくても1つを加味して、前記運用計画を修正する、
ことを特徴とする膜ろ過制御装置。
In a membrane filtration control device for controlling the operation of a membrane filtration facility having one or more membrane units composed of a plurality of membrane modules,
A turbidimeter that measures the turbidity of the membrane feed water, a fluorescence analyzer that measures the fluorescence intensity of the membrane feed water, an absorptiometer that measures the absorbance of the membrane feed water, a total organic that measures the total organic carbon concentration of the membrane feed water Obtained with a flow meter and water quality information obtained by a water quality detection device that detects the water quality of a membrane filtration facility based on at least one measurement value of a carbon ion meter or a continuous measurement type ion chromatography that measures the concentration of metal ion components in membrane feed water based on the flow rate of the membrane feed water is, the water quality information calculator for calculating a film supply water load with respect to the film unit,
A water demand record storage unit for storing past water demand results;
A water demand forecasting unit for forecasting future water demand based on the water demand results stored in the water demand record storage unit;
Based on the water demand predicted by the water demand prediction unit, obtain an operation plan for the membrane filtration facility, and start physical cleaning of the membrane unit based on the membrane supply water quality load obtained by the water quality information calculation unit. time, chemical cleaning start time, at least the membrane module replacement time by adding one, and the membrane filtration system operation plan unit for modifying the operational plan,
Based on the operation plan created by the membrane filtration system operation planning unit, comprising a filtration membrane system control unit for controlling the membrane filtration equipment ,
The water quality information calculation unit is based on the water quality information obtained by the water quality detection device and the flow rate of the membrane feed water obtained by the flow meter, and the membrane supply water turbidity load amount related to the membrane feed water supplied to the membrane unit Integrated value, membrane supply water fluorescence intensity load integrated value, membrane supply water absorbance load integrated value, membrane supply water total organic carbon concentration load integrated value, membrane supply water metal ion concentration load integrated value, or Calculate the total value combining any of these integrated values,
The membrane filtration system operation planning unit includes a membrane supply water turbidity load integrated value, a membrane supply water fluorescence intensity load integrated value, a membrane supply water absorbance load integrated value, a membrane supply water obtained by the water quality information calculation unit. Based on the total organic carbon concentration load integrated value, the membrane feed water metal ion concentration load integrated value, or the total value of any combination of these integrated values, the physical cleaning start time of the membrane unit, chemicals The operation plan is revised by taking into account at least one of the cleaning start time and the membrane module replacement time.
A membrane filtration control device characterized by that.
請求項1に記載の膜ろ過制御装置において、
前記膜ユニットは、膜モジュールの透過圧を測定する膜間差圧計を有し、
前記膜ろ過システム運用計画部は、前記水質情報演算部で得られた膜供給水濁度負荷量積算値、膜供給水蛍光強度負荷量積算値、膜供給水吸光度負荷量積算値、膜供給水全有機炭素濃度負荷量積算値、膜供給水金属イオン濃度負荷量積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値と、膜モジュールの透過圧とに基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくても1つ以上を加味して、前記運用計画を修正する、
ことを特徴とする膜ろ過制御装置。
In the membrane filtration control device according to claim 1,
The membrane unit has a transmembrane pressure gauge for measuring the permeation pressure of the membrane module,
The membrane filtration system operation planning unit includes a membrane supply water turbidity load integrated value, a membrane supply water fluorescence intensity load integrated value, a membrane supply water absorbance load integrated value, a membrane supply water obtained by the water quality information calculation unit. Based on at least one of the total organic carbon concentration load integrated value, the membrane water supply metal ion concentration load integrated value, or a total value obtained by combining any of these integrated values and the permeation pressure of the membrane module, The operation plan is corrected by taking into account at least one of the unit physical cleaning start time, chemical cleaning start time, and membrane module replacement time.
A membrane filtration control device characterized by that.
複数本の膜モジュールから構成される膜ユニットを一台または複数台有する膜ろ過設備の運転を制御する膜ろ過制御装置において、
膜供給水および膜ろ過水の濁度を測定する濁度計、膜供給水および膜ろ過水の蛍光強度を測定する蛍光分析計、膜供給水および膜ろ過水の吸光度を測定する吸光度計、膜供給水および膜ろ過水の全有機炭素濃度を測定する全有機炭素計、膜供給水および膜ろ過水の金属イオン成分濃度を測定する連続測定型イオンクロマトグラフィの少なくとも1つの計測値に基づき膜ろ過設備の水質を検知する水質検出装置で得られた水質情報と、流量計で得られた膜供給水および膜ろ過水の流量とに基づき、膜ユニットに対する膜供給水質負荷量と膜ろ過水質負荷量との差分積算値を演算する水質情報演算部と、
過去の水需要実績を記憶する水需要実績記憶部と、
この水需要実績記憶部に記憶されている水需要実績に基づいて、将来の水需要を予測する水需要予測部と、
この水需要予測部により予測された水需要量に基づいて、前記膜ろ過設備の運用計画を求めるとともに、前記水質情報演算部で得られた膜供給水質負荷量と膜ろ過水質負荷量との差分積算値に基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくとも1つ以上を加味して、前記運用計画を修正する膜ろ過システム運用計画部と、
前記膜ろ過システム運用計画部で作成された運用計画に基づいて、前記膜ろ過設備を制御するろ過膜システム制御部と、を備え、
前記水質情報演算部は、膜供給水濁度負荷量と膜ろ過水濁度負荷量との差分積算値、膜供給水蛍光強度負荷量と膜ろ過水蛍光強度負荷量との差分積算値、膜供給水吸光度負荷量と膜ろ過水吸光度負荷量との差分積算値、膜供給水全有機炭素濃度負荷量と膜ろ過水全有機炭素濃度負荷量との差分積算値、膜供給水金属イオン濃度負荷量と膜ろ過水金属イオン濃度負荷量との差分積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値を演算し、
前記膜ろ過システム運用計画部は、前記水需要予測部により予測された水需要量に基づいて、前記膜ろ過設備の運用計画を求めるとともに、前記水質情報演算部で得られた膜供給水濁度負荷量と膜ろ過水濁度負荷量との差分積算値、膜供給水蛍光強度負荷量と膜ろ過水蛍光強度負荷量との差分積算値、膜供給水吸光度負荷量と膜ろ過水吸光度負荷量との差分積算値、膜供給水全有機炭素濃度負荷量と膜ろ過水全有機炭素濃度負荷量との差分積算値、膜供給水金属イオン濃度負荷量と膜ろ過水金属イオン濃度負荷量との差分積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値に基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくても1つ以上を加味して、前記運用計画を修正する、
ことを特徴とする膜ろ過制御装置。
In a membrane filtration control device for controlling the operation of a membrane filtration facility having one or more membrane units composed of a plurality of membrane modules,
Turbidimeter for measuring turbidity of membrane supply water and membrane filtration water, Fluorescence analyzer for measuring fluorescence intensity of membrane supply water and membrane filtration water, Absorbance meter for measuring absorbance of membrane supply water and membrane filtration water, membrane Membrane filtration equipment based on at least one measurement value of a total organic carbon meter that measures the total organic carbon concentration of the feed water and membrane filtration water, and a continuous measurement type ion chromatography that measures the metal ion component concentration of the membrane feed water and membrane filtration water Based on the water quality information obtained by the water quality detection device that detects the water quality of the water and the flow rate of the membrane supply water and the membrane filtration water obtained by the flow meter, the membrane supply water load amount and the membrane filtration water quality load amount for the membrane unit Water quality information calculation unit for calculating the difference integrated value of,
A water demand record storage unit for storing past water demand results;
A water demand forecasting unit for forecasting future water demand based on the water demand results stored in the water demand record storage unit;
Based on the water demand predicted by the water demand prediction unit, the operation plan of the membrane filtration facility is obtained, and the difference between the membrane supply water load and the membrane filtration water load obtained by the water quality information calculation unit Based on the integrated value, taking into account at least one of the physical cleaning start time of the membrane unit, the chemical cleaning start time, and the membrane module replacement time, the membrane filtration system operation planning unit for correcting the operation plan,
Based on the operation plan created by the membrane filtration system operation planning unit, comprising a filtration membrane system control unit for controlling the membrane filtration equipment,
The water quality information calculation unit includes a difference integrated value between a membrane supply water turbidity load amount and a membrane filtration water turbidity load amount, a difference integration value between a membrane supply water fluorescence intensity load amount and a membrane filtration water fluorescence intensity load amount, a membrane Difference integrated value between feed water absorbance load and membrane filtrate absorbency load, integrated difference between membrane feed water total organic carbon concentration load and membrane filtrate total organic carbon concentration load, membrane feed water metal ion concentration load Calculate the total sum of at least one of the difference integrated value between the amount and the membrane filtrate water metal ion concentration load, or a combination of any of these integrated values,
The membrane filtration system operation planning unit obtains an operation plan for the membrane filtration facility based on the water demand predicted by the water demand prediction unit, and the membrane supply water turbidity obtained by the water quality information calculation unit Difference integrated value between load amount and membrane filtration water turbidity load amount, difference integrated value between membrane supply water fluorescence intensity load amount and membrane filtration water fluorescence intensity load amount, membrane supply water absorbance load amount and membrane filtration water absorbance load amount Of the difference between the total organic carbon concentration load of the membrane feed water and the total organic carbon concentration load of the membrane filtration water, and the difference between the membrane feed water metal ion concentration load and the membrane filtration water metal ion concentration load Based on at least one of the integrated difference values, or a total value obtained by combining any of these integrated values, at least one of the physical unit cleaning start time, chemical cleaning start time, and membrane module replacement time is required. In addition, the luck To modify the plan,
A membrane filtration control device characterized by that.
請求項に記載の膜ろ過制御装置において、
前記膜ユニットは、膜モジュールの透過圧を測定する膜間差圧計を有し、
前記膜ろ過システム運用計画部は、前記水需要予測部により予測された水需要量に基づいて、前記膜ろ過設備の運用計画を求めるとともに、前記水質情報演算部で得られた膜供給水濁度負荷量と膜ろ過水濁度負荷量との差分積算値、膜供給水蛍光強度負荷量と膜ろ過水蛍光強度負荷量との差分積算値、膜供給水吸光度負荷量と膜ろ過水吸光度負荷量との差分積算値、膜供給水全有機炭素濃度負荷量と膜ろ過水全有機炭素濃度負荷量との差分積算値、膜供給水金属イオン濃度負荷量と膜ろ過水金属イオン濃度負荷量との差分積算値の少なくともいずれか、またはこれらの積算値のいずれか複数を組み合わせた総和値と、膜モジュールの透過圧とに基づき、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくても1つ以上を加味して、前記運用計画を修正する、
ことを特徴とする膜ろ過制御装置。
In the membrane filtration control device according to claim 3 ,
The membrane unit has a transmembrane pressure gauge for measuring the permeation pressure of the membrane module,
The membrane filtration system operation planning unit obtains an operation plan for the membrane filtration facility based on the water demand predicted by the water demand prediction unit, and the membrane supply water turbidity obtained by the water quality information calculation unit Difference integrated value between load amount and membrane filtration water turbidity load amount, difference integrated value between membrane supply water fluorescence intensity load amount and membrane filtration water fluorescence intensity load amount, membrane supply water absorbance load amount and membrane filtration water absorbance load amount Of the difference between the total organic carbon concentration load of the membrane feed water and the total organic carbon concentration load of the membrane filtration water, and the difference between the membrane feed water metal ion concentration load and the membrane filtration water metal ion concentration load The physical cleaning start time, the chemical cleaning start time, and the membrane module replacement time of the membrane unit based on at least one of the difference integrated values, or a total value obtained by combining any of these integrated values and the permeation pressure of the membrane module At least One or more in consideration of, modifying the operational plan,
A membrane filtration control device characterized by that.
請求項1乃至4のいずれかに記載の膜ろ過制御装置において、
前記ろ過膜システム制御部は、前記膜ろ過システム運用計画部により求められた運用計画に基づき、指定された期間中に、膜ユニットの物理洗浄開始時期、薬品洗浄開始時期、膜モジュール交換時期の少なくても1つを所定の時間にシフトする、
ことを特徴とする膜ろ過制御装置。
In the membrane filtration control device according to any one of claims 1 to 4 ,
Based on the operation plan obtained by the membrane filtration system operation planning unit, the filtration membrane system control unit reduces the physical unit cleaning start time, chemical cleaning start time, and membrane module replacement time during the specified period. Shift one at a given time,
A membrane filtration control device characterized by that.
請求項1乃至5のいずれかに記載の膜ろ過制御装置において、
前記水質情報演算部は、膜供給水ポンプの運転時間に基づき、前記膜ユニットに対する膜供給水の流量または膜ろ過水の流量を検知する、
ことを特徴とする膜ろ過制御装置。
In the membrane filtration control device according to any one of claims 1 to 5 ,
The water quality information calculation unit detects the flow rate of the membrane feed water or the flow rate of the membrane filtration water with respect to the membrane unit based on the operation time of the membrane feed water pump.
A membrane filtration control device characterized by that.
請求項1乃至6に記載の膜ろ過制御装置において、
前記水質情報演算部は、膜ろ過設備の水質検知装置で得られた水質情報、流量計で得られた膜供給水の流量が異常値であるかどうかをチェックし、異常値であるとき、これを補正して、膜ユニットの膜供給水質負荷量、膜ろ過水質負荷量を演算する、
ことを特徴とする膜ろ過制御装置。
In the membrane filtration control device according to claim 1 to 6,
The water quality information calculation unit checks whether or not the water quality information obtained by the water quality detection device of the membrane filtration equipment and the flow rate of the membrane feed water obtained by the flowmeter are abnormal values. To calculate the membrane water supply load and membrane filtration water load of the membrane unit.
A membrane filtration control device characterized by that.
請求項1乃至7のいずれかに記載の膜ろ過制御装置において、
前記蛍光分析計は、波長“340〜350nm”の間にある特定波長の励起光と、波長“420〜430nm”の間にある特定の蛍光を使用して、膜供給水、または膜ろ過水の蛍光強度を測定する、
ことを特徴とする膜ろ過制御装置。
In the membrane filtration control device according to any one of claims 1 to 7 ,
The fluorescence analyzer uses excitation light having a specific wavelength between wavelengths “340 to 350 nm” and specific fluorescence between wavelengths “420 to 430 nm” to supply the membrane supply water or membrane filtration water. Measure fluorescence intensity,
A membrane filtration control device characterized by that.
請求項1乃至7のいずれかに記載の膜ろ過制御装置において、
前記吸光度計は、波長“250〜270nm”の間にある特定波長、または波長“380〜400nm”の間にある特定波長の光に対する吸光度を使用して吸光度を測定する、
ことを特徴とする膜ろ過制御装置。
In the membrane filtration control device according to any one of claims 1 to 7 ,
The absorptiometer measures absorbance using absorbance for a specific wavelength between wavelengths “250 to 270 nm” or a specific wavelength between wavelengths “380 to 400 nm”.
A membrane filtration control device characterized by that.
請求項1乃至7のいずれかに記載の膜ろ過制御装置において、
前記連続測定型イオンクロマトグラフィは、鉄イオン成分濃度、またはマンガンイオン成分濃度を測定する、
ことを特徴とする膜ろ過制御装置。
In the membrane filtration control device according to any one of claims 1 to 7 ,
The continuous measurement type ion chromatography measures an iron ion component concentration or a manganese ion component concentration.
A membrane filtration control device characterized by that.
JP2006075032A 2006-03-17 2006-03-17 Membrane filtration controller Active JP4982094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075032A JP4982094B2 (en) 2006-03-17 2006-03-17 Membrane filtration controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075032A JP4982094B2 (en) 2006-03-17 2006-03-17 Membrane filtration controller

Publications (2)

Publication Number Publication Date
JP2007245084A JP2007245084A (en) 2007-09-27
JP4982094B2 true JP4982094B2 (en) 2012-07-25

Family

ID=38589931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075032A Active JP4982094B2 (en) 2006-03-17 2006-03-17 Membrane filtration controller

Country Status (1)

Country Link
JP (1) JP4982094B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229583A (en) * 2007-03-23 2008-10-02 Metawater Co Ltd Method for controlling operation of membrane filtration apparatus
JP5588099B2 (en) * 2008-04-23 2014-09-10 日本エンヂニヤ株式会社 Membrane filtration treatment method and membrane filtration treatment equipment
JP5343655B2 (en) * 2009-03-27 2013-11-13 東レ株式会社 Operation method of membrane module
JP5230673B2 (en) * 2010-03-08 2013-07-10 水道機工株式会社 Sludge concentration method and sludge concentration apparatus
JP5821349B2 (en) * 2011-07-11 2015-11-24 東京電力株式会社 Water treatment facility control equipment
JP2013059743A (en) 2011-09-14 2013-04-04 Toshiba Corp Seawater desalination plant system
JP5862363B2 (en) * 2012-02-24 2016-02-16 三浦工業株式会社 Water treatment system
WO2013136500A1 (en) * 2012-03-15 2013-09-19 株式会社日立製作所 Water transport control system and water transport control method
JP2014024824A (en) * 2012-07-30 2014-02-06 Asahi Kasei Medical Co Ltd Method for filtering culture broth containing useful protein under perfusion culture
WO2014057892A1 (en) * 2012-10-10 2014-04-17 東レ株式会社 Method for generating fresh water
JP5677476B2 (en) * 2013-01-18 2015-02-25 株式会社東芝 Membrane fouling diagnosis / control device, membrane fouling diagnosis / control method, and membrane fouling diagnosis / control program
KR101299165B1 (en) 2013-01-24 2013-08-22 주식회사 태영건설 Pressured membrane filtration apparatus and method with chemical feed automatic control
JP6153022B2 (en) * 2013-06-28 2017-06-28 パナソニックIpマネジメント株式会社 Hydrogen peroxide-containing wastewater treatment apparatus and treatment method
KR101345873B1 (en) * 2013-07-26 2013-12-30 대림산업 주식회사 Membrane process operating method
JP6554781B2 (en) * 2013-12-26 2019-08-07 栗田工業株式会社 Operation method of reverse osmosis membrane device and reverse osmosis membrane device
JP6361216B2 (en) * 2014-03-26 2018-07-25 三浦工業株式会社 Remote control system for turbidity removal equipment
CN103983585A (en) * 2014-06-06 2014-08-13 力合科技(湖南)股份有限公司 Multi-parameter water quality analyzer
JP6287606B2 (en) * 2014-06-10 2018-03-07 三浦工業株式会社 Remote management control system for reverse osmosis membrane separator
JP6486732B2 (en) * 2015-03-16 2019-03-20 メタウォーター株式会社 Timing adjustment method and timing adjustment device
JP6142937B1 (en) * 2016-03-18 2017-06-07 栗田工業株式会社 Reverse osmosis membrane device operation management method and reverse osmosis membrane treatment system
US11790325B2 (en) * 2018-06-18 2023-10-17 Mitsubishi Electric Corporation Operation support device and operation support method
CN110006127A (en) * 2019-04-19 2019-07-12 珠海格力电器股份有限公司 Humidifier and auto-cleaning method with automatic cleaning function
JP7270490B2 (en) * 2019-07-11 2023-05-10 オルガノ株式会社 Water supply equipment and water supply method for cooling towers
DE102021004705A1 (en) 2021-09-16 2023-03-16 Patrick Kürzl Ultrafiltration for fresh water station for domestic water heating with constant integrity monitoring

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126882A (en) * 1994-10-28 1996-05-21 Toshiba Corp Device for controlling operation of water generating plant
JPH10252998A (en) * 1997-03-18 1998-09-22 Mitsubishi Electric Corp Tap water distribution control system
JPH1161893A (en) * 1997-08-20 1999-03-05 Toshiba Corp Controller for water-supply plant
JP2002205053A (en) * 2001-01-12 2002-07-23 Kanta Ishii System for monitoring raw water and method for controlling operation of concentrating/separating apparatus using the same
JP2003126855A (en) * 2001-10-26 2003-05-07 Toshiba Corp Membrane filter system
JP4205462B2 (en) * 2003-03-19 2009-01-07 株式会社日立製作所 Suspension water quality measuring device

Also Published As

Publication number Publication date
JP2007245084A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4982094B2 (en) Membrane filtration controller
US11053136B2 (en) Method and apparatus to monitor and control a water system
KR101144316B1 (en) Advanced wastewater treatment system and method by means of membrane combining forward osmosis using NaCl solution with reverse osmosis
US7378024B2 (en) Methods for improving filtration performance of hollow fiber membranes
Chew et al. Advanced process control for ultrafiltration membrane water treatment system
JP6053175B2 (en) Desalination system with anomaly detection function
KR101462565B1 (en) Monitoring method real-time fouling potential in Reverse Osmosis Process for Seawater Desalination and Desalination equipment having such monitoring function
US20130015137A1 (en) Method of maintaining water quality in a process stream
JP4718873B2 (en) Control device for membrane filtration equipment
JPH11509769A (en) A method of operating and monitoring a group of permeable membrane modules and a group of modules performing the method
US20130060384A1 (en) Method and system for optimizing membrane cleaning process
JPH08126882A (en) Device for controlling operation of water generating plant
RU2671348C2 (en) Water treatment plant (versions) and method for functional control of chlorine sensor (versions)
US9665852B2 (en) Water purification unit
Raffin et al. Optimising operation of an integrated membrane system (IMS)—A Box–Behnken approach
Zupančič et al. An evaluation of industrial ultrafiltration systems for surface water using fouling indices as a performance indicator
JP2003126855A (en) Membrane filter system
JP3311158B2 (en) Operation control device for desalination plant
JP2008126223A (en) Membrane treatment system
JP5743773B2 (en) Membrane treatment apparatus and membrane module operating method
JP4894316B2 (en) Membrane damage detection method for membrane filtration process
US20230072711A1 (en) Apparatus and methods for cleaning reverse osmosis systems
JP2009000580A (en) Operation support device for membrane filtration apparatus
US20230372872A1 (en) Support device, support method, and support program
JP4965828B2 (en) Membrane filtration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4982094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151