JP6554781B2 - Operation method of reverse osmosis membrane device and reverse osmosis membrane device - Google Patents

Operation method of reverse osmosis membrane device and reverse osmosis membrane device Download PDF

Info

Publication number
JP6554781B2
JP6554781B2 JP2014227224A JP2014227224A JP6554781B2 JP 6554781 B2 JP6554781 B2 JP 6554781B2 JP 2014227224 A JP2014227224 A JP 2014227224A JP 2014227224 A JP2014227224 A JP 2014227224A JP 6554781 B2 JP6554781 B2 JP 6554781B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
organic substance
water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014227224A
Other languages
Japanese (ja)
Other versions
JP2015142903A (en
Inventor
孝博 川勝
孝博 川勝
邦洋 早川
邦洋 早川
藤井 昭宏
昭宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014227224A priority Critical patent/JP6554781B2/en
Publication of JP2015142903A publication Critical patent/JP2015142903A/en
Application granted granted Critical
Publication of JP6554781B2 publication Critical patent/JP6554781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、海水淡水化、超純水製造、工業用水処理、排水回収処理等に適用される逆浸透膜処理において、MBR処理水、湖水、河川水、地下水等の、膜に吸着して膜汚染を進行させる生物代謝物系有機物を多く含む水を処理する場合に、膜のファウリング、透過流束(以下、フラックス)の低下を抑制し、薬液洗浄頻度を低減して、長期に亘り安定な逆浸透膜装置の運転を行う方法、及びそのための逆浸透膜装置に関する。
本発明はまた、この逆浸透膜装置を用いた水処理方法に関する。
The present invention relates to a reverse osmosis membrane treatment applied to seawater desalination, ultrapure water production, industrial water treatment, wastewater recovery treatment, etc., and adsorbs on a membrane such as MBR treated water, lake water, river water, groundwater, etc. When treating water containing a large amount of organic metabolites that promote contamination, it suppresses membrane fouling and permeation flux (hereinafter referred to as “flux”) reduction, reduces the frequency of chemical cleaning, and is stable for a long time. The present invention relates to a method for operating a reverse osmosis membrane device and a reverse osmosis membrane device therefor.
The present invention also relates to a water treatment method using the reverse osmosis membrane device.

逆浸透膜は、従来、海水淡水化、超純水製造、工業用水処理、排水回収処理などにおいて、原水中のイオン類や有機物などを除去するために用いられている。逆浸透膜は膜表面での微生物の繁殖や有機物の吸着によりフラックスが低下したり、濁質による閉塞でモジュール差圧が上昇したりすることがあり、定期的に薬液洗浄し、フラックスや、エレメントの原水側と濃縮水側の差圧(以下、エレメント差圧)を回復させる必要がある。   Reverse osmosis membranes are conventionally used for removing ions, organic substances, and the like in raw water in seawater desalination, ultrapure water production, industrial water treatment, wastewater recovery treatment, and the like. With reverse osmosis membranes, the flux may decrease due to the growth of microorganisms on the membrane surface or adsorption of organic matter, or the module differential pressure may increase due to blockage by turbidity. It is necessary to recover the pressure difference between the raw water side and the concentrated water side (hereinafter referred to as element differential pressure).

原水に含まれる膜汚染成分のうち、特に、多糖やタンパク質などの高分子有機物は、逆浸透膜を著しく汚染させることが知られており、従来、逆浸透膜処理の前処理として、凝集処理や限外濾過膜などによる膜処理で原水中の高分子有機物を除去することが一般的に行われている。   Among membrane contamination components contained in raw water, in particular, high molecular organic substances such as polysaccharides and proteins are known to significantly contaminate reverse osmosis membranes. Conventionally, as pretreatment of reverse osmosis membrane treatment, Generally, removal of high molecular organic substances in raw water by membrane treatment with an ultrafiltration membrane or the like is performed.

一方、逆浸透膜が汚染した場合の薬液洗浄の時期や洗浄頻度に関しては、薬液洗浄はフラックスが初期に比べて10%程度低下したときを目安に実施し、洗浄頻度としては年2回程度以下とすることが適切であるとされている(非特許文献1)。また、Dow社のホームページにも、逆浸透膜のフラックスが10%低下した時点を薬液洗浄のタイミングとし、それよりも遅れると洗浄によるフラックスの回復効果が十分に得られないと記載されている(非特許文献2)。   On the other hand, with regard to the timing and frequency of chemical cleaning when the reverse osmosis membrane is contaminated, chemical cleaning is performed when the flux is reduced by about 10% compared to the initial level, and the cleaning frequency is about twice a year or less. Is considered appropriate (Non-Patent Document 1). The Dow website also states that the time when the flux of the reverse osmosis membrane is reduced by 10% is the timing of the chemical cleaning, and if it is later than that, the recovery effect of the flux by cleaning cannot be sufficiently obtained ( Non-patent document 2).

ところで、膜モジュールの物質移動を解析して、濃度分極式を用いて、溶質の膜面濃度を計算するとともに、膜輸送パラメータを予測することが行われている(非特許文献3、特許文献1)。しかし、ここで対象としている溶質は、溶質透過係数を求めることが必要とされるNaClなどのイオン成分であったため、有機物を多く含む原水の処理に適用しても安定運転が困難であった。   By the way, the mass transfer of the membrane module is analyzed, the concentration of the solute is calculated using the concentration polarization equation, and the membrane transport parameter is predicted (Non-patent Document 3, Patent Document 1). ). However, since the target solute is an ionic component such as NaCl that requires the solute permeation coefficient, stable operation is difficult even when applied to the treatment of raw water containing a large amount of organic matter.

なお、本発明者らは、この濃度分極現象における有機物の挙動に着目し、膜汚染物質である有機物の膜面濃度が膜汚染に及ぼす影響について検討を行った結果、先に原水中の有機物の中でも特に高分子有機物の膜面濃度とフラックスの低下速度に相関があり、フラックスの低下は、膜面で濃縮された高分子有機物の吸着によって引き起こされることを明らかにした。また、本発明者らは、逆浸透膜の供給水を限外濾過膜で処理すると膜汚染が起こらなくなることを別途確認しており、その時の分画分子量は1万前後であることから、分子量10,000以上の高分子有機物が膜汚染に関与していることを見出した(特許文献2,3)。   The present inventors focused on the behavior of organic matter in this concentration polarization phenomenon, and as a result of investigating the influence of the membrane surface concentration of the organic matter, which is a membrane contaminant, on membrane contamination, In particular, there was a correlation between the film surface concentration of the polymer organic substance and the rate of flux reduction, and it was clarified that the flux decrease was caused by the adsorption of the polymer organic substance concentrated on the film surface. In addition, the present inventors have separately confirmed that the membrane contamination does not occur when the feed water of the reverse osmosis membrane is treated with an ultrafiltration membrane, and the molecular weight cut off at that time is around 10,000. It was found that 10,000 or more macromolecular organic substances are involved in film contamination (Patent Documents 2 and 3).

また、膜面での濃度分極は、溶質の拡散係数に依存し、拡散係数は分子量が大きくなるほど小さくなる。限外濾過法においては、デキストランやポリエチレングリコールについて、下記式(3)に示す分子量と拡散係数の関係が求められており(非特許文献3)、本発明者らは、膜汚染物質である多糖類やタンパク質といった高分子有機物も、この関係に従って、逆浸透膜面で同様に濃縮されることも見出した。
D=8.76×10−9(Mw)−0.48 式(3)
D[m/s]:拡散係数
Mw[g/mole]:高分子有機物の分子量
The concentration polarization on the film surface depends on the diffusion coefficient of the solute, and the diffusion coefficient decreases as the molecular weight increases. In the ultrafiltration method, the relationship between the molecular weight and the diffusion coefficient represented by the following formula (3) is required for dextran and polyethylene glycol (Non-patent Document 3). It has also been found that high-molecular organic substances such as sugars and proteins are similarly concentrated on the reverse osmosis membrane surface according to this relationship.
D = 8.76 × 10 −9 (Mw) −0.48 formula (3)
D [m 2 / s]: diffusion coefficient
Mw [g / mole]: molecular weight of high molecular organic substance

下水などの有機性汚水を生物処理槽において活性汚泥処理し、生物処理槽内に浸漬設置した浸漬型膜分離装置で活性汚泥混合液を固液分離する膜分離活性汚泥法(MBR:メンブレンバイオリアクター)は、安定した水質の処理水を得ることができ、また、活性汚泥濃度を高めて高負荷処理を行えることから、広く普及しつつある。また、このMBR処理水(浸漬型膜分離装置の膜濾過水)を直接逆浸透膜装置に給水して逆浸透膜処理する有機性排水の処理方法も提案されている(例えば、非特許文献4)。
しかし、MBR処理水は、膜汚染物質となる分子量10,000以上の高分子有機物を多く含み、MBR処理水を処理する逆浸透膜装置では、経時によるフラックスの低下あるいは膜間差圧の増加が大きいという問題がある。
Membrane separation activated sludge method (MBR: membrane bioreactor) that treats activated sludge such as sewage in a biological treatment tank and separates the activated sludge mixed solution into solid and liquid using an immersion membrane separator installed in the biological treatment tank ) Is capable of obtaining treated water with stable water quality, and increasing the activated sludge concentration to enable high-load treatment, which is becoming widespread. In addition, a method for treating organic wastewater in which this MBR-treated water (membrane filtered water of a submerged membrane separator) is directly fed to a reverse osmosis membrane device and treated with a reverse osmosis membrane has also been proposed (for example, Non-Patent Document 4). ).
However, MBR-treated water contains a large amount of high-molecular organic matter having a molecular weight of 10,000 or more, which is a membrane contaminant, and in reverse osmosis membrane devices that treat MBR-treated water, there is a decrease in flux or increase in transmembrane pressure over time. There is a problem of being big.

地球上の有機物の大部分は、陸上では植物、海洋や湖では植物プランクトンが光合成によって合成する。腐植物質は、生物の死後、有機物が微生物的・化学的作用を受けて崩壊して生じた化学構造が特定されない有機物であり、海水、湖水、河川水といった表層水や、地下水に存在している。   Most of the organic matter on the earth is synthesized by photosynthesis by plants on land and by phytoplankton in oceans and lakes. Humic substances are organic substances whose chemical structure is unspecified after the death of organisms due to the microbial and chemical action of organic substances, and exist in surface water such as seawater, lake water, river water, and groundwater .

水中の腐植物質の量は、溶存有機炭素(TOC)の量として、海水では、0.3〜15mg/Lであるが、湖水では、1〜50mg/L、河川水では、1〜60mg/L、地下水では、0.3〜500mg/Lとなり、場所によっては非常に高濃度の腐植物質が含まれる場合がある。海水中に存在する腐植物質の濃度は低い(非特許文献5)。
このような腐植物質を含有する湖水、河川水や地下水を逆浸透膜装置で処理する場合においても、経時によるフラックスの低下あるいは膜間差圧の増加が大きいという問題がある。
The amount of humic substances in the water is 0.3 to 15 mg / L in seawater as the amount of dissolved organic carbon (TOC), but 1 to 50 mg / L in lake water and 1 to 60 mg / L in river water. In groundwater, it becomes 0.3 to 500 mg / L, and depending on the location, a very high concentration of humic substances may be contained. The concentration of humic substances present in seawater is low (Non-patent Document 5).
Even when lake water, river water, or groundwater containing such humic substances is treated with a reverse osmosis membrane device, there is a problem that a decrease in flux with time or an increase in transmembrane pressure difference is large.

特許第3520906号公報Japanese Patent No. 3520906 特開2014−159015号公報JP 2014-159015 A 特願2013−92657Japanese Patent Application No. 2013-92657

「膜の劣化とファウリング対策 膜汚染防止・洗浄法からトラブルシューティングまで」(NTS発行)p323(2008)"Measures against membrane degradation and fouling: From membrane contamination prevention and cleaning methods to troubleshooting" (NTS issue) p323 (2008) 「Cleaning Procedures for DOW FILMTEC FT30 Elements」(Dow)p1 Form No. 609-23010-0211 (on the Web)“Cleaning Procedures for DOW FILMTEC FT30 Elements” (Dow) p1 Form No. 609-23010-0211 (on the Web) 「膜分離プロセスの設計法」(日本膜学会編)p37-49 (1985)"Design Method of Membrane Separation Process" (Membrane Society of Japan) p37-49 (1985) 「水処理膜の製膜技術と材料評価」(2012年1月30日第1版第1刷発行、サイエンス&テクノロジー株式会社)p.11“Water Treatment Membrane Formation Technology and Material Evaluation” (published January 30, 2012, first edition, first print, Science & Technology Co., Ltd.) p. 11 「環境中の腐植物質−その特徴と研究法」(日本腐植物質学会監修)石渡良志、米林甲陽、宮島徹編著、p2−9、30−32(2008)"Humic substances in the environment-its characteristics and research methods" (supervised by the Japanese Society of Humic Substances) Roshi Ishiwatari, Koyo Yonebayashi, edited by Toru Miyajima, p2-9, 30-32 (2008)

本発明は、膜汚染物質として分子量10,000以上の高分子有機物や腐植物質などの生物代謝物系有機物を多く含む原水を、フラックスの低下を防止して安定に処理することができる逆浸透膜装置及びその運転方法と、この逆浸透膜装置を用いた生物処理水の処理方法を提供することを課題とする。   The present invention is a reverse osmosis membrane capable of stably treating raw water containing a large amount of high molecular weight organic substances having a molecular weight of 10,000 or more and organic metabolite organic substances such as humic substances as membrane contaminants while preventing a decrease in flux. It is an object of the present invention to provide a device, a method for operating the device, and a method for treating biologically treated water using the reverse osmosis membrane device.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、逆浸透膜装置に装填された逆浸透膜エレメントについてそれぞれ生物代謝物系有機物の膜面濃度(Cm)を算出し、この値の平均値が所定値以下となるように運転条件の制御や、原水の前処理、分散剤の添加、ないしは装置構成の設計を行うことにより、上記課題を解決することができることを見出した。
即ち、本発明は以下を要旨とする。
As a result of intensive studies to solve the above problems, the present inventors calculated the membrane surface concentration (Cm) of the biometabolite organic substance for each reverse osmosis membrane element loaded in the reverse osmosis membrane device, It has been found that the above-mentioned problems can be solved by controlling the operating conditions, pretreatment of raw water, adding a dispersing agent, or designing the device configuration so that the average value is not more than a predetermined value.
That is, the gist of the present invention is as follows.

[1] 生物代謝物系有機物を含有する水を原水として処理する逆浸透膜装置の運転方法]において、該逆浸透膜装置は、逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを、1段又は2段以上の複数段直列に連結してなり、該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出し、該逆浸透膜装置における該算出値の平均値が所定値X以下となるように下記(I)の操作を行う、及び/又は、該逆浸透膜装置における該算出値の平均値が所定値Xを超える場合に下記(II)の操作を行う、ことを特徴とする逆浸透膜装置の運転方法。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
(I):該逆浸透膜装置における逆浸透膜処理に用いる逆浸透膜エレメントの本数、バンクの構成、透過水量、濃縮水量、及び前記原水の前処理による該逆浸透膜装置供給水の生物代謝物系有機物濃度のうちのいずれか1以上を調整する。
(II):該原水又は該逆浸透膜装置供給水に分散剤を添加する。
[1] Reverse Osmosis Membrane Device Operation Method for Treating Water Containing Biological Metabolite-Based Organic Substances as Raw Water] The reverse osmosis membrane device comprises a vessel incorporating a reverse osmosis membrane element or a plurality of such vessels arranged in parallel 1 or two or more stages connected in series, and based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device, according to the following formula (1) The membrane surface concentration (Cm) of the biological metabolite-based organic substance for each reverse osmosis membrane element is calculated, and the operation of the following (I) is performed so that the average value of the calculated values in the reverse osmosis membrane device is a predetermined value X or less. And / or when the average value of the calculated values in the reverse osmosis membrane device exceeds a predetermined value X, the operation of the following (II) is performed.
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite-based organic substance concentration of the treated water of the reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of the biological metabolite-based organic substance (I): Reverse in the reverse osmosis membrane device Any one or more of the number of reverse osmosis membrane elements used for osmosis membrane treatment, the configuration of the bank, the amount of permeated water, the amount of concentrated water, and the concentration of biological metabolites in the reverse osmosis membrane device supply water by the pretreatment of the raw water Adjust.
(II): A dispersant is added to the raw water or the water supplied to the reverse osmosis membrane device.

[2][1]において、前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記原水は、該分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有するものであり、前記所定値Xが0.7kg/mであることを特徴とする逆浸透膜装置の運転方法。 [2] In [1], the biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the raw water has a concentration of 0.01 mg / L or higher. The method of operating a reverse osmosis membrane device, wherein the predetermined value X is 0.7 kg / m 3 .

[3][1]において、前記生物代謝物系有機物が腐植物質であり、前記原水は、該腐植物質をTOCとして0.05mg/L以上の濃度で含有するものであり、前記所定値Xが0.4×10−3kg/mであることを特徴とする逆浸透膜装置の運転方法。 [3] In [1], the biological metabolite-based organic substance is humic substance, and the raw water contains humic substance as TOC at a concentration of 0.05 mg / L or more, and the predetermined value X is The operating method of a reverse osmosis membrane device, characterized in that it is 0.4 × 10 −3 kg / m 3 .

[4][1]ないし[3]のいずれかにおいて、前記前処理が、凝集処理及び/又は限外濾過膜処理であることを特徴とする逆浸透膜装置の運転方法。 [4] The method of operating a reverse osmosis membrane device according to any one of [1] to [3], wherein the pretreatment is an aggregation treatment and / or an ultrafiltration membrane treatment.

[5][1]ないし[3]のいずれかにおいて、前記逆浸透膜装置が、前記バンクを2段以上の複数段直列に連結してなり、すべてのバンクにおいて前記生物代謝物系有機物の膜面濃度(Cm)の算出値が所定値Y以下となるように前記(I)の操作を行う、及び/又は、1以上のバンクにおいて前記生物代謝物系有機物の膜面濃度(Cm)の算出値が所定値Yを超える場合に前記(II)の操作を行う、ことを特徴とする逆浸透膜装置の運転方法。 [5] In any one of [1] to [3], the reverse osmosis membrane device is formed by connecting the banks in a plurality of stages of two or more stages in series, and the biometabolite-based organic matter membranes in all the banks. The operation (I) is performed so that the calculated value of the surface concentration (Cm) is equal to or less than the predetermined value Y, and / or the film surface concentration (Cm) of the biological metabolite-based organic substance is calculated in one or more banks. A method of operating a reverse osmosis membrane device, characterized in that the operation (II) is performed when the value exceeds a predetermined value Y.

[6][5]において、前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記所定値Yが1kg/mであることを特徴とする逆浸透膜装置の運転方法。 [6] The method of operating a reverse osmosis membrane device according to [5], wherein the biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the predetermined value Y is 1 kg / m 3. .

[7][5]において、前記生物代謝物系有機物が腐植物質であり、前記所定値Yが0.6×10−3kg/mであることを特徴とする逆浸透膜装置の運転方法。 [7] The method of operating a reverse osmosis membrane device according to [5], wherein the biological metabolite organic substance is humic substance and the predetermined value Y is 0.6 × 10 −3 kg / m 3. .

[8][1]ないし[7]のいずれかにおいて、前記逆浸透膜装置を、2回/年以下の頻度で薬液洗浄することを特徴とする逆浸透膜装置の運転方法。 [8] The method of operating a reverse osmosis membrane device according to any one of [1] to [7], wherein the reverse osmosis membrane device is cleaned with a chemical solution at a frequency of 2 times / year or less.

[9][1]ないし[8]のいずれかにおいて、前記逆浸透膜が芳香族ポリアミド系逆浸透膜であることを特徴とする逆浸透膜装置の運転方法。 [9] The method for operating a reverse osmosis membrane device according to any one of [1] to [8], wherein the reverse osmosis membrane is an aromatic polyamide reverse osmosis membrane.

[10][1]ないし[9]のいずれかにおいて、前記分散剤が生物代謝物系有機物分散剤及び/又はスケール分散剤であることを特徴とする逆浸透膜装置の運転方法。 [10] The method of operating a reverse osmosis membrane device according to any one of [1] to [9], wherein the dispersant is a biological metabolite-based organic dispersant and / or a scale dispersant.

[11] 生物代謝物系有機物を含有する水を原水として処理する逆浸透膜装置であって、逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを、1段又は2段以上の複数段直列に連結してなり、該逆浸透膜装置の透過水量及び/又は濃縮水量を調整する流量調整手段と、該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、該演算手段の算出値に基づいて、該逆浸透膜装置における該算出値の平均値が所定値X以下となるように、前記流量調整手段を制御する流量制御手段とを備えることを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
[11] A reverse osmosis membrane apparatus that treats water containing biological metabolite-based organic matter as raw water, and includes a vessel containing a reverse osmosis membrane element or a bank formed by arranging a plurality of the vessels in parallel. Two or more stages connected in series, flow rate adjusting means for adjusting the amount of permeated water and / or concentrated water in the reverse osmosis membrane device, and the mass transfer coefficient of the reverse osmosis membrane element in the reverse osmosis membrane device ( k) based on the following formula (1), calculating means for calculating the membrane surface concentration (Cm) of the biological metabolite organic substance for each reverse osmosis membrane element, and based on the calculated value of the calculating means, A reverse osmosis membrane device comprising: a flow rate control means for controlling the flow rate adjustment means so that an average value of the calculated values in the osmosis membrane device is a predetermined value X or less.
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance

[12] 生物代謝物系有機物を含有する水を原水として処理する逆浸透膜装置であって、逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを、1段又は2段以上の複数段直列に連結してなり、該原水を凝集処理及び/又は限外濾過膜処理により前処理して該原水中の生物代謝物系有機物の一部を除去することにより該逆浸透膜装置への供給水の生物代謝物系有機物濃度を低減する前処理手段と、該原水を、直接供給水として該逆浸透膜装置に供給する流路と、該前処理手段を経て該逆浸透膜装置に供給する流路とを切り換える原水流路切り換え手段と、該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、該演算手段の算出値に基づいて、該逆浸透膜装置における該算出値の平均値が所定値X以下となるように、前記原水流路切り換え手段による流路切り換えを行うか、或いは前記前処理手段における処理条件を調整する原水調整手段とを備えることを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
[12] A reverse osmosis membrane apparatus that treats water containing biological metabolite-based organic matter as raw water, and includes a vessel having a reverse osmosis membrane element or a bank formed by arranging a plurality of the vessels in parallel. Two or more stages are connected in series, and the raw water is pretreated by coagulation treatment and / or ultrafiltration membrane treatment to remove part of the biological metabolite organic matter in the raw water. Pretreatment means for reducing the concentration of biological metabolites in the supply water to the osmosis membrane device, a flow path for supplying the raw water as the direct supply water to the reverse osmosis membrane device, and the reverse through the pretreatment means. Each reverse osmosis membrane according to the following formula (1) based on the raw water channel switching means for switching the channel supplied to the osmosis membrane device and the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device Biological metabolite organic membrane for each element The calculation means for calculating the surface concentration (Cm), and the raw water flow path switching means so that the average value of the calculated values in the reverse osmosis membrane device is not more than a predetermined value X based on the calculated value of the calculating means. A reverse osmosis membrane device comprising a flow path switching by means of or a raw water adjusting means for adjusting processing conditions in the pretreatment means.
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance

[13] 生物代謝物系有機物を含有する水を原水として処理する逆浸透膜装置であって、逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを2段以上の複数段直列に連結してなり、該逆浸透膜装置の供給水を1段目のバンクに供給する流路及び/又は前段のバンクの濃縮水を後段のバンクに供給する流路を切り換えることにより、逆浸透膜処理に使用するベッセル数を調整する供給水流路切り換え手段と、該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、該演算手段の算出値に基づいて、該逆浸透膜装置における該算出値の平均値が所定値X以下となるように、前記供給水流路切り換え手段を制御する流路制御手段とを備えることを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
[13] A reverse osmosis membrane apparatus that treats water containing a biological metabolite-based organic substance as raw water, wherein a vessel having a reverse osmosis membrane element or a bank formed by arranging a plurality of the vessels in parallel is provided in two or more stages. By switching the flow path for connecting the supply water of the reverse osmosis membrane device to the first-stage bank and / or the flow path for supplying the concentrated water of the preceding-stage bank to the subsequent-stage bank. Based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device and the feed water flow path switching means for adjusting the number of vessels used for the reverse osmosis membrane treatment, Calculation means for calculating the membrane surface concentration (Cm) of the biological metabolite-based organic substance for each osmosis membrane element, and based on the calculated value of the calculation means, the average value of the calculated values in the reverse osmosis membrane device is a predetermined value X So that A reverse osmosis membrane device comprising a flow path control means for controlling the supply water flow path switching means.
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance

[14] 生物代謝物系有機物を含有する水を原水として処理する逆浸透膜装置であって、逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを、1段又は2段以上の複数段直列に連結してなり、該原水又は該逆浸透膜装置供給水に分散剤を添加する分散剤添加手段と、該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、該演算手段の算出値に基づいて、前記分散剤添加手段を制御する分散剤添加量制御手段とを備えることを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
[14] A reverse osmosis membrane apparatus that treats water containing biological metabolite-based organic matter as raw water, and includes a vessel having a reverse osmosis membrane element or a bank formed by arranging a plurality of the vessels in parallel. Two or more stages connected in series, a dispersant addition means for adding a dispersant to the raw water or the water supplied to the reverse osmosis membrane device, and a mass transfer coefficient of the reverse osmosis membrane element in the reverse osmosis membrane device Based on (k), the calculation means for calculating the membrane surface concentration (Cm) of the biological metabolite organic substance for each reverse osmosis membrane element according to the following formula (1), and based on the calculated value of the calculation means, A reverse osmosis membrane device comprising a dispersant addition amount control means for controlling the dispersant addition means.
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance

[15][14]において、前記分散剤が生物代謝物系有機物分散剤及び/又はスケール分散剤であることを特徴とする逆浸透膜装置。 [15] The reverse osmosis membrane device according to [14], wherein the dispersant is a biological metabolite organic dispersant and / or a scale dispersant.

[16][14]又は[15]において、前記分散剤添加量制御手段は、前記演算手段で算出された前記逆浸透膜装置における前記算出値の平均値が所定値Xを超える場合に、前記分散剤添加手段の分散剤添加量を増加させるか、あるいは分散剤の添加を開始させるものであることを特徴とする逆浸透膜装置。 [16] In [14] or [15], when the average value of the calculated values in the reverse osmosis membrane device calculated by the calculating means exceeds the predetermined value X, the dispersant addition amount control means A reverse osmosis membrane device characterized by increasing the amount of dispersant added by the dispersant addition means or starting the addition of the dispersant.

[17][16]において、前記バンクを2段以上の複数段直列に連結してなり、前記分散剤添加量制御手段は、前記演算手段で算出された前記生物代謝物系有機物の膜面濃度(Cm)の算出値が、1以上のバンクにおいて所定値Yを超える場合に、前記分散剤添加手段の分散剤添加量を増加させるか、あるいは分散剤の添加を開始させるものであることを特徴とする逆浸透膜装置。 [17] In [16], the bank is connected in a plurality of stages of two or more stages, and the dispersant addition amount control means is a film surface concentration of the biometabolite organic substance calculated by the arithmetic means. When the calculated value of (Cm) exceeds a predetermined value Y in one or more banks, the dispersant addition amount of the dispersant addition means is increased or the addition of the dispersant is started. Reverse osmosis membrane device.

[18][11]ないし[13]及び[16]のいずれかにおいて、前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記原水は、該分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有するものであり、前記所定値Xが0.7kg/mであることを特徴とする逆浸透膜装置。 [18] In any one of [11] to [13] and [16], the biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the raw water has a high molecular weight of 10,000 or more. A reverse osmosis membrane device comprising a molecular organic substance at a concentration of 0.01 mg / L or more, wherein the predetermined value X is 0.7 kg / m 3 .

[19][11]ないし[13]及び[16]のいずれかにおいて、前記生物代謝物系有機物が腐植物質であり、前記原水は、該腐植物質をTOCとして0.05mg/L以上の濃度で含有するものであり、前記所定値Xが0.4×10−3kg/mであることを特徴とする逆浸透膜装置。 [19] In any one of [11] to [13] and [16], the biological metabolite-based organic substance is humic substance, and the raw water has a concentration of 0.05 mg / L or more with the humic substance as TOC. A reverse osmosis membrane device comprising: the predetermined value X is 0.4 × 10 −3 kg / m 3 .

[20][11]ないし[13]のいずれかにおいて、前記バンクを2段以上の複数段直列に連結してなり、すべてのバンクにおいて、前記生物代謝物系有機物の膜面濃度(Cm)の算出値が所定値Y以下となるように制御されることを特徴とする逆浸透膜装置。 [20] In any one of [11] to [13], the bank is connected in two or more stages in series, and in all banks, the membrane surface concentration (Cm) of the biometabolite-based organic substance is A reverse osmosis membrane device, wherein the calculated value is controlled to be equal to or less than a predetermined value Y.

[21][17]又は[20]において、前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記所定値Yが1kg/mであることを特徴とする逆浸透膜装置。 [21] The reverse osmosis membrane according to [17] or [20], wherein the biological metabolite organic substance is a high molecular weight organic substance having a molecular weight of 10,000 or more, and the predetermined value Y is 1 kg / m 3. apparatus.

[22][17]又は[20]において、前記生物代謝物系有機物が腐植物質であり、前記所定値Yが0.6×10−3kg/mであることを特徴とする逆浸透膜装置。 [22] The reverse osmosis membrane according to [17] or [20], wherein the biological metabolite organic substance is humic substance and the predetermined value Y is 0.6 × 10 −3 kg / m 3. apparatus.

[23][11]ないし[22]のいずれかにおいて、前記逆浸透膜を2回/年以下の頻度で薬液洗浄する薬液洗浄手段を備えることを特徴とする逆浸透膜装置。 [23] The reverse osmosis membrane device according to any one of [11] to [22], further comprising a chemical cleaning means for cleaning the reverse osmosis membrane at a frequency of 2 times / year or less.

[24][11]ないし[23]のいずれかにおいて、前記逆浸透膜が芳香族ポリアミド系逆浸透膜であることを特徴とする逆浸透膜装置。 [24] The reverse osmosis membrane device according to any one of [11] to [23], wherein the reverse osmosis membrane is an aromatic polyamide reverse osmosis membrane.

[25][11]ないし[24]のいずれかに記載の逆浸透膜装置で、生物処理水、表層水又は地下水を逆浸透膜処理することを特徴とする水処理方法。 [25] A water treatment method characterized by subjecting biologically treated water, surface layer water or groundwater to reverse osmosis membrane treatment with the reverse osmosis membrane device according to any one of [11] to [24].

本発明によれば、海水淡水化、超純水製造、工業用水処理、排水回収処理等に適用される逆浸透膜処理において、MBR処理水や、湖水、河川水などの表層水、あるいは地下水等の、膜に吸着して膜汚染を進行させる生物代謝物系有機物を多く含む水を処理する場合に、膜のファウリング、フラックスの低下を抑制し、薬液洗浄頻度を低減して、長期に亘り安定な逆浸透膜装置の運転を行うことが可能となる。   According to the present invention, in reverse osmosis membrane treatment applied to seawater desalination, ultrapure water production, industrial water treatment, wastewater recovery treatment, etc., MBR treated water, surface water such as lake water, river water, ground water, etc. When treating water containing a large amount of biological metabolite organic substances that adsorb to the membrane and promote membrane contamination, the fouling of the membrane and the decrease in flux are suppressed, the frequency of chemical cleaning is reduced, and the treatment is continued for a long time. A stable reverse osmosis membrane device can be operated.

本発明の逆浸透膜装置のバンク構成の一例を示す系統図である。It is a systematic diagram which shows an example of the bank structure of the reverse osmosis membrane apparatus of this invention. 本発明の逆浸透膜装置のバンク構成の他の例を示す系統図である。It is a systematic diagram which shows the other example of a bank structure of the reverse osmosis membrane apparatus of this invention. 本発明の生物処理水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the biologically treated water of this invention.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

なお、本発明において、「原水」とは、必要に応じて前処理されることにより逆浸透膜装置で逆浸透膜処理される水をさし、この原水を必要に応じて前処理した後逆浸透膜装置に供給する水を「供給水」と称し、各々の逆浸透膜エレメントで逆浸透膜処理する水を「被処理水」と称す。   In the present invention, the “raw water” refers to water that is pretreated as necessary to be subjected to a reverse osmosis membrane treatment by a reverse osmosis membrane device, and the raw water is pretreated as necessary and then reversed. The water supplied to the osmosis membrane device is referred to as “supply water”, and the water subjected to the reverse osmosis membrane treatment with each reverse osmosis membrane element is referred to as “treated water”.

[逆浸透膜エレメント]
本発明における逆浸透膜装置に装填する逆浸透膜エレメントとしては、逆浸透膜の平膜の一次側に被処理水を通水するための原水スペーサを配置し、二次側に処理水を通水するための透過水スペーサを配置し、これを積層させ、巻き回してスパイラル状にしたスパイラル型逆浸透膜エレメントを好適に用いることができるが、何らこれに限定されない。
スパイラル型逆浸透膜エレメントの膜の直径としては特に制限がなく、4インチ、8インチ、16インチといったものが通常用いられる。スパイラル型逆浸透膜エレメントの長さは通常1m程度である。
[Reverse osmosis membrane element]
As a reverse osmosis membrane element to be loaded into the reverse osmosis membrane device in the present invention, a raw water spacer for passing water to be treated is disposed on the primary side of the flat membrane of the reverse osmosis membrane, and the treated water is passed on the secondary side. A spiral-type reverse osmosis membrane element in which permeated water spacers for watering are arranged, stacked, and wound into a spiral shape can be suitably used, but is not limited thereto.
The membrane diameter of the spiral type reverse osmosis membrane element is not particularly limited, and those of 4 inches, 8 inches, and 16 inches are usually used. The length of the spiral type reverse osmosis membrane element is usually about 1 m.

本発明における逆浸透膜の材質としては、生物代謝物系有機物である多糖類やタンパク質などの高分子有機物や、腐植物質の吸着性の観点から、フェニレンジアミンと酸クロライドを用いて合成される芳香族ポリアミド系逆浸透膜が好ましい。   As the material of the reverse osmosis membrane in the present invention, aromatic organic compounds synthesized using phenylenediamine and acid chloride from the viewpoint of adsorptivity of high molecular organic substances such as polysaccharides and proteins, which are biological metabolite organic substances, and humic substances. A group polyamide-based reverse osmosis membrane is preferred.

[バンク構成]
通常、逆浸透膜装置は、供給水に対する水回収率を高める目的から、例えば、図1,2に示すようなクリスマスツリーと呼ばれる配置をとる。
[Bank configuration]
Usually, a reverse osmosis membrane apparatus takes the arrangement | positioning called a Christmas tree as shown, for example in FIG. 1, 2 in order to raise the water recovery rate with respect to supplied water.

図1において、逆浸透膜エレメントを内蔵したベッセル(RO手段本体)1A〜1Jが10機並列配置されてなる第1ベッセル群(以下「バンク」と称す。)1と、ベッセル2A〜2Eが5機並列配置されてなる第2バンク2とでクリスマスツリー型の多段逆浸透膜装置が構成されている。
逆浸透膜装置の供給水はまず第1バンク1に流入し、透過水と濃縮水とに分離される。続いて第1バンク1の濃縮水は第2バンク2に流入し、ここでも透過水と濃縮水とに分離される。第1バンク1の透過水と第2バンク2の透過水は合流して後段処理工程に移送され、第2バンクの濃縮水は系外に放流されるか排出処理設備等に移送される。
In FIG. 1, a first vessel group (hereinafter referred to as “bank”) 1 in which 10 vessels (RO body) 1A to 1J having a reverse osmosis membrane element are arranged in parallel and 5 vessels 2A to 2E are provided. A Christmas tree type multi-stage reverse osmosis membrane device is constituted by the second bank 2 arranged in parallel.
The water supplied to the reverse osmosis membrane device first flows into the first bank 1 and is separated into permeated water and concentrated water. Subsequently, the concentrated water in the first bank 1 flows into the second bank 2 and is again separated into permeated water and concentrated water. The permeated water of the first bank 1 and the permeated water of the second bank 2 merge and are transferred to the post-treatment process, and the concentrated water of the second bank is discharged out of the system or transferred to a discharge treatment facility or the like.

図2の多段逆浸透膜装置は、逆浸透膜エレメントを内蔵したベッセル1A〜1Hが8機並列配置されてなる第1バンク1と、ベッセル2A〜2Dが4機並列配置されてなる第2バンク2と、ベッセル3A,3Bが2機並列配置されてなる第3バンク3とで構成されている。
逆浸透膜装置の供給水はまず第1バンク1に流入し、透過水と濃縮水とに分離される。続いて第1バンク1の濃縮水は第2バンク2に流入し、ここでも透過水と濃縮水とに分離される。第2バンク2の濃縮水は第3バンク3に流入し、更に透過水と濃縮水とに分離される。第1バンク1の透過水と第2バンク2の透過水と第3バンク3の透過水は合流して後段処理工程に移送される。一方、第3バンクの濃縮水は系外に放流されるか排出処理設備等に移送される。
The multi-stage reverse osmosis membrane device of FIG. 2 includes a first bank 1 in which eight vessels 1A to 1H including reverse osmosis membrane elements are arranged in parallel and a second bank in which four vessels 2A to 2D are arranged in parallel. 2 and a third bank 3 in which two vessels 3A and 3B are arranged in parallel.
The water supplied to the reverse osmosis membrane device first flows into the first bank 1 and is separated into permeated water and concentrated water. Subsequently, the concentrated water in the first bank 1 flows into the second bank 2 and is again separated into permeated water and concentrated water. The concentrated water in the second bank 2 flows into the third bank 3 and is further separated into permeated water and concentrated water. The permeated water of the first bank 1, the permeated water of the second bank 2, and the permeated water of the third bank 3 are merged and transferred to the subsequent processing step. On the other hand, the concentrated water in the third bank is discharged out of the system or transferred to a discharge treatment facility or the like.

このように、通常、逆浸透膜装置におけるクリスマスツリー構造は、要求される水回収率にもよるが、2又は3バンクで構成されることが多いが、後段のバンクは前段のバンクの濃縮水を被処理水とするため、後段のバンクほど逆浸透膜処理に供される水の溶質濃度は高くなる。   As described above, the Christmas tree structure in the reverse osmosis membrane apparatus is usually composed of 2 or 3 banks, depending on the required water recovery rate, but the latter bank is the concentrated water of the former bank. Therefore, the concentration of the solute in the water used for the reverse osmosis membrane treatment increases in the latter bank.

ただし、本発明の逆浸透膜装置は、このようなバンクを多段に配置したクリスマスツリー構造のものに何ら限定されず、1段のバンクのみで構成されるものであってもよく、また、1個のベッセルのみで構成されるものであってもよい。また、1個のベッセルが多段に直列に連結されたものであってもよい。また、4段以上の多段のバンクで構成されていてもよい。
通常、1つのベッセルには逆浸透膜エレメントが1〜6本程度内蔵されている。
However, the reverse osmosis membrane device of the present invention is not limited to a Christmas tree structure in which such banks are arranged in multiple stages, and may be composed of only one bank. It may be composed of only one vessel. Further, one vessel may be connected in series in multiple stages. Further, it may be composed of four or more multi-stage banks.
Usually, about 1 to 6 reverse osmosis membrane elements are built in one vessel.

[原水]
本発明において、逆浸透膜装置で逆浸透膜処理する原水は、生物代謝物系有機物を含有するものであり、具体的には以下の原水(i)又は原水(ii)が挙げられる。なお、原水(i)と原水(ii)とが混合された水を原水としてもよい。
原水(i):分子量10,000以上の高分子有機物を0.01mg/L以上の
濃度で含有する水
原水(ii):腐植物質をTOCとして0.05mg/L以上の濃度で含有する水
[Raw water]
In the present invention, the raw water subjected to the reverse osmosis membrane treatment by the reverse osmosis membrane device contains a biological metabolite organic substance, and specifically includes the following raw water (i) or raw water (ii). In addition, it is good also considering the water by which raw | natural water (i) and raw | natural water (ii) were mixed as raw | natural water.
Raw water (i): High molecular organic substance having a molecular weight of 10,000 or more is 0.01 mg / L or more
Concentrated water Raw water (ii): Water containing humic substance as TOC at a concentration of 0.05 mg / L or more

<原水(i)>
原水(i)は、分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有する水である。分子量10,000以上の高分子有機物、特に多糖類、たんぱく質のような生物代謝物は、膜を汚染し易く、フラックスの低下の原因となり易い。本発明においては、このような高分子有機物を0.01mg/L以上、例えば0.05〜0.5mg/L含み、通水により逆浸透膜のフラックスを大きく低下させる水を原水として効果的に逆浸透膜処理することができる。
<Raw water (i)>
The raw water (i) is water containing a high molecular weight organic substance having a molecular weight of 10,000 or more at a concentration of 0.01 mg / L or more. High-molecular organic substances having a molecular weight of 10,000 or more, particularly biological metabolites such as polysaccharides and proteins, easily contaminate the membrane and easily cause a decrease in flux. In the present invention, such high molecular organic substances are contained in an amount of 0.01 mg / L or more, for example, 0.05 to 0.5 mg / L, and water that greatly reduces the flux of the reverse osmosis membrane by passing water is effectively used as raw water. Reverse osmosis membrane treatment can be performed.

このような高分子有機物含有水としては、各種排水の回収水や生物処理水が挙げられ、本発明は特にMBR処理水などの生物処理水の処理に好適に適用される。   Examples of such high molecular organic substance-containing water include recovered water from various wastewaters and biologically treated water, and the present invention is particularly suitably applied to the treatment of biologically treated water such as MBR treated water.

なお、本発明における高分子有機物の分子量は、高速液体クロマトグラフィーにより、デキストランを標準物質として、ピークトップの位置から求めることができる。特に、分子量10,000以上の高分子有機物の濃度の決定には、TOCを検出器とする高速液体クロマトグラフィーが有効であり、溶出時間が分子量10,000の有機物よりも早い成分を分子量10,000以上の高分子有機物とする。これまでの測定により、多糖類の分子量は、100万以上のものが存在し、1000万を超えるものも存在する可能性が認められている。高速液体クロマトグラフィーの代替として、分画分子量10000の限外濾過膜を用いて、透過成分と非透過成分の濃度を測定する方法も用いることができる。   In addition, the molecular weight of the polymer organic substance in the present invention can be determined from the position of the peak top using dextran as a standard substance by high performance liquid chromatography. In particular, high-performance liquid chromatography using a TOC as a detector is effective for determining the concentration of a high molecular weight organic substance having a molecular weight of 10,000 or more. A component having an elution time faster than that of an organic substance having a molecular weight of 10,000 is selected to have a molecular weight of 10, 000 or more high molecular organic substances. According to the measurements so far, it has been recognized that the polysaccharide has a molecular weight of 1 million or more, and possibly more than 10 million. As an alternative to high performance liquid chromatography, a method of measuring the concentration of the permeation component and the non-permeation component using an ultrafiltration membrane with a molecular weight cut off of 10,000 can also be used.

<原水(ii)>
原水(ii)は、腐植物質をTOCとして0.05mg/L以上の濃度で含有する水である。腐植物質はカルシウムやマグネシウムなどの多価のカチオンと共存すると、膜を汚染し易く、フラックスの低下の原因となり易い。本発明においては、このような腐植物質をTOCとして0.05mg/L以上、好ましくは0.1mg/L以上、例えば0.5〜5mg/L含み、通水により逆浸透膜のフラックスを大きく低下させる水を原水として効果的に逆浸透膜処理することができる。
<Raw water (ii)>
The raw water (ii) is water containing humic substance as TOC at a concentration of 0.05 mg / L or more. When humic substances coexist with polyvalent cations such as calcium and magnesium, the membrane tends to contaminate the membrane and cause a decrease in flux. In the present invention, such humic substances are contained in TOC as 0.05 mg / L or more, preferably 0.1 mg / L or more, for example, 0.5 to 5 mg / L, and the flow of the reverse osmosis membrane is greatly reduced by water flow. Thus, the reverse osmosis membrane treatment can be effectively performed as raw water.

特に、フルボ酸やフミン酸といった腐植物質は、Ca、Mg、Fe、Al、Ba、Sr等の多価金属イオンが共存する場合、フラックスを大きく低下させる要因となることから、本発明は特に、腐植物質と共に、これらの多価金属イオンを、Caイオンであれば10mg/L以上、例えば10〜50mg/L程度含み、全多価金属イオン濃度が0.1mg/L以上、例えば1〜100mg/L程度の原水に有効である。   In particular, humic substances such as fulvic acid and humic acid cause a significant decrease in flux when polyvalent metal ions such as Ca, Mg, Fe, Al, Ba, and Sr coexist. Along with humic substances, these polyvalent metal ions contain 10 mg / L or more, for example, about 10 to 50 mg / L if Ca ions, and the total polyvalent metal ion concentration is 0.1 mg / L or more, for example 1 to 100 mg / L. Effective for raw water of about L level.

このような腐植物質含有水としては、表層水、地下水、生物処理水などが挙げられ、本発明は特に湖水、河川水などの表層水あるいは地下水の処理に好適に適用される。   Examples of such humic substance-containing water include surface water, groundwater, biologically treated water, and the present invention is particularly suitably applied to the treatment of surface water or groundwater such as lake water and river water.

なお、本発明における腐植物質の分子量は、高速液体クロマトグラフィーにより、デキストランを標準物質として、ピークトップの位置から求めることができる。テキストランにはTOCもしくは示差屈折率検出器、腐植物質にはUV検出器を用いるのが適切である。腐植物質の濃度の決定には、UVとTOCを検出器とする高速液体クロマトグラフィーが有効である。高速液体クロマトグラフィーの代替として、原水のE260などのUV吸収測定値から、簡易的に腐植物質の濃度を測定する方法も用いることができる。   In addition, the molecular weight of the humic substance in the present invention can be determined from the peak top position by high performance liquid chromatography using dextran as a standard substance. It is appropriate to use a TOC or differential refractive index detector for text runs and a UV detector for humic substances. High-performance liquid chromatography using UV and TOC as detectors is effective for determining the concentration of humic substances. As an alternative to high performance liquid chromatography, a method of simply measuring the concentration of humic substances from UV absorption measurement values such as E260 of raw water can also be used.

[前処理]
本発明で処理する原水中の生物代謝物系有機物濃度が過度に高いと、逆浸透膜がファウリングを起こし、また、他の条件制御では生物代謝物系有機物の膜面濃度(Cm)の平均値を所定値X以下とすることができない場合がある。
このため、原水中の生物代謝物系有機物濃度が過度に高い場合、或いは、逆浸透膜装置の透過水や濃縮水量等の他の条件を変更せずに生物代謝物系有機物の膜面濃度(Cm)の平均値を所定値X以下とするために、原水を凝集処理や限外濾過膜処理等によって前処理し、原水中の生物代謝物系有機物の一部を除去して、逆浸透膜装置供給水の生物代謝物系有機物濃度を低減するようにすることも好ましい方法である。
[Preprocessing]
If the concentration of the biological metabolite-based organic matter in the raw water treated in the present invention is excessively high, the reverse osmosis membrane causes fouling, and in other conditions control, the average of the membrane surface concentration (Cm) of the biological metabolite-based organic matter. In some cases, the value cannot be made equal to or less than the predetermined value X.
For this reason, when the concentration of the biological metabolite organic substance in the raw water is excessively high, or the membrane surface concentration of the biological metabolite organic substance (without changing other conditions such as the amount of permeated water and concentrated water of the reverse osmosis membrane device) In order to make the average value of Cm) equal to or less than the predetermined value X, the raw water is pretreated by coagulation treatment, ultrafiltration membrane treatment, etc., and a part of the biological metabolite organic substances in the raw water is removed, and the reverse osmosis membrane It is also a preferable method to reduce the concentration of biological metabolite-based organic matter in the apparatus supply water.

本発明では、原水(i)を処理する場合、逆浸透膜装置の供給水の分子量10,000以上の高分子有機物の濃度が0.2mg/L以下となるように原水を必要に応じて前処理することが好ましい。
また、原水(ii)を処理する場合、逆浸透膜装置の供給水の腐植物質濃度がTOCとして0.1mg/L以下となるように原水を必要に応じて前処理することが好ましい。
In the present invention, when the raw water (i) is treated, the raw water is treated as necessary so that the concentration of the high molecular organic substance having a molecular weight of 10,000 or more in the reverse osmosis membrane apparatus is 0.2 mg / L or less. It is preferable to process.
Moreover, when processing raw | natural water (ii), it is preferable to pre-process raw | natural water as needed so that the humic substance density | concentration of the supply water of a reverse osmosis membrane apparatus may be 0.1 mg / L or less as TOC.

[式(1)について]
本発明においては、逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って算出される各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)の逆浸透膜装置における平均値が所定値X以下となるように制御を行う、あるいはこの平均値に応じて原水又は逆浸透膜装置の供給水に分散剤を添加して生物代謝物系有機物の膜付着を防止することで、フラックスの低下を防止する。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
[Regarding Formula (1)]
In the present invention, based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device, the membrane surface of the biometabolite-based organic substance for each reverse osmosis membrane element calculated according to the following formula (1) Biological metabolism by controlling so that the average value of the concentration (Cm) in the reverse osmosis membrane device is less than or equal to the predetermined value X, or adding a dispersant to the raw water or the supply water of the reverse osmosis membrane device according to this average value By preventing the adhesion of physical organic matter film, the flux is prevented from lowering.
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance

逆浸透膜は、通水により、膜表面で濃度分極と呼ばれる現象が発生し、濃度分極が大きくなると、膜面の溶質濃度が高くなる。
従来、特許文献1のように、NaClなどの低分子の溶質の膜面濃度を求め、浸透圧がフラックスに及ぼす影響を検討した報告はなされているが、生物代謝物系有機物の膜面濃度とフラックス低下速度の関係を膜汚染に基づいて解明することは行われていない。
本発明では、以下の手順で逆浸透膜装置におけるフラックスの低下を予測する。
In the reverse osmosis membrane, a phenomenon called concentration polarization occurs on the membrane surface due to water flow, and when the concentration polarization increases, the solute concentration on the membrane surface increases.
Conventionally, as in Patent Document 1, there has been a report of obtaining the membrane surface concentration of a low-molecular solute such as NaCl and examining the effect of osmotic pressure on the flux. The relationship between the rate of flux reduction has not been elucidated based on membrane contamination.
In this invention, the fall of the flux in a reverse osmosis membrane apparatus is estimated in the following procedures.

1) 逆浸透膜エレメントの物質移動係数(k)に及ぼす、逆浸透膜エレメントの構造、被処理水水質、及び運転条件の影響を把握し、物質移動係数(k)を算出する。
2) 生物代謝物系有機物の膜面濃度とフラックス低下速度の関係を調べ、定式化する。
3) 被処理水の生物代謝物系有機物濃度を測定する。
4) 3)で得られた生物代謝物系有機物濃度と、1)の物質移動係数(k)を用いて、生物代謝物系有機物の膜面濃度を求め、2)よりフラックス低下速度を求める。
1) Understand the influence of the structure of the reverse osmosis membrane element, the quality of the treated water and the operating conditions on the mass transfer coefficient (k) of the reverse osmosis membrane element, and calculate the mass transfer coefficient (k).
2) Investigate and formulate the relationship between the membrane surface concentration of biological metabolites and organic matter and the rate of flux reduction.
3) Measure the concentration of organic metabolites in the treated water.
4) Using the biological metabolite organic substance concentration obtained in 3) and the mass transfer coefficient (k) of 1), obtain the membrane surface concentration of the biological metabolite organic substance, and obtain the flux reduction rate from 2).

物質移動係数(k)を算出するにあたっては、非特許文献3、特許文献1の第[0023]段落〜第[0029]段落のシャーウッド数、レイノルズ数、シュミット数の物質移動相関式を援用できる。本発明において、この物質移動相関式からの物質移動係数(k)の算出にあたり、溶質拡散係数(D)として、前掲の非特許文献3の式(3)により、原水中の生物代謝物系有機物の分子量(Mw)から算出した値を用いる。
なお、非特許文献3、特許文献1では、シャーウッド数を求めることによって物質移動係数(k)を決定することができ、シャーウッド数が、レイノルズ数とシュミット数によって表されている。この時、膜面に平行な流れについては、レイノルズ数として考慮しているが、膜の透過方向の流れは考慮していない。
In calculating the mass transfer coefficient (k), the mass transfer correlation equation of Sherwood number, Reynolds number, and Schmidt number in the [0023] to [0029] paragraphs of Non-Patent Document 3 and Patent Document 1 can be used. In the present invention, in calculating the mass transfer coefficient (k) from the mass transfer correlation equation, the biological metabolite-based organic matter in the raw water is expressed as the solute diffusion coefficient (D) by the formula (3) of Non-Patent Document 3 described above. The value calculated from the molecular weight (Mw) is used.
In Non-Patent Document 3 and Patent Document 1, the mass transfer coefficient (k) can be determined by obtaining the Sherwood number, and the Sherwood number is represented by the Reynolds number and the Schmidt number. At this time, the flow parallel to the film surface is considered as the Reynolds number, but the flow in the permeation direction of the film is not considered.

本発明では、溶質拡散係数(D)として前掲の非特許文献3の式(3)の算出値を用いることにより、被処理水中の生物代謝物系有機物に対する物質移動係数(k)を求めることができる。
式(3)より算出した溶質拡散係数(D)を用いて、物質移動係数(k)は下記の通り算出されるが、拡散係数(D)のシャーウッド数の算出方法は種々知られており、どのような式を用いても膜面濃度を制御できれば良い。
Sh=k・d/D
Re=u・d/ν
Sc=ν/D
Sh[−]:シャーウッド数
Re[−]:レイノルズ数
Sc[−]:シュミット数
d[m]:代表径(スパイラルエレメントの場合は流路スペーサ厚み×2)
u[m/s]:膜面に平行な流れの速度
ν[m/s]:被処理水の動粘度
物質移動係数(k)は以下の式で表される。
k=(D/d)・Sh
逆浸透膜エレメント1本あたりの濃縮水量(Fc)を用いると、膜面に平行な流れの速度(u)は以下の式で表すことができる。
u=(Fc+Fp/2)/((d/2)・S/(2L))
Fc[m/s]:逆浸透膜エレメント1本あたりの濃縮水量
L[m]:有効膜長
In the present invention, the mass transfer coefficient (k) for the biological metabolite-based organic matter in the water to be treated can be obtained by using the calculated value of Equation (3) of Non-Patent Document 3 described above as the solute diffusion coefficient (D). it can.
Using the solute diffusion coefficient (D) calculated from the equation (3), the mass transfer coefficient (k) is calculated as follows, but various methods for calculating the Sherwood number of the diffusion coefficient (D) are known, Whatever expression is used, it is sufficient that the film surface concentration can be controlled.
Sh = k · d / D
Re = u · d / ν
Sc = ν / D
Sh [-]: Sherwood number Re [-]: Reynolds number Sc [-]: Schmidt number d [m]: Representative diameter (in the case of a spiral element, channel spacer thickness x 2)
u [m / s]: Flow velocity parallel to the film surface ν [m 2 / s]: Kinematic viscosity of water to be treated The mass transfer coefficient (k) is expressed by the following equation.
k = (D / d) · Sh
When the amount of concentrated water (Fc) per reverse osmosis membrane element is used, the flow velocity (u) parallel to the membrane surface can be expressed by the following equation.
u = (Fc + Fp / 2) / ((d / 2) · S / (2L))
Fc [m 3 / s]: Concentrated water amount per reverse osmosis membrane element L [m]: Effective membrane length

非特許文献3、特許文献1では、ShはReとScにより以下の式で表されている。
Sh=A・Re・Sc
A,b,c[−]:定数
In Non-Patent Document 3 and Patent Document 1, Sh is represented by the following equation using Re and Sc.
Sh = A · Re b · Sc c
A, b, c [-]: constant

また、一般的に定数Aは膜の形状を考慮して以下の式で表される。
A=a・(d/L)
a,e[−]:定数
L[m]:有効膜長
In general, the constant A is expressed by the following equation in consideration of the shape of the film.
A = a · (d / L) e
a, e [-]: Constant L [m]: Effective film length

非特許文献6(An analytical model for spiral wound reverse osmosis membrance modules:Part II-Experimental validation,S.Sundaramoorthy et al.,Desalination,277,p.257-264(2011))では、ShはRe、Sc、Cbにより以下の式で表されている。
Sh=A・Re・Sc・(Cb/ρ)
ρ[kg/m]:被処理水の密度
A,b,c,f[−]:定数
In Non-Patent Document 6 (An analytical model for spiral wound reverse osmosis membrance modules: Part II-Experimental validation, S. Sundaramoorthy et al., Desalination, 277, p. 257-264 (2011)), Sh is Re, Sc, Cb is expressed by the following formula.
Sh = A · Re b · Sc c · (Cb / ρ) f
ρ [kg / m 3 ]: treated water density A, b, c, f [−]: constant

非特許文献7(「物質移動係数に及ぼす膜透過流束の影響」(穴澤孝夫ら、化学工学会第25回秋季大会研究発表講演要旨集)F313(1992))では、Shは膜の透過方向の流れ(Jv)を考慮した式が用いられている。
Sh=a・(Re+gRey)・Sc・(d/L)
Rey=Jv・d/ν
Rey[−]:膜の透過方向の流れにおけるレイノルズ数
Jv[m/s]:膜の透過方向の流れ(Fp/S)
a,b,c,e,g,h[−]:定数
Reyの狭い範囲においては、以下の式も成り立つと考えられる。
Sh=a・Re・Rey・Sc・(d/L)
a,b,c,e,h[−]:定数
In Non-Patent Document 7 (“Effect of membrane permeation flux on mass transfer coefficient” (Takao Anazawa et al., Abstracts of Papers Presented at the 25th Autumn Meeting of the Chemical Engineering Society of Japan) F313 (1992)), Sh is the permeation direction of the membrane A formula that takes into account the flow (Jv) is used.
Sh = a · (Re b + gRey h ) · Sc c · (d / L) e
Rey = Jv · d / ν
Rey [−]: Reynolds number in the flow in the permeation direction of the membrane Jv [m / s]: Flow in the permeation direction of the membrane (Fp / S)
a, b, c, e, g, h [-]: constant In the narrow range of Rey, the following equations are also considered to hold.
Sh = a · Re b · Rey h · Sc c · (d / L) e
a, b, c, e, h [-]: constant

以上のようにシャーウッド数(Sh)を表す式は、様々なものが提案されており、適切なものを選択して、得られたシャーウッド数から物質移動係数(k)を求める必要がある。考慮する因子が増えると、より正確なシャーウッド数が得られることが期待されるが、定数を求めるための検討や式の取り扱いが煩雑になるという問題がある。本発明の本質は、物質移動係数(k)を求めるためのシャーウッド数の表現形式にあるのではなく、物質移動係数(k)を用いて、生物代謝物系有機物の膜面濃度(Cm)を求め、その膜面濃度を制御するか、この膜面濃度(Cm)に応じて分散剤の添加を制御することにある。   As described above, various formulas representing the Sherwood number (Sh) have been proposed. It is necessary to select an appropriate one and obtain the mass transfer coefficient (k) from the obtained Sherwood number. If more factors are taken into account, it is expected that a more accurate Sherwood number can be obtained, but there is a problem that the examination for obtaining the constant and the handling of the formula become complicated. The essence of the present invention is not in the expression format of the Sherwood number for obtaining the mass transfer coefficient (k), but using the mass transfer coefficient (k), the membrane surface concentration (Cm) of the biological metabolite-based organic substance is determined. The purpose is to control the film surface concentration or to control the addition of the dispersing agent in accordance with the film surface concentration (Cm).

以上より、物質移動係数(k)に影響を及ぼす因子として、生物代謝物系有機物の拡散係数、逆浸透膜エレメント1本あたりの濃縮水量、透過水量、膜面積、スパイラル型逆浸透膜エレメントの流路スペーサ厚み、有効膜長、被処理水の動粘度等が挙げられる。   From the above, as factors affecting the mass transfer coefficient (k), the diffusion coefficient of biological metabolites, the amount of concentrated water per reverse osmosis membrane element, the amount of permeated water, the membrane area, the flow of spiral reverse osmosis membrane elements Examples include the road spacer thickness, the effective film length, and the kinematic viscosity of the water to be treated.

そして、後述の実験例1,2のように、高分子有機物又は腐植物質の膜面濃度とフラックス低下速度との関係を調べると、後掲の表1,2に示す結果が得られる。ここで、フラックス低下速度とは、初期のフラックスを100%とした時のフラックスが低下する速度を表す。
前掲の非特許文献1、2に記載されているように、フラックスが10%低下するまでを連続運転の許容値とし、年2回を限度に薬液洗浄を行うのが好ましい。年2回以下の薬液洗浄頻度でフラックスの低下を10%以内に抑えるためには、フラックスの低下速度としては、20%/年以下である必要がある。
Then, as shown in Experimental Examples 1 and 2, which will be described later, when the relationship between the film surface concentration of the polymer organic matter or humic substance and the flux reduction rate is examined, the results shown in Tables 1 and 2 below are obtained. Here, the flux reduction rate represents the rate at which the flux decreases when the initial flux is 100%.
As described in Non-Patent Documents 1 and 2 described above, it is preferable to perform chemical cleaning up to twice a year as the allowable value for continuous operation until the flux decreases by 10%. In order to suppress the flux decrease to 10% or less with a chemical cleaning frequency of twice a year or less, the flux decrease rate needs to be 20% / year or less.

<原水(i)を逆浸透膜処理する場合>
後述の表1の関係から、高分子有機物に着目し、該高分子有機物の膜面濃度を0.7kg/m以下にすることによって、フラックス低下速度を20%/年以下とすることができ、年2回以下の薬液洗浄頻度でフラックスを回復でき、安定に運転することができることが分かる。即ち、原水(i)の逆浸透膜処理において、前記所定値Xは0.7kg/mである。
<When raw water (i) is treated with a reverse osmosis membrane>
From the relationship of Table 1 described later, paying attention to the polymer organic matter, the flux reduction rate can be made 20% / year or less by setting the film surface concentration of the polymer organic matter to 0.7 kg / m 3 or less. It can be seen that the flux can be recovered with a chemical cleaning frequency of less than twice a year and can be stably operated. That is, in the reverse osmosis membrane treatment of raw water (i), the predetermined value X is 0.7 kg / m 3 .

従って、原水(i)を逆浸透膜処理する場合、式(1)で算出される各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)の平均値が0.7kg/m以下となるように後述の操作(I)を行うか、あるいはこの平均値が0.7kg/mを超える場合に後述の操作(II)を行う。なお、操作(I)と操作(II)を共に行っても良い。
式(1)で算出される各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)の平均値が0.7kg/mを超えるとフラックスの低下速度が20%/年を超え、年2回の薬液洗浄では安定運転を維持できず、年に3回以上の薬液洗浄を必要とし、好ましくない。各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)の平均値は、0.7kg/m以下であればよいが、好ましくは0.5kg/m以下、より好ましくは0.2kg/m以下である。
Therefore, when the raw water (i) is subjected to a reverse osmosis membrane treatment, the average value of the membrane surface concentration (Cm) of the polymer organic matter for each reverse osmosis membrane element calculated by the equation (1) is 0.7 kg / m 3 or less. The operation (I) which will be described later is performed so as to become or the operation (II) which will be described later is performed when the average value exceeds 0.7 kg / m 3 . Note that the operation (I) and the operation (II) may be performed together.
When the average value of the membrane surface concentration (Cm) of the polymer organic substance for each reverse osmosis membrane element calculated by the formula (1) exceeds 0.7 kg / m 3 , the rate of flux decrease exceeds 20% / year, The chemical solution cleaning twice a year cannot maintain a stable operation, and requires chemical cleaning three times or more a year, which is not preferable. The average value of the membrane surface concentration (Cm) of the polymer organic matter for each reverse osmosis membrane element may be 0.7 kg / m 3 or less, preferably 0.5 kg / m 3 or less, more preferably 0. 2 kg / m 3 or less.

また、逆浸透膜装置が、前述のようにバンクを多段に設けて構成される場合、逆浸透膜装置全体でのフラックスの低下速度が20%/年以下となる条件としては、いずれのバンクにおいても各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)が所定値Yとして1kg/m以下とすることが望ましい。これは、後段のバンクほど溶質の濃縮が進み高分子有機物の膜面濃度(Cm)が高くなり易いが、通常、後段のバンクの逆浸透膜エレメント数は、前段のバンクの逆浸透膜エレメント数の1/2程度であるので、後段のバンクにおいても各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)を1kg/m以下に抑えることによって、逆浸透膜装置全体でのフラックスの低下速度を20%/年以下に抑えることができると考えられる。 In addition, when the reverse osmosis membrane device is configured by providing banks in multiple stages as described above, as a condition that the rate of flux decrease in the entire reverse osmosis membrane device is 20% / year or less, in any bank In addition, it is desirable that the membrane surface concentration (Cm) of the polymer organic substance for each reverse osmosis membrane element is 1 kg / m 3 or less as the predetermined value Y. This is because the concentration of solutes in the latter bank tends to increase and the membrane surface concentration (Cm) of the polymer organic matter tends to be higher. Usually, the number of reverse osmosis membrane elements in the latter bank is the number of reverse osmosis membrane elements in the former bank. Therefore, even in the latter bank, by controlling the membrane surface concentration (Cm) of the polymer organic material for each reverse osmosis membrane element to 1 kg / m 3 or less, the flux in the entire reverse osmosis membrane device It is considered that the rate of decrease in the temperature can be suppressed to 20% / year or less.

<原水(ii)を逆浸透膜処理する場合>
後述の表2の関係から、腐植物質に着目し、該腐植物質の膜面濃度を0.4×10−3kg/m以下にすることによって、フラックス低下速度を20%/年以下とすることができ、年2回以下の薬液洗浄頻度でフラックスを回復でき、安定に運転することができることが分かる。即ち、原水(ii)の逆浸透膜処理において、前記所定値Xは0.4kg/mである。
<When reverse osmosis membrane treatment of raw water (ii)>
Focusing on humic substances from the relationship of Table 2 described later, the flux reduction rate is set to 20% / year or less by setting the film surface concentration of the humic substances to 0.4 × 10 −3 kg / m 3 or less. It can be seen that the flux can be recovered with a chemical cleaning frequency of not more than twice a year and the operation can be stably performed. That is, in the reverse osmosis membrane treatment of raw water (ii), the predetermined value X is 0.4 kg / m 3 .

従って、原水(ii)を逆浸透膜処理する場合、式(1)で算出される各逆浸透膜エレメント毎の腐植物質のTOCとしての膜面濃度(Cm)の平均値が0.4×10−3kg/m以下となるように後述の操作(I)を行うか、あるいはこの平均値が0.4×10−3kg/mを超える場合に後述の操作(II)を行う。なお、操作(I)と操作(II)を共に行っても良い。
式(1)で算出される各逆浸透膜エレメント毎の腐植物質の膜面濃度(Cm)の平均値が0.4×10−3kg/mを超えるとフラックスの低下速度が20%/年を超え、年2回の薬液洗浄では安定運転を維持できず、年に3回以上の薬液洗浄を必要とし、好ましくない。各逆浸透膜エレメント毎の腐植物質の膜面濃度(Cm)の平均値は、0.4×10−3kg/m以下であればよいが、好ましくは0.2×10−3kg/m以下である。
Therefore, when the raw water (ii) is treated with the reverse osmosis membrane, the average value of the membrane surface concentration (Cm) as the TOC of the humic substance for each reverse osmosis membrane element calculated by the equation (1) is 0.4 × 10. The operation (I) described later is performed so as to be −3 kg / m 3 or less, or the operation (II) described later is performed when the average value exceeds 0.4 × 10 −3 kg / m 3 . Note that the operation (I) and the operation (II) may be performed together.
When the average value of the membrane surface concentration (Cm) of the humic substance for each reverse osmosis membrane element calculated by the formula (1) exceeds 0.4 × 10 −3 kg / m 3 , the rate of flux decrease is 20% / It is not preferable that the chemical cleaning performed twice a year cannot maintain a stable operation and requires chemical cleaning three or more times a year. The average value of the membrane surface concentration (Cm) of the humic substance for each reverse osmosis membrane element may be 0.4 × 10 −3 kg / m 3 or less, preferably 0.2 × 10 −3 kg / m 3 or less.

また、逆浸透膜装置が、前述のようにバンクを多段に設けて構成される場合、逆浸透膜装置全体でのフラックスの低下速度が20%/年以下となる条件としては、いずれのバンクにおいても各逆浸透膜エレメント毎の腐植物質のTOCとしての膜面濃度(Cm)が所定値Yとして0.6×10−3kg/m以下とすることが望ましい。これは、後段のバンクほど溶質の濃縮が進み腐植物質の膜面濃度(Cm)が高くなり易いが、通常、後段のバンクの逆浸透膜エレメント数は、前段のバンクの逆浸透膜エレメント数の1/2程度であるので、後段のバンクにおいても各逆浸透膜エレメント毎の腐植物質の膜面濃度(Cm)を0.6×10−3kg/m以下に抑えることによって、逆浸透膜装置全体でのフラックスの低下速度を20%/年以下に抑えることができると考えられる。 In addition, when the reverse osmosis membrane device is configured by providing banks in multiple stages as described above, as a condition that the rate of flux decrease in the entire reverse osmosis membrane device is 20% / year or less, in any bank In addition, it is desirable that the membrane surface concentration (Cm) of the humic substance as the TOC of each reverse osmosis membrane element is not more than 0.6 × 10 −3 kg / m 3 as the predetermined value Y. This is because the concentration of solutes in the latter bank tends to increase, and the membrane surface concentration (Cm) of the humic substance tends to increase. Usually, the number of reverse osmosis membrane elements in the latter bank is equal to the number of reverse osmosis membrane elements in the former bank. Since it is about 1/2, the reverse osmosis membrane can be reduced by suppressing the humic substance membrane surface concentration (Cm) for each reverse osmosis membrane element to 0.6 × 10 −3 kg / m 3 or less even in the latter bank. It is considered that the rate of flux decrease in the entire apparatus can be suppressed to 20% / year or less.

[生物代謝物系有機物の膜面濃度(Cm)の制御・分散剤の添加制御]
本発明においては、演算手段で、前記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出し、逆浸透膜装置内の各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)の平均値(以下「平均Cm値」と称す。)が上記所定値X以下となるように下記(I)の操作を行う、及び/又は、平均Cm値が所定値Xを超える場合に下記(II)の操作を行う。
(I):該逆浸透膜装置における逆浸透膜処理に用いる逆浸透膜エレメントの本数、バンクの構成、透過水量、濃縮水量、及び前記原水の前処理による該逆浸透膜装置供給水の生物代謝物系有機物濃度のうちのいずれか1以上を調整する。
(II):該原水又は該逆浸透膜装置供給水に分散剤を添加する。
この生物代謝物系有機物の膜面濃度(Cm)の調整、制御及び分散剤の添加制御について以下に説明する。
[Control of membrane concentration (Cm) of biological metabolites and organic substances / Dispersant addition control]
In the present invention, the calculation means calculates the membrane surface concentration (Cm) of the biometabolite-based organic substance for each reverse osmosis membrane element according to the formula (1), and for each reverse osmosis membrane element in the reverse osmosis membrane device. The following operation (I) is carried out so that the average value (hereinafter referred to as “average Cm value”) of the membrane surface concentration (Cm) of the biological metabolite-based organic substance is equal to or less than the predetermined value X, and / or When the average Cm value exceeds the predetermined value X, the following operation (II) is performed.
(I): the number of reverse osmosis membrane elements used for the reverse osmosis membrane treatment in the reverse osmosis membrane device, the configuration of the bank, the amount of permeated water, the amount of concentrated water, and the biological metabolism of the water supplied to the reverse osmosis membrane device by the pretreatment of the raw water Adjust any one or more of the physical organic matter concentrations.
(II): A dispersant is added to the raw water or the water supplied to the reverse osmosis membrane device.
The adjustment and control of the film surface concentration (Cm) of this biometabolite organic substance and the addition control of the dispersant will be described below.

(1) 逆浸透膜装置の透過水量及び濃縮水量の調整
平均Cm値が前記所定値Xを超える場合、逆浸透膜装置全体の透過水量を低減することにより、式(1)の逆浸透膜エレメント1本当たりの透過水量(Fp)を低減して生物代謝物系有機物の膜面濃度(Cm)を低くして平均Cm値を低くすることができる。
また、逆に逆浸透膜装置全体の濃縮水量(Fc)を増加することで、生物代謝物系有機物の膜面濃度(Cm)を低くして平均Cm値を低くすることができる。
(1) Adjustment of the amount of permeated water and the amount of concentrated water of the reverse osmosis membrane device When the average Cm value exceeds the predetermined value X, the reverse osmosis membrane element of the formula (1) is reduced by reducing the amount of permeated water of the entire reverse osmosis membrane device. The permeated water amount (Fp) per bottle can be reduced to lower the membrane surface concentration (Cm) of the biological metabolite organic substance, thereby lowering the average Cm value.
Conversely, by increasing the amount of concentrated water (Fc) of the entire reverse osmosis membrane device, the membrane surface concentration (Cm) of the biometabolite organic substance can be lowered and the average Cm value can be lowered.

この透過水量、濃縮水量の調整は、逆浸透膜装置への供給水量を変更することなく透過水量を低減し、濃縮水量を増加させる運転条件変更であってもよく、濃縮水量を変更せずに逆浸透膜装置への供給水量を低減することにより、透過水量のみを低減する運転条件変更であってもよい。
上記の透過水量及び/又は濃縮水量の調整は、逆浸透膜装置の透過水量及び/又は濃縮水量を調整する流量調整バルブ等の流量調整手段を設け、演算手段からの計算結果が入力される制御手段により、この流量調整手段を制御することにより行うことができる。
The adjustment of the amount of permeated water and the amount of concentrated water may be a change in operating conditions that reduces the amount of permeated water without increasing the amount of water supplied to the reverse osmosis membrane device and increases the amount of concentrated water, without changing the amount of concentrated water. By reducing the amount of water supplied to the reverse osmosis membrane device, the operating condition may be changed to reduce only the amount of permeated water.
The adjustment of the permeated water amount and / or the concentrated water amount is provided with a flow rate adjusting means such as a flow rate adjusting valve for adjusting the permeated water amount and / or the concentrated water amount of the reverse osmosis membrane device, and the calculation result is input from the calculating means This can be done by controlling the flow rate adjusting means.

(2) 逆浸透膜装置供給水の生物代謝物系有機物濃度の調整
平均Cm値が前記所定値Xを超える場合、凝集処理及び/又は限外濾過膜処理等の前処理手段により、原水を処理して原水中の生物代謝物系有機物の一部を除去し、逆浸透膜装置への供給水の生物代謝物系有機物濃度を低減することにより、被処理水の生物代謝物系有機物濃度(Cb)を低減して、生物代謝物系有機物の膜面濃度(Cm)を低くして平均Cm値を低くすることができる。
(2) Adjustment of the concentration of biological metabolites in the reverse osmosis membrane device supply water When the average Cm value exceeds the predetermined value X, the raw water is treated by pretreatment means such as coagulation treatment and / or ultrafiltration membrane treatment. Then, a part of the biological metabolite organic substances in the raw water is removed, and the biological metabolite organic substance concentration of the water to be treated (Cb) is reduced by reducing the biological metabolite organic substance concentration of the water supplied to the reverse osmosis membrane device. ) Can be reduced, and the membrane surface concentration (Cm) of the biological metabolite-based organic substance can be lowered to lower the average Cm value.

この場合、原水を、直接供給水として逆浸透膜装置に供給する流路と、前処理手段を経て逆浸透膜装置に供給する流路とを切り換える原水流路切り換え手段を設け、この原水流路切り換え手段を、演算手段からの計算結果が入力される制御手段により作動させ、平均Cm値が前記所定値Xを超える場合には原水を前処理手段で処理した後逆浸透膜装置に供給し、平均Cm値が前記所定値X以下の場合は、前処理手段をバイパスして逆浸透膜装置に供給するようにしたり、或いは、平均Cm値の値に応じて、前処理手段の処理条件を制御し、生物代謝物系有機物の除去率を調整する制御を行うことができる。   In this case, a raw water flow path switching means for switching between a flow path for supplying raw water as direct supply water to the reverse osmosis membrane apparatus and a flow path for supplying the raw water to the reverse osmosis membrane apparatus through the pretreatment means is provided. The switching means is operated by the control means to which the calculation result from the calculation means is input, and when the average Cm value exceeds the predetermined value X, the raw water is treated by the pretreatment means and then supplied to the reverse osmosis membrane device, When the average Cm value is less than or equal to the predetermined value X, the pretreatment means is bypassed and supplied to the reverse osmosis membrane device, or the processing conditions of the pretreatment means are controlled according to the average Cm value. In addition, it is possible to control to adjust the removal rate of the biological metabolite-based organic matter.

(3) バンク構成の調整
逆浸透膜装置がバンクを2段以上の複数段直列に連結して構成される場合、逆浸透膜装置の供給水を1段目のバンクに供給する流路及び/又は前段のバンクの濃縮水を後段のバンクに供給する流路を切り換えることにより、逆浸透膜処理に使用するベッセル数を調整する被処理水流路切り換え手段を設け、演算手段からの計算結果が入力される制御手段により、被処理水の流路を切り換えることにより平均Cm値を前記所定値X以下とすることができる。
(3) Adjustment of bank configuration When the reverse osmosis membrane device is configured by connecting two or more banks in series, the flow path for supplying the supply water of the reverse osmosis membrane device to the first stage bank and / or Or, by switching the flow path for supplying the concentrated water from the preceding bank to the subsequent bank, a water flow path switching means for adjusting the number of vessels used for the reverse osmosis membrane treatment is provided, and the calculation result from the calculation means is input. The average Cm value can be made equal to or less than the predetermined value X by switching the flow path of the water to be treated by the control means.

例えば、3段のバンクで構成される逆浸透膜装置において、前2段のバンクのみを用いる逆浸透膜処理では、平均Cm値が前記所定値Xを超える場合、2段目のバンクの濃縮水を系外へ排出する流路から、3段目のバンクへ送給して逆浸透膜処理する流路を選択することにより、逆浸透膜処理に使用するバンク数、即ち逆浸透膜エレメント数を増加させて平均Cm値を低減することができる。この流路切り換えは、前段のバンクと後段のバンクとの間の配管に設けた開閉バルブ等により行うことができる。
同様に、同一バンク内においても、流路切り換えにより、逆浸透膜処理に使用するベッセル数を増減することで、平均Cm値を制御することもできる。
For example, in a reverse osmosis membrane device constituted by three-stage banks, in the reverse osmosis membrane treatment using only the previous two-stage banks, if the average Cm value exceeds the predetermined value X, the concentrated water in the second-stage bank The number of banks used for the reverse osmosis membrane treatment, that is, the number of reverse osmosis membrane elements, is selected by selecting the flow channel for the reverse osmosis membrane treatment by feeding to the third-stage bank from the channel for discharging It can be increased to reduce the average Cm value. This flow path switching can be performed by an open / close valve or the like provided in a pipe between the preceding bank and the succeeding bank.
Similarly, even within the same bank, the average Cm value can be controlled by increasing or decreasing the number of vessels used for the reverse osmosis membrane treatment by switching the flow path.

(4) 分散剤の添加
平均Cm値が前記所定値Xを超える場合、分散剤添加手段により原水或いは原水を前処理した供給水に分散剤を添加して、逆浸透膜装置供給水中の生物代謝物系有機物を分散させて、膜への付着を防止し、安定運転を行うことができる。
(4) Addition of dispersant When the average Cm value exceeds the predetermined value X, the dispersant is added to the raw water or the feed water pretreated with the raw water by the dispersant addition means, and the biological metabolism in the reverse osmosis membrane device feed water It is possible to disperse physical organic substances to prevent adhesion to the film and to perform stable operation.

この場合、原水又は供給水に分散剤を添加する分散剤添加手段と、演算手段からの計算結果が入力され、その入力値に基づいて、分散剤添加手段による分散剤添加の有無又は分散剤添加量を制御する分散剤添加量制御手段を設け、平均Cm値が前記所定値Xを超える場合は分散剤を添加するようにしたり、或いは分散剤添加量を増量させ、平均Cm値が前記所定値Xを下回るようになったら、分散剤の添加量を減量したり、分散剤の添加を停止するといった薬注制御を行う方法を採用することができる。
更に、逆浸透膜装置が、前述のようにバンクを多段に設けて構成される場合、少なくとも1つのバンクにおいて各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)が前記所定値Yを超える場合は分散剤を添加するようにしたり、或いは分散剤添加量を増量させ、すべてのバンクにおいて、各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)が前記所定値Yを下回るようになったら、分散剤の添加量を減量したり、分散剤の添加を停止するといった薬注制御を行う方法を採用することができる。
In this case, the dispersant addition means for adding the dispersant to the raw water or the supply water and the calculation result from the calculation means are input, and based on the input value, the presence or absence of the dispersant addition by the dispersant addition means or the dispersant addition Dispersant addition amount control means for controlling the amount is provided, and when the average Cm value exceeds the predetermined value X, the dispersant is added, or the dispersant addition amount is increased so that the average Cm value is the predetermined value. If it becomes less than X, the method of performing chemical injection control, such as reducing the addition amount of a dispersing agent or stopping the addition of a dispersing agent, can be employ | adopted.
Furthermore, when the reverse osmosis membrane device is configured by providing banks in multiple stages as described above, the membrane surface concentration (Cm) of the polymer organic substance for each reverse osmosis membrane element in at least one bank is the predetermined value Y. Is exceeded, or the dispersant addition amount is increased, and in all banks, the membrane surface concentration (Cm) of the polymer organic matter for each reverse osmosis membrane element is equal to the predetermined value Y. When it becomes lower, it is possible to adopt a method of performing chemical injection control such as reducing the amount of the dispersant added or stopping the addition of the dispersant.

分散剤としては、生物代謝物系有機物分散剤及び/又はスケール分散剤を用いることができ、例えば生物代謝物系有機物分散剤としては、特願2014−055253に列挙された剤を使用することができ、具体的にはポリビニルピロリドン、ポリアクリルアミド、ポリ(2−アルキル−2−オキサゾリン)等が挙げられる。また、スケール分散剤としては、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)などのキレート系スケール防止剤、その他、(メタ)アクリル酸重合体及びその塩、マレイン酸重合体及びその塩などの低分子量ポリマー、エチレンジアミンテトラメチレンホスホン酸及びその塩、ヒドロキシエチリデンジホスホン酸及びその塩、ニトリロトリメチレンホスホン酸及びその塩、ホスホノブタントリカルボン酸及びその塩などのホスホン酸及びホスホン酸塩、ヘキサメタリン酸及びその塩、トリポリリン酸及びその塩などの無機重合リン酸及び無機重合リン酸塩などを使用することができる。
これらの分散剤は、1種のみを用いてもよく、2種以上を併用してもよい。
As the dispersant, a biometabolite-based organic dispersant and / or a scale dispersant can be used. For example, as the bio-metabolite-based organic dispersant, the agents listed in Japanese Patent Application No. 2014-055253 can be used. Specifically, polyvinylpyrrolidone, polyacrylamide, poly (2-alkyl-2-oxazoline) and the like can be mentioned. As scale dispersants, chelating scale inhibitors such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), (meth) acrylic acid polymers and salts thereof, maleic acid polymers and salts thereof, etc. Low molecular weight polymers, ethylenediaminetetramethylenephosphonic acid and its salts, hydroxyethylidene diphosphonic acid and its salts, nitrilotrimethylenephosphonic acid and its salts, phosphonobutanetricarboxylic acid and its salts, phosphonic acids and phosphonates, hexametaphosphoric acid And inorganic polymerized phosphoric acid and inorganic polymerized phosphate such as salts thereof, tripolyphosphoric acid and salts thereof, and the like can be used.
These dispersing agents may use only 1 type and may use 2 or more types together.

[水処理]
本発明は、海水淡水化、超純水製造、工業用水処理、排水回収処理等に使用される各種の逆浸透膜装置に適用することができるが、特に、湖水、河川水、あるいは地下水を原水として処理する逆浸透膜装置に好適に適用される。
また、本発明の逆浸透膜装置は、特に生物処理水の逆浸透膜分処理に好適に用いられる。
[Water treatment]
The present invention can be applied to various reverse osmosis membrane devices used for seawater desalination, ultrapure water production, industrial water treatment, wastewater recovery treatment, etc., but in particular, lake water, river water, or ground water is used as raw water. The present invention is preferably applied to a reverse osmosis membrane device that is processed as follows.
Moreover, the reverse osmosis membrane device of the present invention is particularly preferably used for reverse osmosis membrane treatment of biologically treated water.

図3は、本発明の逆浸透膜装置を用いて生物処理水を逆浸透膜処理する本発明の水処理方法の実施の形態を示す系統図である。
本発明による生物処理水の処理方法の処理手順としては、例えば、図3(a)に示すように、好気及び/又は嫌気性生物処理手段11、凝集処理手段12、加圧浮上等の固液分離手段13、濾過手段14で処理した生物処理水を保安フィルタ15を通して逆浸透膜装置16に導入して逆浸透膜処理する方法、図3(b)に示すように、生物処理手段11の処理水を直接膜濾過装置等の濾過手段14で固液分離した水を逆浸透膜装置16に導入して逆浸透膜処理する方法、或いは、図3(c)に示すように、MBR(浸漬型膜分離装置)17の処理水を直接逆浸透膜装置16に導入して処理する方法などが挙げられるが、何らこれらの方法に限定されるものではない。
FIG. 3 is a system diagram showing an embodiment of the water treatment method of the present invention for treating biologically treated water with a reverse osmosis membrane using the reverse osmosis membrane device of the present invention.
As a treatment procedure of the treatment method of biologically treated water according to the present invention, for example, as shown in FIG. 3 (a), a solid solution such as aerobic and / or anaerobic biological treatment means 11, flocculation treatment means 12, and pressure levitation The biological treatment water treated by the liquid separation means 13 and the filtration means 14 is introduced into the reverse osmosis membrane device 16 through the safety filter 15 and subjected to the reverse osmosis membrane treatment, as shown in FIG. A method in which water obtained by solid-liquid separation of the treated water directly by the filtration means 14 such as a membrane filtration device is introduced into the reverse osmosis membrane device 16 to perform a reverse osmosis membrane treatment, or, as shown in FIG. Examples include a method of directly introducing the treated water of the mold membrane separation device 17 into the reverse osmosis membrane device 16 and processing, but the method is not limited to these methods.

以下に実験例及び実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples and examples.

[実験例1]
高分子有機物濃度0.2mg/Lの生物処理水を原水として逆浸透膜処理した。
この原水中の高分子有機物について、高速液体クロマトグラフィーにより測定した分子量Mwは1,300,000であり、前記式(3)より算出した拡散係数Dは1.0×10−11/sである。
[Experimental Example 1]
A reverse osmosis membrane treatment was performed using biologically treated water having a polymer organic substance concentration of 0.2 mg / L as raw water.
About the high molecular weight organic substance in this raw water, the molecular weight Mw measured by the high performance liquid chromatography is 1,300,000, and the diffusion coefficient D calculated from the formula (3) is 1.0 × 10 −11 m 2 / s. It is.

用いた逆浸透膜装置は、日東電工製8インチ芳香族ポリアミド系逆浸透膜「ES20」エレメント(1本当たりの膜面積37m)4本を装填したベッセル15個(逆浸透膜エレメント60本)で構成され、図1に示すように、第1バンクはベッセル10個を並列配置し、第2バンクはベッセル5個を並列配置したものである。
このように構成された逆浸透膜装置により、逆浸透膜装置全体の透過水量を60m/h、濃縮水量を20m/hの条件で一年間運転を行ったところ、第2バンクにおいて、79%/年のフラックス低下が起き、年5回の薬液洗浄が必要となった。
The reverse osmosis membrane apparatus used was 15 vessels (60 reverse osmosis membrane elements) loaded with 4 Nitto Denko 8-inch aromatic polyamide reverse osmosis membrane “ES20” elements (membrane area 37 m 2 per one). As shown in FIG. 1, the first bank has 10 vessels arranged in parallel, and the second bank has 5 vessels arranged in parallel.
When the reverse osmosis membrane device thus configured was operated for one year under the conditions of the permeated water amount of the entire reverse osmosis membrane device being 60 m 3 / h and the concentrated water amount being 20 m 3 / h, in the second bank, 79 % / Year flux reduction occurred, and chemical cleaning was required 5 times a year.

原水中の高分子有機物の拡散係数Dの値から、特許文献1記載の方法に従って、膜エレメントの物質移動係数(k)を以下の通り算出した。
物質移動係数を求める式として、以下の式を用いた。
Sh=0.080・Re0.875・Sc0.25
k=(D/d)・0.080・Re0.875・Sc0.25
その結果、第1バンク、第2バンクともに物質移動係数(k)は以下の値となった。
k=9.6×10−7[m/s]
From the value of the diffusion coefficient D of the polymer organic matter in the raw water, the mass transfer coefficient (k) of the membrane element was calculated as follows according to the method described in Patent Document 1.
The following formula was used as a formula for obtaining the mass transfer coefficient.
Sh = 0.080 · Re 0.875 · Sc 0.25
k = (D / d) · 0.080 · Re 0.875 · Sc 0.25
As a result, the mass transfer coefficient (k) was as follows in both the first bank and the second bank.
k = 9.6 × 10 −7 [m / s]

逆浸透膜エレメント1本当たりの透過水量(Fp)は2.8×10−4/sであり、膜エレメント1本当たりの膜面積(S)は37m、被処理水の高分子有機物濃度(Cb)は第1バンクでは0.2×10−3kg/m(0.2mg/L)、第2バンクでは0.4×10−3kg/m(0.4mg/L)であることから、前記式(1)より各逆浸透膜エレメントの高分子有機物の膜面濃度(Cm)を算出すると、第1バンクの逆浸透膜エレメントでは1.5kg/m、第2バンクの逆浸透膜エレメントは3.0kg/mで、逆浸透膜装置全体の平均値は、(1.5×40+3.0×20)/60=2.0kg/mであり、0.7kg/mを超えていた。 The amount of permeated water (Fp) per reverse osmosis membrane element is 2.8 × 10 −4 m 3 / s, the membrane area (S) per membrane element is 37 m 2 , and the polymer organic matter of the water to be treated Concentration (Cb) is 0.2 × 10 −3 kg / m 3 (0.2 mg / L) in the first bank, and 0.4 × 10 −3 kg / m 3 (0.4 mg / L) in the second bank. Therefore, when the membrane surface concentration (Cm) of the polymer organic substance of each reverse osmosis membrane element is calculated from the above formula (1), the reverse osmosis membrane element of the first bank is 1.5 kg / m 3 , the second bank of a reverse osmosis membrane element is 3.0 kg / m 3, the average value of the entire reverse osmosis unit is (1.5 × 40 + 3.0 × 20 ) /60=2.0kg/m 3, 0.7kg / M 3 was exceeded.

上記の逆浸透膜処理において、透過水量と濃縮水量を種々変えた運転条件で実験を行い、高分子有機物の膜面濃度(Cm)とフラックス低下速度との関係を調べたところ、下記表1に示す結果が得られた。   In the above reverse osmosis membrane treatment, experiments were conducted under various operating conditions with different amounts of permeate and concentrated water, and the relationship between the membrane surface concentration (Cm) of the polymer organic matter and the flux reduction rate was examined. The results shown are obtained.

Figure 0006554781
Figure 0006554781

上記表1の結果は、以下の近似式(2A)で表された。
Z=0.016・{log(Cm)+3}6.8 式(2A)
Z[%/年]:フラックス低下速度
The results in Table 1 were expressed by the following approximate expression (2A).
Z = 0.016 · {log (Cm) +3} 6.8 formula (2A)
Z [% / year]: Flux reduction rate

この式の値は膜の材質に依存することが、異なる逆浸透膜を用いて同様の実験を行うことにより確認されたが、「ES20」等の一般的な芳香族ポリアミド製逆浸透膜であれば、上記近似式(2A)を満たすものであった。   The value of this equation depends on the material of the membrane, and it was confirmed by conducting a similar experiment using different reverse osmosis membranes. However, in the case of a general aromatic polyamide reverse osmosis membrane such as “ES20”. In other words, the above approximate expression (2A) was satisfied.

[実施例1]
実験例1において、逆浸透膜装置全体の透過水量56m/h、濃縮水量24m/hの運転条件を設定すると、前記式(1)で算出される高分子有機物の膜面濃度(Cm)は、第1バンク0.68kg/m、第2バンク0.68kg/mとなる(従って、平均Cm値は0.68kg/m(=0.68×40+0.68×20)/60))。
この高分子有機物の膜面濃度(Cm)から前記近似式(2A)で算出されるフラックス低下速度(Z)は、第1バンクが19.2%/年、第2バンクが19.5%/年であり、逆浸透膜装置全体では19.3%/年である。
そこで、実際に、運転条件を、逆浸透膜装置全体の透過水量56m/h、濃縮水量24m/hに設定して運転を行ったところ、年2回の薬液洗浄で安定運転を維持することができた。
この実施例1より、前記式(1)で算出される各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)の平均値が0.7kg/m以下となるように、逆浸透膜装置の透過水量と濃縮水量を制御することにより、安定運転を行えることが分かる。
[Example 1]
In Experimental Example 1, when the operating conditions of the permeated water amount 56 m 3 / h and the concentrated water amount 24 m 3 / h of the entire reverse osmosis membrane device were set, the membrane surface concentration (Cm) of the polymer organic substance calculated by the above formula (1) the first bank 0.68 kg / m 3, the second bank 0.68 kg / m 3 (hence, mean Cm value is 0.68kg / m 3 (= 0.68 × 40 + 0.68 × 20) / 60 )).
The flux reduction rate (Z) calculated from the film surface concentration (Cm) of the polymer organic substance by the approximate expression (2A) is 19.2% / year for the first bank and 19.5% / year for the second bank. It is 19.3% for the reverse osmosis membrane device as a whole.
Therefore, when the operation conditions were actually set to the permeated water amount 56 m 3 / h and the concentrated water amount 24 m 3 / h of the entire reverse osmosis membrane device, the stable operation was maintained by chemical cleaning twice a year. I was able to.
From this Example 1, reverse osmosis is performed so that the average value of the membrane surface concentration (Cm) of the polymer organic matter for each reverse osmosis membrane element calculated by the formula (1) is 0.7 kg / m 3 or less. It can be seen that stable operation can be achieved by controlling the amount of permeated water and the amount of concentrated water in the membrane device.

[実施例2]
実験例1において、原水を凝集処理することにより高分子有機物濃度を0.065mg/Lとした水を供給水とし、逆浸透膜装置全体の透過水量が60m/h、濃縮水量20m/hで逆浸透膜処理を行った。
この運転条件から、前記式(1)で算出される高分子有機物の膜面濃度(Cm)は、第1バンクで0.49kg/m、第2バンクで0.99kg/mであり(従って、平均Cm値は0.66kg/m(=(0.49×40+0.99×20)/60))、前記近似式(2A)で算出されるフラックス低下速度は、第1バンクが13.7%/年、第2バンクが28.3%/年であり、逆浸透膜装置全体では18.6%/年となった。
この運転条件で膜処理を行ったところ、年2回の薬液洗浄で安定運転を維持することができた。
この実施例2より、前記式(1)で算出される各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)の平均値が0.7kg/m以下となるように、原水を前処理して原水の高分子有機物濃度を低減した水を供給水とすることにより、透過水量、濃縮水量はそのままでも安定運転を行えることが分かる。
[Example 2]
In Experimental Example 1, water having a macromolecular organic substance concentration of 0.065 mg / L by agglomeration treatment of raw water is used as supply water, the amount of permeated water of the entire reverse osmosis membrane device is 60 m 3 / h, and the amount of concentrated water is 20 m 3 / h. The reverse osmosis membrane treatment was performed.
From this operating condition, the film surface concentration of the high molecular organic material to be calculated by the formula (1) (Cm) is, 0.49 kg / m 3 in the first bank, a 0.99 kg / m 3 in the second bank ( Therefore, the average Cm value is 0.66 kg / m 3 (= (0.49 × 40 + 0.99 × 20) / 60)), and the flux decrease rate calculated by the approximate expression (2A) is 13 for the first bank. 7% / year, the second bank was 28.3% / year, and the total reverse osmosis membrane device was 18.6% / year.
When membrane treatment was performed under these operating conditions, stable operation could be maintained by chemical cleaning twice a year.
From this Example 2, the raw water was adjusted so that the average value of the membrane surface concentration (Cm) of the polymer organic matter for each reverse osmosis membrane element calculated by the formula (1) was 0.7 kg / m 3 or less. It can be understood that stable operation can be performed even if the amount of the permeated water and the amount of concentrated water are kept as they are by using pre-treated water with reduced concentration of polymer organic matter in the raw water as the feed water.

[実施例3]
実施例2において、原水の前処理で更に高分子有機物濃度を低減し、高分子有機物濃度0.035mg/Lとした水を供給水として逆浸透膜処理したところ、逆浸透膜装置全体のフラックス低下速度は9.4%/年にまで低下する計算結果が得られるが、実際に、この前処理条件で膜処理を行ったところ、年1回の薬液洗浄で安定運転を維持することができた。
[Example 3]
In Example 2, the concentration of the polymer organic substance was further reduced by the pretreatment of the raw water, and when the reverse osmosis membrane treatment was performed using water with the polymer organic substance concentration of 0.035 mg / L as the feed water, the flux reduction of the entire reverse osmosis membrane device Although the calculation result that the speed is reduced to 9.4% / year is obtained, when membrane treatment was actually performed under this pretreatment condition, stable operation could be maintained by chemical cleaning once a year. .

[実施例4]
実験例1において用いたものと同一の逆浸透膜装置エレメントを4本装填したベッセルを14個用い、逆浸透膜装置のバンク構成を、図2に示すように、第1バンクはベッセル8個の並列配置、第2バンクはベッセル4個の並列配置、第3バンクはベッセル2個の並列配置とし、同じ原水(高分子有機物濃度0.2mg/L)を同様の運転条件(逆浸透膜装置全体の透過水量60m/h、濃縮水量20m/h)で逆浸透膜処理を行った。
この運転条件においては、後段ほど線流速が速くなり、前記式(1)で算出される各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)は、第1バンクで0.34kg/m、第2バンクで0.20kg/m、第3バンクで0.08kg/mとなり(従って、平均Cm値は0.26kg/m(=(0.34×32+0.20×16+0.08×8)/56))、この高分子有機物の膜面濃度(Cm)から前記近似式(2A)で算出されるフラックス低下速度は第1バンクが9.1%/年、第2バンクが4.8%/年、第3バンクが1.3%/年であり、逆浸透膜装置全体では6.8%/年である。
そこで、実際にこの第1〜3バンクの構成の逆浸透膜装置で逆浸透膜処理を行ったところ、年2回以下の薬液洗浄で運転を維持することができた。
この実施例4より、バンク構成を変更することで、同一の高分子有機物濃度の供給水であっても、逆浸透膜装置全体の透過水量と濃縮水量を変えることなく、各逆浸透膜エレメント毎の高分子有機物の膜面濃度(Cm)を調整することができ、平均Cm値を下げて安定運転を行えることが分かる。
[Example 4]
Using 14 vessels loaded with four reverse osmosis membrane device elements identical to those used in Experimental Example 1, the bank configuration of the reverse osmosis membrane device is as shown in FIG. Parallel arrangement, the second bank is arranged in parallel with four vessels, the third bank is arranged in parallel with two vessels, and the same raw water (polymer organic substance concentration 0.2 mg / L) is used under the same operating conditions (the whole reverse osmosis membrane device) The reverse osmosis membrane treatment was performed with a permeated water amount of 60 m 3 / h and a concentrated water amount of 20 m 3 / h).
Under these operating conditions, the linear flow velocity becomes higher in the later stage, and the membrane surface concentration (Cm) of the polymer organic substance for each reverse osmosis membrane element calculated by the above formula (1) is 0.34 kg / kg in the first bank. m 3, 0.20 kg / m 3 in the second bank, the third bank at 0.08 kg / m 3 next (hence, mean Cm value is 0.26kg / m 3 (= (0.34 × 32 + 0.20 × 16 + 0 0.08 × 8) / 56)), the flux decrease rate calculated by the approximate expression (2A) from the film surface concentration (Cm) of the high molecular organic substance is 9.1% / year for the first bank and the second bank Is 4.8% / year, the third bank is 1.3% / year, and the total reverse osmosis membrane device is 6.8% / year.
Therefore, when reverse osmosis membrane treatment was actually performed with the reverse osmosis membrane device having the first to third bank configurations, the operation could be maintained with chemical cleaning less than twice a year.
From this Example 4, by changing the bank configuration, each reverse osmosis membrane element can be supplied without changing the permeated water amount and the concentrated water amount of the entire reverse osmosis membrane device even if the supply water has the same polymer organic matter concentration. It can be seen that the film surface concentration (Cm) of the polymer organic substance can be adjusted, and the average Cm value can be lowered to perform stable operation.

[実験例2]
腐植物質濃度がTOCとして0.08mg/Lの地下水(多価イオンとしてCaイオンを20mg/L含む。)を原水として逆浸透膜処理した。腐植物質の濃度は、高速液体クロマトグラフィーにより、UVを検出器として測定した。標準物質として、カナディアンフルボ(ピィアイシィ・バイオ製)を用いた。腐植物質の分子量Mwは7,000であり、前記式(3)より算出した拡散係数Dは1.25×10−10/sである。
[Experiment 2]
A reverse osmosis membrane treatment was performed using groundwater having a humic substance concentration of 0.08 mg / L as TOC (containing 20 mg / L of Ca ions as polyvalent ions) as raw water. The concentration of humic substances was measured by high performance liquid chromatography using UV as a detector. Canadian fulvo (manufactured by PIIC Bio) was used as a standard substance. The molecular weight Mw of the humic substance is 7,000, and the diffusion coefficient D calculated from the formula (3) is 1.25 × 10 −10 m 2 / s.

用いた逆浸透膜装置は、日東電工製8インチ芳香族ポリアミド系逆浸透膜「ES20」エレメント(1本当たりの膜面積37m)4本を装填したベッセル15個(逆浸透膜エレメント60本)で構成され、図1に示すように、第1バンクはベッセル10個を並列配置し、第2バンクはベッセル5個を並列配置したものである。
このように構成された逆浸透膜装置により、逆浸透膜装置全体の透過水量を60m/h、濃縮水量を20m/hの条件で一年間運転を行ったところ、第2バンクにおいて、37%/年のフラックス低下が起き、年4回の薬液洗浄が必要となった。
The reverse osmosis membrane apparatus used was 15 vessels (60 reverse osmosis membrane elements) loaded with 4 Nitto Denko 8-inch aromatic polyamide reverse osmosis membrane “ES20” elements (membrane area 37 m 2 per one). As shown in FIG. 1, the first bank has 10 vessels arranged in parallel, and the second bank has 5 vessels arranged in parallel.
When the reverse osmosis membrane device thus configured was operated for one year under the conditions of the permeated water amount of the entire reverse osmosis membrane device being 60 m 3 / h and the concentrated water amount being 20 m 3 / h, % / Year flux reduction occurred, and chemical cleaning was required four times a year.

原水中の腐植物質の拡散係数Dの値から、特許文献1記載の方法に従って、膜エレメントの物質移動係数(k)を以下の通り算出した。
物質移動係数を求める式として、以下の式を用いた。
Sh=0.080・Re0.875・Sc0.25
k=(D/d)・0.080・Re0.875・Sc0.25
その結果、第1バンク、第2バンクともに物質移動係数(k)は以下の値となった。
k=5.7×10−6[m/s]
From the value of the diffusion coefficient D of the humic substance in the raw water, the mass transfer coefficient (k) of the membrane element was calculated as follows according to the method described in Patent Document 1.
The following formula was used as a formula for obtaining the mass transfer coefficient.
Sh = 0.080 · Re 0.875 · Sc 0.25
k = (D / d) · 0.080 · Re 0.875 · Sc 0.25
As a result, the mass transfer coefficient (k) was as follows in both the first bank and the second bank.
k = 5.7 × 10 −6 [m / s]

逆浸透膜エレメント1本当たりの透過水量(Fp)は2.8×10−4m/sであり、膜エレメント1本当たりの膜面積(S)は37m、被処理水の腐植物質濃度(Cb)は第1バンクでは0.11×10−3kg/m(0.11mg/L)、第2バンクでは0.22×10−3kg/m(0.22mg/L)であることから、前記式(1)より各逆浸透膜エレメントの腐植物質の膜面濃度(Cm)を算出すると、第1バンクの逆浸透膜エレメントでは0.41×10−3kg/m(0.41mg/L)、第2バンクの逆浸透膜エレメントは0.82×10−3kg/m(0.82mg/L)で、逆浸透膜装置全体の平均値は、(0.41×10−3×40+0.82×10−3×20)/60=0.54×10−3kg/m(0.54mg/L)であり、0.4×10−3kg/mを超えていた。 The amount of permeated water (Fp) per reverse osmosis membrane element is 2.8 × 10 −4 m 3 / s, the membrane area (S) per membrane element is 37 m 2 , and the humic substance concentration of treated water ( Cb) is 0.11 × 10 −3 kg / m 3 (0.11 mg / L) in the first bank and 0.22 × 10 −3 kg / m 3 (0.22 mg / L) in the second bank. Accordingly, when the membrane surface concentration (Cm) of the humic substance of each reverse osmosis membrane element is calculated from the formula (1), the reverse osmosis membrane element of the first bank is 0.41 × 10 −3 kg / m 3 (0 .41 mg / L), the reverse osmosis membrane element of the second bank is 0.82 × 10 −3 kg / m 3 (0.82 mg / L), and the average value of the entire reverse osmosis membrane device is (0.41 × 10 −3 × 40 + 0.82 × 10 −3 × 20) /60=0.54×10 −3 kg / m 3 (0.54 mg / L), which exceeded 0.4 × 10 −3 kg / m 3 .

上記の逆浸透膜処理において、透過水量と濃縮水量を種々変えた運転条件で実験を行い、腐植物質の膜面濃度(Cm)とフラックス低下速度との関係を調べたところ、下記表2に示す結果が得られた。   In the above reverse osmosis membrane treatment, experiments were conducted under various operating conditions with different amounts of permeated water and concentrated water, and the relationship between the humic substance membrane surface concentration (Cm) and the flux reduction rate was examined. Results were obtained.

Figure 0006554781
Figure 0006554781

上記表2の結果は、以下の近似式(2B)で表された。
Z=43.8×Cm0.859 式(2B)
Z[%/年]:フラックス低下速度
The results in Table 2 were expressed by the following approximate expression (2B).
Z = 43.8 × Cm 0.859 formula (2B)
Z [% / year]: Flux reduction rate

この式の値は膜の材質に依存することが、異なる逆浸透膜を用いて同様の実験を行うことにより確認されたが、「ES20」等の一般的な芳香族ポリアミド製逆浸透膜であれば、上記近似式(2B)を満たすものであった。   The value of this equation depends on the material of the membrane, and it was confirmed by conducting a similar experiment using different reverse osmosis membranes. However, in the case of a general aromatic polyamide reverse osmosis membrane such as “ES20”. In other words, the above approximate expression (2B) was satisfied.

[実施例5]
実験例2において、逆浸透膜装置全体の透過水量54m/h、濃縮水量26m/hの運転条件を設定すると、前記式(1)で算出される腐植物質の膜面濃度(Cm)は、第1バンク0.33×10−3kg/m、第2バンク0.52×10−3kg/mとなる(従って、平均Cm値は0.39×10−3kg/m(=0.33×10−3×40+0.52×10−3×20)/60))。
この腐植物質の膜面濃度(Cm)から前記近似式(2B)で算出されるフラックス低下速度(Z)は、第1バンクが17.0%/年、第2バンクが24.8%/年であり、逆浸透膜装置全体では19.6%/年である。
そこで、実際に、運転条件を、逆浸透膜装置全体の透過水量50m/h、濃縮水量31m/hに設定して運転を行ったところ、年2回の薬液洗浄で安定運転を維持することができた。
この実施例5より、前記式(1)で算出される各逆浸透膜エレメント毎の腐植物質の膜面濃度(Cm)の平均値が0.4×10−3kg/m以下となるように、逆浸透膜装置の透過水量と濃縮水量を制御することにより、安定運転を行えることが分かる。
[Example 5]
In Experimental Example 2, when operating conditions of the permeated water amount 54 m 3 / h and the concentrated water amount 26 m 3 / h of the entire reverse osmosis membrane device are set, the membrane surface concentration (Cm) of the humic substance calculated by the above formula (1) is The first bank is 0.33 × 10 −3 kg / m 3 and the second bank is 0.52 × 10 −3 kg / m 3 (therefore, the average Cm value is 0.39 × 10 −3 kg / m 3). (= 0.33 × 10 −3 × 40 + 0.52 × 10 −3 × 20) / 60)).
The flux reduction rate (Z) calculated from the humic substance membrane surface concentration (Cm) by the approximate expression (2B) is 17.0% / year for the first bank and 24.8% / year for the second bank. The overall reverse osmosis membrane device is 19.6% / year.
Therefore, when the operation conditions were actually set to the permeated water amount of 50 m 3 / h and the concentrated water amount of 31 m 3 / h for the entire reverse osmosis membrane device, the stable operation was maintained by the chemical cleaning twice a year. I was able to.
From Example 5, the average value of the membrane surface concentration (Cm) of the humic substance for each reverse osmosis membrane element calculated by the formula (1) is 0.4 × 10 −3 kg / m 3 or less. In addition, it can be seen that stable operation can be achieved by controlling the amount of permeated water and the amount of concentrated water in the reverse osmosis membrane device.

[実施例6]
実験例2において、原水を凝集処理することにより腐植物質濃度を0.055mg/L(Caイオン濃度20mg/L)とした水を供給水とし、逆浸透膜装置全体の透過水量が60m/h、濃縮水量20m/hで逆浸透膜処理を行った。
この運転条件から、前記式(1)で算出される腐植物質の膜面濃度(Cm)は、第1バンクで0.28×10−3kg/m、第2バンクで0.57×10−3kg/mであり(従って、平均Cm値は0.38×10−3kg/m(=(0.28×10−3×40+0.57×10−3×20)/60)、第二バンクのCm≦0.6×10−3kg/m)、前記近似式(2B)で算出されるフラックス低下速度は、第1バンクが14.8%/年、第2バンクが26.9%/年であり、逆浸透膜装置全体では18.9%/年となった。
この運転条件で膜処理を行ったところ、年2回の薬液洗浄で安定運転を維持することができた。
この実施例6より、前記式(1)で算出される各逆浸透膜エレメント毎の腐植物質の膜面濃度(Cm)の平均値が0.4×10−3kg/m以下となるように、原水を前処理して原水の腐植物質濃度を低減した水を供給水とすることにより、透過水量、濃縮水量はそのままでも安定運転を行えることが分かる。
[Example 6]
In Experimental Example 2, water having a humic substance concentration of 0.055 mg / L (Ca ion concentration 20 mg / L) by agglomeration treatment of raw water is used as supply water, and the amount of permeated water of the entire reverse osmosis membrane device is 60 m 3 / h. The reverse osmosis membrane treatment was performed with a concentrated water amount of 20 m 3 / h.
From these operating conditions, the film surface concentration (Cm) of the humic substance calculated by the formula (1) is 0.28 × 10 −3 kg / m 3 in the first bank and 0.57 × 10 2 in the second bank. −3 kg / m 3 (thus, the average Cm value is 0.38 × 10 −3 kg / m 3 (= (0.28 × 10 −3 × 40 + 0.57 × 10 −3 × 20) / 60) , Cm ≦ 0.6 × 10 −3 kg / m 3 ) of the second bank, and the flux decrease rate calculated by the approximate expression (2B) is 14.8% / year for the first bank and It was 26.9% / year, and the total reverse osmosis membrane device was 18.9% / year.
When membrane treatment was performed under these operating conditions, stable operation could be maintained by chemical cleaning twice a year.
From Example 6, the average value of the membrane surface concentration (Cm) of the humic substance for each reverse osmosis membrane element calculated by the formula (1) is 0.4 × 10 −3 kg / m 3 or less. In addition, it can be seen that stable operation can be performed even if the amount of permeated water and the amount of concentrated water are kept as they are by pre-treating the raw water and using the water with reduced humic substance concentration of the raw water as the feed water.

[実施例7]
実施例6において、原水の前処理で更に腐植物質濃度を低減し、腐植物質濃度0.025mg/L(Caイオン濃度20mg/L)とした水を供給水として逆浸透膜処理したところ、逆浸透膜装置全体のフラックス低下速度は9.6%/年にまで低下する計算結果が得られるが、実際に、この前処理条件で膜処理を行ったところ、年1回の薬液洗浄で安定運転を維持することができた。
[Example 7]
In Example 6, the pre-treatment of the raw water further reduced the humic substance concentration, and the reverse osmosis membrane treatment was performed using water with a humic substance concentration of 0.025 mg / L (Ca ion concentration of 20 mg / L) as supply water. Although the calculation result that the flux reduction rate of the whole membrane device is reduced to 9.6% / year is obtained, when membrane treatment was actually performed under this pretreatment condition, stable operation was achieved with chemical cleaning once a year. Could be maintained.

[実施例8]
実験例2において用いたものと同一の逆浸透膜装置エレメントを4本装填したベッセルを14個用い、逆浸透膜装置のバンク構成を、図2に示すように、第1バンクはベッセル8個の並列配置、第2バンクはベッセル4個の並列配置、第3バンクはベッセル2個の並
列配置とし、同じ原水(腐植物質濃度0.08mg/L)を同様の運転条件(逆浸透膜装置全体の透過水量60m/h、濃縮水量20m/h)で逆浸透膜処理を行った。
この運転条件においては、前記式(1)で算出される各逆浸透膜エレメント毎の腐植物質の膜面濃度(Cm)は、第1バンクで0.31×10−3kg/m、第2バンクで0.45×10−3kg/m、第3バンクで0.55×10−3kg/mとなり(従って、平均Cm値は0.38×10−3kg/m(=(0.31×10−3×32+0.45×10−3×16+0.55×10−3×8)/56))、この腐植物質の膜面濃度(Cm)から前記近似式(2B)で算出されるフラックス低下速度は第1バンクが16.1%/年、第2バンクが22.0%/年、第3バンクが26.4%/年であり、逆浸透膜装置全体では19.3%/年である。
そこで、実際にこの第1〜3バンクの構成の逆浸透膜装置で逆浸透膜処理を行ったところ、年2回以下の薬液洗浄で運転を維持することができた。
この実施例8より、バンク構成を変更することで、同一の腐植物質濃度の供給水であっても、逆浸透膜装置全体の透過水量と濃縮水量を変えることなく、各逆浸透膜エレメント毎の腐植物質の膜面濃度(Cm)を調整することができ、平均Cm値を下げて安定運転を行えることが分かる。
[Example 8]
Using 14 vessels loaded with four reverse osmosis membrane device elements identical to those used in Experimental Example 2, the bank configuration of the reverse osmosis membrane device is shown in FIG. Parallel arrangement, the second bank is arranged in parallel with four vessels, the third bank is arranged in parallel with two vessels, and the same raw water (humic substance concentration 0.08 mg / L) is used under the same operating conditions (for the entire reverse osmosis membrane device) The reverse osmosis membrane treatment was performed with a permeated water amount of 60 m 3 / h and a concentrated water amount of 20 m 3 / h).
Under these operating conditions, the membrane surface concentration (Cm) of the humic substance for each reverse osmosis membrane element calculated by the formula (1) is 0.31 × 10 −3 kg / m 3 in the first bank, 2 banks 0.45 × 10 -3 kg / m 3 , the third bank at 0.55 × 10 -3 kg / m 3 next (hence, mean Cm value is 0.38 × 10 -3 kg / m 3 ( = (0.31 × 10 −3 × 32 + 0.45 × 10 −3 × 16 + 0.55 × 10 −3 × 8) / 56)), the approximate expression (2B) from the film surface concentration (Cm) of this humic substance The rate of flux decrease calculated in step 1 is 16.1% / year for the first bank, 22.0% / year for the second bank, and 26.4% / year for the third bank. 3% / year.
Therefore, when reverse osmosis membrane treatment was actually performed with the reverse osmosis membrane device having the first to third bank configurations, the operation could be maintained with chemical cleaning less than twice a year.
From this Example 8, by changing the bank configuration, even if the supply water has the same humic substance concentration, the reverse osmosis membrane element for each reverse osmosis membrane element without changing the permeated water amount and the concentrated water amount of the entire reverse osmosis membrane device. It can be seen that the film surface concentration (Cm) of the humic substance can be adjusted, and the average Cm value can be lowered to perform stable operation.

[実施例9]
実験例2において、同じ原水(腐植物質濃度0.08mg/L)に多価カチオンの分散剤として「クリバーター−N500」(栗田工業(株)製)を10mg/L、腐植物質の分散剤としてポリビニルピロリドンを3mg/L添加した水を供給水とし、逆浸透膜装置全体の透過水量が60m/h、濃縮水量20m/hで逆浸透膜処理を行った。逆浸透膜装置全体のフラックスは安定化し、年1回の薬液洗浄で安定運転を維持することができた。
この実施例9より、分散剤を添加することで、各逆浸透膜エレメント毎の腐植物質の膜面濃度(Cm)が高くなっても、膜への付着が抑制されて、安定運転を行えることが分かる。
[Example 9]
In Experimental Example 2, 10 mg / L of “Kriverter-N500” (manufactured by Kurita Kogyo Co., Ltd.) as a polyvalent cation dispersant in the same raw water (humic substance concentration 0.08 mg / L), and polyvinyl as a humic substance dispersant Reverse osmosis membrane treatment was performed with water added with 3 mg / L of pyrrolidone as the feed water, with the total amount of permeated water of the reverse osmosis membrane device being 60 m 3 / h and the amount of concentrated water being 20 m 3 / h. The flux of the entire reverse osmosis membrane device was stabilized, and stable operation could be maintained by chemical cleaning once a year.
From Example 9, by adding a dispersing agent, even when the membrane surface concentration (Cm) of humic substances for each reverse osmosis membrane element increases, adhesion to the membrane is suppressed and stable operation can be performed. I understand.

本発明は、海水淡水化、超純水製造、工業用水処理、排水回収処理等に使用される各種の逆浸透膜装置に適用することができるが、特に生物処理水、とりわけMBR処理水を処理する逆浸透膜装置、或いは、湖水、河川水、又は地下水を処理する逆浸透膜装置に好適に適用される。   The present invention can be applied to various reverse osmosis membrane devices used for seawater desalination, ultrapure water production, industrial water treatment, wastewater recovery treatment, etc., and in particular, treats biologically treated water, especially MBR treated water. It is preferably applied to a reverse osmosis membrane device or a reverse osmosis membrane device for treating lake water, river water, or groundwater.

1 第1バンク
2 第2バンク
3 第3バンク
11 生物処理手段
12 凝集処理手段
13 固液分離手段
14 濾過手段
15 保安フィルタ
16 逆浸透膜装置
17 MBR(浸漬型膜分離装置)
DESCRIPTION OF SYMBOLS 1 1st bank 2 2nd bank 3 3rd bank 11 Biological treatment means 12 Aggregation treatment means 13 Solid-liquid separation means 14 Filtration means 15 Security filter 16 Reverse osmosis membrane device 17 MBR (immersion type membrane separation device)

Claims (17)

生物代謝物系有機物を含有する生物処理水、表層水又は地下水を原水として処理する逆浸透膜装置の運転方法において、
該生物代謝物系有機物は腐食物質又は分子量10,000以上の高分子有機物であり、
該逆浸透膜装置は、逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを、1段又は2段以上の複数段直列に連結してなり、
該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出し、
該逆浸透膜装置における該算出値の平均値が所定値X以下となるように下記(I)の操作を行う、及び/又は、該逆浸透膜装置における該算出値の平均値が所定値Xを超える場合に下記(II)の操作を行う逆浸透膜装置の運転方法であって、該所定値Xが下記(i)又は(ii)を満たすことを特徴とする逆浸透膜装置の運転方法。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
(I):該逆浸透膜装置における逆浸透膜処理に用いる逆浸透膜エレメントの本数、バンクの構成、透過水量、濃縮水量、及び前記原水の前処理による該逆浸透膜装置供給水の生物代謝物系有機物濃度のうちのいずれか1以上を調整する。
(II):該原水又は該逆浸透膜装置供給水に分散剤を添加する。
(i) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記原水は、該分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有するものであり、前記所定値Xが0.7kg/m である。
(ii) 前記生物代謝物系有機物が腐植物質であり、前記原水は、該腐植物質をTOCとして0.05mg/L以上の濃度で含有するものであり、前記所定値Xが0.4×10 −3 kg/m である。
In a method for operating a reverse osmosis membrane device for treating biologically treated water, surface layer water or groundwater containing biological metabolite-based organic matter as raw water,
The biological metabolite organic substance is a corrosive substance or a high molecular organic substance having a molecular weight of 10,000 or more,
The reverse osmosis membrane device is formed by connecting a vessel containing a reverse osmosis membrane element or a bank formed by arranging a plurality of the vessels in parallel in one or more stages.
Based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device, the membrane concentration (Cm) of the biometabolite organic substance for each reverse osmosis membrane element is calculated according to the following formula (1). ,
The following operation (I) is performed so that the average value of the calculated values in the reverse osmosis membrane device is equal to or less than the predetermined value X, and / or the average value of the calculated values in the reverse osmosis membrane device is the predetermined value X A method of operating a reverse osmosis membrane device that performs the following operation (II) when exceeding the above value, wherein the predetermined value X satisfies the following (i) or (ii) : .
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite-based organic substance concentration of the treated water of the reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of the biological metabolite-based organic substance (I): Reverse in the reverse osmosis membrane device Any one or more of the number of reverse osmosis membrane elements used for osmosis membrane treatment, the configuration of the bank, the amount of permeated water, the amount of concentrated water, and the concentration of biological metabolites in the reverse osmosis membrane device supply water by the pretreatment of the raw water Adjust.
(II): A dispersant is added to the raw water or the water supplied to the reverse osmosis membrane device.
(I) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the raw water contains the high molecular organic substance having a molecular weight of 10,000 or more at a concentration of 0.01 mg / L or more. Yes, the predetermined value X is 0.7 kg / m 3 .
(Ii) The biological metabolite-based organic substance is humic substance, and the raw water contains the humic substance as TOC at a concentration of 0.05 mg / L or more, and the predetermined value X is 0.4 × 10. −3 kg / m 3 .
請求項1において、前記前処理が、凝集処理及び/又は限外濾過膜処理であることを特徴とする逆浸透膜装置の運転方法。 Oite to claim 1, wherein the pretreatment process operation of the reverse osmosis membrane device, characterized in that the aggregation treatment and / or ultrafiltration membrane treatment. 請求項1又は2において、前記逆浸透膜装置が、前記バンクを2段以上の複数段直列に連結してなり、すべてのバンクにおいて前記生物代謝物系有機物の膜面濃度(Cm)の算出値が所定値Y以下となるように前記(I)の操作を行う、及び/又は、1以上のバンクにおいて前記生物代謝物系有機物の膜面濃度(Cm)の算出値が所定値Yを超える場合に前記(II)の操作を行う逆浸透膜装置の運転方法であって、該所定値Yが下記(iii)又は(iv)を満たす、ことを特徴とする逆浸透膜装置の運転方法。
(iii) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記所定値Yが1kg/m である。
(iv) 前記生物代謝物系有機物が腐植物質であり、前記所定値Yが0.6×10 −3 kg/m である。
3. The reverse osmosis membrane device according to claim 1 or 2 , wherein the bank is formed by connecting the banks in a plurality of stages of two or more stages, and the calculated value of the membrane surface concentration (Cm) of the biometabolite-based organic substance in all the banks. When the operation of (I) is performed so that is less than or equal to the predetermined value Y, and / or the calculated value of the membrane surface concentration (Cm) of the biological metabolite-based organic substance exceeds the predetermined value Y in one or more banks A method for operating a reverse osmosis membrane device that performs the operation of (II) above, wherein the predetermined value Y satisfies the following (iii) or (iv) :
(Iii) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the predetermined value Y is 1 kg / m 3 .
(Iv) The biological metabolite organic substance is humic substance, and the predetermined value Y is 0.6 × 10 −3 kg / m 3 .
請求項1ないしのいずれか1項において、前記逆浸透膜装置を、2回/年以下の頻度で薬液洗浄することを特徴とする逆浸透膜装置の運転方法。 The method of operating a reverse osmosis membrane device according to any one of claims 1 to 3 , wherein the reverse osmosis membrane device is cleaned with a chemical solution at a frequency of 2 times / year or less. 請求項1ないしのいずれか1項において、前記逆浸透膜が芳香族ポリアミド系逆浸透膜であることを特徴とする逆浸透膜装置の運転方法。 5. The method of operating a reverse osmosis membrane device according to any one of claims 1 to 4 , wherein the reverse osmosis membrane is an aromatic polyamide reverse osmosis membrane. 請求項1ないしのいずれか1項において、前記分散剤が生物代謝物系有機物分散剤及び/又はスケール分散剤であることを特徴とする逆浸透膜装置の運転方法。 In any one of claims 1 to 5, the method operation of reverse osmosis membrane apparatus, wherein the dispersing agent is a biological metabolite-based organic dispersants and / or scale dispersant. 生物代謝物系有機物を含有する生物処理水、表層水又は地下水を原水として処理する逆浸透膜装置であって、
該生物代謝物系有機物は腐食物質又は分子量10,000以上の高分子有機物であり、
逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを、1段又は2段以上の複数段直列に連結してなり、
該逆浸透膜装置の透過水量及び/又は濃縮水量を調整する流量調整手段と、
該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、
該演算手段の算出値に基づいて、該逆浸透膜装置における該算出値の平均値が所定値X以下となるように、前記流量調整手段を制御する流量制御手段とを備え、該所定値Xが下記(i)又は(ii)を満たすことを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
(i) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記原水は、該分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有するものであり、前記所定値Xが0.7kg/m である。
(ii) 前記生物代謝物系有機物が腐植物質であり、前記原水は、該腐植物質をTOCとして0.05mg/L以上の濃度で含有するものであり、前記所定値Xが0.4×10 −3 kg/m である。
A reverse osmosis membrane device for treating biologically treated water, surface layer water or groundwater containing biological metabolite organic matter as raw water,
The biological metabolite organic substance is a corrosive substance or a high molecular organic substance having a molecular weight of 10,000 or more,
A bank in which a reverse osmosis membrane element is embedded or a bank formed by arranging a plurality of the vessels in parallel is connected in series in one or more stages.
Flow rate adjusting means for adjusting the amount of permeated water and / or the amount of concentrated water of the reverse osmosis membrane device;
Based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device, the membrane surface concentration (Cm) of the biometabolite organic substance for each reverse osmosis membrane element is calculated according to the following formula (1). Computing means;
Based on the calculated value of said calculating means, so that the average value of the calculated value in the reverse osmosis unit is equal to or less than a predetermined value X, and a flow control means for controlling said flow rate adjusting means, the predetermined value X Satisfies the following (i) or (ii): a reverse osmosis membrane device.
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance
(I) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the raw water contains the high molecular organic substance having a molecular weight of 10,000 or more at a concentration of 0.01 mg / L or more. Yes, the predetermined value X is 0.7 kg / m 3 .
(Ii) The biological metabolite-based organic substance is humic substance, and the raw water contains the humic substance as TOC at a concentration of 0.05 mg / L or more, and the predetermined value X is 0.4 × 10. −3 kg / m 3 .
生物代謝物系有機物を含有する生物処理水、表層水又は地下水を原水として処理する逆浸透膜装置であって、
該生物代謝物系有機物は腐食物質又は分子量10,000以上の高分子有機物であり、
逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを、1段又は2段以上の複数段直列に連結してなり、
該原水を凝集処理及び/又は限外濾過膜処理により前処理して該原水中の生物代謝物系有機物の一部を除去することにより該逆浸透膜装置への供給水の生物代謝物系有機物濃度を低減する前処理手段と、
該原水を、直接供給水として該逆浸透膜装置に供給する流路と、該前処理手段を経て該逆浸透膜装置に供給する流路とを切り換える原水流路切り換え手段と、
該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、
該演算手段の算出値に基づいて、該逆浸透膜装置における該算出値の平均値が所定値X以下となるように、前記原水流路切り換え手段による流路切り換えを行うか、或いは前記前処理手段における処理条件を調整する原水調整手段とを備え、該所定値Xが下記(i)又は(ii)を満たすことを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
(i) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記原水は、該分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有するものであり、前記所定値Xが0.7kg/m である。
(ii) 前記生物代謝物系有機物が腐植物質であり、前記原水は、該腐植物質をTOCとして0.05mg/L以上の濃度で含有するものであり、前記所定値Xが0.4×10 −3 kg/m である。
A reverse osmosis membrane device for treating biologically treated water, surface layer water or groundwater containing biological metabolite organic matter as raw water,
The biological metabolite organic substance is a corrosive substance or a high molecular organic substance having a molecular weight of 10,000 or more,
A bank in which a reverse osmosis membrane element is embedded or a bank formed by arranging a plurality of the vessels in parallel is connected in series in one or more stages.
The raw water is pretreated by coagulation treatment and / or ultrafiltration membrane treatment to remove a part of the biological metabolite-based organic matter in the raw water, thereby supplying the biological metabolite-based organic matter of the water supplied to the reverse osmosis membrane device Pretreatment means for reducing the concentration;
Raw water flow path switching means for switching the flow path for supplying the raw water directly to the reverse osmosis membrane apparatus as a supply water and the flow path for supplying the reverse osmosis membrane apparatus through the pretreatment means;
Based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device, the membrane surface concentration (Cm) of the biometabolite organic substance for each reverse osmosis membrane element is calculated according to the following formula (1). Computing means;
Based on the calculated value of the arithmetic means, the raw water flow path switching means is switched so that the average value of the calculated values in the reverse osmosis membrane device is not more than a predetermined value X, or the pretreatment A reverse osmosis membrane device, characterized in that the predetermined value X satisfies the following (i) or (ii) .
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance
(I) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the raw water contains the high molecular organic substance having a molecular weight of 10,000 or more at a concentration of 0.01 mg / L or more. Yes, the predetermined value X is 0.7 kg / m 3 .
(Ii) The biological metabolite-based organic substance is humic substance, and the raw water contains the humic substance as TOC at a concentration of 0.05 mg / L or more, and the predetermined value X is 0.4 × 10. −3 kg / m 3 .
生物代謝物系有機物を含有する生物処理水、表層水又は地下水を原水として処理する逆浸透膜装置であって、
該生物代謝物系有機物は腐食物質又は分子量10,000以上の高分子有機物であり、
逆浸透膜エレメントを内蔵したベッセルを複数機並列配置してなるバンクを2段以上の複数段直列に連結してなり、
前段のバンクの濃縮水を系外に排出する流路と後段のバンクに送給する流路とを切り換えて逆浸透膜処理に使用するバンク数を調整する流路切り換え手段と、
該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、
該演算手段の算出値に基づいて、該逆浸透膜装置における該算出値の平均値が所定値X以下となるように、前記流路切り換え手段を制御する流路制御手段とを備え、該所定値Xが下記(i)又は(ii)を満たすことを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
(i) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記原水は、該分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有するものであり、前記所定値Xが0.7kg/m である。
(ii) 前記生物代謝物系有機物が腐植物質であり、前記原水は、該腐植物質をTOCとして0.05mg/L以上の濃度で含有するものであり、前記所定値Xが0.4×10 −3 kg/m である。
A reverse osmosis membrane device for treating biologically treated water, surface layer water or groundwater containing biological metabolite organic matter as raw water,
The biological metabolite organic substance is a corrosive substance or a high molecular organic substance having a molecular weight of 10,000 or more,
A bank formed by arranging a plurality of vessels containing reverse osmosis membrane elements in parallel is connected in series of two or more stages,
A flow path switching means for adjusting the number of banks used for reverse osmosis membrane processing by switching between a flow path for discharging the concentrated water of the preceding bank to the outside of the system and a flow path for feeding to the subsequent bank;
Based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device, the membrane surface concentration (Cm) of the biometabolite organic substance for each reverse osmosis membrane element is calculated according to the following formula (1). Computing means;
Based on the calculated value of said calculating means, so that the average value of the calculated value in the reverse osmosis unit is equal to or less than a predetermined value X, and a flow path control means for controlling the flow path switching means, the predetermined A reverse osmosis membrane device, wherein the value X satisfies the following (i) or (ii):
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance
(I) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the raw water contains the high molecular organic substance having a molecular weight of 10,000 or more at a concentration of 0.01 mg / L or more. Yes, the predetermined value X is 0.7 kg / m 3 .
(Ii) The biological metabolite-based organic substance is humic substance, and the raw water contains the humic substance as TOC at a concentration of 0.05 mg / L or more, and the predetermined value X is 0.4 × 10. −3 kg / m 3 .
生物代謝物系有機物を含有する生物処理水、表層水又は地下水を原水として処理する逆浸透膜装置であって、
該生物代謝物系有機物は腐食物質又は分子量10,000以上の高分子有機物であり、
逆浸透膜エレメントを内蔵したベッセルを複数機並列配置してなるバンクを2段以上の複数段直列に連結してなり、
同一バンク内における逆浸透膜処理に使用するベッセル数を調整する流路切り換え手段と、
該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、
該演算手段の算出値に基づいて、該逆浸透膜装置における該算出値の平均値が所定値X以下となるように、前記流路切り換え手段を制御する流路制御手段とを備え、該所定値Xが下記(i)又は(ii)を満たすことを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
(i) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記原水は、該分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有するものであり、前記所定値Xが0.7kg/m である。
(ii) 前記生物代謝物系有機物が腐植物質であり、前記原水は、該腐植物質をTOCとして0.05mg/L以上の濃度で含有するものであり、前記所定値Xが0.4×10 −3 kg/m である。
A reverse osmosis membrane device for treating biologically treated water, surface layer water or groundwater containing biological metabolite organic matter as raw water,
The biological metabolite organic substance is a corrosive substance or a high molecular organic substance having a molecular weight of 10,000 or more,
A bank formed by arranging a plurality of vessels containing reverse osmosis membrane elements in parallel is connected in series of two or more stages,
A channel switching means for adjusting the number of vessels used for reverse osmosis membrane treatment in the same bank;
Based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device, the membrane surface concentration (Cm) of the biometabolite organic substance for each reverse osmosis membrane element is calculated according to the following formula (1). Computing means;
Based on the calculated value of said calculating means, so that the average value of the calculated value in the reverse osmosis unit is equal to or less than a predetermined value X, and a flow path control means for controlling the flow path switching means, the predetermined A reverse osmosis membrane device, wherein the value X satisfies the following (i) or (ii):
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance
(I) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the raw water contains the high molecular organic substance having a molecular weight of 10,000 or more at a concentration of 0.01 mg / L or more. Yes, the predetermined value X is 0.7 kg / m 3 .
(Ii) The biological metabolite-based organic substance is humic substance, and the raw water contains the humic substance as TOC at a concentration of 0.05 mg / L or more, and the predetermined value X is 0.4 × 10. −3 kg / m 3 .
生物代謝物系有機物を含有する生物処理水、表層水又は地下水を原水として処理する逆浸透膜装置であって、
該生物代謝物系有機物は腐食物質又は分子量10,000以上の高分子有機物であり、
逆浸透膜エレメントを内蔵したベッセル又は該ベッセルを複数機並列配置してなるバンクを、1段又は2段以上の複数段直列に連結してなり、
該原水又は該逆浸透膜装置供給水に分散剤を添加する分散剤添加手段と、
該逆浸透膜装置内の逆浸透膜エレメントの物質移動係数(k)に基づいて、下記式(1)に従って各逆浸透膜エレメント毎の生物代謝物系有機物の膜面濃度(Cm)を算出する演算手段と、
該演算手段の算出値に基づいて、前記分散剤添加手段を制御する分散剤添加量制御手段とを備えることを特徴とする逆浸透膜装置。
Cm=Cb exp{Fp/(S・k)} 式(1)
k[m/s]:逆浸透膜エレメントの物質移動係数
Fp[m/s]:逆浸透膜エレメント1本当たりの透過水量
S[m]:逆浸透膜エレメント1本当たりの膜面積
Cb[kg/m]:逆浸透膜エレメントの被処理水の生物代謝物系有機物濃度
Cm[kg/m]:生物代謝物系有機物の膜面濃度
A reverse osmosis membrane device for treating biologically treated water, surface layer water or groundwater containing biological metabolite organic matter as raw water,
The biological metabolite organic substance is a corrosive substance or a high molecular organic substance having a molecular weight of 10,000 or more,
A bank in which a reverse osmosis membrane element is embedded or a bank formed by arranging a plurality of the vessels in parallel is connected in series in one or more stages.
A dispersant addition means for adding a dispersant to the raw water or the reverse osmosis membrane device supply water;
Based on the mass transfer coefficient (k) of the reverse osmosis membrane element in the reverse osmosis membrane device, the membrane surface concentration (Cm) of the biometabolite organic substance for each reverse osmosis membrane element is calculated according to the following formula (1). Computing means;
A reverse osmosis membrane device comprising: a dispersant addition amount control means for controlling the dispersant addition means based on a calculated value of the calculation means.
Cm = Cb exp {Fp / (S · k)} Formula (1)
k [m / s]: Mass transfer coefficient of reverse osmosis membrane element Fp [m 3 / s]: Permeated water amount per reverse osmosis membrane element S [m 2 ]: Membrane area per reverse osmosis membrane element Cb [Kg / m 3 ]: Biological metabolite organic substance concentration of water to be treated of reverse osmosis membrane element Cm [kg / m 3 ]: Membrane surface concentration of biological metabolite organic substance
請求項11において、前記分散剤が生物代謝物系有機物分散剤及び/又はスケール分散剤であることを特徴とする逆浸透膜装置。 12. The reverse osmosis membrane device according to claim 11 , wherein the dispersant is a biometabolite-based organic dispersant and / or a scale dispersant. 請求項11又は12において、前記分散剤添加量制御手段は、前記演算手段で算出された前記逆浸透膜装置における前記算出値の平均値が所定値Xを超える場合に、前記分散剤添加手段の分散剤添加量を増加させるか、あるいは分散剤の添加を開始させるものであり、該所定値Xが下記(i)又は(ii)を満たすことを特徴とする逆浸透膜装置。
(i) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記原水は、該分子量10,000以上の高分子有機物を0.01mg/L以上の濃度で含有するものであり、前記所定値Xが0.7kg/m である。
(ii) 前記生物代謝物系有機物が腐植物質であり、前記原水は、該腐植物質をTOCとして0.05mg/L以上の濃度で含有するものであり、前記所定値Xが0.4×10 −3 kg/m である。
13. The dispersant addition means according to claim 11 or 12 , wherein an average value of the calculated values in the reverse osmosis membrane device calculated by the calculation means exceeds a predetermined value X. or increasing the dispersing agent amount, or all SANYO to start addition of dispersant, the reverse osmosis membrane apparatus the predetermined value X is characterized by satisfying the following (i) or (ii).
(I) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the raw water contains the high molecular organic substance having a molecular weight of 10,000 or more at a concentration of 0.01 mg / L or more. Yes, the predetermined value X is 0.7 kg / m 3 .
(Ii) The biological metabolite-based organic substance is humic substance, and the raw water contains the humic substance as TOC at a concentration of 0.05 mg / L or more, and the predetermined value X is 0.4 × 10. −3 kg / m 3 .
請求項13において、前記バンクを2段以上の複数段直列に連結してなり、前記分散剤添加量制御手段は、前記演算手段で算出された前記生物代謝物系有機物の膜面濃度(Cm)の算出値が、1以上のバンクにおいて所定値Yを超える場合に、前記分散剤添加手段の分散剤添加量を増加させるか、あるいは分散剤の添加を開始させるものであり、該所定値Yが下記(iii)又は(iv)を満たすことを特徴とする逆浸透膜装置。
(iii) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記所定値Yが1kg/m である。
(iv) 前記生物代謝物系有機物が腐植物質であり、前記所定値Yが0.6×10 −3 kg/m である。
According to claim 13, made by connecting the bank in a plurality of stages in series of two or more stages, the dispersant amount control means, the film surface concentration of the biological metabolite based organic matter calculated by the calculating means (Cm) values calculated, if it exceeds a predetermined value Y in one or more banks, or to increase the dispersant additive amount of the dispersing agent addition means, or all SANYO to start addition of dispersing agent, the predetermined value Y Satisfies the following (iii) or (iv): a reverse osmosis membrane device.
(Iii) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the predetermined value Y is 1 kg / m 3 .
(Iv) The biological metabolite organic substance is humic substance, and the predetermined value Y is 0.6 × 10 −3 kg / m 3 .
請求項ないし10のいずれか1項において、前記バンクを2段以上の複数段直列に連結してなり、すべてのバンクにおいて、前記生物代謝物系有機物の膜面濃度(Cm)の算出値が所定値Y以下となるように制御される逆浸透膜装置であって、該所定値Yが下記(iii)又は(iv)を満たすことを特徴とする逆浸透膜装置。
(iii) 前記生物代謝物系有機物が分子量10,000以上の高分子有機物であり、前記所定値Yが1kg/m である。
(iv) 前記生物代謝物系有機物が腐植物質であり、前記所定値Yが0.6×10 −3 kg/m である。
In any one of Claims 7 thru | or 10 , the said bank is connected in two or more steps | paragraphs in multiple stages in series, and the calculation value of the film surface density | concentration (Cm) of the said biological metabolite system organic substance is in all the banks. A reverse osmosis membrane device controlled so as to be equal to or less than a predetermined value Y, wherein the predetermined value Y satisfies the following (iii) or (iv) .
(Iii) The biological metabolite organic substance is a high molecular organic substance having a molecular weight of 10,000 or more, and the predetermined value Y is 1 kg / m 3 .
(Iv) The biological metabolite organic substance is humic substance, and the predetermined value Y is 0.6 × 10 −3 kg / m 3 .
請求項ないし15のいずれか1項において、前記逆浸透膜を2回/年以下の頻度で薬液洗浄する薬液洗浄手段を備えることを特徴とする逆浸透膜装置。 16. The reverse osmosis membrane device according to any one of claims 7 to 15 , further comprising a chemical cleaning means for cleaning the reverse osmosis membrane at a frequency of 2 times / year or less. 請求項ないし16のいずれか1項において、前記逆浸透膜が芳香族ポリアミド系逆浸透膜であることを特徴とする逆浸透膜装置。 The reverse osmosis membrane device according to any one of claims 7 to 16 , wherein the reverse osmosis membrane is an aromatic polyamide-based reverse osmosis membrane.
JP2014227224A 2013-12-26 2014-11-07 Operation method of reverse osmosis membrane device and reverse osmosis membrane device Active JP6554781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014227224A JP6554781B2 (en) 2013-12-26 2014-11-07 Operation method of reverse osmosis membrane device and reverse osmosis membrane device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013269287 2013-12-26
JP2013269287 2013-12-26
JP2014227224A JP6554781B2 (en) 2013-12-26 2014-11-07 Operation method of reverse osmosis membrane device and reverse osmosis membrane device

Publications (2)

Publication Number Publication Date
JP2015142903A JP2015142903A (en) 2015-08-06
JP6554781B2 true JP6554781B2 (en) 2019-08-07

Family

ID=53888336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014227224A Active JP6554781B2 (en) 2013-12-26 2014-11-07 Operation method of reverse osmosis membrane device and reverse osmosis membrane device

Country Status (1)

Country Link
JP (1) JP6554781B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715275B (en) * 2016-09-21 2021-12-31 东丽株式会社 Separation membrane element and method for operating same
JP6834360B2 (en) * 2016-11-02 2021-02-24 東洋紡株式会社 Concentration method and concentrator
JP6673470B2 (en) * 2017-03-15 2020-03-25 栗田工業株式会社 Water treatment chemical for membrane and membrane treatment method
JP7200552B2 (en) * 2018-08-31 2023-01-10 栗田工業株式会社 Anti-fouling agent for separation membrane and anti-fouling method
KR102193618B1 (en) * 2020-05-08 2020-12-21 탑에코에너지주식회사 Reverse osmosis system capable of cleaning/backwashing/operation at the same time that is advantageous for biofouling and water treatment method using the system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992098A (en) * 1982-11-18 1984-05-28 Kurushima Group Kyodo Gijutsu Kenkyusho:Kk Disposal of waste liquor containing organic substance
JP3520906B2 (en) * 1999-08-27 2004-04-19 東レ株式会社 Method of operating reverse osmosis membrane plant, computer-readable storage medium therefor, and reverse osmosis membrane plant comprising the storage medium
AU2007208024A1 (en) * 2006-01-24 2007-08-02 The Regents Of The University Of California Method and system for monitoring reverse osmosis membranes
JP4982094B2 (en) * 2006-03-17 2012-07-25 株式会社東芝 Membrane filtration controller
JP5223219B2 (en) * 2007-03-30 2013-06-26 栗田工業株式会社 Organic wastewater treatment equipment
JP2012192374A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus
JP5935967B2 (en) * 2011-03-31 2016-06-15 栗田工業株式会社 Flocculant addition amount determination method, water treatment method, and water treatment apparatus
JP2013052349A (en) * 2011-09-05 2013-03-21 Toray Ind Inc Water making method
JP6036808B2 (en) * 2012-03-27 2016-11-30 東レ株式会社 Fresh water generation method
JP5828328B2 (en) * 2013-02-20 2015-12-02 栗田工業株式会社 Operation method of reverse osmosis membrane device and reverse osmosis membrane device
JP2015104710A (en) * 2013-12-02 2015-06-08 株式会社日立製作所 Seawater desalination system

Also Published As

Publication number Publication date
JP2015142903A (en) 2015-08-06

Similar Documents

Publication Publication Date Title
JP6554781B2 (en) Operation method of reverse osmosis membrane device and reverse osmosis membrane device
Madaeni et al. Application of taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element
Ying et al. Effect of powdered activated carbon dosage on retarding membrane fouling in MBR
KR101749158B1 (en) Osmotic separation systems and methods
KR101943421B1 (en) Osmotic separation systems and methods
JP5941629B2 (en) Water purification system and water purification method
WO2018150980A1 (en) Reverse osmosis treatment device and reverse osmosis treatment method
NL2018508B1 (en) Method for purifying water as well as a suitable device.
Turan Influence of filtration conditions on the performance of nanofiltration and reverse osmosis membranes in dairy wastewater treatment
Lee et al. Characterizing flat sheet membrane resistance fraction of chemically enhanced backflush
US20190039022A1 (en) Method for controlling operation of reverse osmosis membrane apparatus and reverse osmosis membrane treatment system
Charfi et al. Optimal cleaning strategy to alleviate fouling in membrane distillation process to treat anaerobic digestate
CN101983176A (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
Brehant et al. Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination
Wang et al. Effects on the purification of tannic acid and natural dissolved organic matter by forward osmosis membrane
JP2014159015A (en) Method for operating reverse osmotic membrane device and reverse osmotic membrane device
US10384967B2 (en) Water treatment systems and methods
US20160130155A1 (en) Water treatment system
CN105579119A (en) Fresh water generation system and fresh water generation method
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
JP6201998B2 (en) Operation method of water treatment equipment
Zait et al. Analysis and optimization of operating conditions on ultrafiltration of landfill leachate using a response surface methodological approach
JPWO2014007262A1 (en) Fresh water production apparatus and fresh water production method
TWI723224B (en) Operation management method of reverse osmosis membrane device and reverse osmosis membrane treatment system
JP2010012362A (en) Method of treating organic drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6554781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150