JP2014024824A - Method for filtering culture broth containing useful protein under perfusion culture - Google Patents

Method for filtering culture broth containing useful protein under perfusion culture Download PDF

Info

Publication number
JP2014024824A
JP2014024824A JP2012168821A JP2012168821A JP2014024824A JP 2014024824 A JP2014024824 A JP 2014024824A JP 2012168821 A JP2012168821 A JP 2012168821A JP 2012168821 A JP2012168821 A JP 2012168821A JP 2014024824 A JP2014024824 A JP 2014024824A
Authority
JP
Japan
Prior art keywords
filtration
membrane
permeate
protein
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012168821A
Other languages
Japanese (ja)
Inventor
Masafumi Shibano
将史 芝野
Chihiro Kato
千尋 加藤
Tetsugan Matsuno
哲巌 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2012168821A priority Critical patent/JP2014024824A/en
Publication of JP2014024824A publication Critical patent/JP2014024824A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a filtration method for separating a solution containing a useful protein from a culture broth containing the useful protein in tangential flow filtration under perfusion culture, without losing the permeability of the useful protein.SOLUTION: There provided is a filtration method for separating a solution containing a useful protein from a culture broth containing the useful protein which satisfies the following formula (1): X2≥0.9×X1, where under perfusion culture, the flow rate of the permeate liquid from a filtration film is monitored and measured, and when the flow rate of the permeate liquid reaches at least 10% or more of the flow rate of the permeate liquid at the start of the tangential flow filtration, including the process of the replacement of the filtration film, the permeability of the protein in the permeate liquid 1 minute after the start of the filtration is X1, and the permeability of the protein in the permeate liquid at the time of the replacement of the filtration film is X2.

Description

本発明は、潅流培養における有用タンパク質を含む培養液の濾過方法に関するものである。   The present invention relates to a method for filtering a culture solution containing a useful protein in perfusion culture.

細胞培養技術は、例えば、ウイルス、ワクチン、インターフェロンなどの抗ウイルス剤、およびホルモンなどのバイオ医薬品の製造にとって重要である。
更に近年、特定タンパク質などを標的とするモノクローナル抗体の生産は抗体産生細胞とミエローマによるハイブリドーマの培養によるものであり、高効率かつ安定的な生産および生産工程の簡素化などは工業的に重要なテーマである。
Cell culture techniques are important for the production of biopharmaceuticals such as, for example, viruses, vaccines, antiviral agents such as interferons, and hormones.
In recent years, the production of monoclonal antibodies targeting specific proteins has been achieved by culturing hybridomas using antibody-producing cells and myeloma, and high-efficiency and stable production and simplification of production processes are important industrial themes. It is.

前記した有用物質の産生を目的とした工業的な細胞の培養法は、大きく分けて、付着培養法と、懸濁培養法(浮遊培養法)との2つの方式に分類されるが、培養法の方式は培養される細胞の特性によっていずれかに決められる。   The industrial cell culture methods for the purpose of producing useful substances described above are roughly classified into two methods, adhesion culture method and suspension culture method (floating culture method). This method is determined depending on the characteristics of cells to be cultured.

懸濁培養によって細胞を培養する方法においては、例えば、スピナーフラスコなどの培養槽中に調整された撹拌機能を設け、撹拌機能として、マグネテインクスターラーまたは機械的に駆動されるシャフト上の羽根車などを用いた培養法が提案されている。しかし、この培養法においては、一定量の栄養分の中で培養されるため細胞の生長増殖は比較的低い密度で停止する。このような細胞の懸濁培養法において、細胞を大量に且つ高密度で培養するために一般に新しい培養液を培養槽中へ供給しつつ生育阻害物質を含んだ古い培養液を培養槽外へ排出しながら培養する方式が提案され、この方式は潅流培養方式と言われている(特許文献1を参照)。   In the method of culturing cells by suspension culture, for example, a controlled stirring function is provided in a culture vessel such as a spinner flask, and the stirring function is a magnetic ink stirrer or an impeller on a mechanically driven shaft. A culture method using the above has been proposed. However, in this culture method, cell growth is stopped at a relatively low density because the cells are cultured in a certain amount of nutrients. In such a cell suspension culture method, in order to cultivate cells in large quantities and at a high density, in general, a new culture solution is supplied into the culture vessel, and the old culture solution containing a growth inhibitory substance is discharged out of the culture vessel. A culture method is proposed, and this method is called a perfusion culture method (see Patent Document 1).

潅流培養する上で重要なことは、懸濁液中の細胞と、古い培養液および産生された有用タンパク質とを長期にわたって効率よく分離し、古い培養液および有用タンパク質を培養槽外へ取り出し、培養槽内の細胞の生育環境を長期間最適条件下に維持し続けることである。
中空糸膜を使い長期にわたり分離を行う、すなわち膜汚染を防ぐ手段として、
例えば、特許文献2には、新鮮培地の供給を培養液の排出と逆転させる方法が記載されている。
What is important in perfusion culture is that the cells in the suspension are separated from the old culture solution and the produced useful protein efficiently over a long period of time, and the old culture solution and useful protein are removed from the culture vessel and cultured. It is to maintain the growth environment of the cells in the tank under optimum conditions for a long time.
Separation over a long period using a hollow fiber membrane, that is, as a means to prevent membrane contamination,
For example, Patent Document 2 describes a method of reversing the supply of a fresh medium with the discharge of a culture solution.

特開昭61−257181号公報JP-A 61-257181 特開平2−200176号公報JP-A-2-200196

潅流培養において、培養槽の培養液中の細胞と、古い培養液および産生された有用タンパク質とを分離するために、精密濾過(MF)相当の中空糸膜が好適に用いられるが、従来の濾過方法においては濾過経時における膜閉塞過程の中で有用タンパクの透過率が低下するという問題があった。そのため、膜交換時期を判断するために、工程中に有用タンパク質の透過率の分析を実施する必要があった。   In perfusion culture, a microfiber (MF) equivalent hollow fiber membrane is preferably used to separate cells in the culture medium of the culture tank from the old culture medium and the produced useful protein. The method has a problem in that the permeability of useful proteins decreases during the process of blocking the membrane over time. Therefore, in order to judge the membrane exchange time, it was necessary to analyze the permeability of useful proteins during the process.

本発明が解決しようとする課題は、潅流培養中のタンジェンシャルフロー濾過において、有用タンパク質の透過率が低下することなく、有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法を提供することである。   The problem to be solved by the present invention is to provide a filtration method for separating a solution containing a useful protein from a culture solution containing a useful protein without reducing the permeability of the useful protein in tangential flow filtration during perfusion culture. It is to be.

本発明者らは、前記課題を解決するために鋭意検討した結果、膜交換時期の判断を濾過挙動に依って行うことにより、有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する新たな濾過方法とすることができることを見出し、本発明を完成した。
すなわち、本発明は以下のとおりである。
(1)
潅流培養において、濾過膜からの透過液の流量をモニタリング測定し、
透過液の流量が、タンジェンシャルフロー濾過開始時の透過液の流量の少なくとも10%以上である時点で、濾過膜を切り替える工程を含み、
濾過開始1分後の透過液のタンパク質透過率をX1とし、膜交換時における透過液のタンパク質透過率をX2とするとき、下記の式(I)を満たす、
X2≧0.9×X1 (I)
有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法。
(2)
潅流培養において、濾過膜からの透過液の圧力をモニタリング測定し、
透過液の流量を3LMH以上に制御して、透過液側の圧力が0kPa以上である時点で濾過膜を切り替える工程、
を含み、
濾過開始1分後の透過液のタンパク質透過率をX1とし、膜交換時における透過液のタンパク質透過率をX2とするとき、下記の式(I)を満たす、
X2≧0.9×X1 (I)
有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法。
(3)
前記濾過膜として、総細胞数が1.0×E7cells/mLである培養液の累積処理量が100L/m2となる時点における透過液のタンパク質透過率が、濾過開始1分後の透過液のタンパク質透過率の90%以上であるものを用いる、(1)または(2)に記載の濾過方法。
(4)
前記濾過膜として、総細胞数が1.0×E7cells/mLである培養液の累積処理量が300L/m2となる時点における透過液のタンパク質透過率が、濾過開始1分後の透過液のタンパク質透過率の90%以上であるものを用いる、(1)〜(3)の何れかに記載の濾過方法。
(5)
前記濾過膜が、疎水性高分子とポリビニルピロリドンのブレンド物から管壁が構成されている多孔質中空糸膜である、(1)〜(4)の何れかに記載の濾過方法。
(6)
前記濾過膜の管壁を膜厚方向に3等分して3つの領域に分割したときに、前記濾過膜の外側面を含む外周領域のポリビニルピロリドンの含有割合が、前記濾過膜の内側面を含む内周領域のポリビニルピロリドンの含有割合より大きい、(1)〜(5)の何れかに記載の濾過方法。
(7)
前記濾過膜の内側面の平均孔径が、前記濾過膜の外側面の平均孔径より大きい多孔質中空糸膜である、(1)〜(6)の何れかに記載の濾過方法。
(8)
前記濾過膜が、内側面の平均孔径が1〜100μm以下であり、緻密層を持たない、(1)〜(7)の何れかに記載の濾過方法。
(9)
前記管壁の膜厚が、300μm以上1000μm以下である、(5)〜(8)の何れかに記載の濾過方法。
(10)
前記疎水性高分子が、ポリスルホンである、(5)〜(9)の何れかに記載の濾過方法。
As a result of intensive studies to solve the above problems, the present inventors have made a new separation of a solution containing a useful protein from a culture solution containing a useful protein by determining the membrane exchange timing based on the filtration behavior. It discovered that it could be set as the filtration method, and completed this invention.
That is, the present invention is as follows.
(1)
In perfusion culture, the permeate flow rate from the filtration membrane is monitored and measured.
Including a step of switching the filtration membrane when the flow rate of the permeate is at least 10% or more of the flow rate of the permeate at the start of tangential flow filtration,
When the protein permeability of the permeate 1 minute after the start of filtration is X1, and the protein permeability of the permeate at the time of membrane exchange is X2, the following formula (I) is satisfied:
X2 ≧ 0.9 × X1 (I)
A filtration method for separating a solution containing useful proteins from a culture solution containing useful proteins.
(2)
In perfusion culture, the permeate pressure from the filtration membrane is monitored and measured.
Controlling the flow rate of the permeate to 3 LMH or higher, and switching the filtration membrane when the pressure on the permeate side is 0 kPa or higher,
Including
When the protein permeability of the permeate 1 minute after the start of filtration is X1, and the protein permeability of the permeate at the time of membrane exchange is X2, the following formula (I) is satisfied:
X2 ≧ 0.9 × X1 (I)
A filtration method for separating a solution containing useful proteins from a culture solution containing useful proteins.
(3)
As the filtration membrane, the protein permeability of the permeate at the time when the cumulative treatment amount of the culture solution having a total cell number of 1.0 × E7 cells / mL becomes 100 L / m 2 is The filtration method according to (1) or (2), wherein one having a protein permeability of 90% or more is used.
(4)
As the filtration membrane, the protein permeability of the permeate at the time when the cumulative treatment amount of the culture solution having a total cell number of 1.0 × E7 cells / mL becomes 300 L / m 2 is The filtration method according to any one of (1) to (3), wherein a protein having a protein permeability of 90% or more is used.
(5)
The filtration method according to any one of (1) to (4), wherein the filtration membrane is a porous hollow fiber membrane having a tube wall made of a blend of a hydrophobic polymer and polyvinylpyrrolidone.
(6)
When the tube wall of the filtration membrane is equally divided into three regions in the film thickness direction and divided into three regions, the content ratio of polyvinyl pyrrolidone in the outer peripheral region including the outer surface of the filtration membrane is the inner surface of the filtration membrane. The filtration method according to any one of (1) to (5), which is greater than the content ratio of polyvinyl pyrrolidone in the inner peripheral region.
(7)
The filtration method according to any one of (1) to (6), wherein the average pore diameter on the inner side surface of the filtration membrane is a porous hollow fiber membrane that is larger than the average pore size on the outer side surface of the filtration membrane.
(8)
The filtration method according to any one of (1) to (7), wherein the filtration membrane has an average pore diameter of 1 to 100 μm or less on the inner surface and does not have a dense layer.
(9)
The filtration method according to any one of (5) to (8), wherein the thickness of the tube wall is 300 μm or more and 1000 μm or less.
(10)
The filtration method according to any one of (5) to (9), wherein the hydrophobic polymer is polysulfone.

本発明によれば、潅流培養中のタンジェンシャルフロー濾過において、有用タンパク質の透過率が低下することなく、有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the filtration method which isolate | separates the solution containing a useful protein from the culture solution containing a useful protein can be provided, without the permeability | transmittance of a useful protein falling in the tangential flow filtration in perfusion culture | cultivation. .

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施形態は、潅流培養において、有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法である。
本実施形態の一の態様として、
潅流培養において、濾過膜からの透過液の流量をモニタリング測定し、
透過液の流量が、タンジェンシャルフロー濾過開始時の透過液の流量の少なくとも10%以上である時点で、濾過膜を切り替える工程を含み、
濾過開始1分後の透過液のタンパク質透過率をX1とし、膜交換時における透過液のタンパク質透過率をX2とするとき、下記の式(I)を満たす、
X2≧0.9×X1 (I)
有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法、である。
また、本実施形態の別の態様として、
潅流培養において、濾過膜からの透過液の圧力をモニタリング測定し、
透過液の流量を3LMH以上に制御して、透過液側の圧力が0kPa以上である時点で濾過膜を切り替える工程、
を含み、
濾過開始1分後の透過液のタンパク質透過率をX1とし、膜交換時における透過液のタンパク質透過率をX2とするとき、下記の式(I)を満たす、
X2≧0.9×X1 (I)
有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法、である。
The present embodiment is a filtration method for separating a solution containing useful proteins from a culture solution containing useful proteins in perfusion culture.
As one aspect of this embodiment,
In perfusion culture, the permeate flow rate from the filtration membrane is monitored and measured.
Including a step of switching the filtration membrane when the flow rate of the permeate is at least 10% or more of the flow rate of the permeate at the start of tangential flow filtration,
When the protein permeability of the permeate 1 minute after the start of filtration is X1, and the protein permeability of the permeate at the time of membrane exchange is X2, the following formula (I) is satisfied:
X2 ≧ 0.9 × X1 (I)
A filtration method for separating a solution containing useful proteins from a culture solution containing useful proteins.
Moreover, as another aspect of this embodiment,
In perfusion culture, the permeate pressure from the filtration membrane is monitored and measured.
Controlling the flow rate of the permeate to 3 LMH or higher, and switching the filtration membrane when the pressure on the permeate side is 0 kPa or higher,
Including
When the protein permeability of the permeate 1 minute after the start of filtration is X1, and the protein permeability of the permeate at the time of membrane exchange is X2, the following formula (I) is satisfied:
X2 ≧ 0.9 × X1 (I)
A filtration method for separating a solution containing useful proteins from a culture solution containing useful proteins.

本実施形態において、有用タンパク質は、医薬品として利用されるもので、具体的には、ホルモン、サイトカイン、成長因子、酵素、血漿タンパク、ウイルス様粒子などが挙げられ、有用タンパク質産生細胞を培養することにより得るものである。好適には、有用タンパク質産生細胞により生合成され培養液中に放出される。
有用タンパク質産生細胞とは、有用タンパク質を細胞内のタンパク合成反応を利用して生産する細胞の事を言い、具体的には、大腸菌、CHO細胞等などが挙げられる。
In this embodiment, useful proteins are used as pharmaceuticals, and specifically include hormones, cytokines, growth factors, enzymes, plasma proteins, virus-like particles, etc., and culturing useful protein-producing cells. Is what you get. Preferably, it is biosynthesized by useful protein-producing cells and released into the culture medium.
Useful protein producing cells refer to cells that produce useful proteins using intracellular protein synthesis reactions, and specifically include Escherichia coli, CHO cells, and the like.

本実施形態において、潅流培養とは、有用タンパク質を効率よく産生するために有用タンパク質産生細胞の培養に対して新しい培養液を培養槽内に供給しつつ、古い培養液および産生した有用タンパク質を培養槽外へタンジェンシャルフロー濾過により濾過膜を透過させて排出・回収し、培養槽内の有用タンパク質産生細胞の成育環境を最適条件下に維持しながら長期で高密度培養行う培養方法のことである。
本実施形態における潅流培養は、具体的には、少なくとも、以下の各工程により行われる。潅流培養において、以下の各工程は、以下記載順番通りに必ずしも行われる必要はなく、適宜、培養槽内の有用タンパク質産生細胞の成育環境を最適条件下に維持しながら長期で高密度培養を行えるように各工程は設定される。また、以下の工程以外の工程が含まれていてもよい。
A.培養槽中の培養液中で有用タンパク質産生細胞が、有用タンパク質を産生する工程、
B.培養槽から濾過膜に培養液を送液する工程、
C.培養液を濾過膜でタンジェンシャルフロー濾過する工程、
D.タンジェンシャルフロー濾過において濾過膜を透過せずに残った培養液を、培養槽に返液する工程、
E.培養槽に新鮮培地の供給を継続的に行う工程。
潅流培養は、濾過膜を備える清澄濾過装置と、培養槽とを用いることにより実施することができるが、培養槽には、濾過膜へ培養液を送液する流出口、濾過膜内を通過した培養液を培養槽に戻す流入口、培養槽内の培養液をサンプリングする流出口、新鮮培地を供給する流入口を設けることができる。
本実施形態においては、培養液中の有用タンパク質産生細胞と、古い培養液および産生された有用タンパク質とを長期にわたって効率よく分離するために、濾過膜を用いてタンジェンシャルフロー濾過を行うが、清澄濾過装置に備えられる濾過膜には、培養層からの培養液を濾過膜に送液する流入口、濾過膜内を通過した培養液を培養層に戻す流出口、濾過膜内をタンジェンシャルフロー濾過により透過し、古い培養液および産生された有用タンパク質とを含む透過液の流出口を設けることができる。
培養層と、清澄濾過装置とは、必要に応じて送液手段により適宜接続される。
潅流培養を行うために、モニタリングするための圧力計、重量計、各種ポンプなども適宜設けられる。
In this embodiment, perfusion culture refers to culturing an old culture solution and a produced useful protein while supplying a new culture solution into the culture tank for the cultivation of useful protein-producing cells in order to efficiently produce useful proteins. This is a culture method that allows the membrane to pass through the membrane by tangential flow filtration to be discharged and collected outside the tank, and to perform high-density culture over a long period of time while maintaining the growth environment of useful protein-producing cells in the culture tank under optimum conditions. .
Specifically, the perfusion culture in the present embodiment is performed by at least the following steps. In perfusion culture, the following steps do not necessarily have to be performed in the order described below, and high-density culture can be performed over a long period of time while maintaining the growth environment of useful protein-producing cells in the culture tank under optimum conditions. Each process is set as follows. Moreover, processes other than the following processes may be included.
A. A process in which useful protein-producing cells produce useful protein in a culture solution in a culture tank;
B. A step of feeding the culture solution from the culture tank to the filtration membrane,
C. A step of tangential flow filtration of the culture solution through a filtration membrane,
D. Returning the culture solution remaining without passing through the filtration membrane in the tangential flow filtration to the culture tank;
E. A process of continuously supplying fresh medium to the culture tank.
The perfusion culture can be carried out by using a clarification filtration apparatus equipped with a filtration membrane and a culture tank, but the culture tank passed through the filtration membrane, an outlet for sending the culture solution to the filtration membrane. An inlet for returning the culture solution to the culture tank, an outlet for sampling the culture solution in the culture tank, and an inlet for supplying fresh medium can be provided.
In this embodiment, tangential flow filtration is performed using a filtration membrane in order to efficiently separate the useful protein-producing cells in the culture solution from the old culture solution and the produced useful protein over a long period of time. The filtration membrane provided in the filtration device has an inlet for sending the culture solution from the culture layer to the filtration membrane, an outlet for returning the culture solution that has passed through the filtration membrane to the culture layer, and tangential flow filtration inside the filtration membrane. The permeate outlet containing the old culture solution and the produced useful protein can be provided.
The culture layer and the clarification filtration apparatus are appropriately connected by liquid feeding means as necessary.
In order to perform perfusion culture, a pressure gauge, a weight scale, various pumps, and the like for monitoring are also provided as appropriate.

本実施の形態の濾過方法は、潅流培養において、すなわち、有用タンパク質産生細胞の培養を継続しながら濾過をする際に好適に用いられる濾過方法であるが、培養終了後に行う濾過として行ってもよく、また、濾過を行う間、培養を継続して行っていてもよい。その場合、
B.培養槽から濾過膜に培養液を送液する工程、
C.培養液を濾過膜でタンジェンシャルフロー濾過する工程、
D.タンジェンシャルフロー濾過において濾過膜を透過せずに残った培養液を、培養槽に返液する工程、
E.培養槽に新鮮培地の供給を継続的に行う工程、とが行われ、E工程は、適宜供給する新鮮培地の量を減量することにより、濾過を終了させることができる。
The filtration method of the present embodiment is a filtration method that is preferably used in perfusion culture, that is, when filtration is performed while culturing useful protein-producing cells, but may be performed as filtration performed after completion of the culture. Further, the culture may be continued during the filtration. In that case,
B. A step of feeding the culture solution from the culture tank to the filtration membrane,
C. A step of tangential flow filtration of the culture solution through a filtration membrane,
D. Returning the culture solution remaining without passing through the filtration membrane in the tangential flow filtration to the culture tank;
E. The process of continuously supplying the fresh medium to the culture tank is performed, and the process E can terminate the filtration by reducing the amount of the fresh medium to be appropriately supplied.

本実施形態において、タンジェンシャルフロー濾過(TFF)は、適宜公知の方法により実施することができる。   In this embodiment, tangential flow filtration (TFF) can be appropriately performed by a known method.

本実施形態の濾過方法においては、透過液の流量低下、もしくは、透過液の流量を一定以上とした時の透過液側の圧力低下を検出することによって、膜交換の時期を判断する。   In the filtration method of the present embodiment, the membrane replacement timing is determined by detecting a decrease in the permeate flow rate or a decrease in the permeate side pressure when the permeate flow rate is a certain level or more.

透過液の流量低下で検出する場合、透過液の流量が、濾過開始時の透過液の流量の少なくとも10%以上の任意の時点で、濾過を中止し、濾過膜を切り替える必要がある。この場合、特に、透過液の流量は制御されていないことが好適である。透過液の流量が10%未満になっても、濾過を続けると、目的物である有用タンパク質の濾過膜透過率が低下する可能性があるため好ましくない。10%以上の時点で、濾過を中止し、濾過膜を切り替えることが好ましく、12%以上の時点がより好ましい。
本実施形態において、濾過開始時とは、濾過を行っていない濾過膜を用いて濾過を開始した時点か、濾過膜を再生して再度濾過を行う前の濾過膜を用いて濾過を開始した時点のことである。
濾過開始時の透過液の流量の少なくとも10%以上の時点で、濾過膜を切り替えることにより、潅流培養を継続して行うことができる。また、従来技術においては、有用タンパク質の透過率の分析を実施して濾過膜の切り替え時期を確認する必要があったが、本実施形態の濾過方法においては、有用タンパク質の透過率の分析をせずとも、単に、透過液の流量を測定することにより、濾過膜の切り替え時期を判断することができるため、有用タンパク質の透過率の分析工程を省略でき、工程を簡略化できるとともに、コストダウンを達成することができる。また、濾過膜の交換の際に生じるコンタミネーションのリスクをも低減することができるという利点を有する。
透過液の流量低下を検出するためには、濾過膜からの透過液の流量をモニタリング測定することにより行うことができるが、透過液の流量を直接測定したり、時間当たりの重量として測定することができる。
In the case of detecting by a decrease in the flow rate of the permeate, it is necessary to stop the filtration and switch the filtration membrane at any time when the flow rate of the permeate is at least 10% of the flow rate of the permeate at the start of filtration. In this case, it is particularly preferable that the flow rate of the permeate is not controlled. Even if the flow rate of the permeate is less than 10%, if filtration is continued, the filtration membrane permeability of the target useful protein may be lowered, which is not preferable. It is preferable to stop the filtration and switch the filtration membrane at a time of 10% or more, and a time of 12% or more is more preferable.
In the present embodiment, the filtration start time is the time when filtration is started using a filtration membrane that has not been filtered, or the time when filtration is started using a filtration membrane before regenerating the filtration membrane and performing filtration again That is.
By switching the filtration membrane at the time of at least 10% of the permeate flow rate at the start of filtration, the perfusion culture can be continued. In the prior art, it was necessary to analyze the permeability of the useful protein to confirm the timing of switching the filtration membrane. However, in the filtration method of this embodiment, the permeability of the useful protein is analyzed. At the same time, simply by measuring the flow rate of the permeate, it is possible to determine the timing for switching the filtration membrane, so the process of analyzing the permeability of useful proteins can be omitted, the process can be simplified, and costs can be reduced. Can be achieved. In addition, there is an advantage that the risk of contamination that occurs during replacement of the filtration membrane can be reduced.
In order to detect a decrease in the flow rate of the permeate, the flow rate of the permeate from the filtration membrane can be monitored, but the flow rate of the permeate can be measured directly or measured as a weight per hour. Can do.

透過液の流量を制御せずに濾過膜の切り替え時期を決定するには、透過液の流量の少なくとも10%以上の時点で、透過膜を切り替えることができるが、透過液の流量を一定以上とし、透過液側の圧力低下を検出することによっても濾過膜の切り替え時期を決定することができる。このとき、透過液の流量を一定以上となるように制御して、透過液側の圧力低下をモニタリングする。透過液の流量を制御する方法は何れの方法を用いてもよいが、例えば、透過液側にポンプを設置して透過液の流量を一定にすることなどが挙げられる。本発明においては、透過液流量を3LMH(LMHは透過流速の単位として一般に用いられている単位([L/m2/Hr])を示す。)以上に制御して、透過液側の圧力が0kPa以上の任意の時点で濾過を中止し、濾過膜を切り替える必要がある。透過液側の圧力が、0kPa未満になると、目的物である有用タンパク質の濾過膜透過率が低下するため好ましくない。
透過液側の圧力が0kPa以上の時点で、濾過膜を切り替えることにより、潅流培養を継続して行うことができる。また、従来技術においては、有用タンパク質の透過率の分析を実施して濾過膜の切り替え時期を確認する必要があったが、本実施形態の濾過方法においては、有用タンパク質の透過率の分析をせずとも、単に、透過液流量を3LMH以上に制御して、透過液側の圧力を測定することにより、濾過膜の切り替え時期を判断することができるため、有用タンパク質の透過率の分析工程を省略でき、工程を簡略化できるとともに、コストダウンを達成することができる。また、濾過膜の交換の際に生じるコンタミネーションのリスクをも低減することができるという利点を有する。
透過液の圧力を検出するためには、圧力計などを用いて、濾過膜からの透過液の圧力をモニタリング測定することにより行うことができる。
In order to determine the switching time of the filtration membrane without controlling the flow rate of the permeate, the permeate can be switched at least at 10% or more of the permeate flow rate. The filtration membrane switching timing can also be determined by detecting the pressure drop on the permeate side. At this time, the pressure drop on the permeate side is monitored by controlling the flow rate of the permeate to be a certain level or more. Any method may be used as a method for controlling the flow rate of the permeate, and for example, a pump may be installed on the permeate side to make the flow rate of the permeate constant. In the present invention, the permeate flow rate is controlled to 3 LMH or more (LMH is a unit generally used as a permeate flow rate unit ([L / m 2 / Hr])), and the pressure on the permeate side is controlled. It is necessary to stop the filtration at any time point of 0 kPa or more and switch the filtration membrane. If the pressure on the permeate side is less than 0 kPa, the filtration membrane permeability of the useful protein, which is the target product, is not preferable.
When the pressure on the permeate side is 0 kPa or higher, the perfusion culture can be continued by switching the filtration membrane. In the prior art, it was necessary to analyze the permeability of the useful protein to confirm the timing of switching the filtration membrane. However, in the filtration method of this embodiment, the permeability of the useful protein is analyzed. Even if the flow rate of the permeate is simply controlled to 3 LMH or more and the pressure on the permeate side is measured, the filter membrane switching time can be determined, so the process of analyzing the permeability of useful proteins is omitted. In addition, the process can be simplified and cost reduction can be achieved. In addition, there is an advantage that the risk of contamination that occurs during replacement of the filtration membrane can be reduced.
In order to detect the pressure of the permeate, the pressure of the permeate from the filtration membrane can be monitored and measured using a pressure gauge or the like.

本実施形態の濾過方法は、濾過の経過によってもタンパク質透過率の低下を一定以下に維持できることを特徴とするものであり、濾過開始1分後の透過液のタンパク質透過率をX1とし、膜交換時の透過液のタンパク質透過率をX2とするとき、下記の式(I)を満たすものである。
X2≧0.9×X1 (I)
The filtration method of the present embodiment is characterized in that the decrease in protein permeability can be maintained below a certain level even after the filtration has progressed. The protein permeability of the permeate 1 minute after the start of filtration is X1, and membrane exchange is performed. When the protein permeability of the permeate is X2, the following formula (I) is satisfied.
X2 ≧ 0.9 × X1 (I)

本実施形態において、式(I)を満たすには、濾過膜として、長期間タンパク質透過率が低下しない多孔質中空糸膜を用いることが好ましい。多孔質中空糸膜は、低圧での濾過が可能であり、有用タンパク質産生細胞へのダメージが少ないため、潅流培養における濾過工程に好適である。特に、濾過の経過によって膜が閉塞する過程でタンパク質の透過率が低下せず、長期間タンパク質透過率を維持できる多孔質中空糸膜を用いることで、タンパク質濃度分析を実施せずに、濾過膜の交換の時期を判断することができる。   In the present embodiment, in order to satisfy the formula (I), it is preferable to use a porous hollow fiber membrane that does not decrease the protein permeability for a long time as the filtration membrane. The porous hollow fiber membrane is suitable for the filtration step in the perfusion culture because it can be filtered at a low pressure and has little damage to useful protein-producing cells. In particular, by using a porous hollow fiber membrane that can maintain the protein permeability for a long time without lowering the protein permeability in the process of clogging the membrane due to the filtration process, the filtration membrane can be used without performing protein concentration analysis. It is possible to determine the time of replacement.

濾過膜は、疎水性高分子と、親水性高分子であるポリビニルピロリドンのブレンド物から管壁が構成されている多孔質中空糸膜であることが好ましい。多孔質中空糸膜に、疎水性高分子を使用することで、適度な機械的強度を持たせることができ、潅流培養のような長期使用にも耐える耐久性を持たせることができるため好適である。また、親水性高分子であるポリビニルピロリドンを適正量含有させたブレンド物から管壁が構成されていることにより、破砕した細胞、抗体等の疎水性物質粒子の吸着による膜汚染や、各種医薬品の精製工程において有用タンパク質の回収率の低下を防止することができる。   The filtration membrane is preferably a porous hollow fiber membrane in which the tube wall is composed of a blend of a hydrophobic polymer and a polyvinyl pyrrolidone that is a hydrophilic polymer. Use of a hydrophobic polymer for the porous hollow fiber membrane is suitable because it can have an appropriate mechanical strength and can withstand long-term use such as perfusion culture. is there. In addition, because the tube wall is composed of a blend containing an appropriate amount of the hydrophilic polymer polyvinyl pyrrolidone, membrane contamination due to adsorption of hydrophobic substance particles such as crushed cells and antibodies, and various pharmaceutical products It is possible to prevent a reduction in the recovery rate of useful proteins in the purification process.

濾過膜のポリビニルピロリドン含有量は、多孔質中空糸膜の総質量を基準としたとき、0.2質量%以上3質量%以下であることが好ましい。0.2質量%以上であることにより、疎水性物質等の吸着による汚染による膜孔内の閉塞を防止することができ、3質量%以下であることにより、機械的強度を保つことができ、親水性高分子の膨潤による膜孔の閉塞を防止し濾過抵抗が大きくなるのを防ぐことができる。   The polyvinylpyrrolidone content of the filtration membrane is preferably 0.2% by mass or more and 3% by mass or less based on the total mass of the porous hollow fiber membrane. By being 0.2% by mass or more, it is possible to prevent clogging in the membrane pores due to contamination by adsorption of a hydrophobic substance or the like, and by being 3% by mass or less, mechanical strength can be maintained, It is possible to prevent membrane pores from being blocked due to swelling of the hydrophilic polymer and to prevent increase in filtration resistance.

濾過膜は、管壁を膜厚方向に3等分して3つの領域に分割したときに、外側面を含む外周領域のポリビニルピロリドンの含有割合が、内側面を含む内周領域のポリビニルピロリドンの含有割合より大きいものを用いることが好ましい。これは、濾過工程中、内周領域においては膜孔より小さい疎水性物質等の粒子を保持することでデプス濾過の効果を発揮することができ、一方外周領域においては疎水性物質の粒子の吸着による膜孔への閉塞を防止することができるためである。   When the filtration membrane is divided into three regions by dividing the tube wall into three parts in the film thickness direction, the content of polyvinyl pyrrolidone in the outer peripheral region including the outer surface is such that the polyvinyl pyrrolidone in the inner peripheral region including the inner surface is It is preferable to use a material larger than the content ratio. It is possible to exert the effect of depth filtration by holding particles such as hydrophobic substances smaller than the membrane pores in the inner peripheral region during the filtration step, while adsorption of hydrophobic substance particles in the outer peripheral region. This is because it is possible to prevent blockage of the membrane hole due to.

濾過膜は、内側面の平均孔径が外側面の平均孔径より大きい多孔質中空糸膜であることが好ましい。これは、内側面の孔では疎水性物質等を膜孔内部に保持してデプス濾過の効果を果たし、外側面では濾過時の疎水性物質等の分画効果を果たすためである。   The filtration membrane is preferably a porous hollow fiber membrane in which the average pore size on the inner surface is larger than the average pore size on the outer surface. This is because the pores on the inner side face hold a hydrophobic substance or the like inside the membrane hole to achieve the effect of depth filtration, and the outer side face fulfills the fractionation effect of the hydrophobic substance or the like at the time of filtration.

濾過膜に含まれるポリビニルピロリドンは、多孔質中空糸膜の製造に好適な溶液粘度とすることができる観点で、重量平均分子量が400000以上800000以下のものであることが好ましい。   The polyvinyl pyrrolidone contained in the filtration membrane preferably has a weight average molecular weight of 400,000 or more and 800,000 or less from the viewpoint that the solution viscosity can be suitable for the production of the porous hollow fiber membrane.

濾過膜は、内側面の平均孔径が1μm以上100μm以下のものが好ましく、また、緻密層を持たない多孔質中空糸膜であることが好ましい。本明細書において、緻密層とは一般的に用いられる意味を示しており、顕微鏡で観察した際に明確に区別できる緻密な構造を有する層であり、例えば、孔径が20μm未満の孔からなる層である。内側面の膜孔の役割は疎水性物質等を膜孔内部に保持してデプス濾過の効果を果たすことだが、内側面の平均孔径が1μm以上100μm以下であり、緻密層を持たない多孔質中空糸膜である場合、タンジェンシャルフロー濾過工程中にこの膜孔に対して疎水性物質等の保持と除去が常に繰り返される。このことにより、ある特定物質の蓄積による高濃度層の生成が防がれ、この高濃度層による浸透性の低下に起因するその特定物質、すなわちここでは目的タンパク質の透過率の低下を防ぐことができる。平均孔径が1μm以上であることにより、膜面への堆積による膜孔の閉塞を防止することができ、100μm以下であることにより、多孔質中空糸膜の強度を適正な範囲とすることができる。   The filtration membrane preferably has an inner surface having an average pore diameter of 1 μm or more and 100 μm or less, and is preferably a porous hollow fiber membrane having no dense layer. In the present specification, the dense layer indicates a generally used meaning, and is a layer having a dense structure that can be clearly distinguished when observed with a microscope, for example, a layer composed of pores having a pore diameter of less than 20 μm. It is. The role of membrane pores on the inner surface is to hold a hydrophobic substance etc. inside the membrane pores and achieve the effect of depth filtration, but the average pore diameter on the inner surface is 1 μm to 100 μm, and it is a porous hollow without a dense layer In the case of a yarn membrane, the retention and removal of the hydrophobic substance and the like are always repeated with respect to the membrane pores during the tangential flow filtration process. This prevents the formation of a high-concentration layer due to the accumulation of a specific substance, and prevents the decrease in the permeability of the specific substance, that is, the target protein here due to the decrease in permeability due to the high-concentration layer. it can. When the average pore diameter is 1 μm or more, it is possible to prevent clogging of the membrane pores due to deposition on the membrane surface, and when it is 100 μm or less, the strength of the porous hollow fiber membrane can be within an appropriate range. .

濾過膜は、孔径50μm以上の孔を少なくとも50%以上有するものであることが好ましい。潅流培養時に使用する濾過膜は長期間での使用と高い透過処理量が必要とされる。孔径50μm以上の孔が50%以上であることにより、膜内部の除去物を保持可能であり、デプス濾過の効果を十分に得ることができる。   The filtration membrane preferably has at least 50% or more pores having a pore diameter of 50 μm or more. Filtration membranes used during perfusion culture require long-term use and high permeation throughput. When the pores having a pore diameter of 50 μm or more are 50% or more, the removed matter inside the membrane can be retained, and the effect of depth filtration can be sufficiently obtained.

濾過膜は、外側面に0.1μm以上1μm未満の多孔質中空糸膜であることが好ましい。孔径が0.1μm以上であることにより、濾過抵抗や濾過に要する圧力の上昇による細胞に対するダメージを防止することができる。孔径が1μm以下であることにより、十分な分画性を得ることができる。   The filtration membrane is preferably a porous hollow fiber membrane having an outer surface of 0.1 μm or more and less than 1 μm. When the pore diameter is 0.1 μm or more, it is possible to prevent damage to cells due to an increase in filtration resistance and pressure required for filtration. Sufficient fractionation can be obtained when the pore diameter is 1 μm or less.

管壁の膜厚が300μm以上1000μm以下の多孔質中空糸膜であることが好ましく、350μm以上800μm以下であることがより好ましい。膜厚が300μm以上であることにより、膜内部の除去物を保持可能であり、デプス濾過の効果を十分に得ることができる。また、適当な濾過速度を維持することができる。膜厚が1000μm以下であることにより、モジュールあたりの有効な断面積を維持し、濾過性能を優れたものとすることができる。   It is preferably a porous hollow fiber membrane having a tube wall thickness of 300 μm or more and 1000 μm or less, and more preferably 350 μm or more and 800 μm or less. When the film thickness is 300 μm or more, the removed substance inside the film can be retained, and the effect of depth filtration can be sufficiently obtained. In addition, an appropriate filtration rate can be maintained. When the film thickness is 1000 μm or less, the effective cross-sectional area per module can be maintained and the filtration performance can be improved.

濾過膜が、下記の式(II)を満たすものであることが好ましい。
out/Cin≧2 (II)
[式(II)中、Coutはポリビニルピロリドンの前記外周領域における含有割合を示し、Cinはポリビニルピロリドンの前記内周領域における含有割合を示す。]
親水性高分子がこのような分布を示す多孔質中空糸膜は、内周領域における、デプス濾過の効果と、外周領域における、除去物の吸着による膜孔の閉塞防止効果とに一層優れる。
The filtration membrane preferably satisfies the following formula (II).
C out / C in ≧ 2 (II)
[In formula (II), C out represents the content ratio of polyvinyl pyrrolidone in the outer peripheral region, and C in represents the content ratio of polyvinyl pyrrolidone in the inner peripheral region. ]
The porous hollow fiber membrane in which the hydrophilic polymer exhibits such a distribution is further excellent in the effect of depth filtration in the inner peripheral region and the effect of preventing the clogging of membrane pores due to the adsorption of removed substances in the outer peripheral region.

濾過膜は、内径が1000μm以上2000μm以下の多孔質中空糸膜であることが好ましい。潅流培養においては高密度の細胞懸濁液となるため1000μm以上であることにより、中空糸の入り口が凝集した懸濁物質による閉塞を防止し、また、2000μm以下であることにより、モジュールあたりの有効な断面積を維持し、濾過性能を優れたものとすることができる。   The filtration membrane is preferably a porous hollow fiber membrane having an inner diameter of 1000 μm or more and 2000 μm or less. In perfusion culture, since it becomes a high-density cell suspension, it is 1000 μm or more, so that the entrance of the hollow fiber is prevented from being clogged with aggregated suspended solids, and it is effective per module by being 2000 μm or less. The cross-sectional area can be maintained and the filtration performance can be improved.

本実施形態において、疎水性高分子は、ポリスルホンを含むものが好ましい。この疎水性高分子であれば、多孔質中空糸膜が温度変化や圧力変化に対する強度に一層優れ、高い濾過性能を発現することができる。   In the present embodiment, the hydrophobic polymer preferably contains polysulfone. With this hydrophobic polymer, the porous hollow fiber membrane is more excellent in strength against temperature change and pressure change, and can exhibit high filtration performance.

本実施形態に用いる濾過膜としては、総細胞数が1.0×E7cells/mLである培養液の累積処理量が100L/m2となる時点における透過液のタンパク質透過率が、タンジェンシャルフロー濾過開始1分後の透過液のタンパク質透過率の90%以上であるものを用いることが好ましく、さらには、前記培養液の累積処理量が300L/m2となる時点における透過液のタンパク質透過率が、濾過開始1分後の透過液のタンパク質透過率の90%以上であるものを用いることがより好ましい。 As the filtration membrane used in the present embodiment, the protein permeability of the permeate at the time when the cumulative treatment amount of the culture solution having a total cell number of 1.0 × E7 cells / mL becomes 100 L / m 2 is tangential flow filtration. It is preferable to use one that is 90% or more of the protein permeability of the permeate 1 minute after the start. Furthermore, the protein permeability of the permeate at the time when the cumulative amount of the culture broth becomes 300 L / m 2. It is more preferable to use one that is 90% or more of the protein permeability of the permeate 1 minute after the start of filtration.

本実施形態において、上記のような濾過膜の一例示として、下記の実施例で用いられる濾過膜などがある。また、本実施形態においては、国際公開第2010/035793号公報に記載される濾過膜を用いることもできる。各測定方法も、国際公開2010/035793号公報に準じて測定することができる。なお、タンジェンシャルフロー濾過を国際公開2010/035793号公報に準じて行うこともできる。   In the present embodiment, as an example of the filtration membrane as described above, there are filtration membranes used in the following examples. Moreover, in this embodiment, the filtration membrane described in the international publication 2010/035793 can also be used. Each measuring method can also be measured according to International Publication No. 2010/035793. In addition, tangential flow filtration can also be performed according to international publication 2010/035793.

以下、本実施形態を実施例および比較例に基づいてより具体的に説明するが、本実施形態は以下の実施例のみに限定されるものではない。なお、本実施形態に用いられる測定方法は以下のとおりである。   Hereinafter, although this embodiment is described more concretely based on an example and a comparative example, this embodiment is not limited only to the following examples. In addition, the measuring method used for this embodiment is as follows.

(1)内側面孔径の測定、ならびに、最小孔径層の位置および緻密層の有無の確認
凍結乾燥した多孔質中空糸膜の内側面を、電子顕微鏡(株式会社キーエンス製、VE−9800)を用いて1視野において10個以上の孔が観測可能な倍率で観察した。得られた顕微鏡写真における細孔を円形近似処理し、その面積から求めた直径を内側面孔径とした。
凍結乾燥した多孔質中空糸膜の断面を内側面側から外側面側へ向かって連続して顕微鏡観察し、断面孔径が最小になる層(最小孔径層)の位置を確認した。
また、多孔質中空糸膜の最内面の構造を顕微鏡観察し、緻密層の有無を確認した。
(1) Measurement of inner surface pore diameter, and confirmation of the position of the minimum pore diameter layer and the presence of the dense layer The inner surface of the freeze-dried porous hollow fiber membrane was measured using an electron microscope (VE-9800, manufactured by Keyence Corporation). In one visual field, 10 or more holes were observed at a observable magnification. The pores in the obtained micrograph were subjected to circular approximation processing, and the diameter obtained from the area was defined as the inner surface pore diameter.
The cross section of the freeze-dried porous hollow fiber membrane was continuously observed with a microscope from the inner side to the outer side, and the position of the layer having the smallest cross-sectional pore diameter (minimum pore diameter layer) was confirmed.
Further, the structure of the innermost surface of the porous hollow fiber membrane was observed with a microscope, and the presence or absence of a dense layer was confirmed.

(2)最小孔径層の孔径決定法
ポリスチレンラテックス粒子(JSR株式会社製、SIZE STANDARD PARTICLES)を、0.5質量%のドデシル硫酸ナトリウム水溶液(和光純薬工業株式会社製)に、粒子濃度が0.01質量%になるように分散させ、ラテックス粒子分散液を調整した。
多孔質中空糸膜を用いてラテックス粒子分散液の濾過を行い、濾過前後のラテックス粒子の濃度変化を測定した。この測定を、0.1μmから約0.1μm刻みでラテックス粒子径を変えながら行いラテックス粒子の阻止曲線を作成した。この阻止曲線から、98%透過阻止可能な粒子径を読み取り、その径を最小孔径層の孔径(阻止孔径)とした。
「(1)最小孔径層の位置の確認」により、外周領域に最小孔径層があることが確認できたとき、「(2)最小孔径層の孔径決定法」により決定される最小孔径層の孔径(阻止孔径)は、外周領域の阻止孔径である。
(2) Pore size determination method of minimum pore size layer Polystyrene latex particles (manufactured by JSR Corporation, SIZE STANDARD PARTICS) are added to a 0.5 mass% sodium dodecyl sulfate aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) with a particle concentration of 0. A latex particle dispersion was prepared by dispersing to 0.01 mass%.
The latex particle dispersion was filtered using a porous hollow fiber membrane, and the change in latex particle concentration before and after filtration was measured. This measurement was performed while changing the latex particle diameter in steps of 0.1 μm to about 0.1 μm, and a latex particle inhibition curve was prepared. From this blocking curve, the particle diameter capable of blocking 98% permeation was read, and the diameter was defined as the hole diameter (blocking hole diameter) of the minimum pore diameter layer.
When it is confirmed by “(1) Confirmation of position of minimum pore size layer” that the minimum pore size layer is present in the outer peripheral region, the pore size of minimum pore size layer determined by “(2) Method of determining pore size of minimum pore size layer” (Blocking hole diameter) is the blocking hole diameter in the outer peripheral region.

(3)多孔質中空糸膜の内径、外径および膜厚の測定
多孔質中空糸膜を円管状に薄くきりそれを光学顕微鏡(株式会社キーエンス製、VH6100)で観察し、多孔質中空糸膜の内径(μm)、外径(μm)を測定した。得られた内径、外径から下記の式(II)を用いて膜厚を算出した。
膜厚(μm)=(外径−内径)/2 (II)
(3) Measurement of inner diameter, outer diameter and film thickness of porous hollow fiber membrane The porous hollow fiber membrane was thinly cut into a tubular shape and observed with an optical microscope (VH6100, manufactured by Keyence Corporation). The inner diameter (μm) and the outer diameter (μm) were measured. The film thickness was calculated from the obtained inner and outer diameters using the following formula (II).
Film thickness (μm) = (outer diameter−inner diameter) / 2 (II)

(4)タンパク質透過率の測定
濾過工程中の透過液および培養液のタンパク質濃度をELISA法で定量分析を行った。
タンパク質透過率については下記の式(III)を用いて算出した。
タンパク質透過率X=(透過液のタンパク質濃度)/(透過液をサンプリングした際の培養液のタンパク質濃度)×100 (III)
(4) Measurement of protein permeability The protein concentration of the permeate and the culture medium during the filtration step was quantitatively analyzed by ELISA.
The protein permeability was calculated using the following formula (III).
Protein permeability X = (protein concentration in permeate) / (protein concentration in culture medium when permeate was sampled) × 100 (III)

(5)細胞生存率の測定
濾過終了時の培養液をサンプリングして、細胞数自動計測装置(GE Healthcare製 CYTORECON)を使用して細胞生存率を測定した。
(5) Measurement of cell viability The culture solution at the end of filtration was sampled, and the cell viability was measured using a cell number automatic measuring device (CYTORECON manufactured by GE Healthcare).

(実施例1)
チャイニーズハムスター卵巣(CHO)細胞を無血清培地(Invitrogen社 CD opti CHO AGT without 2ME)で培養して、CHO細胞懸濁液を得た。
あらかじめオートクレーブ滅菌した12L容量の細胞培養槽に4.5Lの新鮮無血清培地を送入し、さらに、ヒト免疫グロブリンGを培養液に対して0.5mg/mLの濃度で添加して、5×E5cells/mLのCHO細胞懸濁液を1L送入し培養を開始した。その後、総細胞数が1.0×E7cells/mLに増殖したことを確認した後に、濾過を開始した。
培養槽には培養槽から多孔質中空糸膜へ培養液を送液する流出口、多孔質中空糸膜内を通過して培養槽に戻る流入口、培養槽内の培養液をサンプリングする流出口、新鮮培地を供給する流入口を設けた。
ペリスタックポンプにより培養槽から多孔質中空糸膜(旭化成メディカル社製、BioOptimal MF−SL0005、阻止孔径0.4μm)への送液を行い、タンジェンシャルフロー濾過を行った。送液量はずり速度2900s-1となるように設定した。また、培養槽内に上限液面計(レベルセンサー)を設置して濾過で抜き出された培養液と同量、新鮮培地が供給できるようにした。膜交換時期を透過液量低下で判断するため、多孔質中空糸膜の透過液流出口を開放し透過液量を随時測定できるように重量計を設置した。
透過液量が濾過開始時の10%となった時点で膜交換を実施したところ、タンパク質透過率は99.5%となった。透過液量が濾過開始時の透過液量の10%時でもタンパク質透過率は上記式(I)を満たしており、透過液量が濾過開始時の透過液量の10%時の膜交換が有効であることが明らかになった。
300L/m2の培養液を処理するには膜交換なしで濾過時間220分で行えることがわかった。濾過終了時の細胞生存率は93.2%であった。
Example 1
Chinese hamster ovary (CHO) cells were cultured in a serum-free medium (Invitrogen CD opti CHO AGT without 2ME) to obtain a CHO cell suspension.
4.5 L of fresh serum-free medium is introduced into a 12 L cell culture tank that has been autoclaved in advance, and human immunoglobulin G is added at a concentration of 0.5 mg / mL to the culture solution. 1 L of E5cells / mL CHO cell suspension was introduced to start culture. Thereafter, filtration was started after confirming that the total cell number had grown to 1.0 × E7 cells / mL.
The culture tank has an outlet for sending the culture solution from the culture tank to the porous hollow fiber membrane, an inlet for passing through the porous hollow fiber membrane and returning to the culture tank, and an outlet for sampling the culture solution in the culture tank An inlet for supplying fresh medium was provided.
The solution was fed from a culture tank to a porous hollow fiber membrane (manufactured by Asahi Kasei Medical Co., Ltd., BioOptimal MF-SL0005, blocking pore diameter 0.4 μm) by a peristalk pump, and tangential flow filtration was performed. The liquid feed amount was set so that the shear rate was 2900 s −1 . In addition, an upper limit liquid level gauge (level sensor) was installed in the culture tank so that the same amount of fresh culture medium as the culture liquid extracted by filtration could be supplied. In order to judge the membrane replacement time based on the decrease in the permeate amount, a weigh scale was installed so that the permeate amount could be measured as needed by opening the permeate outlet of the porous hollow fiber membrane.
When the membrane exchange was performed when the amount of permeate reached 10% at the start of filtration, the protein permeability was 99.5%. Even when the permeate volume is 10% of the permeate volume at the start of filtration, the protein permeability satisfies the above formula (I), and membrane exchange is effective when the permeate volume is 10% of the permeate volume at the start of filtration. It became clear that.
It was found that a 300 L / m 2 culture solution can be treated with a filtration time of 220 minutes without membrane exchange. The cell viability at the end of filtration was 93.2%.

(実施例2)
透過液量が濾過開始時の50%となった時点で膜交換を実施した以外は、実施例1と同様にして濾過を行った。
累積処理量が115L/m2となった時点で透過液量が濾過開始時の50%となったため膜交換を実施した。その時のタンパク質透過率は99.7%であり膜交換実施後に再度濾過を行い、累積処理量が215L/m2となった時点で透過液量が濾過開始時の50%となったため再び膜交換を実施した。その時のタンパク質透過率は99.8%であった。
300L/m2の培養液を処理するには膜交換を2回実施し濾過時間60分で行えることがわかった。濾過終了時の細胞生存率は94.5%であった。
(Example 2)
Filtration was performed in the same manner as in Example 1 except that membrane exchange was performed when the amount of permeate reached 50% at the start of filtration.
When the cumulative throughput reached 115 L / m 2 , the permeate amount reached 50% of that at the start of filtration, and membrane exchange was performed. At that time, the protein permeability was 99.7%, and filtration was performed again after the membrane was exchanged. When the cumulative throughput reached 215 L / m 2 , the permeate amount reached 50% at the start of filtration, so the membrane was exchanged again. Carried out. The protein permeability at that time was 99.8%.
It was found that in order to treat a culture solution of 300 L / m 2 , membrane exchange was performed twice and filtration time was 60 minutes. The cell viability at the end of filtration was 94.5%.

(比較例1)
多孔質中空糸膜として、SPECTRUM社製Midicross X25E−301−02N(阻止孔径0.5μm)を使用した以外は、実施例1と同様にして濾過を行った。
透過液量が濾過開始時の透過液量の50%および10%時にはタンパク質透過率は式(1)を満たせず、透過液量では膜交換のタイミングが分からないことが明らかになった。そこで、透過液量が74.2L/m2ごとに膜交換を行った。膜交換時のタンパク質透過率は1回目が74.8%、2回目65.2%、3回目が60.1%、4回目が55.4%であった。
300L/m2の培養液を処理するには膜交換4回実施する必要があり、また、濾過時間も480分かかった。濾過終了時の細胞生存率は89.2%であった。
(Comparative Example 1)
Filtration was performed in the same manner as in Example 1 except that Midicross X25E-301-02N (blocking hole diameter: 0.5 μm) manufactured by SPECTRUM was used as the porous hollow fiber membrane.
When the permeate amount was 50% and 10% of the permeate amount at the start of filtration, the protein permeability did not satisfy the formula (1), and it became clear that the timing of membrane exchange was not known by the permeate amount. Therefore, the membrane was exchanged every 74.2 L / m 2 of permeate. The protein permeability at the time of membrane exchange was 74.8% for the first time, 65.2% for the second time, 60.1% for the third time, and 55.4% for the fourth time.
In order to process a culture solution of 300 L / m 2 , it was necessary to perform membrane exchange four times, and the filtration time also took 480 minutes. The cell viability at the end of filtration was 89.2%.

(比較例2)
多孔質中空糸膜として、GEヘルスケア社製 Start AXM CFP−4−E−2U(阻止孔径0.45μm)を使用した以外は、実施例1と同様にして濾過を行った。
透過液量が濾過開始時の透過液量の50%および10%時にはタンパク質透過率は式(I)を満たせず、透過液量では膜交換のタイミングが分からないことが明らかになった。そこで、透過液量が70.9L/m2ごとに膜交換を行った。膜交換時のタンパク質透過率は1回目が79.7%、2回目77.5%、3回目が71.5%、4回目が66.3%であった。
300L/m2の培養液を処理するには膜交換4回実施する必要があり、また、濾過時間も480分かかった。濾過終了時の細胞生存率は87.5%であった。
(Comparative Example 2)
Filtration was performed in the same manner as in Example 1 except that Start AXM CFP-4-E-2U (inhibition pore diameter 0.45 μm) manufactured by GE Healthcare was used as the porous hollow fiber membrane.
When the permeate amount was 50% and 10% of the permeate amount at the start of filtration, the protein permeability did not satisfy the formula (I), and it became clear that the timing of membrane exchange was not known by the permeate amount. Therefore, membrane exchange was performed every 70.9 L / m 2 of permeate. The protein permeability at the time of membrane exchange was 79.7% for the first time, 77.5% for the second time, 71.5% for the third time, and 66.3% for the fourth time.
In order to process a culture solution of 300 L / m 2 , it was necessary to perform membrane exchange four times, and the filtration time also took 480 minutes. The cell viability at the end of filtration was 87.5%.

(実施例3)
膜交換時期を圧力低下で判断するため、多孔質中空糸膜の透過液流出口に、重量計に代えて、圧力計およびポンプを取り付け、総細胞数が5×E5cells/mLに増殖したことを確認した後に濾過を開始した以外は、実施例1と同様にして濾過を行い、14LMHの一定速度で透過させた。
透過液側の圧力が0kPaになった時点で膜交換を実施したところ、タンパク質透過率は98.2%となった。透過液側の圧力が0kPa時でもタンパク質透過率は式(I)を満たしており0kPa以上の任意の時点での膜交換が有効であることが明らかになった。
1000L/m2の培養液を処理するには膜交換なしで行えることがわかった。濾過終了時の細胞生存率は92.3%であった。
(Example 3)
In order to judge the membrane replacement time based on the pressure drop, a pressure gauge and a pump were attached to the permeate outlet of the porous hollow fiber membrane instead of the weight meter, and the total cell number grew to 5 × E5 cells / mL. The filtration was performed in the same manner as in Example 1 except that filtration was started after confirmation, and the filtrate was permeated at a constant rate of 14 LMH.
When membrane exchange was performed when the pressure on the permeate side became 0 kPa, the protein permeability was 98.2%. Even when the pressure on the permeate side was 0 kPa, the protein permeability satisfied the formula (I), and it became clear that membrane exchange at an arbitrary time point of 0 kPa or more was effective.
It was found that a 1000 L / m 2 culture solution could be processed without membrane exchange. The cell viability at the end of filtration was 92.3%.

(比較例3)
多孔質中空糸膜として、SPECTRUM社製Midicross X32E−301−02N(阻止孔径0.2μm)を使用した以外は、実施例3と同様にして濾過を行った。
透過液側の圧力が0kPaの時にタンパク質透過率が90%を下回るため式(I)を満たせなくなり、膜交換のタイミングを透過液側の圧力で判断することができないことが明らかになった。そこで、透過液量が304L/m2ごとに膜交換を行った。膜交換時のタンパク質透過率は1回目が62.3%、2回目60.5%、3回目が60.2%であった。
1000L/m2の培養液を処理するには膜交換3回実施する必要があった。濾過終了時の細胞生存率は87.5%であった。
(Comparative Example 3)
Filtration was performed in the same manner as in Example 3 except that Midicross X32E-301-02N (blocking hole diameter 0.2 μm) manufactured by SPECTRUM was used as the porous hollow fiber membrane.
When the pressure on the permeate side was 0 kPa, the protein permeability was less than 90%, so it was not possible to satisfy the formula (I), and it became clear that the timing of membrane exchange could not be judged by the pressure on the permeate side. Therefore, membrane exchange was performed every 304 L / m 2 of permeate. The protein permeability at the time of membrane exchange was 62.3% for the first time, 60.5% for the second time, and 60.2% for the third time.
In order to process a 1000 L / m 2 culture solution, it was necessary to perform membrane exchange three times. The cell viability at the end of filtration was 87.5%.

(比較例4)
多孔質中空糸膜として、SPECTRUM社製Midicross X25E−301−02N(阻止孔径0.5μm)を使用した以外は、実施例3と同様にして濾過を行った。
透過液側の圧力が0kPaの時にタンパク質透過率が90%を下回るため式(I)を満たせなくなり、膜交換のタイミングを透過液側の圧力で判断することができないことが明らかになった。そこで、透過液量が400L/m2ごとに膜交換を行った。膜交換時のタンパク質透過率は1回目が76.2%、2回目70.5%であった。
1000L/m2の培養液を処理するには膜交換2回実施する必要があった。濾過終了時の細胞生存率は74.2%であった。
(Comparative Example 4)
Filtration was performed in the same manner as in Example 3 except that Midicross X25E-301-02N (blocking hole diameter: 0.5 μm) manufactured by SPECTRUM was used as the porous hollow fiber membrane.
When the pressure on the permeate side was 0 kPa, the protein permeability was less than 90%, so it was not possible to satisfy the formula (I), and it became clear that the timing of membrane exchange could not be judged by the pressure on the permeate side. Therefore, membrane exchange was performed every 400 L / m 2 of permeate. The protein permeability at the time of membrane exchange was 76.2% for the first time and 70.5% for the second time.
In order to process a 1000 L / m 2 culture solution, it was necessary to perform membrane exchange twice. The cell viability at the end of filtration was 74.2%.

(比較例5)
多孔質中空糸膜として、GEヘルスケア社製 Start AXM CFP−2−E−2U(阻止孔径0.2μm)を使用した以外は、実施例3と同様にして濾過を行った。
透過液側の圧力が0kPaの時にタンパク質透過率が90%を下回るため式(I)を満たせなくなり、膜交換のタイミングを透過液側の圧力で判断することができないことが明らかになった。そこで、透過液量が311L/m2ごとに膜交換を行った。膜交換時のタンパク質透過率は1回目が66.5%、2回目63.1%、3回目が61.8%であった。
1000L/m2の培養液を処理するには膜交換3回実施する必要があった。濾過終了時の細胞生存率は85.6%であった。
(Comparative Example 5)
Filtration was performed in the same manner as in Example 3 except that Start AXM CFP-2-E-2U (blocking hole diameter 0.2 μm) manufactured by GE Healthcare was used as the porous hollow fiber membrane.
When the pressure on the permeate side was 0 kPa, the protein permeability was less than 90%, so it was not possible to satisfy the formula (I), and it became clear that the timing of membrane exchange could not be judged by the pressure on the permeate side. Therefore, membrane exchange was performed every 311 L / m 2 of permeate. The protein permeability at the time of membrane exchange was 66.5% for the first time, 63.1% for the second time, and 61.8% for the third time.
In order to process a 1000 L / m 2 culture solution, it was necessary to perform membrane exchange three times. The cell viability at the end of filtration was 85.6%.

(比較例6)
多孔質中空糸膜として、GEヘルスケア社製 Start AXM CFP−4−E−2U(阻止孔径0.45μm)を使用した以外は、実施例3と同様にして濾過を行った。
透過液側の圧力が0kPaの時にタンパク透過率が90%を下回るため式(I)を満たせなくなり、膜交換のタイミングを透過液側の圧力で判断することができないことが明らかになった。そこで、透過液量が408L/m2ごとに膜交換を行った。膜交換時のタンパク質透過率は1回目が80.6%、2回目75.3%であった。
1000L/m2の培養液を処理するには膜交換2回実施する必要があった。濾過終了時の細胞生存率は77.5%であった。
(Comparative Example 6)
Filtration was performed in the same manner as in Example 3 except that Start AXM CFP-4-E-2U (inhibition pore size 0.45 μm) manufactured by GE Healthcare was used as the porous hollow fiber membrane.
When the pressure on the permeate side was 0 kPa, the protein permeation rate was below 90%, so the formula (I) could not be satisfied, and it became clear that the timing of membrane exchange could not be judged by the pressure on the permeate side. Therefore, membrane exchange was performed every 408 L / m 2 of permeate. The protein permeability at the time of membrane exchange was 80.6% for the first time and 75.3% for the second time.
In order to process a 1000 L / m 2 culture solution, it was necessary to perform membrane exchange twice. The cell viability at the end of filtration was 77.5%.

Figure 2014024824
Figure 2014024824

Figure 2014024824
Figure 2014024824

本発明は、潅流培養において、透過液のタンパク質濃度分析によらずに濾過膜の劣化を検出できることを特徴とする、有用タンパク質濾過方法を提供する。   The present invention provides a useful protein filtration method characterized in that deterioration of a filtration membrane can be detected in perfusion culture without analysis of protein concentration in a permeate.

Claims (10)

潅流培養において、濾過膜からの透過液の流量をモニタリング測定し、
透過液の流量が、タンジェンシャルフロー濾過開始時の透過液の流量の少なくとも10%以上である時点で、濾過膜を切り替える工程を含み、
濾過開始1分後の透過液のタンパク質透過率をX1とし、膜交換時における透過液のタンパク質透過率をX2とするとき、下記の式(I)を満たす、
X2≧0.9×X1 (I)
有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法。
In perfusion culture, the permeate flow rate from the filtration membrane is monitored and measured.
Including a step of switching the filtration membrane when the flow rate of the permeate is at least 10% or more of the flow rate of the permeate at the start of tangential flow filtration,
When the protein permeability of the permeate 1 minute after the start of filtration is X1, and the protein permeability of the permeate at the time of membrane exchange is X2, the following formula (I) is satisfied:
X2 ≧ 0.9 × X1 (I)
A filtration method for separating a solution containing useful proteins from a culture solution containing useful proteins.
潅流培養において、濾過膜からの透過液の圧力をモニタリング測定し、
透過液の流量を3LMH以上に制御して、透過液側の圧力が0kPa以上である時点で濾過膜を切り替える工程、
を含み、
濾過開始1分後の透過液のタンパク質透過率をX1とし、膜交換時における透過液のタンパク質透過率をX2とするとき、下記の式(I)を満たす、
X2≧0.9×X1 (I)
有用タンパク質を含む培養液から有用タンパク質を含む溶液を分離する濾過方法。
In perfusion culture, the permeate pressure from the filtration membrane is monitored and measured.
Controlling the flow rate of the permeate to 3 LMH or higher, and switching the filtration membrane when the pressure on the permeate side is 0 kPa or higher,
Including
When the protein permeability of the permeate 1 minute after the start of filtration is X1, and the protein permeability of the permeate at the time of membrane exchange is X2, the following formula (I) is satisfied:
X2 ≧ 0.9 × X1 (I)
A filtration method for separating a solution containing useful proteins from a culture solution containing useful proteins.
前記濾過膜として、総細胞数が1.0×E7cells/mLである培養液の累積処理量が100L/m2となる時点における透過液のタンパク質透過率が、濾過開始1分後の透過液のタンパク質透過率の90%以上であるものを用いる、請求項1または2に記載の濾過方法。 As the filtration membrane, the protein permeability of the permeate at the time when the cumulative treatment amount of the culture solution having a total cell number of 1.0 × E7 cells / mL becomes 100 L / m 2 is The filtration method according to claim 1 or 2, wherein a protein having a protein permeability of 90% or more is used. 前記濾過膜として、総細胞数が1.0×E7cells/mLである培養液の累積処理量が300L/m2となる時点における透過液のタンパク質透過率が、濾過開始1分後の透過液のタンパク質透過率の90%以上であるものを用いる、請求項1〜3の何れかに記載の濾過方法。 As the filtration membrane, the protein permeability of the permeate at the time when the cumulative treatment amount of the culture solution having a total cell number of 1.0 × E7 cells / mL becomes 300 L / m 2 is The filtration method according to any one of claims 1 to 3, wherein a protein having a protein permeability of 90% or more is used. 前記濾過膜が、疎水性高分子とポリビニルピロリドンのブレンド物から管壁が構成されている多孔質中空糸膜である、請求項1〜4の何れかに記載の濾過方法。   The filtration method according to any one of claims 1 to 4, wherein the filtration membrane is a porous hollow fiber membrane having a tube wall made of a blend of a hydrophobic polymer and polyvinylpyrrolidone. 前記濾過膜の管壁を膜厚方向に3等分して3つの領域に分割したときに、前記濾過膜の外側面を含む外周領域のポリビニルピロリドンの含有割合が、前記濾過膜の内側面を含む内周領域のポリビニルピロリドンの含有割合より大きい、請求項1〜5の何れかに記載の濾過方法。   When the tube wall of the filtration membrane is equally divided into three regions in the film thickness direction and divided into three regions, the content ratio of polyvinyl pyrrolidone in the outer peripheral region including the outer surface of the filtration membrane is the inner surface of the filtration membrane. The filtration method according to any one of claims 1 to 5, wherein the content is larger than the content ratio of polyvinyl pyrrolidone in the inner peripheral region. 前記濾過膜の内側面の平均孔径が、前記濾過膜の外側面の平均孔径より大きい多孔質中空糸膜である、請求項1〜6の何れかに記載の濾過方法。   The filtration method according to any one of claims 1 to 6, wherein the filtration membrane is a porous hollow fiber membrane having an average pore diameter on the inner side surface of the filtration membrane that is larger than an average pore size on the outer side surface of the filtration membrane. 前記濾過膜が、内側面の平均孔径が1〜100μm以下であり、緻密層を持たない、請求項1〜7の何れかに記載の濾過方法。   The filtration method according to any one of claims 1 to 7, wherein the filtration membrane has an inner surface having an average pore diameter of 1 to 100 µm or less and does not have a dense layer. 前記管壁の膜厚が、300μm以上1000μm以下である、請求項5〜8の何れかに記載の濾過方法。   The filtration method according to any one of claims 5 to 8, wherein the thickness of the tube wall is 300 µm or more and 1000 µm or less. 前記疎水性高分子が、ポリスルホンである、請求項5〜9の何れかに記載の濾過方法。   The filtration method according to claim 5, wherein the hydrophobic polymer is polysulfone.
JP2012168821A 2012-07-30 2012-07-30 Method for filtering culture broth containing useful protein under perfusion culture Pending JP2014024824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168821A JP2014024824A (en) 2012-07-30 2012-07-30 Method for filtering culture broth containing useful protein under perfusion culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168821A JP2014024824A (en) 2012-07-30 2012-07-30 Method for filtering culture broth containing useful protein under perfusion culture

Publications (1)

Publication Number Publication Date
JP2014024824A true JP2014024824A (en) 2014-02-06

Family

ID=50198815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168821A Pending JP2014024824A (en) 2012-07-30 2012-07-30 Method for filtering culture broth containing useful protein under perfusion culture

Country Status (1)

Country Link
JP (1) JP2014024824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054686A (en) * 2014-09-09 2016-04-21 旭化成メディカル株式会社 Recovery method of cultural product
JP2018076291A (en) * 2016-10-28 2018-05-17 旭化成メディカル株式会社 Method of recovering useful substances from continuous culture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257181A (en) * 1985-05-09 1986-11-14 Teijin Ltd Culture of animal cell
JPS63319004A (en) * 1987-06-23 1988-12-27 Tosoh Corp Method for washing ultrafilter membrane device
JPH02127197U (en) * 1989-03-29 1990-10-19
JP2007245084A (en) * 2006-03-17 2007-09-27 Toshiba Corp Membrane filtration control device
WO2011001963A1 (en) * 2009-07-03 2011-01-06 旭化成ケミカルズ株式会社 Method for purification of antibody using porous membrane having amino group and alkyl group both bound to graft chain immobilized on porous base material
JP2011212608A (en) * 2010-03-31 2011-10-27 Kurita Water Ind Ltd Apparatus, program, and method for management of reuse separation membrane
JP2012006864A (en) * 2010-06-24 2012-01-12 Asahi Kasei Chemicals Corp Purification method of antibody protein using porous membrane having hydrophilic molecular chain

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257181A (en) * 1985-05-09 1986-11-14 Teijin Ltd Culture of animal cell
JPS63319004A (en) * 1987-06-23 1988-12-27 Tosoh Corp Method for washing ultrafilter membrane device
JPH02127197U (en) * 1989-03-29 1990-10-19
JP2007245084A (en) * 2006-03-17 2007-09-27 Toshiba Corp Membrane filtration control device
WO2011001963A1 (en) * 2009-07-03 2011-01-06 旭化成ケミカルズ株式会社 Method for purification of antibody using porous membrane having amino group and alkyl group both bound to graft chain immobilized on porous base material
JP2011212608A (en) * 2010-03-31 2011-10-27 Kurita Water Ind Ltd Apparatus, program, and method for management of reuse separation membrane
JP2012006864A (en) * 2010-06-24 2012-01-12 Asahi Kasei Chemicals Corp Purification method of antibody protein using porous membrane having hydrophilic molecular chain

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054686A (en) * 2014-09-09 2016-04-21 旭化成メディカル株式会社 Recovery method of cultural product
JP2018076291A (en) * 2016-10-28 2018-05-17 旭化成メディカル株式会社 Method of recovering useful substances from continuous culture
JP7043125B2 (en) 2016-10-28 2022-03-29 旭化成メディカル株式会社 Method for recovering useful substances in continuous culture

Similar Documents

Publication Publication Date Title
JP7043125B2 (en) Method for recovering useful substances in continuous culture
JP6530171B2 (en) Method of collecting culture product
KR102539167B1 (en) Alternating tangential flow rapid harvesting
TWI675696B (en) Tangential flow filtration device for perfusion applications
US9982226B2 (en) Discontinuous fed batch processing with the use of alternating bioreactors
CN102164657B (en) Use of porous hollow-fiber membrane for producing clarified biomedical culture medium
CN101269298B (en) Membrane filtration method and device for polarization of concentration biomacromolecule with concentration
KR102567418B1 (en) Cell culture system and cell culture method
CN109072154A (en) Cell retaining device and method
JP2014024824A (en) Method for filtering culture broth containing useful protein under perfusion culture
US20210362073A1 (en) Crystallization Apparatus and Crystallization Method
JP7330834B2 (en) Culture method and culture apparatus
AU2019294891B2 (en) Cell culture method, method for producing product, and cell culture device
WO2023277173A1 (en) Virus recovery method
JPS6397207A (en) Filtration separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160623