JP2009000580A - Operation support device for membrane filtration apparatus - Google Patents
Operation support device for membrane filtration apparatus Download PDFInfo
- Publication number
- JP2009000580A JP2009000580A JP2007160842A JP2007160842A JP2009000580A JP 2009000580 A JP2009000580 A JP 2009000580A JP 2007160842 A JP2007160842 A JP 2007160842A JP 2007160842 A JP2007160842 A JP 2007160842A JP 2009000580 A JP2009000580 A JP 2009000580A
- Authority
- JP
- Japan
- Prior art keywords
- filtration
- information
- membrane filtration
- cost
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
本発明は、原水に含まれる濁質や病原虫などの分離除去のために設置される浄水場向け膜ろ過処理装置の運転支援装置に関する。 The present invention relates to an operation support apparatus for a membrane filtration apparatus for a water purification plant installed for separating and removing turbid substances and pathogens contained in raw water.
水をろ過して浄化するろ過工程で濁質や有機物から成る湿潤ケークにより、膜ろ過処理装置の膜に目詰まりが発生し、膜間差圧が上昇するため、ろ過水量が低下する。膜間差圧を低下させてろ過流量を回復するために、逆洗工程でろ過水を逆流させ、膜に付着したケークを除去する。原水が浄化される過程で、このろ過工程と逆洗工程が繰り返される。逆洗を実施しても膜間差圧が所定の値まで戻らない場合には薬品洗浄を実施し、薬品洗浄を実施しても膜間差圧が所定の値まで戻らない場合には膜モジュールを交換する。ろ過時間と逆洗時間はタイマーで設定されることが多く、ろ過時間は30〜90分程度、逆洗時間は15〜30秒程度が多く見られる値である。 In the filtration process of filtering and purifying water, the wet cake made of turbidity or organic matter causes clogging in the membrane of the membrane filtration processing device, and the transmembrane pressure difference increases, resulting in a decrease in the amount of filtered water. In order to reduce the transmembrane pressure difference and restore the filtration flow rate, the filtrate is backflowed in the backwash process to remove the cake adhering to the membrane. In the process of purifying the raw water, this filtration step and backwashing step are repeated. If the transmembrane pressure does not return to the specified value even after backwashing, perform chemical cleaning. If the transmembrane pressure does not return to the specified value even after performing chemical cleaning, the membrane module. Replace. In many cases, the filtration time and the backwash time are set by a timer, the filtration time is about 30 to 90 minutes, and the backwash time is about 15 to 30 seconds.
表流水を原水とした浄水場では、膜ろ過処理装置の前段に濁質除去のための前処理装置が備えられることが多い。前処理として代表的な凝集沈澱処理では、凝集剤を原水に注入して濁質や有機物を沈殿除去する。この処理によって後段の膜ろ過処理装置にかかる水質負荷を低減できるため、膜ろ過処理装置の目詰まり抑制や動力費低減の効果が期待できる。 In a water purification plant using surface water as raw water, a pretreatment device for removing turbidity is often provided upstream of the membrane filtration treatment device. In a typical coagulation-precipitation treatment as a pretreatment, a flocculant is injected into raw water to precipitate and remove turbid substances and organic substances. Since this process can reduce the water quality load applied to the subsequent membrane filtration treatment apparatus, it can be expected to suppress clogging of the membrane filtration treatment apparatus and reduce the power cost.
浄水場における原水をろ過する膜ろ過処理装置のろ過処理にかかる消費電力は、凝集沈殿ろ過処理装置におけるろ過処理に比べて大きく、多量の電力を消費する。そのため、電力量を抑えることが不可欠であり、近年、〔特許文献1〕に記載のように、総合処理費と膜ろ過処理費の合計が最適になるように、ろ過工程で消費電力の最も大きい加圧ポンプの消費電力と洗浄工程で消費電力の最も大きい逆洗ポンプの消費電力の和によるろ過工程と逆洗工程から構成される1サイクルでの消費電力量を費用に換算し、これを小さくするようにろ加圧ポンプ運転時間t1と逆洗ポンプ運転時間t2を最適化する最適解探索アルゴリズムを備えたシステムがある。 The power consumption for the filtration treatment of the membrane filtration treatment device that filters the raw water in the water purification plant is larger than the filtration treatment in the coagulation sedimentation filtration treatment device, and consumes a large amount of power. Therefore, it is indispensable to suppress the amount of electric power, and in recent years, as described in [Patent Document 1], the power consumption is the largest in the filtration process so that the total of the total treatment cost and the membrane filtration treatment cost is optimized. Convert the power consumption in one cycle consisting of the filtration process and the backwash process by the sum of the power consumption of the pressure pump and the power consumption of the backwash pump with the largest power consumption in the washing process into costs, and reduce this As described above, there is a system including an optimum solution search algorithm that optimizes the filter pressurizing pump operation time t1 and the backwash pump operation time t2.
また、膜ろ過処理装置と前処理装置の凝集剤注入量制御に関する従来の技術として、〔特許文献2〕に記載のように、凝集剤注入量を原水の色度,濁度の値に基づいて制御することで、膜の目詰まりを抑制可能とするものがある。 In addition, as a conventional technique for controlling the flocculant injection amount of the membrane filtration processing device and the pretreatment device, as described in [Patent Document 2], the flocculant injection amount is determined based on the chromaticity and turbidity values of raw water. There are some which can control the clogging of the film by controlling.
〔特許文献1〕に記載の技術では、膜ろ過装置によるろ過処理にかかる消費電力を低減するため、時刻や季節による違いも加味し、ろ過工程と洗浄工程で構成される1サイクルでの消費電力量を小さくしようとしていた。しかし、〔特許文献1〕に記載の技術は、1サイクルごとの消費電力量に注目しているので数サイクルでの消費電力量の最適化を図るには不十分であった。 In the technology described in [Patent Document 1], in order to reduce the power consumption of the filtration process by the membrane filtration device, the power consumption in one cycle composed of the filtration process and the washing process is also taken into account, taking into account the time and season differences. I was trying to reduce the amount. However, the technique described in [Patent Document 1] pays attention to the power consumption for each cycle, and is insufficient to optimize the power consumption in several cycles.
本発明の目的は、膜ろ過処理装置の運転制御のための処理費用を低減できる運転支援装置を提供することにある。 An object of the present invention is to provide an operation support apparatus that can reduce processing costs for operation control of a membrane filtration processing apparatus.
上記目的を達成するために、本発明の膜ろ過処理装置の運転支援装置は、インタフェイスを介して入力される、原水をろ過する膜ろ過処理装置の膜間差圧とろ過流量を含む膜ろ過処理装置の現状運転情報と、配水池の水位情報と、予め与えられる計画水量情報から求められるろ過時の膜間差圧の過去からの上昇比率又はろ過流量の過去からの減少比率、前記計画水量情報に基づき、消費電力の大きい洗浄工程を電力料金の低い夜間に、消費電力の小さいろ過工程を電力料金の高い昼間に運用した時の、少なくともろ過時間を含んだ膜ろ過処理装置の推奨運転量と、少なくとも洗浄時間を含んだ洗浄処理装置の推奨運転量を算出する算出手段を備えたものである。 In order to achieve the above object, the operation support device of the membrane filtration processing apparatus of the present invention includes a membrane filtration including the transmembrane differential pressure and the filtration flow rate of the membrane filtration processing apparatus that filters raw water, which is input via an interface. Current operation information of the treatment device, water level information of the reservoir, and the increase rate from the past of the transmembrane pressure difference at the time of filtration obtained from the planned water amount information given in advance or the decreasing rate of the filtration flow rate from the past, the planned water amount Based on the information, the recommended operation amount of the membrane filtration processing device including at least the filtration time when the cleaning process with high power consumption is operated at night with low power charges and the filtration process with low power consumption is operated in the daytime with high power charges And a calculating means for calculating a recommended operation amount of the cleaning processing apparatus including at least the cleaning time.
また、インタフェイスを介して入力される、原水をろ過する膜ろ過処理装置の膜間差圧とろ過流量を含む膜ろ過処理装置の現状運転情報と、配水池の水位情報と、予め与えられる計画水量情報から求められるろ過時の膜間差圧の過去からの上昇比率又はろ過流量の過去からの減少比率、前記計画水量情報に基づき、少なくともろ過時間を含んだ膜ろ過処理装置の推奨運転量と、少なくとも洗浄時間を含んだ洗浄処理装置の推奨運転量、膜ろ過処理装置の推奨運転量のときの膜ろ過処理装置の運転費用である膜ろ過処理費情報と、前記洗浄処理装置の推奨運転量のときの洗浄処理装置の運転費用である洗浄処理費情報を計算する算出手段と、算出手段で算出された前記膜ろ過処理費情報と洗浄処理費と膜ろ過処理装置の推奨運転量と洗浄処理装置の推奨運転量を画面に表示する表示装置と、を備えたものである。 Moreover, the present operation information of the membrane filtration processing apparatus including the transmembrane differential pressure and the filtration flow rate of the membrane filtration processing apparatus for filtering raw water input through the interface, the water level information of the distribution reservoir, and the plan given in advance Based on the increase rate from the past of the transmembrane pressure difference during filtration or the decrease rate of the filtration flow rate from the past, which is obtained from the water amount information, and the recommended operation amount of the membrane filtration processing device including at least the filtration time based on the planned water amount information The recommended operation amount of the cleaning treatment apparatus including at least the cleaning time, the membrane filtration processing cost information which is the operation cost of the membrane filtration processing apparatus when the recommended operation amount of the membrane filtration processing apparatus, and the recommended operation amount of the cleaning treatment apparatus Calculating means for calculating cleaning processing cost information which is the operating cost of the cleaning processing device at the time of the cleaning, the membrane filtration processing cost information calculated by the calculating means, the cleaning processing cost, the recommended operation amount of the membrane filtration processing device and the cleaning processing Dress A display device for displaying the recommended operation of the screen, are those having a.
本発明によれば、膜ろ過処理を有する浄水場における水運用を一日単位で管理し、消費電力の低いろ過工程をろ過流量を水需要予測に併せ決定し、それを電力料金の高い昼間に行い、配水池の水位レベルを夜間に備え高くしておくことにより、消費電力の高い洗浄工程を電力料金の低い夜間に行い昼間の膜ろ過運転時に備え、昼間に溜めた浄水を配水し、一日単位での膜ろ過処理に使用する消費電力を小さくすることが可能である。 According to the present invention, water operation in a water treatment plant having a membrane filtration treatment is managed on a daily basis, and a filtration process with low power consumption is determined in conjunction with water demand prediction, and this is performed in the daytime when electricity charges are high. The water level of the reservoir is set high at night, so that a washing process with high power consumption is performed at night when the electricity rate is low, and in the daytime membrane filtration operation, the purified water collected during the day is distributed. It is possible to reduce the power consumption used for the membrane filtration process on a daily basis.
本発明の各実施例について図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の実施例1である膜ろ過処理装置の運転支援装置の構成図である。
FIG. 1 is a configuration diagram of an operation support apparatus for a membrane filtration apparatus that is
図1に示すように、現状の運転情報のインタフェイス12は、膜ろ過処理装置10及び配水池監視装置14と接続され、膜ろ過処理装置10からは、少なくとも膜間差圧とろ過流量を含んだ膜ろ過処理装置の現状運転情報11が、配水池監視装置14からは、少なくとも配水池水位を含んだ配水池情報13がインタフェイス12に入力される。
As shown in FIG. 1, the current
インタフェイス12は、計算機あるいは監視制御盤に備えられたキーボードや電気回路で実現され、インタフェイス12に入力される情報は、測定器等の電気的な回路での測定値、あるいは操作員が膜ろ過処理装置10と配水池監視装置14の測定値を読み取って入力した情報である。
The
インタフェイス12は、膜ろ過処理費の低減運転操作量の算出手段17と接続され、インタフェイス12を経由した膜ろ過処理装置の運転情報11と配水池情報13は、電子化された情報として、算出手段17に入力される。ここで、電子化された膜ろ過処理装置の現状運転情報11と配水池情報13の他に、過去の運転実績情報を使用することも可能である。
The
膜ろ過処理費の低減運転操作量の算出手段17には、計画水量情報のインタフェイス15が接続され、インタフェイス15から電子化された計画水量情報16が入力される。インタフェイス15への情報の与え方は、自動的に計算機から情報が与えられる形態と、操作員など人が値を入力する形態のいずれも可能である。
The
算出手段17には、表示装置21が接続され、入力された膜ろ過処理装置の現状運転情報11と配水池現状情報13と計画水量情報16を用いて、算出手段17が、洗浄流量予測情報18とろ過流量予測情報19と膜ろ過処理装置の推奨運転操作量20を計算し、これらの運転を支援する情報を表示装置21に表示する。
A
算出手段17では、以下の計算が行われる。全流量ろ過を対象とする一般的なルースのろ過モデルは数1,数2で与えられる。
The calculation means 17 performs the following calculation. A general loose filtration model for full flow filtration is given by
ここで、Vfは:ろ過開始後のろ液総量、Aは:膜面積、Kは:抵抗係数、Pfは:ろ過時の膜間差圧、cは:単位ろ過液量に対するケーク比率、μは:水の粘性係数、V0は:ろ過定数である。 Where Vf is the total amount of filtrate after the start of filtration, A is the membrane area, K is the resistance coefficient, Pf is the transmembrane pressure difference during filtration, c is the cake ratio to the unit filtrate volume, and μ is : Water viscosity coefficient, V 0 : Filtration constant.
数1の中で、膜面積Aは、膜モジュールの仕様として既知であり、ろ過時の膜間差圧Pfは、膜ろ過処理装置の現状運転情報11として与えられる。ろ過開始後のろ液総量Vfは、現状運転情報11として与えられるろ過流量の積算値であり、水の粘性係数μは、物理定数として与えられる。
In
抵抗係数kと単位ろ液量に対するケーク比率c及びろ過定数V0を現状運転情報11の値から同定する。同定には少なくとも異なった2時刻の膜間差圧、あるいはろ過流量の変化が分かればよい。
The resistance coefficient k, the cake ratio c to the unit filtrate amount, and the filtration constant V 0 are identified from the values of the
浄水場では一般的に定流量ろ過が適用されることが多く、ろ過流量が一定であるように制御されるため、膜間差圧の過去からの上昇傾向あるいは上昇比率を同定に使する。一般産業向けの上水プラントでは定圧ろ過も適用されることがあるが、その場合にはろ過圧力が一定であるように制御されるため、ろ過流量の過去からの減少傾向あるいは減少比率を同定で使する。 In water purification plants, constant flow filtration is generally applied, and since the filtration flow rate is controlled to be constant, the upward trend or rate of increase in transmembrane pressure difference is used for identification. Constant-pressure filtration may also be applied to waterworks plants for general industries. In this case, the filtration pressure is controlled to be constant, so it is possible to identify the decreasing trend or rate of filtration flow from the past. Use.
数1,数2で示すろ過モデルを用いることで、ろ過時の膜間差圧Pfに対する単位時間当たりのろ過流量dVf/dtを計算できる。ろ過に必要な加圧ポンプの動力は、吐出圧力Pfpとろ過流量dVf/dtの積に比例する。配管や揚程差など膜間差圧以外のろ過時圧力損失をPf'とすると、ろ過用の加圧ポンプで消費される電力Wfは数3で与えられる。
By using the filtration model represented by
ここで、k2 は比例定数である。 Here, k 2 is a proportionality constant.
次に、数1から逆洗モデルを数4,数5のように仮定する。
Next, the backwash model is assumed from
ここで、Vbは逆洗開始後の逆洗水総量、k3 は逆洗時抵抗係数、Pbは逆洗時の膜間差圧、Vfsumは逆洗開始直前のろ液総量である。 Here, Vb is the backwash water amount after the start of backwashing, k 3 is backwashed during resistance coefficient, Pb is transmembrane pressure during backwashing, Vfsum is filtrate amount immediately before starting the backwash.
逆洗時に逆洗ポンプで消費される電力Wbは数6で与えられる。 The electric power Wb consumed by the backwash pump at the time of backwashing is given by Equation 6.
ここで、k4 は比例定数、Pbpは逆洗ポンプの吐出圧力、Pb&aposは:配管や揚程差など膜間差圧以外の逆洗時圧力損失である。 Here, k 4 is a proportional constant, Pbp the discharge pressure of the backwash pump, Pb & apos is: backwash when the pressure loss of the outer membrane Difference pressure or piping and pump head difference.
上述のように、基本的に夜間のtb時間に消費電力の大きい逆洗工程を行い、昼間のtf時間に消費電力の小さいろ過工程を行うので一日単位での実ろ過流量は数7となる。 As described above, the backwashing process with high power consumption is basically performed at tb time at night, and the filtration process with low power consumption is performed at tf time in the daytime. .
ここで、膜ろ過処理の現状運転情報11と配水池情報13から、ろ過工程と逆洗工程を切り換えを行う緊急切替時のろ過工程時間をtv、逆洗工程時間をtuとしている。また、数7で示す流量を得るために消費される電力量は数8となる。
Here, from the
従って、膜ろ過水の単位量を作るために必要な昼間電力量U1 と夜間電力量U2 は数9,数10で示される。
Accordingly, the daytime power amount U 1 and the nighttime power amount U 2 necessary for making a unit amount of membrane filtrate water are expressed by
電力量U1,U2を費用に換算するため、電力量料金単価を乗ずる。昼間と夜間で電力料金単価が異なる季節別時間帯別電気契約を電力会社と結んでいる場合には、時刻や季節による違いも加味し、膜ろ過水の単位量を得るために必要な電力量料金Coを数11で求める。
In order to convert the electric energy U 1 and U 2 into costs, the electric energy unit price is multiplied. If you have an electricity contract with a power company by season that has different unit prices for electricity during the day and at night, the amount of power required to obtain the unit amount of membrane filtration water, taking into account time and season differences. The charge Co is calculated by
ここで、g1(t)は昼間電力料金単価、g2(t)は夜間電力料金単価である。 Here, g 1 (t) is a unit price for daytime electricity charges, and g 2 (t) is a unit price for nighttime electricity charges.
経済性の面から、通常は、ろ過工程を昼間、逆線工程を夜間行う。本実施例では、浄水場の運用として過去のデータから配水量を予測し、昼間に配水池へろ過水を予測水位まで上がるように供給する必要がある。 From the economical aspect, the filtration process is usually performed during the day and the reverse line process is performed at night. In this embodiment, it is necessary to predict the amount of water distribution from past data as the operation of the water purification plant, and supply the filtered water to the water reservoir in the daytime so as to rise to the predicted water level.
しかし、目づまりなどによる膜間差圧異常の現状運転情報11や予測量と乖離した配水池水位情報13により切替運転を可能とする。その際のろ過時間tv,逆洗時間tuを電力量料金Coを評価指標として最適化する最適探索アルゴリズムを算出手段17に備える。
However, the switching operation can be performed by the
探索アルゴリズムには総当り法,遺伝アルゴリズム,非線形計画法,最急勾配法などの数学的手段を使っても良いし、予め設定した複数の運転パターンから最適な1つを選択する方法でも良い。 As the search algorithm, mathematical means such as a brute force method, genetic algorithm, nonlinear programming method, steepest gradient method, or the like, or a method of selecting an optimum one from a plurality of preset operation patterns may be used.
本実施例では、ルースのろ過モデルに基づき、少なくともろ過時間tf,tvと逆洗時間tb,tuを適正化する一例を示したが、このアルゴリズムに限定されるものfではない。 In the present embodiment, an example of optimizing at least the filtration times tf and tv and the backwash times tb and tu based on the loose filtration model is shown, but the present invention is not limited to this algorithm f.
過去の実績運転データを用いて同様の指標、すなわち膜ろ過水の単位量を得るための費用を算出し、そのデータを基にろ過時間tf,tvと逆洗時間tb,tuを最適化する最適解探索アルゴリズムを算出手段17に備える。 Calculate the cost for obtaining the same index, that is, the unit amount of membrane filtration water, using past operation data, and optimize the filtration time tf, tv and backwash time tb, tu based on the data A solution search algorithm is provided in the calculation means 17.
このようにして求めた洗浄流量予測情報18,ろ過流量予測情報19及び膜ろ過処理装置の推奨運転操作量20は表示装置21に表示される。
The cleaning flow
操作員は表示装置を見て膜ろ過処理装置10の運転条件のうち、ろ過時間,逆洗時間の設定値を調整する。
The operator looks at the display device and adjusts the set values of the filtration time and the backwash time among the operating conditions of the
膜ろ過処理装置の推奨運転操作量20には、膜ろ過水の単位量を得るための費用を最小化する情報の他、それ以外の候補や現状の操作量も比較できる画面であればなお良い。また、洗浄流量予測情報18とろ過流量予測情報19も画面に表示する。これらの情報には、少なくとも膜ろ過水の単位量を作るために必要な電力量料金、あるいは計画水量を膜ろ過した際に必要な費用が含まれる。
The recommended
本実施例では計算結果の表示による運転支援について説明したが、上述の計算で求めたろ過時間tf,tvと逆洗時間tb,tuの適正値に基づいて膜ろ過処理装置11を自動運転するようにしても良い。
In the present embodiment, the driving support by displaying the calculation results has been described. However, the
図2に表示装置の画面例を示す。表示装置21には運転操作量の一例として、ろ過流量,ろ過時間,逆洗時間,処理コスト費の現状と推奨値が示されている。表示装置は、PC,計装盤,グラフィックパネル,情報携帯端末,携帯電話のいずれでも良い。
FIG. 2 shows a screen example of the display device. The
このように、実施例1によれば、膜ろ過処理装置10の現状運転情報に基づき、ろ過水単位量を製造するために必要な動力費を最小化できる膜ろ過処理装置10の推奨運転条件を計算し、操作員に提示することが可能となる。
Thus, according to Example 1, based on the current operation information of the membrane
本発明の実施例2を図3により説明する。図3は、原水水質情報に基づいた計算を実施し、適正に運転支援するための膜ろ過処理装置の運転支援装置の構成図である。 A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a configuration diagram of the operation support device of the membrane filtration apparatus for performing calculation based on raw water quality information and appropriately supporting operation.
本実施例では、実施例1と異なり、算出手段17の入力情報の1つは膜ろ過処理装置の現状運転情報11ではなく、膜ろ過処理の原水水質情報のインタフェイス23を介した膜ろ過処理の原水水質情報22である。計画水量情報のインタフェイス15,膜ろ過処理費の低減運転操作量の算出手段17,表示装置21および入出力情報については実施例1と同じであり、同じ機能を有する。
In the present embodiment, unlike the first embodiment, one of the input information of the calculation means 17 is not the
実施例1では、膜ろ過処理装置現状運転情報11を用いてルースのろ過モデルのパラメータを同定したが、本実施例では数1で示したルースのろ過モデルのパラメータのうち、「単位ろ液量に対して得られるケークの体積c」を原水水質の情報に基づいて求める。
In Example 1, the parameters of the loose filtration model were identified using the membrane filtration processing apparatus
ケークの体積cの値は、原水の濁度,有機物,溶解性Mn濃度と関係がある。最も単純なケークの体積cは、例えば原水の濁度をTu0 として数12で求められる。
The value of the volume c of the cake is related to the turbidity of raw water, organic matter, and soluble Mn concentration. The simplest cake volume c can be obtained, for example, by
あるいは、膜ろ過水の濁度をTufとすると数13で求められ、数13の方がより正確である。
Alternatively, if the turbidity of the membrane filtration water is Tuf, it can be obtained by
紫外線吸光度E260で計測した有機物濃度指標や溶解性Mn濃度との相関関係を使い、同様にケークの体積cの値を推算しても良い。これ以外の水質項目や水温,pHなどによってもケークの体積cの値が異なることもあるが、その場合には係数k5を同定することで対応可能である。 Similarly, the value of the volume c of the cake may be estimated using the correlation with the organic matter concentration index and the soluble Mn concentration measured by the ultraviolet absorbance E260. Other water quality and temperature, there is a value of the volume c cake differ also depending on the pH, in which case it is possible to cope by identifying coefficient k 5.
数1におけるこれ以外のパラメータである抵抗係数kとろ過定数V0は、論理的には原水水質に依存しないため、膜ろ過処理装置10の運転開始時あるいは膜モジュール交換時に決定することができる。これらの値は膜パラメータのインタフェイス24から膜ろ過処理費の低減運転操作量の算出手段17に与えられる。この結果、数1の右辺の定数と係数が全て与えられることになり、dVf/dtの値は、ろ過時の膜間差圧Pfとろ過開始後のろ液総量Vfの関数として計算できる。同様にして、数2から数11までを計算することができる。
Since the resistance coefficient k and the filtration constant V 0 , which are other parameters in
経済性の面から、電力量料金Coの値は小さいことが望ましい。数9,数10からも分かるように、電力量料金Coはろ過時間tf,tv、逆洗時間tb,tu、ろ過用ポンプの吐出圧力Pfp,逆洗用ポンプの吐出圧力Pbpにより値が変動する。これらの項目の中で、ろ過時間tf,tvと逆洗時間tb,tuは装置スペックなどによる制約が少ないため、運転操作量として変更しやすい項目である。
From the economical aspect, it is desirable that the value of the electricity charge Co is small. As can be seen from
そこで、電力量料金Coを評価指標として、少なくともろ過時間tf,tvと逆洗時間tb,tuを最適化する最適解探索アルゴリズムを算出手段17に備える。 Therefore, the calculation means 17 includes an optimal solution search algorithm that optimizes at least the filtration times tf and tv and the backwash times tb and tu using the electric energy charge Co as an evaluation index.
探索アルゴリズムには総当り法,遺伝アルゴリズム,非線形計画法,最急勾配法などの数学的手段を使っても良いし、予め設定した複数の運転パターンから最適な1つを選択する手段でも良い。ただし、数7で示した実ろ過水量が計画水量情報16を満足することが前提条件となる。
As the search algorithm, mathematical means such as brute force method, genetic algorithm, nonlinear programming method, steepest gradient method, or the like may be used, or means for selecting an optimum one from a plurality of preset operation patterns. However, it is a precondition that the actual filtered water amount shown in Equation 7 satisfies the planned
電力量料金Coの値を最小化できるように求められた操作量が本実施例で述べる膜ろ過処理装置の推奨運転操作量であり、そのときの電力量料金Coが膜ろ過処理費情報に相当する。 The operation amount obtained so as to minimize the value of the electric energy charge Co is the recommended operation amount of the membrane filtration processing apparatus described in this embodiment, and the electric energy charge Co at that time corresponds to the membrane filtration processing cost information. To do.
本実施例ではルースのろ過モデルに基づき、ろ過時間tf,tvと逆洗時間tb,tuを適正化する一例を示したが、このアルゴリズムに限定されない。過去の実績運転データを用いて同様の指標、すなわち膜ろ過水の単位量を得るための費用を算出し、そのデータを基にろ過時間tf,tvと逆洗時間tb,tuを適正化するアルゴリズムを用いても良い。 In this embodiment, an example of optimizing the filtration times tf and tv and backwash times tb and tu based on the loose filtration model is shown, but the present invention is not limited to this algorithm. An algorithm for calculating the same index, that is, the cost for obtaining a unit amount of membrane filtrate using past operation data, and optimizing the filtration time tf, tv and the backwash time tb, tu based on the data May be used.
このようにして求めた膜ろ過処理装置の推奨運転操作量情報20は、表示装置21に表示される。操作員はそれを見て膜ろ過処理装置10の運転条件のうち、ろ過時間,逆洗時間の設定値を調整する。
The recommended
膜ろ過処理装置の推奨運転操作量情報20には、膜ろ過水の単位量を得るための費用を最小化する情報は少なくとも含まれるが、それ以外の候補や現状の操作量も比較できる画面であればなお良い。また、洗浄流量予測情報18とろ過流量予測情報19も画面に表示する。これらの情報には、少なくとも膜ろ過水の単位量を作るために必要な電力量料金、あるいは計画水量を膜ろ過した際に必要な費用が含まれる。
The recommended
なお、実施例1と同様に、上述した計算で求めたろ過時間tf,tvと逆洗時間tb,tuの適正値に基づいて膜ろ過処理装置10を自動運転しても良い。
Similar to the first embodiment, the
実施例2によれば、原水の水質情報に基づき、ろ過水単位量を製造するために必要な動力費を最小化できる膜ろ過処理装置10の推奨運転条件を操作員に提示することが可能となる。
According to Example 2, based on the water quality information of the raw water, it is possible to present to the operator recommended operating conditions of the
本発明の実施例3を図4により説明する。図4は本実施例の現状運転情報及び原水水質情報に基づいた膜ろ過処理装置の運転支援装置の構成図である。 A third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a configuration diagram of the operation support device of the membrane filtration apparatus based on the current operation information and raw water quality information of the present embodiment.
本実施例では、実施例1で述べた膜ろ過処理装置の現状運転情報11と実施例2で述べた膜ろ過処理原水水質情報22を併用して、「抵抗係数k」「ろ過定数V0 」「単位ろ液量に対して得られるケークの体積c」を同定する。同定に用いる情報が増加することで、パラメータの推定精度を向上することができる。
In the present embodiment, the
同定には、例えば、異なる2時刻の膜間差圧とろ過流量の値から求めた「単位ろ液量に対して得られるケークの体積c」と濁度あるいは紫外線吸光度の関数に基づき求めた「単位ろ液量に対して得られるケークの体積c」の値の平均値、あるいは案分した値を使用する方法がある。 For the identification, for example, “a cake volume c obtained per unit filtrate amount” obtained from values of transmembrane pressure difference and filtration flow rate at two different times and a function of turbidity or ultraviolet absorbance. There is a method of using an average value or a prorated value of the value of the cake volume c ”obtained per unit filtrate amount.
また、濁度あるいは紫外線吸光度から求めた「単位ろ液量に対して得られるケークの体積c」の値を固定値とし、異なる2時刻の膜間差圧とろ過流量の値から「抵抗係数k」と「ろ過定数V0 」の同定値を得ることが可能となる。 In addition, the value of “cake volume c obtained per unit filtrate amount” obtained from turbidity or ultraviolet absorbance is set as a fixed value, and “resistance coefficient k” is calculated from the values of transmembrane pressure difference and filtration flow rate at two different times. ”And“ filtration constant V 0 ”can be obtained.
これらの値を用いて数1から数11までを計算する。算出手段17に備えた最適解探索アルゴリズムを用いることで、電力量料金Coの値を最小化するろ過時間tf,tvと逆洗時間tb,tuを計算することができる。ただし、数7で示した実ろ過水量が計画水量情報16を満足することが前提条件となる。電力量料金Coの値を最小化するように求められた操作量は、本実施例で述べる膜ろ過処理装置の推奨運転操作量に相当する。
Using these values,
実施例3によれば、現実をより正確に模擬した膜ろ過処理装置推奨運転操作量20及び洗浄流量予測情報18とろ過流量予測情報19を出力することができる。
According to the third embodiment, it is possible to output the membrane filtration processing device recommended
本発明の実施例4を図5により説明する。図5は、現状運転情報,原水水質情報およびメンテナンス情報に基づいた運転支援するための膜ろ過処理装置の運転支援装置の構成図である。 A fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a configuration diagram of an operation support device of a membrane filtration apparatus for operation support based on current operation information, raw water quality information, and maintenance information.
膜ろ過処理にかかる経費は動力費の他に、膜の薬品洗浄で発生する薬品洗浄コストがある。また、長期的には膜モジュールの交換作業が発生し、膜モジュールの交換作業にもコストがかかる。本実施例は、これらの薬品洗浄コストと膜モジュール交換コストを含んだ膜ろ過処理装置のメンテナンス情報41を考慮して、コストを最小となるような運転操作量を操作員に提示するものである。
In addition to the power cost, the cost for the membrane filtration treatment includes chemical cleaning cost generated by chemical cleaning of the membrane. Further, in the long term, the replacement work of the membrane module occurs, and the replacement work of the membrane module is costly. In this embodiment, the amount of operation operation that minimizes the cost is presented to the operator in consideration of the
膜ろ過処理装置のメンテナンス情報41は、回線経由でデータベースなどから自動的に入力される、あるいは操作員が膜ろ過処理装置のインタフェイス40を介して入力するようにしても良い。ここで、想定している膜ろ過処理装置のメンテナンス情報41の例としては、(1)薬品洗浄頻度:xヶ月に1回、(2)薬品洗浄コスト:xxx万円/回、(3)膜モジュール交換時期:x年経過後、(4)膜モジュール交換コスト:xxx万円/回などがある。
The
膜ろ過水の単位量を得るために必要な電力量料金Coに加えて、薬品洗浄コストと膜モジュール交換コストを考慮した運転維持管理コストCo_totalは数14で示される。
In addition to the electricity charge Co required to obtain the unit amount of membrane filtrate, the operation and maintenance cost Co_total considering the chemical cleaning cost and the membrane module replacement cost is expressed by
ここで、Co_chemは薬品洗浄コスト、Tchemは薬品洗浄間隔、Co_chgは膜モジュール交換コスト、Tchgは膜モジュール交換間隔である。 Here, Co_chem is a chemical cleaning cost, Tchem is a chemical cleaning interval, Co_chg is a membrane module replacement cost, and Tchg is a membrane module replacement interval.
薬品洗浄間隔と膜モジュール交換間隔が一定である場合には、膜ろ過処理費情報として数14で示す運転維持管理コストCo_totalを表示装置21に出力する。
When the chemical cleaning interval and the membrane module replacement interval are constant, the operation maintenance management cost Co_total shown in
この運転維持管理コストCo_totalを評価指標としたろ過時間tf及び逆洗時間tbの最適解探索アルゴリズムを膜ろ過処理費の低減運転操作量の算出手段17に備える。探索アルゴリズムには総当り法,遺伝アルゴリズム,非線形計画法,最急勾配法などの数学的手段を使っても良いし、予め設定した複数の運転パターンから最適な1つを選択する手段でも良い。ただし、数7で示した実ろ過水量が計画水量情報16を満足することが前提条件となる。本実施例で述べる膜ろ過処理装置推奨運転操作量は運転維持管理コストCo_totalの値を最小化できるように求められた操作量に相当する。
An optimum solution search algorithm for the filtration time tf and the backwash time tb using the operation maintenance cost Co_total as an evaluation index is provided in the
このように、実施例4では動力費に加えて膜モジュール交換コストと薬品洗浄コストを考慮した膜ろ過処理費の情報を操作員に提示することが可能となる。 Thus, in Example 4, in addition to the power cost, it is possible to present information on the membrane filtration processing cost considering the membrane module replacement cost and the chemical cleaning cost to the operator.
本発明の実施例5を図6により説明する。図6は、現状運転情報,原水水質情報及びメンテナンス情報に基づいた計算により、膜ろ過処理装置の運転を支援するとともに、薬品洗浄時期を表示する膜ろ過処理装置の運転支援装置の構成図である。 A fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a configuration diagram of the operation support device of the membrane filtration processing apparatus that supports the operation of the membrane filtration processing apparatus and displays the chemical cleaning time by calculation based on the current operation information, raw water quality information, and maintenance information. .
本実施例は、薬品洗浄間隔が一定に定められていない場合に、薬品洗浄時期の予測手段50により、逆洗工程終了直後の膜間差圧の時間的変化をモデル化した連続関数、膜ろ過処理装置における膜の薬品洗浄終了直後の膜間差圧の時間的変化をモデル化した連続関数を用いて、膜ろ過処理装置における膜の薬品洗浄予測時期を予測して出力する。また、薬品洗浄コストを含めて膜ろ過装置の運転操作量を適正化する。 In the present embodiment, when the chemical cleaning interval is not fixed, the continuous function, in which the time change of the transmembrane pressure difference immediately after the backwashing process is modeled by the chemical cleaning time prediction means 50, membrane filtration Using a continuous function that models the temporal change in the transmembrane pressure difference immediately after the chemical cleaning of the membrane in the processing apparatus, the predicted chemical cleaning time of the membrane in the membrane filtration processing apparatus is predicted and output. In addition, the amount of operation of the membrane filtration device including the chemical cleaning cost will be optimized.
想定している膜ろ過処理装置のメンテナンス情報41の例としては、(1)薬品洗浄時期:逆洗工程直後の膜間差圧が所定の値以上となった場合、(2)薬品購入+廃液処理コスト:xxx万円/回などがある。
Examples of
逆洗直後の膜間差圧に基づいて薬品洗浄を実施する場合には、逆洗直後の膜間差圧ができるだけ上昇しないようにろ過および逆洗運転を実施することで薬品洗浄頻度を低減でき、薬品洗浄コストを抑制することが可能となる。 When chemical cleaning is performed based on the transmembrane differential pressure immediately after backwashing, the frequency of chemical cleaning can be reduced by performing filtration and backwashing operations so that the transmembrane differential pressure immediately after backwashing does not increase as much as possible. It is possible to reduce the chemical cleaning cost.
逆洗直後の膜間差圧ができるだけ上昇しないような運転は、「逆洗直後の膜間差圧予測モデル」を構築し、そのモデルを用いた予測計算に従うことで実現できる。この「逆洗直後の膜間差圧予測モデル」の例を以下に述べる。 An operation in which the transmembrane pressure difference immediately after backwashing does not increase as much as possible can be realized by constructing a “transmembrane pressure differential prediction model immediately after backwashing” and following the prediction calculation using that model. An example of this “transmembrane differential pressure prediction model immediately after backwashing” will be described below.
図7は、逆洗直後のろ過流量モデルの説明図である。図7(1)は、定量ろ過を実施している膜ろ過処理装置の膜間差圧の変化を模式的に示したものである。ろ過工程では、ろ過時間経過に従って膜間差圧が上昇するが、逆洗工程を経ると膜面に付着したケークが除去されるため膜間差圧は一旦減少する。この逆洗直後の膜間差圧が次のろ過工程の初期値となり、再度ろ過時間経過に伴って膜間差圧は上昇する。 FIG. 7 is an explanatory diagram of a filtration flow rate model immediately after backwashing. FIG. 7 (1) schematically shows the change in the transmembrane pressure difference of the membrane filtration apparatus performing quantitative filtration. In the filtration process, the transmembrane pressure difference increases as the filtration time elapses. However, the transmembrane pressure difference temporarily decreases because the cake attached to the membrane surface is removed after the backwash process. The transmembrane pressure difference immediately after this backwashing becomes the initial value of the next filtration step, and the transmembrane pressure difference increases again as the filtration time elapses.
しかし、逆洗を実施しても、膜表面あるいは細孔には少しずつ付着物が蓄積する。この影響で、ばらつきはあるが、逆洗直後の膜間差圧は徐々に上昇する。一般的には、この逆洗直後の膜間差圧が設定値以上になると薬品洗浄を実施するが、設定値が全体のコストから考えて最適である保証はない。 However, even if backwashing is performed, deposits gradually accumulate on the membrane surface or pores. Due to this influence, there is variation, but the transmembrane pressure difference immediately after backwashing gradually increases. In general, chemical cleaning is performed when the transmembrane pressure difference immediately after backwashing exceeds a set value, but there is no guarantee that the set value is optimal in view of the overall cost.
逆洗直後の膜間差圧は、時間的には図7(2)に示すように離散値となる。この離散値を数式として模擬できるような関数があれば、将来の「逆洗直後の膜間差圧」を予測できるため、将来を予め見越して、一日単位でのろ過工程と逆洗工程の分離化された時間においてある膜間差圧の設定値以上時に全体のコストを最小にできるようなろ過時間,逆洗時間の切替えを行うことができる。また、薬品洗浄の予測時期も出力することが可能となる。 The transmembrane pressure difference immediately after backwashing takes a discrete value as shown in FIG. If there is a function that can simulate this discrete value as a mathematical expression, the future “transmembrane pressure difference immediately after backwashing” can be predicted. It is possible to switch between the filtration time and the backwash time so that the entire cost can be minimized when the transmembrane pressure difference exceeds a set value in the separation time. It is also possible to output the predicted time for chemical cleaning.
「逆洗直後の膜間差圧」を予測するための連続関数の模式図を図7(3)に示す。逆洗工程で除去できない蓄積物が徐々に膜面に蓄積する現象は、ろ過工程時にケークが膜面に蓄積するメカニズムと相似している。そこで、例えば数1で示したルースのろ過モデルと同型の方程式を仮定したモデルを数15,数16で構築する。
FIG. 7 (3) shows a schematic diagram of a continuous function for predicting “transmembrane differential pressure immediately after backwashing”. The phenomenon in which accumulated substances that cannot be removed by the backwashing process gradually accumulate on the membrane surface is similar to the mechanism by which cake accumulates on the membrane surface during the filtration process. Therefore, for example, models assuming the same type of equations as the loose filtration model shown in
ここで、Vfbは逆洗直後のろ過流量、Aは膜面積、k7 は抵抗係数、Pfbは逆洗直後の膜間差圧、c&aposは単位ろ液量に対する強付着性ケーク比率、μは水の粘性係数、Vfsumは前回薬品洗浄後のろ液総量、V0 はろ過定数である。 Here, Vfb filtration flow rate immediately after backwashing, A is membrane area, k 7 is resistance coefficient, Pfb the transmembrane pressure just after backwashing, c & apos is strongly adherent cake ratio units filtrate volume, mu water Vfsum is the total amount of filtrate after the previous chemical cleaning, and V 0 is the filtration constant.
数15,数16の「抵抗定数k7」,「ろ過定数V0」,「単位ろ液量に対する強付着性ケーク比率c&apos」は、膜ろ過処理装置の現状運転情報11、膜ろ過処理原水水質情報22のうちの少なくとも1つを用いて同定できる。結果として、数15は、逆洗後のろ過流量,膜間差圧,ろ液総量の関係を示す関数となる。従って、「逆洗直後の膜間差圧」を予測計算でき、逆洗直後の膜間差圧が所定の値に達するまでの時間Tchemも求めることができる。
The “resistance constant k 7 ”, “filtration constant V 0 ”, and “strong adhesion cake ratio c & apos” with respect to the unit filtrate amount are the
以上の計算アルゴリズムは、薬品洗浄時期の予測手段50および算出手段17を介して操作員に提示される。 The above calculation algorithm is presented to the operator via the chemical cleaning time prediction means 50 and the calculation means 17.
逆洗工程で除去できない強付着性ケークの存在によって、逆洗直後の膜間差圧の値が変わるため、その後のろ過時の現象を模擬した数1の「ろ過抵抗係数k」あるいは「ろ過定数V0 」の値もその都度変わることになる。数15で算出した「逆洗直後の膜間差圧」の予測値に基づけば、「ろ過抵抗係数k」あるいは「ろ過定数V0 」を推算できる。
The value of the transmembrane pressure difference immediately after backwashing changes due to the presence of a strong adhesive cake that cannot be removed by the backwashing process. Therefore, the “filtration resistance coefficient k” or “filtration constant” of
例えば、「逆洗直後の膜間差圧」の予測値が前回の1.01 倍であったとする。簡単のため、これを全て数1の「ろ過抵抗係数k」に転嫁すると、kの値が1.01 倍になったとみなせる。この割合は逆洗工程でも同等で、逆洗工程を記述する数4の「逆洗時抵抗係数k3」の値も1.01倍になるとみなせる。この係数の値を用いて計算することにより、膜ろ過水の単位量を得るために必要な電力量料金Coが算出できる。これに加えて、薬品洗浄コストを考慮した運転維持管理コストCo_pow_chemは数17で求まる。
For example, assume that the predicted value of “transmembrane pressure difference immediately after backwashing” is 1.01 times the previous value. For the sake of simplicity, if this is all passed to the “filtration resistance coefficient k” of
運転維持管理コストCo_pow_chemの値は、ろ過時間tfおよび逆洗時間tbによって値が変動するが、経済性の面から、この値は小さいことが望ましい。 The value of the operation and maintenance cost Co_pow_chem varies depending on the filtration time tf and the backwash time tb, but it is desirable that this value is small from the viewpoint of economy.
そこで、ろ過時間tf,tvおよび逆洗時間tb,tuの最適解探索アルゴリズムを算出手段17に備える。探索アルゴリズムには総当り法,遺伝子アルゴリズム,非線形計画法,最急勾配法などの数学的手段を使っても良いし、予め設定した複数の運転パターンから最適な1つを選択する手段でも良い。ただし、数7で示される実ろ過水量が計画水量情報16を満足することが必要である。
Therefore, the calculation means 17 includes an optimum solution search algorithm for the filtration times tf and tv and the backwash times tb and tu. As the search algorithm, mathematical means such as brute force method, genetic algorithm, nonlinear programming method, steepest gradient method, or the like may be used, or means for selecting an optimum one from a plurality of preset operation patterns. However, it is necessary that the actual filtered water amount expressed by Equation 7 satisfies the planned
このように、実施例5によれば、薬品洗浄コストと動力費を総合的に考慮した最適な運転条件、及び薬品洗浄の予測時期を操作員に提示することが可能となる。 As described above, according to the fifth embodiment, it is possible to present to the operator the optimum operating conditions that comprehensively consider the chemical cleaning cost and the power cost, and the predicted timing of chemical cleaning.
本発明の実施例6を図8により説明する。図8は、現状運転情報,原水水質情報およびメンテナンス情報に基づいた計算により、膜ろ過処理装置の運転を支援するとともに、薬品洗浄時期と膜交換時期を表示する膜ろ過処理装置の運転支援装置の構成図である。 A sixth embodiment of the present invention will be described with reference to FIG. FIG. 8 shows the operation of the membrane filtration processing device operation support device that displays the chemical cleaning time and the membrane replacement time as well as supporting the operation of the membrane filtration processing device by calculation based on the current operation information, raw water quality information and maintenance information. It is a block diagram.
本実施例では、膜ろ過処理装置において膜モジュール交換間隔が一定に定められていない場合に、膜交換時期の予測手段60により次の交換時期を予測して表示し、膜モジュール交換コストを含めて膜ろ過処理装置の運転操作量を適正化する。 In this embodiment, when the membrane module replacement interval is not fixed in the membrane filtration apparatus, the membrane replacement time predicting means 60 predicts and displays the next replacement time, and includes the membrane module replacement cost. Optimize the amount of operation of the membrane filtration device.
想定している膜ろ過処理装置メンテナンス情報41の例は、(1)膜モジュール交換時期:薬品洗浄直後の膜間差圧が所定の値以上となった場合、(2)膜モジュール交換コスト:xxx万円/回などである。
Examples of the assumed membrane filtration treatment
薬品洗浄直後の膜間差圧に基づいて膜モジュールを交換する場合には、薬品洗浄直後の膜間差圧ができるだけ上昇しないようにする運転は、「薬品洗浄直後の膜間差圧予測モデル」を構築し、そのモデルを用いた予測計算を用いることで実現できる。この「薬品洗浄直後の膜間差圧予測モデル」の例を以下に述べる。 When replacing a membrane module based on the transmembrane differential pressure immediately after chemical cleaning, the operation to prevent the transmembrane differential pressure immediately after chemical cleaning from increasing as much as possible is the "transmembrane differential pressure prediction model immediately after chemical cleaning" Can be realized by using the prediction calculation using the model. An example of this “transmembrane pressure difference prediction model immediately after chemical cleaning” will be described below.
図9は、薬品洗浄直後のろ過流量モデルの説明図である。図9(1)は、薬品洗浄後の膜間差圧の時間的変化を模式的に示したものである。ろ過工程と逆洗工程を繰り返して膜ろ過処理装置を運転していると、運転時間に伴い膜間差圧が上昇するが、薬品洗浄工程を経ると膜面に付着したケークが除去されるため膜間差圧は一旦減少する。 FIG. 9 is an explanatory diagram of a filtration flow rate model immediately after chemical cleaning. FIG. 9 (1) schematically shows a temporal change in transmembrane pressure difference after chemical cleaning. When the membrane filtration treatment device is operated by repeating the filtration step and backwashing step, the transmembrane pressure difference increases with the operating time, but the cake adhering to the membrane surface is removed after the chemical washing step. The transmembrane pressure decreases once.
この薬品洗浄直後の膜間差圧が次のろ過工程の初期値となり、再度ろ過時間経過に伴って膜間差圧は上昇する。 The transmembrane pressure difference immediately after this chemical cleaning becomes the initial value of the next filtration step, and the transmembrane pressure pressure increases as the filtration time elapses again.
しかし、薬品洗浄を実施しても、膜表面あるいは細孔には少しずつ付着物が蓄積する影響で、ばらつきはあるが、薬品洗浄直後の膜間差圧は徐々に上昇する。一般的には、この薬品洗浄直後の膜間差圧が設定値以上になると膜の交換を実施するが、設定値が全体のコストから考えて最適な値となっている保証は無い。 However, even when chemical cleaning is performed, the pressure difference between the membranes immediately after chemical cleaning gradually increases, although there is a variation due to the effect of deposits gradually accumulating on the membrane surface or pores. In general, when the transmembrane pressure difference immediately after chemical cleaning exceeds a set value, the membrane is replaced. However, there is no guarantee that the set value is an optimum value in view of the overall cost.
薬品洗浄直後の膜間差圧は、時間的には図9(1)に示すように離散値となる。この離散値を数式として模擬できるような連続関数があれば、将来の「薬品洗浄直後の膜間差圧」を予測できるため、将来を見越して、全体のコストが最小となるようなろ過時間、逆洗時間を計算により求めることができる。また、膜モジュール交換の予測時期も出力することが可能となる。 The transmembrane pressure difference immediately after chemical cleaning becomes a discrete value as shown in FIG. 9 (1). If there is a continuous function that can simulate this discrete value as a mathematical expression, the future "transmembrane differential pressure immediately after chemical cleaning" can be predicted, so that the filtration time that minimizes the overall cost in anticipation of the future, The backwash time can be determined by calculation. It is also possible to output the predicted time for membrane module replacement.
「薬品洗浄直後の膜間差圧」を予測するための連続関数の模式図を図9(2)に示す。薬品洗浄工程で除去できない蓄積物が徐々に膜面に蓄積する現象は、ろ過工程時にケークが膜面に蓄積するメカニズムと相似している。そこで、例えば数1で示したルースのろ過モデルと同型の方程式を仮定したモデルを数18,数19で構築する。
A schematic diagram of a continuous function for predicting “transmembrane pressure difference immediately after chemical cleaning” is shown in FIG. The phenomenon that accumulations that cannot be removed by the chemical cleaning process gradually accumulate on the membrane surface is similar to the mechanism by which cake accumulates on the membrane surface during the filtration process. Therefore, for example, models assuming the same type of equations as the loose filtration model expressed by
ここで、Vf_chemは薬品洗浄直後のろ過流量、Aは膜面積、k8 は抵抗係数、Pf_chemは薬品洗浄直後の膜間差圧、c''は単位ろ液量に対する耐薬品性ケーク比率、μは水の粘性係数、Vf_totalは膜モジュール使用開始後のろ液総量、V0 はろ過定数である。 Here, Vf_chem is a filtration flow rate immediately after chemical cleaning, A is a membrane area, k 8 is a resistance coefficient, Pf_chem is a transmembrane pressure difference immediately after chemical cleaning, c '' is a chemical-resistant cake ratio per unit filtrate amount, μ is the viscosity coefficient of water, Vf_total is the total amount of filtrate after the start of use of the membrane module, and V 0 is the filtration constant.
数18,数19の「抵抗係数k8」,「ろ過定数V0」,「単位ろ液量に対する耐薬品性ケーク比率c''」は、膜ろ過処理装置の現状運転情報11,膜ろ過処理原水水質情報22の少なくとも1つを用いて同定できる。「薬品洗浄直後の膜間差圧の値が変わるため、その後の逆洗直後の膜間差圧」予測計算が実現でき、薬品洗浄直後の膜間差圧がある定められた値に達するまでの時間Tchgも求めることができる。
“Resistivity coefficient k 8 ”, “Filtration constant V 0 ”, and “Chemical resistance cake ratio c ''” per unit filtrate amount are the
以上の計算アルゴリズムは、膜交換時期の予測手段60および算出手段17に備えられる。求められた膜交換予測時期情報61は、表示装置21を介して操作員に提示される。
The above calculation algorithm is provided in the membrane exchange time prediction means 60 and the calculation means 17. The obtained membrane exchange
薬品洗浄で除去できない耐薬品性ケークの存在によって、薬品洗浄後の膜間差圧の値が変わるため、その後の逆洗直後の膜間差圧を記述する数14の「抵抗係数k7 」あるいは「ろ過定数V0 」の値を推算できる。
Since the value of the transmembrane differential pressure after chemical cleaning changes due to the presence of a chemical-resistant cake that cannot be removed by chemical cleaning, the “resistance coefficient k 7 ” of
「薬品洗浄直後の膜間差圧」の予測値に基づけば、数14の「抵抗係数k7 」の値を推算できる。例えば、「薬品洗浄直後の膜間差圧」の予測値が前回の1.01倍であったとする。簡単のためこれを全て数14の「抵抗係数k7」に転嫁するとk7の値が前回の1.01倍になったとみなせる。この係数の値を用いて計算することで、膜ろ過水の単位量を得るために必要な電力量料金Coが算出できる。これに加えて、薬品洗浄コストと膜モジュール交換コストを考慮した運転維持管理コストCo_totalは、数20で示される。
Based on the predicted value of “transmembrane differential pressure immediately after chemical cleaning”, the value of “resistance coefficient k 7 ” in
ここで、Co_chemは薬品洗浄コスト、Tchemは薬品洗浄頻度、Co_chgは膜モジュール交換コスト、Tchg:膜モジュール交換頻度である。 Here, Co_chem is the chemical cleaning cost, Tchem is the chemical cleaning frequency, Co_chg is the membrane module replacement cost, and Tchg is the membrane module replacement frequency.
運転維持管理コストCo_totalの値は、ろ過時間tf,tvおよび逆洗時間tb,tuの設定値によって変動するが、経済性の面から小さいことが望ましい。そこで、ろ過時間tf,tvおよび逆洗時間tb,tuの最適解探索アルゴリズムを算出手段17に備える。 The value of the operation and maintenance cost Co_total varies depending on the set values of the filtration times tf and tv and the backwash times tb and tu, but is preferably small in terms of economy. Therefore, the calculation means 17 includes an optimum solution search algorithm for the filtration times tf and tv and the backwash times tb and tu.
探索アルゴリズムには総当り法,遺伝子アルゴリズム,非線形計画法,最急勾配法などの数学的手段を使っても良いし、あらかじめ設定した複数の運転パターンから最適な1つを選択する手段でも良い。ただし、数7で示される実ろ過水量が計画水量情報16を満足することが前提条件となる。
As the search algorithm, mathematical means such as brute force method, genetic algorithm, nonlinear programming method, steepest gradient method or the like may be used, or means for selecting an optimal one from a plurality of preset operation patterns may be used. However, it is a precondition that the actual filtered water amount represented by Equation 7 satisfies the planned
このように、本実施例によれば、膜モジュールの交換コスト,薬品洗浄コスト,動力費を総合的に考慮した最適な運転条件および膜モジュールの交換予測時期を操作員に提示することが可能となる。 As described above, according to the present embodiment, it is possible to present to the operator the optimum operating conditions and the expected replacement time of the membrane module in consideration of the membrane module replacement cost, the chemical cleaning cost, and the power cost. Become.
本発明の実施例7を図10により説明する。図10は、現状運転情報と前処理装置原水水質情報に基づいた計算により、膜ろ過処理装置とその前段の前処理装置の運転を支援する膜ろ過処理装置の運転支援装置の構成図である。 A seventh embodiment of the present invention will be described with reference to FIG. FIG. 10 is a configuration diagram of the operation support device of the membrane filtration treatment device that supports the operation of the membrane filtration treatment device and the pretreatment device in the previous stage by calculation based on the current operation information and the raw water quality information of the pretreatment device raw water.
膜ろ過処理装置10は、単独で用いられることもあるが、原水を河川など表流水から取水している浄水場の場合には、凝集処理,凝集沈澱処理,凝集沈殿ろ過処理,高速繊維ろ過処理など濁度を除去する性能を有する前処理装置81と組み合わせて用いられることが多い。
The
濁質は、前処理装置81でも膜ろ過処理装置10でも除去できるため、前処理装置81で十分除去して膜ろ過処理装置10へ水質負荷を低減する方法や、前処理装置81で処理を軽減し、膜ろ過処理装置10に負荷をかける方法など運転方法の選択肢がある。本実施例は、前処理装置81と膜ろ過処理装置10の負荷配分を適正化して、プラント全体の処理費用の合計が最小となるようにするものである。
The turbidity can be removed by either the
前処理装置81に流入する原水の水質情報は、前処理装置の原水水質情報のインタフェイス70を介し、電子化された前処理装置の原水水質情報71を前処理装置の水質,費用の算出手段76に入力する。
The raw water quality information flowing into the
原水の水質情報の具体例としては、濁度,水温,溶解性有機物濃度などがある。前処理装置の原水水質情報のインタフェイス70への水質情報の水質情報の与え方は、操作員が入力する場合と自動計測機器の電子情報を入力する場合とがある。
Specific examples of raw water quality information include turbidity, water temperature, and dissolved organic matter concentration. The water quality information is given to the
前処理装置の水質,費用の算出手段76で用いるアルゴリズムは、予め蓄積していたテーブルに基づいて計算するアルゴリズムでも良いし、物理化学現象をモデル化したシミュレータによる計算アルゴリズムでも良い。前処理装置の出口水質情報74は、膜ろ過処理装置10の原水水質情報と同じであり、膜ろ過処理水の原水水質情報のインタフェイス70に入力される。
The algorithm used in the water quality and cost calculation means 76 of the pretreatment device may be an algorithm that is calculated based on a previously stored table, or may be a calculation algorithm based on a simulator that models a physicochemical phenomenon. The outlet
一方、前処理費情報75は総合処理費の判断手段77に与えられる。これに加えて膜ろ過処理費情報20も与えられた総合処理費の判断手段77は、前処理費情報75と膜ろ過処理費情報20の和が最小の費用であるかを判断する。そして和がより小さくなるように、少なくとも前処理装置81の運転条件を変更する内容の前処理装置の推奨運転操作量情報79を算出し、出力する。好ましくは、膜ろ過処理装置10の運転条件を変更する内容の膜ろ過処理装置の推奨運転操作量82を算出し、出力する。表示装置21には前処理装置の推奨運転操作量情報79と膜ろ過処理装置の推奨運転操作量情報82を表示する。
On the other hand, the
このように、本実施例によれば、前処理と膜ろ過処理を総合的に把握し、浄水システム全体としての処理費用を最小化できるような前処理装置81および膜ろ過処理装置10の運転条件を求めることが可能となる。
As described above, according to the present embodiment, the
本発明の実施例8を図11により説明する。図11は、現状運転情報と凝集沈殿処理装置の原水水質情報に基づいた計算により、膜ろ過処理装置および前段の凝集沈殿処理装置の運転を支援する膜ろ過処理装置の運転支援装置の構成図である。 An eighth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a configuration diagram of the operation support device of the membrane filtration treatment device that supports the operation of the membrane filtration treatment device and the preceding coagulation sedimentation treatment device based on the current operation information and the raw water quality information of the coagulation sedimentation treatment device. is there.
膜ろ過処理装置10は単独で用いられることもあるが、原水を河川など表流水から取水している浄水場の場合には、既存の凝集沈殿処理装置と組み合わせて用いられることがある。本実施例は、凝集沈殿処理と膜ろ過処理の負荷配分を適正化して、処理費用の合計が最小となるようにするものである。
Although the membrane
凝集沈殿処理装置101に流入する原水の水質情報は、凝集沈殿処理装置の原水水質のインタフェイス90を介し、電子化された凝集沈澱処理装置の原水水質情報91を凝集沈殿処理装置の水質,費用の算出手段96に入力する。原水の水質情報の具体例としては、濁度,水温,溶解性有機物濃度などがある。凝集沈澱処理装置の原水水質情報のインタフェイス90への水質情報の与え方は、操作員が入力する場合と自動計測機器の電子情報を入力する場合がある。
The quality information of the raw water flowing into the coagulation
算出手段96には、計画水量情報のインタフェイス15から計画水量情報16が与えられ、算出手段96には、凝集沈殿処理装置の運転条件設定手段92から凝集沈殿処理装置の運転条件情報93が与えられる。算出手段96では、凝集沈殿処理装置の原水水質情報91および計画水量情報16および凝集沈殿処理装置の運転条件93に基づき、凝集沈殿処理装置の出口水質情報94と凝集沈殿処理費情報95が出力される。算出手段96のアルゴリズムは、予め蓄積していたテーブルに基づいて計算するアルゴリズムでも良いし、物理化学現象をモデル化したシミュレータによる計算アルゴリズムでも良い。凝集沈殿処理装置の出口水質情報94は、膜ろ過処理装置10の原水水質情報と同じであり、膜ろ過処理の水源水水質情報のインタフェイス23に与えられる。
The calculation means 96 is provided with the planned
一方、凝集沈殿処理費情報95は総合処理費の判断手段77に与えられる。これに加えて、膜ろ過処理費情報20も与えられた総合処理費の判断手段77は、前処理費情報75と膜ろ過処理費情報20の和が最小の費用であるかを判断する。和がより小さくなるように、少なくとも前処理装置81の運転条件を変更する内容の前処理装置の推奨運転操作量情報79を算出し、出力する。好ましくは、膜ろ過処理装置10の運転条件を変更する内容の膜ろ過処理装置の推奨運転操作量82を表示する。
On the other hand, the coagulation sedimentation
このように、本実施例によれば、前処理と膜ろ過処理を総合的に把握し、浄水処理システム全体としての処理費用を最小化できるような前処理装置81および膜ろ過処理装置10の運転条件を求めることが可能となる。
Thus, according to the present embodiment, the
また、凝集沈澱処理費情報95に加えて膜ろ過処理費用20も与えられた総合処理費の判断手段77は、凝集沈殿処理費情報95と膜ろ過処理費情報20の和が最小の費用であるかを判断するようにしてもよい。そして和がより小さくなるように、少なくとも凝集沈殿処理装置101の運転条件を変更する内容の凝集沈殿処理装置の推奨運転操作量99を算出し、出力する。表示装置21には凝集沈殿処理装置の推奨運転操作量99と膜ろ過処理装置の推奨運転操作量82を表示する。
In addition, the total processing cost determination means 77 to which the membrane
このようにすることにより、凝集沈殿処理と膜ろ過処理を総合的に把握し、浄水処理システム全体としての処理費用を最小化できるような凝集沈殿処理装置101および膜ろ過処理装置10の運転条件を求めることが可能となる。
By doing in this way, the operating conditions of the coagulation
以上説明したように、各実施例によれば、膜ろ過処理を有する浄水場における水運用を一日単位で管理し、消費電力の低いろ過工程をろ過流量を水需要予測に併せ決定し、それを電力料金の高い昼間に行い、配水池の水位レベルを夜間に備え高くしておくことにより、消費電力の高い洗浄工程を電力料金の低い夜間に行い昼間の膜ろ過運転時に備え、昼間に溜めた浄水を配水し、一日単位での膜ろ過処理に使用する消費電力を小さくすることが可能である。 As described above, according to each embodiment, water operation in a water purification plant having membrane filtration treatment is managed on a daily basis, and a filtration process with low power consumption is determined along with the water demand forecast, During the daytime when the electricity rate is high and the water level of the reservoir is kept high at night, the washing process with high power consumption is done at night when the electricity rate is low, and it is stored during the daytime membrane filtration operation. It is possible to distribute the purified water and reduce the power consumption used for the membrane filtration process on a daily basis.
また、膜ろ過処理装置の運転制御のための処理費用を最大限、低減できる運転支援装置を実現できる。 In addition, it is possible to realize an operation support apparatus that can reduce the processing cost for operation control of the membrane filtration apparatus to the maximum.
膜ろ過処理工程における消費電力を一日単位で考えるため、膜ろ過処理工程のろ過工程と洗浄工程の時間帯別運用を考えることで膜ろ過処理における消費電量を極力少なくすることができる。 Since the power consumption in the membrane filtration process is considered on a daily basis, the power consumption in the membrane filtration process can be reduced as much as possible by considering the operation of the filtration process of the membrane filtration process and the washing process according to time zones.
10 膜ろ過処理装置
12,15,23,40,70,90 インタフェイス
14 配水池監視装置
17,76,96 算出手段
21 表示装置
50,60 予測手段
72,92 運転条件設定手段
77 判断手段
81 前処理装置
101 凝集沈殿処理装置
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007160842A JP2009000580A (en) | 2007-06-19 | 2007-06-19 | Operation support device for membrane filtration apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007160842A JP2009000580A (en) | 2007-06-19 | 2007-06-19 | Operation support device for membrane filtration apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009000580A true JP2009000580A (en) | 2009-01-08 |
Family
ID=40317560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007160842A Pending JP2009000580A (en) | 2007-06-19 | 2007-06-19 | Operation support device for membrane filtration apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009000580A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102999019A (en) * | 2011-09-14 | 2013-03-27 | 株式会社东芝 | Seawater desalination plant system |
CN103898942A (en) * | 2012-12-27 | 2014-07-02 | 株式会社日立制作所 | Water supply managing and supporting system |
WO2014198475A1 (en) * | 2013-06-14 | 2014-12-18 | Abb Ag | A method for forecasting instant of membrane cleaning and a system therefor |
WO2019244718A1 (en) * | 2018-06-18 | 2019-12-26 | 三菱電機株式会社 | Operation-assisting device and operation assistance method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312281A (en) * | 1989-06-09 | 1991-01-21 | Meidensha Corp | Filter basin washing control apparatus of water purification plant |
JPH11347573A (en) * | 1998-06-04 | 1999-12-21 | Nkk Corp | High-order water purifying method in water distribution basin and water distribution basin having water purifying treatment function |
JP2004329982A (en) * | 2003-04-30 | 2004-11-25 | Univ Nagoya | Method for determining filtering speed and apparatus for evaluating filtering speed candidate |
JP2006021093A (en) * | 2004-07-07 | 2006-01-26 | Hitachi Ltd | Operation support device for membrane filtration treatment device |
JP2006281092A (en) * | 2005-03-31 | 2006-10-19 | Toshiba Corp | Control device for membrane filtration equipment |
JP2007105644A (en) * | 2005-10-14 | 2007-04-26 | Hitachi Ltd | Operation controller and operation support device of membrane filtration apparatus |
-
2007
- 2007-06-19 JP JP2007160842A patent/JP2009000580A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312281A (en) * | 1989-06-09 | 1991-01-21 | Meidensha Corp | Filter basin washing control apparatus of water purification plant |
JPH11347573A (en) * | 1998-06-04 | 1999-12-21 | Nkk Corp | High-order water purifying method in water distribution basin and water distribution basin having water purifying treatment function |
JP2004329982A (en) * | 2003-04-30 | 2004-11-25 | Univ Nagoya | Method for determining filtering speed and apparatus for evaluating filtering speed candidate |
JP2006021093A (en) * | 2004-07-07 | 2006-01-26 | Hitachi Ltd | Operation support device for membrane filtration treatment device |
JP2006281092A (en) * | 2005-03-31 | 2006-10-19 | Toshiba Corp | Control device for membrane filtration equipment |
JP2007105644A (en) * | 2005-10-14 | 2007-04-26 | Hitachi Ltd | Operation controller and operation support device of membrane filtration apparatus |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102999019A (en) * | 2011-09-14 | 2013-03-27 | 株式会社东芝 | Seawater desalination plant system |
JP2013059743A (en) * | 2011-09-14 | 2013-04-04 | Toshiba Corp | Seawater desalination plant system |
US9120688B2 (en) | 2011-09-14 | 2015-09-01 | Kabushiki Kaisha Toshiba | Seawater desalination plant system |
CN103898942A (en) * | 2012-12-27 | 2014-07-02 | 株式会社日立制作所 | Water supply managing and supporting system |
WO2014198475A1 (en) * | 2013-06-14 | 2014-12-18 | Abb Ag | A method for forecasting instant of membrane cleaning and a system therefor |
WO2019244718A1 (en) * | 2018-06-18 | 2019-12-26 | 三菱電機株式会社 | Operation-assisting device and operation assistance method |
JPWO2019244718A1 (en) * | 2018-06-18 | 2020-12-17 | 三菱電機株式会社 | Driving support device and driving support method |
KR20210006984A (en) | 2018-06-18 | 2021-01-19 | 미쓰비시덴키 가부시키가이샤 | Driving assistance device and driving assistance method |
CN112334215A (en) * | 2018-06-18 | 2021-02-05 | 三菱电机株式会社 | Operation support device and operation support method |
CN112334215B (en) * | 2018-06-18 | 2022-08-23 | 三菱电机株式会社 | Operation support device and operation support method |
KR102497373B1 (en) | 2018-06-18 | 2023-02-07 | 미쓰비시덴키 가부시키가이샤 | Driving support device and driving support method |
US11790325B2 (en) | 2018-06-18 | 2023-10-17 | Mitsubishi Electric Corporation | Operation support device and operation support method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4982094B2 (en) | Membrane filtration controller | |
CA3077306C (en) | Method and apparatus to monitor and control a water system | |
CN100354031C (en) | Operation supporting device for ultrafiltration treatment device | |
Ferrero et al. | Automatic control systems for submerged membrane bioreactors: A state-of-the-art review | |
Chew et al. | Advanced process control for ultrafiltration membrane water treatment system | |
JP4906788B2 (en) | Monitoring and control system for water and sewage treatment plants | |
Kim et al. | Determination of MBR fouling and chemical cleaning interval using statistical methods applied on dynamic index data | |
US9120688B2 (en) | Seawater desalination plant system | |
JP2009000580A (en) | Operation support device for membrane filtration apparatus | |
JP4718873B2 (en) | Control device for membrane filtration equipment | |
JP7566667B2 (en) | Method and system for monitoring cleaning of a filtration device | |
JP2007105644A (en) | Operation controller and operation support device of membrane filtration apparatus | |
WO2007147198A1 (en) | Brine squeezer | |
JP5193884B2 (en) | Monitoring and control system for water supply facilities | |
CN101024134A (en) | Flocculent agent injection rate control method and controller | |
US20210248567A1 (en) | Operation support device and operation support method | |
KR20090067869A (en) | Automatic backwashing apparatus for sand filters by using flow rate change | |
WO2013093217A1 (en) | Method for improving the operation of a water desalination facility, in particular by reverse osmosis | |
KR101156592B1 (en) | Apparatus for water treatment filtration facility operation and method thereof | |
JP2021013891A (en) | Operation support device of water treatment plant | |
Al-Obaidi et al. | Simulation and optimisation of a medium scale industrial reverse osmosis desalination system | |
JP4309645B2 (en) | Flocculant injection control method and apparatus | |
CN1178737C (en) | Automatic back-washing method for multi-parallel high-flow filter | |
JP2021183318A (en) | Transmembrane pressure difference control apparatus | |
Karimanzira et al. | Cleaning Strategies and Cost Modelling of Experimental Membrane-based Desalination Plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090611 |
|
A977 | Report on retrieval |
Effective date: 20110127 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A02 | Decision of refusal |
Effective date: 20111025 Free format text: JAPANESE INTERMEDIATE CODE: A02 |