WO2014057892A1 - Method for generating fresh water - Google Patents

Method for generating fresh water Download PDF

Info

Publication number
WO2014057892A1
WO2014057892A1 PCT/JP2013/077158 JP2013077158W WO2014057892A1 WO 2014057892 A1 WO2014057892 A1 WO 2014057892A1 JP 2013077158 W JP2013077158 W JP 2013077158W WO 2014057892 A1 WO2014057892 A1 WO 2014057892A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
power
unit
fresh water
membrane
Prior art date
Application number
PCT/JP2013/077158
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 雅英
智宏 前田
大嗣 楯岡
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014502683A priority Critical patent/JPWO2014057892A1/en
Publication of WO2014057892A1 publication Critical patent/WO2014057892A1/en
Priority to PH12015500787A priority patent/PH12015500787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/36Energy sources
    • B01D2313/365Electrical sources
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a method for producing fresh water using a water treatment process that removes impurities from the water to be treated using natural energy.
  • Separation membrane utilization technology has been mainly applied to purification of river water, lake water, etc. in order to obtain drinking water, industrial water, agricultural water, and the like.
  • seawater desalination has been promoted mainly by the evaporation method in the Middle East region where water resources are extremely small and heat resources from oil are extremely abundant.
  • Non-Patent Document 1 seawater desalination by reverse osmosis membranes is not universal, and in the case of high-concentration seawater, such as in the Middle East, or even when the seawater temperature is high, the desalination capacity decreases and the treated water (freshwater) The salt concentration tends to increase (Non-Patent Document 1). Therefore, in order to obtain high-quality treated water, a method called a permeated water two-stage method in which demineralized water is treated again with a low-pressure reverse osmosis membrane has been constructed and operated, improving reverse osmosis membrane performance, There is a need to further reduce energy requirements by improving process systems.
  • Non-Patent Document 2 a method of combining multiple types of reverse osmosis membranes, a method of treating reverse osmosis membrane concentrated water again with a reverse osmosis membrane, pretreatment with a nanofiltration membrane to remove hardness components, and a reverse osmosis membrane recovery rate And a method of treating the treated water of the nanofiltration membrane again with the nanofiltration membrane have been proposed, and many have been put into practical use (Patent Documents 1 to 3, Non-Patent Document 2).
  • Non-Patent Document 3 it is necessary to provide a large storage battery to absorb fluctuations in the amount of power generation.
  • high-cost storage batteries have a significant impact on desalination costs, and are a major obstacle to commercialization and dissemination.
  • An object of the present invention is to stably produce water while suppressing deterioration and fouling of a water treatment apparatus mainly using natural energy.
  • the inventors of the present invention are methods for producing product water using a water treatment process composed of a plurality of steps, which is obtained from a natural energy power generation unit. It has been found that the above-mentioned problems can be solved by appropriately selecting a process to be operated among the plurality of processes, using the generated power as a main power source, and has completed the present invention.
  • the gist of the present invention is as follows (1) to (10).
  • a water production method for obtaining product water using a water treatment process comprising a plurality of steps including step A and step B,
  • the step A is composed of a processing unit that consumes the most power among the plurality of steps.
  • the water treatment process uses power obtained from a natural energy power generation unit as a main power source,
  • the process A is preferentially operated during the period in which the power necessary for the operation of the process A can be maintained, and the operation of the process A is stopped during the other periods, and the process B is at least partially in the period.
  • the step A is a step of operating at least one membrane selected from the group consisting of a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane.
  • the fresh water generation method of description (3)
  • the step B includes a step of cleaning the processing unit constituting the step A, a step of operating the pre-processing unit, a step of operating the post-processing unit, and a step of performing a stagnant contamination preventing operation in the unit and piping.
  • the fresh water generation method according to (1) or (2) above which is at least one step selected from the group.
  • the fresh water generation method according to (3) wherein the step of cleaning the treatment unit constituting the step A is performed by passing water to the treated water side of the step A.
  • the fresh water generation method according to (4) wherein a bactericidal agent, an acid, or an alkali is added during at least a part of the step of washing the treatment unit constituting the step A.
  • the natural energy supplied to the natural energy power generation unit includes at least one selected from the group consisting of sunlight, wind power, and wave power The fresh water generation method of description.
  • Any of the above (1) to (6) further comprising an electric power storage means during the water treatment process, and suppressing fluctuations in electric power generated by natural energy supplied to the natural energy power generation unit 1.
  • the water production method according to 1. (8) The fresh water generation method according to (7), wherein the power storage means includes at least one means selected from the group consisting of a storage battery, pumping water, and electrolysis. (9) At least any one of the case where the quality of the treated water processed by the said process A deteriorated more than a preset value, and the supply pressure of the to-be-treated water to the treatment unit which comprises the said process A fell below a preset value In this case, the fresh water generation method according to any one of (1) to (8), wherein the operation of the step A is stopped. (10) The structure according to any one of (1) to (9), wherein the treatment unit constituting the step A is a reverse osmosis membrane, and the osmotic pressure of water to be treated is 3 bar or more. Water way.
  • FIG. 1 is a flow diagram showing an example of a water treatment device used in the water production method of the present invention.
  • the water treatment process to which the fresh water generation method of the present invention is applied is composed of a plurality of steps including at least step A and step B.
  • the process A includes a processing unit that consumes the most power among the plurality of processes. That is, the process A requires larger power consumption than one or more other process B.
  • the process A is composed of a processing unit whose power consumption is the maximum among all the processes
  • the process B is composed of a processing unit whose power consumption is less than the minimum required power of the process A.
  • the process B is one or more processes selected from a plurality of processes excluding the process A. However, when the process B includes a plurality of processes, the total power consumption does not exceed the power consumption of the process A. To do.
  • the water treatment process uses power obtained from a natural energy power generation unit as a main power source, and operates the process A preferentially during a period in which the power required for the operation of the process A can be maintained.
  • the operation of the process A is stopped during other periods, and the process B is operated during at least a part of the period.
  • FIG. 1 is a flow diagram showing an example of a water treatment apparatus applicable to the water production method of the present invention.
  • raw water 1 is supplied to a raw water tank 2, supplied and processed by a pretreatment pump 3 to a pretreatment unit 4 (an example of a process B), and stored in a pretreatment water tank 5 as pretreatment water.
  • the pretreated water is pressurized by the high-pressure pump 6 and treated by the reverse osmosis membrane unit 7 (an example of the process A), and the treated water (permeated water) is stored in the permeated water tank 8.
  • the concentrated water discharged from the reverse osmosis membrane unit 7 is taken out from the concentrated water valve 13a through the concentrated water line 12a.
  • the permeated water of the reverse osmosis membrane unit 7 is supplied from the permeated water tank 8 to the low pressure reverse osmosis membrane unit (an example of the process B) which is the post-processing unit 10 by the booster pump 9 and processed, and the permeated water is produced as product water. It is sent to the water tank 11. Concentrated water discharged from the low-pressure reverse osmosis membrane unit as the post-processing unit 10 is taken out from the concentrated water valve 13b through the concentrated water line 12b.
  • the power stable supply control unit 16 selectively supplies necessary power to each unit (the pretreatment pump 3, the high pressure pump 6, and the pressure increase pump 9 in FIG. 1).
  • the power consumption of the pretreatment unit 4 including the pretreatment pump 3 is 10 kW, and the reverse osmosis unit 7 including the high pressure pump 6 is used.
  • the case where the power consumption is 60 kW and the power consumption of the post-processing unit 10 including the booster pump 9 is 30 kW will be described in detail below as an example.
  • the treatment unit that consumes the most power is the reverse osmosis unit 7
  • the water treatment process including the reverse osmosis unit 7 including the high-pressure pump 6 is the step A in the present invention.
  • a water treatment process including the pretreatment unit 4 including the pretreatment pump 3 and the posttreatment unit 10 including the booster pump 9 is an example of the process B.
  • the period in which the average supply power obtained by leveling the power supplied from the natural energy power generation unit 15 by the power storage unit 14 is 60 kW or more is a period during which the power necessary for the operation of the process A can be maintained.
  • Electric power is preferentially supplied to the high-pressure pump 6 and permeated water is obtained by the reverse osmosis membrane unit 7 (step A).
  • average supply electric power is 40 kW or more and less than 60 kW, operation
  • the average supply power is 30 kW or more and less than 40 kW
  • power is supplied to the booster pump 9 to operate the post-processing unit 10.
  • the average supply power is 10 kW or more and less than 30 kW
  • power is supplied to the pretreatment pump 3 to operate the pretreatment unit.
  • power is supplied to all the pumps and all the units are operated.
  • the above is an example of an operation method for explaining the present invention in an easy-to-understand manner. Besides, it is not sufficient for operation of each unit described above, but when there is surplus power, as an example of the process B It is also possible to wash each unit with water. It is also possible to reduce the power consumption by reducing the output of each unit. By suppressing the power consumption, for example, the reverse osmosis membrane unit 7 can be operated even with a power generation of less than 60 kW. However, when the water treatment unit is operated while suppressing power consumption, the rate of obtaining permeate decreases, and depending on the water treatment method constituting the process, the amount of water does not come out (that is, there is a minimum required power). In some cases, water quality may deteriorate.
  • the osmotic pressure is about 3 bar, but this is counter to the osmotic pressure when water treatment is performed using a reverse osmosis membrane. Since pressure is required, the amount of power generated by natural energy is small, and the reverse osmosis membrane cannot be operated when the pressurization by the pump can only be obtained below the osmotic pressure. On the other hand, in the case of a general microfiltration membrane or an ultrafiltration membrane, it can be operated even at a pressure equal to or lower than the osmotic pressure, and the minimum required power can be set for the processing unit constituting the process A.
  • the processing unit constituting the process A is a reverse osmosis membrane process, and the amount of power that can treat the water to be treated whose osmotic pressure of the water to be treated is 3 bar or more is used as a threshold.
  • the osmotic pressure of seawater is about 25 bar, so that if a pressure greater than 25 bar is not applied, the reverse osmosis membrane can be operated. I can't. Even if the reverse osmosis membrane can be operated, if the operating pressure is not high enough, the salt concentration of the permeated water may increase and the water quality after treatment may not be satisfactory. It is preferable to stop the operation of the process.
  • the set value of the treated water quality in step A can be determined as appropriate according to the quality of the target production water. Further, the set value of the supply pressure of the water to be treated to the treatment unit in the process A can be appropriately set based on the osmotic pressure of the water to be treated and the production efficiency (permeation flux, recovery rate, etc.).
  • the operation rate of the pretreatment unit 4 is the smallest because the power consumption is the smallest, so that the operation rate can be maximized, but the water level of the pretreatment water tank 5 used for the process A Is sufficiently obtained, it is also a preferred embodiment to stop the operation of the pretreatment unit 4.
  • the natural energy source supplied to the natural energy power generation unit applicable to the fresh water generation method of the present invention is not particularly limited, and includes sunlight, wave power, wind power, and the like. It is preferable to include energy, and these may be applied in combination. Among these, photovoltaic power generation in which the generated power varies periodically with time is more suitable for the present invention.
  • the process A can be preferentially operated in a time zone with a high solar altitude, that is, a time zone centered around noon, and in other time zones, that is, in the morning and evening, the process As B, the pre-processing unit and the post-processing unit are operated, and the membrane is washed before and after sunrise, and the operation is stopped completely at night or a small power storage unit (power storage unit) As long as the capacity is possible, water to be treated, permeated water, production water, etc. can be allowed to flow through each process to prevent stagnation of each unit and piping.
  • a small power storage unit power storage unit
  • the operation of the process A is stopped during the period when the power required for the operation of the process A cannot be maintained, and the process B is operated during at least a part of the period.
  • the said process B is from the group which consists of the process of washing
  • the power storage means that can be used as the power storage unit in the present invention
  • storage batteries such as nickel-cadmium batteries, nickel-metal hydride batteries, and lithium batteries
  • capacitors pumped water that stores water in high places
  • electrolysis that produces hydrogen Etc.
  • the treatment unit constituting the step A is not particularly limited as long as it is a process unit that consumes the most power and is the center of the water treatment apparatus. Electrodialysis, evaporation method, separation membrane And so on. Especially, since it is excellent in energy saving and flexible operation is possible, application of a separation membrane unit is preferable.
  • the separation membrane unit is not particularly limited, and various separation units can be used. Among them, a thread filter, a non-woven filter, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane capable of separating dissolved substances, and a reverse osmosis membrane capable of high-precision solid-liquid separation of micrometer or less are preferable. More preferably, at least one membrane selected from the group consisting of an ultrafiltration membrane, a nanofiltration membrane and a reverse osmosis membrane is operated.
  • the minimum power required for these separation membrane units is the total power required to operate the separation membrane units such as the separation membrane, the high-pressure pump, the accompanying valves, and the measuring instrument as the center.
  • the separation membranes may be contaminated depending on the water to be treated and cause the performance of the membrane to deteriorate, the water quality suitable for supply can be obtained by appropriately pretreating the water to be treated. .
  • Examples of the pretreatment unit include a process of removing a substance that adversely affects the process A or performing a process with low separation accuracy to assist the removal performance of the process A.
  • Representative examples of the removal of substances that adversely affect the process A include physicochemical treatments such as adsorption, coagulation sedimentation, and pressure levitation, and aerobic and anaerobic biological treatments.
  • Examples of the treatment with low separation accuracy include sand filtration, a pincushion filter, a filter cloth, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane having a lower removal performance than Step A.
  • the power consumption of the microfiltration membrane, ultrafiltration membrane, nanofiltration membrane, and reverse osmosis membrane applied to the pretreatment process is smaller than the minimum required power of the processing unit constituting the process A. Shall.
  • step A in order to remove water quality that could not be sufficiently removed in pre-treatment or step A, treatment similar to step A can be performed again, or treatment such as adsorbent and UV sterilization can be performed.
  • the power consumption of the processing unit applied to the post-processing process is smaller than the minimum required power of the processing units constituting the process A, as in the pre-processing process.
  • treatment units including the treatment units constituting the process A, are contaminated by the water to be treated. Therefore, in order to recover the performance, the washing is generally performed online or offline as appropriate.
  • bactericidal agent an acid or an alkali is added and applied depending on the degree of soiling of the unit. More specifically, bactericides such as hypochlorous acid, chloramine, chlorine dioxide, potassium permanganate, sodium hyposulfite, 2,2-dibromo-3-nitrilopropionamide (DBNPA), sulfuric acid, hydrochloric acid, citric acid And general acids such as sodium hydroxide and alkali such as sodium hydroxide. These can be taken continuously or intermittently into water or water supplied to the unit.
  • DBNPA 2,2-dibromo-3-nitrilopropionamide
  • sulfuric acid hydrochloric acid
  • citric acid citric acid
  • general acids such as sodium hydroxide and alkali such as sodium hydroxide.
  • water to be treated or treated water is supplied as it is, or heated or added to the above-mentioned cleaning chemicals to increase the cleaning effect, and then flushed or immersed.
  • the contaminated portion here may be on either the treated water side or the treated water side, but it is preferably applied to the treated water side that is easily contaminated.
  • the water treatment process is defined as process A, and the pretreatment process, the post-treatment process, the process of cleaning the treatment units constituting the process A, and the operation for preventing staying contamination in the unit and the piping are performed.
  • at least one process selected from the group consisting of processes is the process B in the present invention.
  • the step of washing the treatment unit constituting the step A it is more preferable to carry out the washing treatment by passing water to the treated water side of the step A.
  • the present invention operates step A when there is sufficient power obtained from the natural energy power generation unit, and in a situation where power is insufficient to operate step A.
  • the process B can be operated, and the water can be stably formed which is the object of the present invention.
  • the treated water (raw water) to which the present invention is applicable is not particularly limited, and various treated waters such as river water, seawater, sewage treated water, rain water, industrial water, and industrial wastewater may be used. However, application to seawater or brackish water having osmotic pressure is particularly suitable.
  • the present invention prevents the contamination of the separation membrane unit by efficiently operating each unit while using electric power obtained from natural energy whose power generation is unstable as a power source. It is possible to provide a fresh water generation method for stably operating the apparatus.

Abstract

The purpose of the present invention is to stably generate fresh water while inhibiting fouling and degradation of water treatment devices whose main power is renewable energy. The present invention relates to a method for generating fresh water using a water treatment process that includes a stage (A) and a stage (B), wherein stage (A) is composed of a processing unit that consumes the most power. The water treatment process uses power derived from renewable energy as the main power source to preferentially operate the stage (A), and in an interval in which the power required to operate the stage (A) cannot be maintained, the water treatment process stops the operation of the stage (A) and operates the stage (B) in at least a portion of the interval.

Description

造水方法Fresh water generation method
 本発明は、自然エネルギーを利用して被処理水中から不純物を除去する水処理プロセスを用いて生産水を得る造水方法に関するものである。 The present invention relates to a method for producing fresh water using a water treatment process that removes impurities from the water to be treated using natural energy.
 近年深刻化してきている水環境の悪化に伴い、これまで以上に水処理技術が重要になってきており、とくに分離膜利用技術が非常に幅広く適用されてきている。分離膜利用技術は、飲料水、工業用水、農業用水などを得るために河川水、湖沼水などの浄化に主に適用されてきた。
 一方、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域では、蒸発法を中心に海水淡水化が進められてきた。
With the worsening of the water environment that has become increasingly serious in recent years, water treatment technology has become more important than ever, and separation membrane utilization technology has been applied very widely. Separation membrane utilization technology has been mainly applied to purification of river water, lake water, etc. in order to obtain drinking water, industrial water, agricultural water, and the like.
On the other hand, seawater desalination has been promoted mainly by the evaporation method in the Middle East region where water resources are extremely small and heat resources from oil are extremely abundant.
 しかし、中東以外の熱資源が豊富でない地域でも、海水淡水化のニーズが高まり、とくに1990年以降、所要動力が小さい半透膜(とくに逆浸透膜)を用いた淡水化プロセスが採用され、カリブ諸島や地中海エリアなどで多数のプラントが建設され実用運転されている。 However, there is a growing need for seawater desalination even in areas where heat resources other than the Middle East are abundant, especially since 1990, a desalination process using semipermeable membranes (especially reverse osmosis membranes) with low power requirements has been adopted. Many plants have been built and put into practical use in the islands and the Mediterranean area.
 逆浸透膜設備では、圧力エネルギーを有する濃縮海水が排出されるため、エネルギー回収ユニットによって圧力回収を行うのが一般的であり、これによってさらに、所要動力が低減できる仕組みになっている。最近では、逆浸透法の技術進歩による信頼性の向上やコストダウンに加え、エネルギー回収技術の著しい向上によって中東においても多くの逆浸透法海水淡水化プラントが建設されるに至っている。 In the reverse osmosis membrane facility, concentrated seawater having pressure energy is discharged, and therefore, pressure recovery is generally performed by an energy recovery unit, which further reduces the required power. Recently, in addition to the improvement in reliability and cost reduction due to technological advancement of reverse osmosis, a significant improvement in energy recovery technology has led to the establishment of many reverse osmosis seawater desalination plants in the Middle East.
 しかしながら、逆浸透膜による海水淡水化が万能というわけではなく、中東のように高濃度海水の場合や、さらには海水温度が高い場合には、脱塩能力が低下し、処理水(淡水)の塩濃度が大きくなる傾向にある(非特許文献1)。そのため、高品質の処理水を得るために、脱塩水を再度低圧逆浸透膜で処理する、透過水二段法という方法が多く建設・稼働されるにいたっており、逆浸透膜性能の向上、プロセス・システムの改善による更なる所要エネルギー低減が求められている。 However, seawater desalination by reverse osmosis membranes is not universal, and in the case of high-concentration seawater, such as in the Middle East, or even when the seawater temperature is high, the desalination capacity decreases and the treated water (freshwater) The salt concentration tends to increase (Non-Patent Document 1). Therefore, in order to obtain high-quality treated water, a method called a permeated water two-stage method in which demineralized water is treated again with a low-pressure reverse osmosis membrane has been constructed and operated, improving reverse osmosis membrane performance, There is a need to further reduce energy requirements by improving process systems.
 そのための方法として、逆浸透膜を複数種類組み合わせる方法、逆浸透膜の濃縮水を再度逆浸透膜で処理する方法、ナノろ過膜で前処理して硬度成分を除去し、逆浸透膜の回収率を上げる方法、ナノろ過膜の処理水を再度ナノろ過膜で処理する方法等が提案され、実用化に至っているものも少なくない(特許文献1~3、非特許文献2)。 As a method for this, a method of combining multiple types of reverse osmosis membranes, a method of treating reverse osmosis membrane concentrated water again with a reverse osmosis membrane, pretreatment with a nanofiltration membrane to remove hardness components, and a reverse osmosis membrane recovery rate And a method of treating the treated water of the nanofiltration membrane again with the nanofiltration membrane have been proposed, and many have been put into practical use (Patent Documents 1 to 3, Non-Patent Document 2).
 さらに、エネルギー消費量が低減したといっても、分離膜による水処理には電力が必要とされ、その源は、石油や石炭による火力や原子力といった、必ずしも環境に優しい技術とは言い難いエネルギーである。そのため、太陽エネルギー、風力、波力などの自然エネルギーによって産み出された電力を活用する試みがなされている(非特許文献3、特許文献4)。 Furthermore, even if energy consumption is reduced, water treatment using separation membranes requires power, and the source is energy that is not necessarily environmentally friendly, such as oil and coal thermal power and nuclear power. is there. For this reason, attempts have been made to utilize electric power generated by natural energy such as solar energy, wind power, and wave power (Non-patent Documents 3 and 4).
 これら自然エネルギーの大きな課題の一つとして、電力の安定供給が挙げられる。すなわち、太陽エネルギーは夜間にはほとんど得られず、風力は凪には得られない。そのため、非特許文献3にもあるように大きな蓄電池を備え、発電量の変動を吸収する必要がある。しかしながら、高コストな蓄電池が淡水化コストに大きな影響を与え、実用化、普及にとって大きな障害となっている。 One of the major issues of these natural energies is the stable supply of electric power. That is, almost no solar energy is available at night, and no wind power is available for drought. Therefore, as described in Non-Patent Document 3, it is necessary to provide a large storage battery to absorb fluctuations in the amount of power generation. However, high-cost storage batteries have a significant impact on desalination costs, and are a major obstacle to commercialization and dissemination.
 現在は、水力、火力、原子力といった従来の発電技術による電力と自然エネルギーとを併用する技術が実用化されているが、電力の安定供給のためには発電量を制御しやすい水力や火力を中心とする必要があり、自然エネルギーのように状況によって発電量が変動する発電方法を主体とした技術の実用化・普及には至っていない。 Currently, technologies that use both electric power and natural energy from conventional power generation technologies, such as hydropower, thermal power, and nuclear power, have been put into practical use. As a result, it has not yet been put to practical use and popularization of technology based on a power generation method in which the amount of power generation varies depending on the situation, such as natural energy.
 とくに逆浸透膜を海水淡水化に適用する場合、浸透圧以上の圧力がかからなければ淡水を得ることができないため、特定期間、すなわち、太陽光であれば、昼間の日射量が大きな時間しか淡水製造ができないでいた。さらに、浸透圧を上回るポンプ圧力が発電だけでは得られないときは、大容量の蓄電池を備えるか、従来の発電技術による電力を併用しなければ、逆浸透膜装置を停止せざるを得ない。しかも、その停機時間の間には、滞留水における微生物繁殖や膜の汚染の危険性がある。また、中東の夏季のように気温が水温を遙かに上回り、分離膜の保管許容温度を上回る場合は、空調により気温を下げるという高コストな方法を採るか、通水を続けて分離膜の温度上昇を抑制しなければ、分離膜が劣化してしまうという別の問題もある。 In particular, when applying reverse osmosis membranes to seawater desalination, fresh water cannot be obtained unless pressure higher than the osmotic pressure is applied. It was not possible to produce fresh water. Furthermore, when a pump pressure exceeding the osmotic pressure cannot be obtained only by power generation, the reverse osmosis membrane device must be stopped unless a large-capacity storage battery is provided or electric power by conventional power generation technology is used in combination. Moreover, there is a risk of microbial growth and membrane contamination in the stagnant water during the stoppage time. If the temperature is much higher than the water temperature and exceeds the allowable storage temperature of the separation membrane, as in the summer in the Middle East, take an expensive method of lowering the temperature by air conditioning, or continue the water flow and remove the separation membrane. If the temperature rise is not suppressed, there is another problem that the separation membrane deteriorates.
日本国特許第3551127号公報Japanese Patent No. 3551127 日本国特開平8-108048号公報Japanese Laid-Open Patent Publication No. 8-108048 日本国特開平8-206460号公報Japanese Laid-Open Patent Publication No. 8-206460 日本国特開2000-202441号公報Japanese Unexamined Patent Publication No. 2000-202441
 自然エネルギー主体の電力を逆浸透膜による海水淡水化に適用する場合、電力供給量に応じた逆浸透膜装置の最適運転(最適稼働)が可能なシステム、またその最適運転技術が求められており、種々検討されているものの、改善の余地があった。 When applying natural energy-based power to seawater desalination using reverse osmosis membranes, there is a need for a system capable of optimal operation (optimal operation) of reverse osmosis membrane devices according to the amount of power supplied, and its optimal operation technology. Although various studies have been made, there is room for improvement.
 本発明の課題は、自然エネルギーを主動力とした水処理装置の劣化やファウリングを抑制しながら、安定に造水することにある。 An object of the present invention is to stably produce water while suppressing deterioration and fouling of a water treatment apparatus mainly using natural energy.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、複数の工程から構成される水処理プロセスを用いて生産水を造水する方法であって、自然エネルギー発電ユニットから得られる電力を主な動力源とし、前記複数の工程のうち稼働させる工程を適宜選択することにより上記課題を解決することができることを見出し、本発明を完成させるに至った。 As a result of intensive investigations to achieve the above object, the inventors of the present invention are methods for producing product water using a water treatment process composed of a plurality of steps, which is obtained from a natural energy power generation unit. It has been found that the above-mentioned problems can be solved by appropriately selecting a process to be operated among the plurality of processes, using the generated power as a main power source, and has completed the present invention.
 すなわち、本発明の要旨は以下の(1)~(10)のとおりである。
(1) 工程Aと工程Bを含む複数の工程から構成される水処理プロセスを用いて生産水を得る造水方法であって、
 前記工程Aは、前記複数の工程のうち、最も電力を消費する処理ユニットで構成され、
 前記水処理プロセスは自然エネルギー発電ユニットから得られる電力を主な動力源にし、
 前記工程Aの稼働に必要な電力が維持できている期間は優先的に前記工程Aを稼働し、それ以外の期間は前記工程Aの稼働を停止すると共に、少なくとも一部の期間において前記工程Bを稼働することを特徴とする造水方法。
(2) 前記工程Aが、精密ろ過膜、限外ろ過膜、ナノろ過膜及び逆浸透膜からなる群より選ばれる少なくとも1の膜を稼働させる工程であることを特徴とする前記(1)に記載の造水方法。
(3) 前記工程Bが、前記工程Aを構成する処理ユニットを洗浄する工程、前処理ユニットを稼働する工程、後処理ユニットを稼働する工程並びにユニットおよび配管における滞留汚染防止操作を行う工程からなる群より選ばれる少なくとも1の工程であることを特徴とする前記(1)または(2)に記載の造水方法。
(4) 前記工程Aを構成する処理ユニットを洗浄する工程が、前記工程Aの被処理水側へ通水することにより行われることを特徴とする前記(3)に記載の造水方法。
(5) 前記工程Aを構成する処理ユニットを洗浄する工程における少なくとも一部の期間において、殺菌剤、酸又はアルカリを添加することを特徴とする前記(4)に記載の造水方法。
(6) 前記自然エネルギー発電ユニットに供給される自然エネルギーが太陽光、風力及び波力からなる群より選ばれる少なくとも1を含むことを特徴とする前記(1)~(5)のいずれか1に記載の造水方法。
(7) 前記水処理プロセス中にさらに電力貯蔵手段を備え、前記自然エネルギー発電ユニットに供給される自然エネルギーによる発電力の変動を抑えることを特徴とする前記(1)~(6)のいずれか1に記載の造水方法。
(8) 前記電力貯蔵手段が、蓄電池、揚水及び電気分解からなる群より選ばれる少なくとも1の手段からなることを特徴とする前記(7)に記載の造水方法。
(9) 前記工程Aによって処理された処理水質が設定値以上に悪化した場合及び前記工程Aを構成する処理ユニットへの被処理水の供給圧力が設定値を下回った場合の少なくともいずれか一方の場合に、前記工程Aの稼働を停止することを特徴とする前記(1)~(8)のいずれか1に記載の造水方法。
(10) 前記工程Aを構成する処理ユニットが逆浸透膜であり、被処理水の浸透圧が3bar以上であることを特徴とする前記(1)~(9)のいずれか1に記載の造水方法。
That is, the gist of the present invention is as follows (1) to (10).
(1) A water production method for obtaining product water using a water treatment process comprising a plurality of steps including step A and step B,
The step A is composed of a processing unit that consumes the most power among the plurality of steps.
The water treatment process uses power obtained from a natural energy power generation unit as a main power source,
The process A is preferentially operated during the period in which the power necessary for the operation of the process A can be maintained, and the operation of the process A is stopped during the other periods, and the process B is at least partially in the period. A fresh water production method characterized by operating
(2) In the step (1), the step A is a step of operating at least one membrane selected from the group consisting of a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane. The fresh water generation method of description.
(3) The step B includes a step of cleaning the processing unit constituting the step A, a step of operating the pre-processing unit, a step of operating the post-processing unit, and a step of performing a stagnant contamination preventing operation in the unit and piping. The fresh water generation method according to (1) or (2) above, which is at least one step selected from the group.
(4) The fresh water generation method according to (3), wherein the step of cleaning the treatment unit constituting the step A is performed by passing water to the treated water side of the step A.
(5) The fresh water generation method according to (4), wherein a bactericidal agent, an acid, or an alkali is added during at least a part of the step of washing the treatment unit constituting the step A.
(6) In any one of the above (1) to (5), the natural energy supplied to the natural energy power generation unit includes at least one selected from the group consisting of sunlight, wind power, and wave power The fresh water generation method of description.
(7) Any of the above (1) to (6), further comprising an electric power storage means during the water treatment process, and suppressing fluctuations in electric power generated by natural energy supplied to the natural energy power generation unit 1. The water production method according to 1.
(8) The fresh water generation method according to (7), wherein the power storage means includes at least one means selected from the group consisting of a storage battery, pumping water, and electrolysis.
(9) At least any one of the case where the quality of the treated water processed by the said process A deteriorated more than a preset value, and the supply pressure of the to-be-treated water to the treatment unit which comprises the said process A fell below a preset value In this case, the fresh water generation method according to any one of (1) to (8), wherein the operation of the step A is stopped.
(10) The structure according to any one of (1) to (9), wherein the treatment unit constituting the step A is a reverse osmosis membrane, and the osmotic pressure of water to be treated is 3 bar or more. Water way.
 本発明によって、自然エネルギーから得られる電力を動力源としつつ、電力消費が大きい処理ユニットの汚染を防止し、環境負荷を抑えつつ水処理装置により安定に造水する方法を提供することが可能となる。 According to the present invention, it is possible to provide a method of stably producing water with a water treatment apparatus while preventing contamination of a processing unit that consumes a large amount of power while using electric power obtained from natural energy as a power source and suppressing environmental load. Become.
図1は、本発明の造水方法で使用する水処理装置の一例を示すフロー図である。FIG. 1 is a flow diagram showing an example of a water treatment device used in the water production method of the present invention.
 以下、本発明の実施の形態について、図面を参照しながら説明するが、本発明はこの図面に示す実施態様に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments shown in the drawings.
 本発明の造水方法を適用する水処理プロセスは、少なくとも工程Aと工程Bを含む複数の工程から構成される。工程Aは、複数の工程のうち、最も電力を消費する処理ユニットからなる。すなわち工程Aは、他の1又は2以上の工程Bよりも大きな消費電力を要する。 The water treatment process to which the fresh water generation method of the present invention is applied is composed of a plurality of steps including at least step A and step B. The process A includes a processing unit that consumes the most power among the plurality of processes. That is, the process A requires larger power consumption than one or more other process B.
 本発明において、工程Aは、その消費電力が全工程の中で最大である処理ユニットから構成され、工程Bは、その消費電力が工程Aの最低所要電力未満である処理ユニットから構成されるものとする。なお工程Bは、工程Aを除く複数の工程から選ばれる1以上の工程であるが、工程Bが複数の工程からなるとき、その消費電力の合計は、工程Aの消費電力を超えないものとする。 In the present invention, the process A is composed of a processing unit whose power consumption is the maximum among all the processes, and the process B is composed of a processing unit whose power consumption is less than the minimum required power of the process A. And The process B is one or more processes selected from a plurality of processes excluding the process A. However, when the process B includes a plurality of processes, the total power consumption does not exceed the power consumption of the process A. To do.
 また、本発明では前記水処理プロセスは自然エネルギー発電ユニットから得られる電力を主な動力源にし、前記工程Aの稼働に必要な電力が維持できている期間は優先的に前記工程Aを稼働し、それ以外の期間は前記工程Aの稼働を停止すると共に、少なくとも一部の期間において前記工程Bを稼働することを特徴とする。
 以下、図1を用いて本発明について説明する。また、工程A及び工程Bについての詳細は後述する。
In the present invention, the water treatment process uses power obtained from a natural energy power generation unit as a main power source, and operates the process A preferentially during a period in which the power required for the operation of the process A can be maintained. The operation of the process A is stopped during other periods, and the process B is operated during at least a part of the period.
Hereinafter, the present invention will be described with reference to FIG. Details of step A and step B will be described later.
 図1は、本発明の造水方法に適用可能な水処理装置の一例を示すフロー図である。
 図1において、原水1は、原水タンク2に供給され、前処理ポンプ3で前処理ユニット4(工程Bの一例)に供給、処理され、前処理水として前処理水タンク5に貯留される。その後前処理水は、高圧ポンプ6によって昇圧され、逆浸透膜ユニット7(工程Aの一例)で処理され、その処理水(透過水)は透過水タンク8に貯留される。また逆浸透膜ユニット7から排出される濃縮水は、濃縮水バルブ13aから濃縮水ライン12aを通って取出される。
 逆浸透膜ユニット7の透過水は、透過水タンク8から昇圧ポンプ9で後処理ユニット10である低圧逆浸透膜ユニット(工程Bの一例)に供給、処理され、その透過水が生産水として生産水タンク11に送られる。また後処理ユニット10である低圧逆浸透膜ユニットから排出された濃縮水は、濃縮水バルブ13bから濃縮水ライン12bを通って取出される。
FIG. 1 is a flow diagram showing an example of a water treatment apparatus applicable to the water production method of the present invention.
In FIG. 1, raw water 1 is supplied to a raw water tank 2, supplied and processed by a pretreatment pump 3 to a pretreatment unit 4 (an example of a process B), and stored in a pretreatment water tank 5 as pretreatment water. Thereafter, the pretreated water is pressurized by the high-pressure pump 6 and treated by the reverse osmosis membrane unit 7 (an example of the process A), and the treated water (permeated water) is stored in the permeated water tank 8. The concentrated water discharged from the reverse osmosis membrane unit 7 is taken out from the concentrated water valve 13a through the concentrated water line 12a.
The permeated water of the reverse osmosis membrane unit 7 is supplied from the permeated water tank 8 to the low pressure reverse osmosis membrane unit (an example of the process B) which is the post-processing unit 10 by the booster pump 9 and processed, and the permeated water is produced as product water. It is sent to the water tank 11. Concentrated water discharged from the low-pressure reverse osmosis membrane unit as the post-processing unit 10 is taken out from the concentrated water valve 13b through the concentrated water line 12b.
 図1のフローにおいて必要な動力は、自然エネルギー発電ユニット15によって得られる電力が供給される。また短時間の電力供給量の変動を吸収するために小型の電力貯蔵ユニット14等の電力貯蔵手段を備えることができる。さらに電力安定供給制御ユニット16によって必要な電力を各ユニット(図1においては、前処理ポンプ3、高圧ポンプ6、昇圧ポンプ9)に選択的に供給するようになっている。 1 is supplied with electric power obtained by the natural energy power generation unit 15. Moreover, in order to absorb the fluctuation | variation of the electric power supply amount for a short time, electric power storage means, such as a small-sized electric power storage unit 14, can be provided. Further, the power stable supply control unit 16 selectively supplies necessary power to each unit (the pretreatment pump 3, the high pressure pump 6, and the pressure increase pump 9 in FIG. 1).
 本発明の適用に当たり、例えば、図1の水処理装置を稼働するために必要な電力として、前処理ポンプ3を含む前処理ユニット4の消費電力が10kW、高圧ポンプ6を含む逆浸透ユニット7の消費電力が60kW、昇圧ポンプ9を含む後処理ユニット10の消費電力が30kWであったとした場合を例として以下に詳述する。ここで、最も電力を消費する処理ユニットは逆浸透ユニット7であることから、高圧ポンプ6を含む逆浸透ユニット7で構成される水処理プロセスが本発明における工程Aとなる。また前処理ポンプ3を含む前処理ユニット4や昇圧ポンプ9を含む後処理ユニット10で構成される水処理プロセスは、工程Bの一例となる。 In application of the present invention, for example, as power necessary for operating the water treatment apparatus of FIG. 1, the power consumption of the pretreatment unit 4 including the pretreatment pump 3 is 10 kW, and the reverse osmosis unit 7 including the high pressure pump 6 is used. The case where the power consumption is 60 kW and the power consumption of the post-processing unit 10 including the booster pump 9 is 30 kW will be described in detail below as an example. Here, since the treatment unit that consumes the most power is the reverse osmosis unit 7, the water treatment process including the reverse osmosis unit 7 including the high-pressure pump 6 is the step A in the present invention. A water treatment process including the pretreatment unit 4 including the pretreatment pump 3 and the posttreatment unit 10 including the booster pump 9 is an example of the process B.
 自然エネルギー発電ユニット15から供給される電力を電力貯蔵ユニット14で平準化した平均供給電力が60kW以上である期間は、工程Aの稼働に必要な電力が維持できている期間であり、当該期間は優先的に高圧ポンプ6に電力を供給し、逆浸透膜ユニット7によって透過水を得る(工程A)。
 また、平均供給電力が40kW以上60kW未満の場合は、工程Aの稼働を停止し、前処理ポンプ3と昇圧ポンプ9に電力を供給して、前処理ユニット4と後処理ユニット10を稼働する。平均供給電力が30kW以上40kW未満の場合は、昇圧ポンプ9に電力を供給して後処理ユニット10を稼働する。平均供給電力が10kW以上30kW未満の場合は、前処理ポンプ3に電力を供給して前処理ユニットを稼働する。
 なお、平均供給電力が100kW以上である期間は、全てのポンプに電力を供給して、全ユニットを稼働させる。
The period in which the average supply power obtained by leveling the power supplied from the natural energy power generation unit 15 by the power storage unit 14 is 60 kW or more is a period during which the power necessary for the operation of the process A can be maintained. Electric power is preferentially supplied to the high-pressure pump 6 and permeated water is obtained by the reverse osmosis membrane unit 7 (step A).
Moreover, when average supply electric power is 40 kW or more and less than 60 kW, operation | movement of the process A is stopped, electric power is supplied to the pre-processing pump 3 and the pressure | voltage rise pump 9, and the pre-processing unit 4 and the post-processing unit 10 are operated. When the average supply power is 30 kW or more and less than 40 kW, power is supplied to the booster pump 9 to operate the post-processing unit 10. When the average supply power is 10 kW or more and less than 30 kW, power is supplied to the pretreatment pump 3 to operate the pretreatment unit.
In addition, during the period when the average supply power is 100 kW or more, power is supplied to all the pumps and all the units are operated.
 以上は、本発明を分かりやすく説明するための稼働方法の一例であるが、他に、上述した各ユニットの稼働には十分ではないが、余剰な電力がある場合には、工程Bの一例としてそれぞれのユニットを通水洗浄することも可能である。
 またそれぞれのユニットの出力を落として、消費電力を抑えることも可能である。消費電力を抑えることにより、例えば、60kW未満の発電力であっても逆浸透膜ユニット7を稼働することが可能である。ただし、消費電力を抑えて水処理ユニットを稼働させた場合は透過水を得る速度が低下し、さらに工程を構成する水処理方法によっては、水量が出てこない(すなわち、最低所要電力がある)場合や、水質悪化を招く場合がある。
The above is an example of an operation method for explaining the present invention in an easy-to-understand manner. Besides, it is not sufficient for operation of each unit described above, but when there is surplus power, as an example of the process B It is also possible to wash each unit with water.
It is also possible to reduce the power consumption by reducing the output of each unit. By suppressing the power consumption, for example, the reverse osmosis membrane unit 7 can be operated even with a power generation of less than 60 kW. However, when the water treatment unit is operated while suppressing power consumption, the rate of obtaining permeate decreases, and depending on the water treatment method constituting the process, the amount of water does not come out (that is, there is a minimum required power). In some cases, water quality may deteriorate.
 例えば、被処理水のTDS(全溶解性固形分)が10000mg/l程度あると、その浸透圧が3bar程度になるが、逆浸透膜を用いて水処理を行う場合には浸透圧に対抗する圧力が必要なため、自然エネルギーによる発電量が小さく、ポンプによる加圧が浸透圧以下しか得られない場合には、逆浸透膜は稼働できない。これに対し、一般的な精密ろ過膜や限外ろ過膜の場合、その浸透圧以下の圧力でも稼働可能であり、工程Aを構成する処理ユニットに対して最低所要電力を設定することができる。すなわち、本発明の適用に当たって、このように最低所要電力があるプロセスを工程Aとして本発明を適用すると非常に効率的である。例えば工程Aを構成する処理ユニットを逆浸透膜プロセスにし、被処理水の浸透圧が3bar以上である被処理水を処理することができる電力量を閾値とすることが好ましい。 For example, if the TDS (total soluble solid content) of the water to be treated is about 10000 mg / l, the osmotic pressure is about 3 bar, but this is counter to the osmotic pressure when water treatment is performed using a reverse osmosis membrane. Since pressure is required, the amount of power generated by natural energy is small, and the reverse osmosis membrane cannot be operated when the pressurization by the pump can only be obtained below the osmotic pressure. On the other hand, in the case of a general microfiltration membrane or an ultrafiltration membrane, it can be operated even at a pressure equal to or lower than the osmotic pressure, and the minimum required power can be set for the processing unit constituting the process A. That is, in applying the present invention, it is very efficient to apply the present invention as a process A having such minimum required power. For example, it is preferable that the processing unit constituting the process A is a reverse osmosis membrane process, and the amount of power that can treat the water to be treated whose osmotic pressure of the water to be treated is 3 bar or more is used as a threshold.
 海水を被処理水とした淡水化逆浸透膜を用いた水処理を行う場合、海水の浸透圧が25bar程度であるため、25barよりも大きな圧力をかけなければ、逆浸透膜を稼働することが出来ない。また、逆浸透膜を稼働できる場合でも、その稼働圧が十分高くない場合には、透過水の塩濃度が上昇するために処理後の水質が満足できない場合もあり、このような場合は、その工程の稼働を停止することが好ましい。 When performing water treatment using a desalinated reverse osmosis membrane using seawater as the treated water, the osmotic pressure of seawater is about 25 bar, so that if a pressure greater than 25 bar is not applied, the reverse osmosis membrane can be operated. I can't. Even if the reverse osmosis membrane can be operated, if the operating pressure is not high enough, the salt concentration of the permeated water may increase and the water quality after treatment may not be satisfactory. It is preferable to stop the operation of the process.
 したがって、工程Aによって処理された処理水質が設定値以上に悪化した場合及び工程Aを構成する処理ユニットへの被処理水の供給圧力が設定値を下回った場合の少なくともいずれか一方の場合には、工程Aの稼働を停止することが好ましい。 Therefore, in the case of at least any one of the case where the quality of the treated water processed by the process A deteriorates more than a preset value and the supply pressure of the treated water to the treatment unit constituting the process A falls below the preset value It is preferable to stop the operation of the process A.
 上記のとおり、工程Aの処理水質の設定値は、目的とする生産水の水質にあわせて適宜決めることができる。また工程Aの処理ユニットへの被処理水の供給圧力の設定値は、被処理水の浸透圧および生産効率(透過流束、回収率等)に基づき、適宜設定することができる。 As described above, the set value of the treated water quality in step A can be determined as appropriate according to the quality of the target production water. Further, the set value of the supply pressure of the water to be treated to the treatment unit in the process A can be appropriately set based on the osmotic pressure of the water to be treated and the production efficiency (permeation flux, recovery rate, etc.).
 さらに、上記の水処理方法の例の場合、前処理ユニット4の稼働に関しては、もっとも消費電力が少ないので、稼働率を最も大きくすることが出来るが、工程Aに供する前処理水タンク5の水位が十分に得られているときは、前処理ユニット4を稼働停止することも好ましい実施態様である。 Furthermore, in the case of the above-described water treatment method, the operation rate of the pretreatment unit 4 is the smallest because the power consumption is the smallest, so that the operation rate can be maximized, but the water level of the pretreatment water tank 5 used for the process A Is sufficiently obtained, it is also a preferred embodiment to stop the operation of the pretreatment unit 4.
 本発明の造水方法に適用可能な自然エネルギー発電ユニットに供給される自然エネルギー源としては、とくに制約はなく、太陽光、波力、風力などが挙げられるが、これらのうち少なくとも1種の自然エネルギーを含むことが好ましく、これらを組み合わせて適用してもよい。この中でも、時間によって発電力が周期的に変動する太陽光発電が本発明により適している。 The natural energy source supplied to the natural energy power generation unit applicable to the fresh water generation method of the present invention is not particularly limited, and includes sunlight, wave power, wind power, and the like. It is preferable to include energy, and these may be applied in combination. Among these, photovoltaic power generation in which the generated power varies periodically with time is more suitable for the present invention.
 太陽光を利用する場合、太陽高度の高い時間帯、すなわち、正午を中心とした時間帯は、優先的に工程Aを稼働させることが出来、それ以外の時間帯、すなわち、朝夕には、工程Bとして、前処理ユニットや後処理ユニットを稼働させ、さらに日の出日の入り前後には、膜の洗浄を実施し、そして、夜間は、稼働を完全に停止するか小型の蓄電ユニット(電力貯蔵ユニット)の容量で可能な範囲で、各工程に被処理水、透過水、生産水などを流し、各ユニットや配管の滞留汚染を防止することが出来る。 When using sunlight, the process A can be preferentially operated in a time zone with a high solar altitude, that is, a time zone centered around noon, and in other time zones, that is, in the morning and evening, the process As B, the pre-processing unit and the post-processing unit are operated, and the membrane is washed before and after sunrise, and the operation is stopped completely at night or a small power storage unit (power storage unit) As long as the capacity is possible, water to be treated, permeated water, production water, etc. can be allowed to flow through each process to prevent stagnation of each unit and piping.
 すなわち、工程Aの稼働に必要な電力が維持できない期間は工程Aの稼働を停止し、当該期間内の少なくとも一部の期間は工程Bを稼働する。そして、当該工程Bは、工程Aを構成する処理ユニットを洗浄する工程、前処理ユニットを稼働する工程、後処理ユニットを稼働する工程並びにユニットおよび配管における滞留汚染防止操作を行う工程からなる群より選ばれる少なくとも1の工程であることが好ましい。 That is, the operation of the process A is stopped during the period when the power required for the operation of the process A cannot be maintained, and the process B is operated during at least a part of the period. And the said process B is from the group which consists of the process of washing | cleaning the processing unit which comprises the process A, the process of operating a pre-processing unit, the process of operating a post-processing unit, and the process of performing the stay pollution prevention operation in a unit and piping. It is preferable that it is at least one process selected.
 工程Aを構成する処理ユニットを洗浄する工程においては、ユニットの汚れ程度に応じて、殺菌剤、酸又はアルカリを添加適用すると、より効果的である。 In the process of cleaning the processing unit constituting the process A, it is more effective to add and apply a bactericidal agent, acid or alkali according to the degree of soiling of the unit.
 本発明における電力貯蔵ユニットとして適用可能な電力貯蔵手段に特に制約はなく、ニカド電池、ニッケル水素電池、リチウム電池などの蓄電池;キャパシタ;水を高いところに送水貯留する揚水;水素を製造する電気分解などを適用することが可能である。中でも、蓄電池、揚水及び電気分解からなる群より選ばれる少なくとも1の手段により電力を貯蔵することが好ましい。 There are no particular restrictions on the power storage means that can be used as the power storage unit in the present invention; storage batteries such as nickel-cadmium batteries, nickel-metal hydride batteries, and lithium batteries; capacitors; pumped water that stores water in high places; electrolysis that produces hydrogen Etc. can be applied. Especially, it is preferable to store electric power by at least 1 means chosen from the group which consists of a storage battery, pumping water, and electrolysis.
 水処理プロセス中に上記のような電力貯蔵手段を備えると、太陽の動きで発電力が周期的に変動するような太陽光などの自然エネルギーをエネルギー源とする場合に、発電力の変動を抑えることができることから好ましい。
 より具体的には、日毎にそれぞれの工程を適切に稼働するためのプログラムを効率的に作ることができるため好ましい。
 なお、このプログラミングに関しては、特許文献4に例示されるように、気象情報を取り込んで、発電量を予測すれば、さらに精度の高い稼働管理をすることが可能となる。
When power storage means as described above are provided during the water treatment process, fluctuations in the generated power are suppressed when natural energy such as sunlight, where the generated power periodically fluctuates due to the movement of the sun, is used as the energy source. This is preferable.
More specifically, it is preferable because a program for appropriately operating each process every day can be efficiently created.
With regard to this programming, as exemplified in Patent Document 4, if weather information is taken in and the power generation amount is predicted, operation management with higher accuracy can be performed.
 次に、各工程について説明する。
 本発明の造水方法では、工程Aを構成する処理ユニットとしては、最も電力を消費すると共に水処理装置の中心になるプロセスユニットであれば、特に制約はなく、電気透析、蒸発法、分離膜などを挙げることが出来る。中でも、省エネルギーに優れ、フレキシブルな稼働が可能であることから、分離膜ユニットの適用が好ましい。
Next, each step will be described.
In the fresh water generation method of the present invention, the treatment unit constituting the step A is not particularly limited as long as it is a process unit that consumes the most power and is the center of the water treatment apparatus. Electrodialysis, evaporation method, separation membrane And so on. Especially, since it is excellent in energy saving and flexible operation is possible, application of a separation membrane unit is preferable.
 分離膜ユニットとしても、特に制限はなく、様々な分離ユニットを用いることが出来る。中でも、マイクロメートル以下の高精度の固液分離が可能な糸巻きフィルター、不織布フィルター、精密ろ過膜、限外ろ過膜や溶解物質の分離が可能なナノろ過膜、逆浸透膜が好ましく、精密ろ過膜、限外ろ過膜、ナノろ過膜及び逆浸透膜からなる群より選ばれる少なくとも1の膜を稼働させることがより好ましい。 The separation membrane unit is not particularly limited, and various separation units can be used. Among them, a thread filter, a non-woven filter, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane capable of separating dissolved substances, and a reverse osmosis membrane capable of high-precision solid-liquid separation of micrometer or less are preferable. More preferably, at least one membrane selected from the group consisting of an ultrafiltration membrane, a nanofiltration membrane and a reverse osmosis membrane is operated.
 これら分離膜ユニットの最低所要電力は、その中心となる分離膜、高圧ポンプ、付随するバルブおよび計測器等の分離膜ユニットを稼働させるために必要な電力の合計とする。 The minimum power required for these separation membrane units is the total power required to operate the separation membrane units such as the separation membrane, the high-pressure pump, the accompanying valves, and the measuring instrument as the center.
 またこれらの分離膜は、被処理水によっては汚染が進行して膜の性能低下を引き起こすことがあるため、適宜被処理水に対して前処理を実施することで、供給に適した水質にする。 In addition, since these separation membranes may be contaminated depending on the water to be treated and cause the performance of the membrane to deteriorate, the water quality suitable for supply can be obtained by appropriately pretreating the water to be treated. .
 前処理ユニットとしては、工程Aに悪影響を及ぼす物質を除去したり、工程Aの除去性能を補助するための分離精度の低い処理を行うプロセスが挙げられる。
 工程Aに悪影響を及ぼす物質の除去としては、吸着、凝集沈殿、加圧浮上などの物理化学的な処理や好気性や嫌気性の生物処理が代表的な例として挙げられる。
 分離精度の低い処理としては、砂ろ過、糸巻フィルター、ろ布、精密ろ過膜、限外ろ過膜、ナノろ過膜、工程Aよりも除去性能が低い逆浸透膜などが挙げられる。ここで、前処理工程に適用される精密ろ過膜、限外ろ過膜、ナノろ過膜および逆浸透膜は、上述のとおり、その消費電力が、工程Aを構成する処理ユニットの最低所要電力より小さいものとする。
Examples of the pretreatment unit include a process of removing a substance that adversely affects the process A or performing a process with low separation accuracy to assist the removal performance of the process A.
Representative examples of the removal of substances that adversely affect the process A include physicochemical treatments such as adsorption, coagulation sedimentation, and pressure levitation, and aerobic and anaerobic biological treatments.
Examples of the treatment with low separation accuracy include sand filtration, a pincushion filter, a filter cloth, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane having a lower removal performance than Step A. Here, as described above, the power consumption of the microfiltration membrane, ultrafiltration membrane, nanofiltration membrane, and reverse osmosis membrane applied to the pretreatment process is smaller than the minimum required power of the processing unit constituting the process A. Shall.
 一方、後処理として、前処理や工程Aで十分に除去できなかった水質を除去するために、再度、工程Aと同様の処理を行ったり、吸着剤、UV殺菌などの処理を行うことが出来る。ただし、後処理工程に適用される処理ユニットは、前処理工程と同様に、その消費電力が、工程Aを構成する処理ユニットの最低所要電力より小さいものとする。 On the other hand, as post-treatment, in order to remove water quality that could not be sufficiently removed in pre-treatment or step A, treatment similar to step A can be performed again, or treatment such as adsorbent and UV sterilization can be performed. . However, it is assumed that the power consumption of the processing unit applied to the post-processing process is smaller than the minimum required power of the processing units constituting the process A, as in the pre-processing process.
 これらの処理ユニットは、工程Aを構成する処理ユニットを含めて、被処理水によって汚染されていくので、性能を回復させるために適宜、オンラインもしくはオフラインで洗浄を行うのが一般的である。 These treatment units, including the treatment units constituting the process A, are contaminated by the water to be treated. Therefore, in order to recover the performance, the washing is generally performed online or offline as appropriate.
 オンラインの場合は、洗浄薬品を被処理水側に注入する。例としては、先述したように、ユニットの汚れの程度に応じて、殺菌剤、酸又はアルカリを添加適用する。より具体的には、次亜塩素酸、クロラミン、二酸化塩素、過マンガン酸カリウム、次亜硫酸ナトリウム、2,2-ジブロモ―3-ニトリロプロピオンアミド(DBNPA)などの殺菌剤や硫酸、塩酸、クエン酸などの一般的な酸や、水酸化ナトリウムなどのアルカリが挙げられる。これらを取水やユニットへの供給水などに連続又は間欠注入することが出来る。 In case of online, inject cleaning chemical into treated water. As an example, as described above, a bactericidal agent, an acid or an alkali is added and applied depending on the degree of soiling of the unit. More specifically, bactericides such as hypochlorous acid, chloramine, chlorine dioxide, potassium permanganate, sodium hyposulfite, 2,2-dibromo-3-nitrilopropionamide (DBNPA), sulfuric acid, hydrochloric acid, citric acid And general acids such as sodium hydroxide and alkali such as sodium hydroxide. These can be taken continuously or intermittently into water or water supplied to the unit.
 オフラインの場合は、被処理水や処理水などをそのままの状態、もしくは、加温したり上述の洗浄薬品を添加して洗浄効果を上げた状態で汚染部分に供給し、フラッシングや浸漬をすることが一般的である。ここでいう汚染部分とは、被処理水側、処理水側のいずれでも構わないが、汚染しやすい被処理水側に適用することが好ましい。 In the case of off-line, water to be treated or treated water is supplied as it is, or heated or added to the above-mentioned cleaning chemicals to increase the cleaning effect, and then flushed or immersed. Is common. The contaminated portion here may be on either the treated water side or the treated water side, but it is preferably applied to the treated water side that is easily contaminated.
 以上詳述したように、本発明において、水処理工程を工程Aとし、前処理工程、後処理工程、工程Aを構成する処理ユニットを洗浄処理する工程並びにユニットおよび配管における滞留汚染防止操作を行う工程からなる群より選ばれる少なくとも1の工程を、本発明における工程Bとすることが好ましい。また、工程Aを構成する処理ユニットを洗浄処理する工程では、工程Aの被処理水側へ通水することにより洗浄処理をすることがより好ましい。
 本発明は、これら工程A及び工程Bを実施するにあたり、自然エネルギー発電ユニットから得られる電力が十分にあるときは工程Aを稼働し、電力が工程Aを稼働するのに不十分な状況においては工程Bを稼働させることができ、本発明の目的である安定に造水することが出来るようになる。
As described above in detail, in the present invention, the water treatment process is defined as process A, and the pretreatment process, the post-treatment process, the process of cleaning the treatment units constituting the process A, and the operation for preventing staying contamination in the unit and the piping are performed. It is preferable that at least one process selected from the group consisting of processes is the process B in the present invention. Further, in the step of washing the treatment unit constituting the step A, it is more preferable to carry out the washing treatment by passing water to the treated water side of the step A.
In carrying out these steps A and B, the present invention operates step A when there is sufficient power obtained from the natural energy power generation unit, and in a situation where power is insufficient to operate step A. The process B can be operated, and the water can be stably formed which is the object of the present invention.
 また、本発明を適用可能な被処理水(原水)は特に制限されるものではなく、河川水、海水、下水処理水、雨水、工業用水、工業廃水など、様々な被処理水を用いることができるが、特に、浸透圧を有する海水やかん水に対しての適用が好適である。 The treated water (raw water) to which the present invention is applicable is not particularly limited, and various treated waters such as river water, seawater, sewage treated water, rain water, industrial water, and industrial wastewater may be used. However, application to seawater or brackish water having osmotic pressure is particularly suitable.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2012年10月10日出願の日本特許出願(特願2012-224724)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on October 10, 2012 (Japanese Patent Application No. 2012-224724), the contents of which are incorporated herein by reference.
 本発明は、発電量が不安定な自然エネルギーから得られた電力を動力源としつつ、効率的に各部ユニットを稼働することによって、分離膜ユニットの汚染を防止し、環境負荷を抑えつつ水処理装置を安定に稼働する造水方法を提供することが可能となる。 The present invention prevents the contamination of the separation membrane unit by efficiently operating each unit while using electric power obtained from natural energy whose power generation is unstable as a power source. It is possible to provide a fresh water generation method for stably operating the apparatus.
1:原水
2:原水タンク
3:前処理ポンプ
4:前処理ユニット
5:前処理水タンク
6:高圧ポンプ
7:逆浸透膜ユニット
8:透過水タンク
9:昇圧ポンプ
10:後処理ユニット
11:生産水タンク
12a:濃縮水ライン
12b:濃縮水ライン
13a:濃縮水バルブ
13b:濃縮水バルブ
14:電力貯蔵ユニット
15:自然エネルギー発電ユニット
16:電力安定供給制御ユニット
1: Raw water 2: Raw water tank 3: Pretreatment pump 4: Pretreatment unit 5: Pretreatment water tank 6: High pressure pump 7: Reverse osmosis membrane unit 8: Permeate water tank 9: Booster pump 10: Posttreatment unit 11: Production Water tank 12a: Concentrated water line 12b: Concentrated water line 13a: Concentrated water valve 13b: Concentrated water valve 14: Power storage unit 15: Natural energy power generation unit 16: Stable power supply control unit

Claims (10)

  1.  工程Aと工程Bを含む複数の工程から構成される水処理プロセスを用いて生産水を得る造水方法であって、
     前記工程Aは、前記複数の工程のうち、最も電力を消費する処理ユニットで構成され、
     前記水処理プロセスは自然エネルギー発電ユニットから得られる電力を主な動力源にし、
     前記工程Aの稼働に必要な電力が維持できている期間は優先的に前記工程Aを稼働し、それ以外の期間は前記工程Aの稼働を停止すると共に、少なくとも一部の期間において前記工程Bを稼働することを特徴とする造水方法。
    A water production method for obtaining product water using a water treatment process comprising a plurality of steps including step A and step B,
    The step A is composed of a processing unit that consumes the most power among the plurality of steps.
    The water treatment process uses power obtained from a natural energy power generation unit as a main power source,
    The process A is preferentially operated during the period in which the power necessary for the operation of the process A can be maintained, and the operation of the process A is stopped during the other periods, and the process B is at least partially in the period. A fresh water production method characterized by operating
  2.  前記工程Aが、精密ろ過膜、限外ろ過膜、ナノろ過膜及び逆浸透膜からなる群より選ばれる少なくとも1の膜を稼働させる工程であることを特徴とする請求項1に記載の造水方法。 The said process A is a process of operating at least 1 membrane chosen from the group which consists of a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane, The fresh water production of Claim 1 characterized by the above-mentioned. Method.
  3.  前記工程Bが、前記工程Aを構成する処理ユニットを洗浄する工程、前処理ユニットを稼働する工程、後処理ユニットを稼働する工程並びにユニットおよび配管における滞留汚染防止操作を行う工程からなる群より選ばれる少なくとも1の工程であることを特徴とする請求項1または2に記載の造水方法。 The step B is selected from the group consisting of the step of cleaning the processing unit constituting the step A, the step of operating the pre-processing unit, the step of operating the post-processing unit, and the step of performing stagnant contamination prevention operation in the unit and piping. The fresh water generation method according to claim 1, wherein the method is at least one step.
  4.  前記工程Aを構成する処理ユニットを洗浄する工程が、前記工程Aの被処理水側へ通水することにより行われることを特徴とする請求項3に記載の造水方法。 The fresh water generation method according to claim 3, wherein the step of cleaning the treatment unit constituting the step A is performed by passing water to the treated water side of the step A.
  5.  前記工程Aを構成する処理ユニットを洗浄する工程における少なくとも一部の期間において、殺菌剤、酸又はアルカリを添加することを特徴とする請求項4に記載の造水方法。 The fresh water generation method according to claim 4, wherein a bactericidal agent, an acid or an alkali is added during at least a part of the step of washing the treatment unit constituting the step A.
  6.  前記自然エネルギー発電ユニットに供給される自然エネルギーが太陽光、風力及び波力からなる群より選ばれる少なくとも1を含むことを特徴とする請求項1~5のいずれか1項に記載の造水方法。 The fresh water generation method according to any one of claims 1 to 5, wherein the natural energy supplied to the natural energy power generation unit includes at least one selected from the group consisting of sunlight, wind power, and wave power. .
  7.  前記水処理プロセス中にさらに電力貯蔵手段を備え、前記自然エネルギー発電ユニットに供給される自然エネルギーによる発電力の変動を抑えることを特徴とする請求項1~6のいずれか1項に記載の造水方法。 The structure according to any one of claims 1 to 6, further comprising an electric power storage means during the water treatment process to suppress fluctuations in the generated electric power due to natural energy supplied to the natural energy power generation unit. Water way.
  8.  前記電力貯蔵手段が、蓄電池、揚水及び電気分解からなる群より選ばれる少なくとも1の手段からなることを特徴とする請求項7に記載の造水方法。 The fresh water generation method according to claim 7, wherein the power storage means comprises at least one means selected from the group consisting of a storage battery, pumping water and electrolysis.
  9.  前記工程Aによって処理された処理水質が設定値以上に悪化した場合及び前記工程Aを構成する処理ユニットへの被処理水の供給圧力が設定値を下回った場合の少なくともいずれか一方の場合に、前記工程Aの稼働を停止することを特徴とする請求項1~8のいずれか1項に記載の造水方法。 In the case of at least one of the case where the quality of the treated water treated by the step A deteriorates more than a set value and the supply pressure of the treated water to the treatment unit constituting the step A falls below a set value, The fresh water generation method according to any one of claims 1 to 8, wherein the operation of the step A is stopped.
  10.  前記工程Aを構成する処理ユニットが逆浸透膜であり、被処理水の浸透圧が3bar以上であることを特徴とする請求項1~9のいずれか1項に記載の造水方法。
     
    The fresh water generation method according to any one of claims 1 to 9, wherein the treatment unit constituting the step A is a reverse osmosis membrane, and the osmotic pressure of water to be treated is 3 bar or more.
PCT/JP2013/077158 2012-10-10 2013-10-04 Method for generating fresh water WO2014057892A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014502683A JPWO2014057892A1 (en) 2012-10-10 2013-10-04 Fresh water generation method
PH12015500787A PH12015500787A1 (en) 2012-10-10 2015-04-08 Method for generating fresh water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224724 2012-10-10
JP2012-224724 2012-10-10

Publications (1)

Publication Number Publication Date
WO2014057892A1 true WO2014057892A1 (en) 2014-04-17

Family

ID=50477359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077158 WO2014057892A1 (en) 2012-10-10 2013-10-04 Method for generating fresh water

Country Status (3)

Country Link
JP (1) JPWO2014057892A1 (en)
PH (1) PH12015500787A1 (en)
WO (1) WO2014057892A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645615A (en) * 2014-12-05 2016-06-08 蒋志远 Water-purification backwashing-type three-water-quality reverse-osmosis water purifier can be washed with chemicals and gas
JP2018202334A (en) * 2017-06-06 2018-12-27 東洋紡エンジニアリング株式会社 Seawater desalination apparatus and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267471A (en) * 1998-03-20 1999-10-05 Toray Ind Inc Membrane filter device and operation method
JP2007245084A (en) * 2006-03-17 2007-09-27 Toshiba Corp Membrane filtration control device
JP2010227836A (en) * 2009-03-27 2010-10-14 Toray Ind Inc Method for operating film module
JP2011020010A (en) * 2009-07-13 2011-02-03 Mitsubishi Heavy Ind Ltd Formation water producing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267471A (en) * 1998-03-20 1999-10-05 Toray Ind Inc Membrane filter device and operation method
JP2007245084A (en) * 2006-03-17 2007-09-27 Toshiba Corp Membrane filtration control device
JP2010227836A (en) * 2009-03-27 2010-10-14 Toray Ind Inc Method for operating film module
JP2011020010A (en) * 2009-07-13 2011-02-03 Mitsubishi Heavy Ind Ltd Formation water producing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645615A (en) * 2014-12-05 2016-06-08 蒋志远 Water-purification backwashing-type three-water-quality reverse-osmosis water purifier can be washed with chemicals and gas
JP2018202334A (en) * 2017-06-06 2018-12-27 東洋紡エンジニアリング株式会社 Seawater desalination apparatus and method

Also Published As

Publication number Publication date
JPWO2014057892A1 (en) 2016-09-05
PH12015500787A1 (en) 2015-06-15

Similar Documents

Publication Publication Date Title
JP6882541B2 (en) Decompression salt water treatment system
US8062527B2 (en) Method and apparatus for desalinating sea water
Goh et al. The water–energy nexus: solutions towards energy‐efficient desalination
JP6233297B2 (en) Fresh water generation method
Semiat et al. Energy aspects in osmotic processes
Nascimento et al. Membrane-based technologies for the up-concentration of municipal wastewater: A review of pretreatment intensification
JP2008100220A (en) Method for producing freshwater
WO2014115769A1 (en) Method for operating freshwater production device
JP7085329B2 (en) Wastewater concentration method and wastewater concentrator
WO2014057892A1 (en) Method for generating fresh water
JP6269486B2 (en) Demineralized water production method
KR101778021B1 (en) Eco-friendly desalination system using forward osmosis and reverse osmosis
KR20170069614A (en) Saltwater desalination system
Pankratz Desalination technology trends
Harby et al. Reverse osmosis hybridization with other desalination techniques: An overview and opportunities
KR102341372B1 (en) High efficiency combined desalination system using renewable energy
JP2015163383A (en) Fresh water generation system
Banat et al. Membrane desalination driven by solar energy
KR101775010B1 (en) Anaerobic treatment system of wastewater combinined pressure retarded osmosis system and bio-electrochemical system
Kadhim et al. Comparative Study of Water Desalination using Reverse Osmosis (RO) and Electro-dialysis Systems (ED)
JP7259986B2 (en) Fresh water system
US20230068493A1 (en) Using Capacitive Deionization to Desalinate Water and Manage Power for a Hydrogen Electrolyzer System
Widiasa et al. BWRO Desalination for potable water supply enhancement in coastal regions
Elazhara et al. Nitrate removal from Moroccan brackish water by nanofiltration: configuration modes and energetic assessment
Handelsman et al. Zero discharge fermentation plant design

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014502683

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015500787

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: IDP00201502073

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844652

Country of ref document: EP

Kind code of ref document: A1