JP4963505B2 - 電圧変換装置及び電気負荷駆動装置 - Google Patents

電圧変換装置及び電気負荷駆動装置 Download PDF

Info

Publication number
JP4963505B2
JP4963505B2 JP2009180951A JP2009180951A JP4963505B2 JP 4963505 B2 JP4963505 B2 JP 4963505B2 JP 2009180951 A JP2009180951 A JP 2009180951A JP 2009180951 A JP2009180951 A JP 2009180951A JP 4963505 B2 JP4963505 B2 JP 4963505B2
Authority
JP
Japan
Prior art keywords
loop circuit
loop
switching element
circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009180951A
Other languages
English (en)
Other versions
JP2011036053A (ja
Inventor
浩市 水谷
隆之 内藤
耕一 山野上
茂樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009180951A priority Critical patent/JP4963505B2/ja
Priority to EP10739715.0A priority patent/EP2462685B1/en
Priority to US13/322,771 priority patent/US8829870B2/en
Priority to CN201080034427.3A priority patent/CN102474174B/zh
Priority to PCT/JP2010/062285 priority patent/WO2011016341A2/en
Publication of JP2011036053A publication Critical patent/JP2011036053A/ja
Application granted granted Critical
Publication of JP4963505B2 publication Critical patent/JP4963505B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Description

本発明は、インダクタンス成分を共有する第1ループ回路と第2ループ回路とを備える電圧変換装置及びこれを用いる電気負荷駆動装置に関する。
従来から、トランスの一次コイルに接続された一次側回路と、トランスの二次コイルに接続された二次側回路とを有するスイッチング電源回路において、一次側回路側の電極パターンと、二次側回路側の電極パターンとを対向して配置することで、当該電極パターン間の絶縁層をコンデンサ用の誘電体として機能させて等価的コンデンサを構成し、当該等価的コンデンサによりノイズ対策用のコンデンサを構成する技術が知られている(例えば、特許文献1参照)。
特開2005−110452号公報
ところで、トランスを用いない非絶縁型のDC−DCコンバータにおいては、例えば図1に示すように、インダクタンスLを共有すると共にそれぞれコンデンサC1,C2を有する第1ループ回路及び第2ループ回路を備え、第1又は第2ループ回路に設けられるスイッチング素子Q1又はQ2をON/OFF動作させることで電圧変換が実現される。このとき、第1及び第2コンデンサは、DC−DCコンバータの出力電圧を平滑化すると共に、DC−DCコンバータ回路の発生ノイズを低減する機能を有する。このような図1に示す回路構成は、一般的に、図2に示すように、プリント基板上に第1ループ回路及び第2ループ回路を同一面又は別面上に並べて配置することで実現される。
しかしながら、図1及び図2に示すような従来の回路構成では、例えばスイッチング素子Q1をON/OFF動作させるときに、第1ループ回路と第2ループ回路に交互に電流が流れるので、第1ループ回路を貫く磁界と、第2ループ回路を貫く磁界とが交互に発生する。このとき、第1ループ回路と第2ループ回路に流れる電流のそれぞれの向きは、図1の矢印に示すように逆方向であるので、第1ループ回路を貫く磁界と第2ループ回路を貫く磁界の方向は逆向きとなる。かかる構成では、スイッチング素子Q1の高速(短時間)のON/OFF動作に伴って向きが逆の磁界が高速(短時間)で交互に発生し、当該磁界の変動に起因したノイズが発生するという問題がある。
これに対して、第1ループ回路と第2ループ回路とが、それぞれのループ回路に対する法線方向で互いに対向するように、第1ループ回路と第2ループ回路をプリント基板の上面及び下面にそれぞれ配置すると(図7等参照)、第1ループ回路と第2ループ回路に形成される磁界変動に起因したノイズを効果的に低減することができる。即ち、かかるループ対向構成では、第1ループ回路を貫く磁界と第2ループ回路を貫く磁界の方向とを同一方向となり、第1ループ回路と第2ループ回路に形成される磁界変動に起因したノイズを効果的に低減することができる。
しかしながら、上述のような第1ループ回路と第2ループ回路が対向配置されるループ対向構成では、第1ループ回路と第2ループ回路のそれぞれにおけるスイッチング素子同士が、プリント基板の上面と下面から略対向する位置関係となり、熱が集中し易い構造となる問題点がある。
そこで、本発明は、第1ループ回路と第2ループ回路に形成される磁界変動に起因したノイズを効果的に低減しつつ、スイッチング素子の熱を効果的に放熱することができる電圧変換装置及びこれを用いる電気負荷駆動装置の提供を目的とする。
上記目的を達成するため、本発明の一局面によれば、インダクタンス成分を共有する第1ループ回路と第2ループ回路とを備え、前記第1ループ回路に設けられる第1スイッチング素子のON/OFF動作に伴い前記第1ループ回路と前記第2ループ回路に交互に電流が流れる電圧変換装置であって、
前記第1ループ回路のスイッチング素子のON動作時に形成される前記第1ループ回路を貫く磁界の向きと、前記第1ループ回路の第1スイッチング素子のON動作後のOFF動作時に形成される前記第2ループ回路を貫く磁界の向きが同方向であり、
前記第1ループ回路と前記第2ループ回路とが、それぞれのループ回路に対する法線方向で互いに対向するように、前記第1ループ回路と前記第2ループ回路がプリント基板の上面及び下面にそれぞれ配置され、
前記プリント基板の表面に放熱板が配置され、
前記プリント基板の内層に、前記放熱板にスルーホールを介して接続される金属材料のベタパターンが設けられることを特徴とする、電圧変換装置が提供される。
本発明によれば、第1ループ回路と第2ループ回路に形成される磁界変動に起因したノイズを効果的に低減しつつ、スイッチング素子の熱を効果的に放熱することができる電圧変換装置が得られる。
従来のDC−DCコンバータの回路構成を示す図である。 従来のDC−DCコンバータの部品配置を示す図である。 本発明による一実施例に係る電圧変換装置1の回路構成を示す図である。 電気負荷40の接続方法のその他の例を示す図である。 本発明による一実施例に係る電圧変換装置1の回路配置を概念的に示す図である。 図5に示す回路配置を採用した電圧変換装置1における磁束変動低減効果を説明する波形図である。 本実施例に係る電圧変換装置1の回路配置を実現するための具体例を示す図である。 放熱板70の配置方法の一例を示すプリント基板の断面図である。 放熱板70の配置方法のその他の一例を示すプリント基板の断面図である。 放熱板70の配置方法の更なるその他の一例を示すプリント基板の断面図である。 放熱板70の固定方法の一例を示す断面図である。 本発明による電気負荷駆動装置200の一実施例を示す構成図である。
以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。
図3は、本発明による電圧変換装置1の一実施例の回路構成を示す図である。本実施例の電圧変換装置1の回路構成自体は、図1に示した従来のDC−DCコンバータの回路構成と同様である。
具体的には、電圧変換装置1は、同期整流型の非絶縁型DC/DCコンバータであり、第1ループ回路10と第2ループ回路12とを備える。電圧変換装置1の出力端子20には、駆動対象の電気負荷40が接続される。第1ループ回路10と第2ループ回路12は、インダクタンスLを共有する。
第1ループ回路10は、インダクタンスLに加えて、スイッチング素子Q1とコンデンサC1とを有する。スイッチング素子Q1は、本例では、MOSFET(metal oxide semiconductor field−effect transistor)であるが、IGBT(Insulated Gate Bipolar Transistor)等のような他のトランジスタであってもよい。スイッチング素子Q1は、+端子と出力端子20の間に、インダクタンスLと直列に接続される。このとき、スイッチング素子Q1は、ドレイン側が+端子に接続されると共に、ソース側がインダクタンスLに接続される。コンデンサC1は、+端子と出力端子20の間に、スイッチング素子Q1とインダクタンスLに対して並列に接続される。
同様に、第2ループ回路12は、インダクタンスLに加えて、スイッチング素子Q2とコンデンサC2とを有する。スイッチング素子Q1は、本例では、MOSFETであるが、IGBT等のような他のトランジスタであってもよい。スイッチング素子Q2は、−端子と出力端子20の間に、インダクタンスLと直列に接続される。このとき、スイッチング素子Q2は、ドレイン側がインダクタンスLに接続されると共に、ソース側が−端子に接続される。コンデンサC2は、−端子と出力端子20の間に、スイッチング素子Q2とインダクタンスLに対して並列に接続される。
+端子には、第1の直流電源(図10の直流電源203参照)が接続され、−端子には、第1の直流電源よりも電圧が低い第2の直流電源(図示せず)が接続される。第1の直流電源及び第2の直流電源の定格電圧は、第2の直流電源の方が第1の直流電源よりも低い限り、任意であってよい。典型的には、−端子には、グランド(即ちOV)が接続される。以下では、説明の複雑化を防止するために、特に言及しない限り、−端子はグランドに接続されているものとする。
コンデンサC1及びコンデンサC2は、主に、電圧変換装置1の出力電圧を平滑化すると共に、電圧変換装置1における発生ノイズを低減する機能を有する。コンデンサC1及びコンデンサC2の容量は、好ましくは、同一に設定される。また、コンデンサC1及びコンデンサC2としては、好ましくは、劣化の影響を低減するために、耐久劣化し難いセラミックタイプのコンデンサが用いられる。
スイッチング素子Q1及びQ2は、一方がON時に他方がOFFとなるように制御される。スイッチング素子Q1及びQ2の制御態様の詳細(例えばデットタイムの設定・調整方法等)は、任意である。
図3に示す例において、動作時、スイッチング素子Q2がオンすると、それに同期してスイッチング素子Q1がオフとなり、第2ループ回路12に図中の矢印で示す向きのループで電流I2が流れる。スイッチング素子Q2がオンからオフに反転すると、それに同期してスイッチング素子Q1がオフからオンに反転し、第1ループ回路10に図中の矢印で示す向きのループで電流I1が流れる。このようにして、スイッチング素子Q2がオンしている間の時間(オンデューティ)を適切に制御することで、第1の直流電源の電圧を所望の電圧に変換(降圧変換)して出力端子20に出力することができる。
尚、図3に示す例では、電気負荷40の他端(出力端子20側でない端子)に+端子が接続されているので、スイッチング素子Q2のON/OFF動作が実質的にデューティを決定し、スイッチング素子Q1は同期整流用スイッチング素子として機能する。尚、例えばエネルギ効率よりもコストを優先する場合は、スイッチング素子Q1が省略されてもよい(ダイオードのみとなる)。また、例えば、図4に示すように、電気負荷40の他端(出力端子20側でない端子)に−端子が接続されてもよい。この場合、図3の示す例とは逆に、スイッチング素子Q1のON/OFF動作が実質的にデューティを決定し、スイッチング素子Q2は同期整流用スイッチング素子として機能する。尚、図4に示す例においても、例えばエネルギ効率よりもコストを優先する場合は、スイッチング素子Q2が省略されてもよい(ダイオードのみとなる)。
ところで、図2を参照して上述したように、図3に示すような電圧変換装置1の回路構成をそのまま平面的に配置すると、スイッチング素子Q2を高速にON/OFF動作させるときに、第1ループ回路10を貫く磁界と、第2ループ回路12を貫く逆方向の磁界とが交互に高速に発生し、当該磁界の高周波変動に起因した高周波ノイズが発生するという問題が生ずる。
そこで、本実施例では、以下で詳説する如く、電圧変換装置1の回路構成を適切に配置することで、第1ループ回路10と第2ループ回路12に形成される磁界変動に起因したノイズを効果的に低減することを可能としている。以下、これについて詳説する。
図5は、本実施例に係る電圧変換装置1の回路配置を概念的に示す図である。尚、図5以降の幾つかの図においては、スイッチング素子Q1、Q2に対して並列に配置されるダイオードの図示は省略されている。
本実施例では、図5に示すように、スイッチング素子Q2をON/OFF動作させること(及びそれに同期してスイッチング素子Q1をOFF/ON動作させること)に伴って交互に発生する磁束(及びそれに伴い磁界)について、第1ループ回路10を貫く磁束φ1の向きと、第2ループ回路12を貫く磁束φ2の向きとが、同方向になるように構成される。換言すると、第1ループ回路10と第2ループ回路12とが、図5に示すように、それぞれのループ回路に対する法線方向で互いに対向するように配置される。即ち、第1ループ回路10と第2ループ回路12とが、図3のラインX−Xに沿って折り曲げるようにして対向配置される。
図6は、図5に示す回路配置を採用した電圧変換装置1における磁束変動低減効果を説明する波形図である。
上述の如く、スイッチング素子Q2及びQ1が互いに反転した所定のデューティで駆動されると、図6(A)及び(B)に示すような波形で、第2ループ回路12及び第1ループ回路10に電流が流れる。このとき、第2ループ回路12及び第1ループ回路10に流れる電流に起因して、図6(C)及び(B)に示すような波形(時系列)で、第2ループ回路12を貫く磁束φ2及び第1ループ回路10を貫く磁束φ1が発生する。このような磁束φ2及びφ1は、スイッチング素子Q2及びQ1が高速に駆動されることから、それぞれは短時間に大きく変動する。本実施例では、図6(C)及び(B)に示す磁束φ2と磁束φ1とが同一方向であるので、これらの波形(時系列)を足し合わせると、図6(E)に示すような急峻な変動が無くなった波形となる。即ち、時間的変動の少ない磁束変化が実現される。このように、図5に示す回路配置を採用した電圧変換装置1によれば、磁束φ1+φ2の高周波変動による発生ノイズを効果的に低減することができる。
図7は、本実施例に係る電圧変換装置1の回路配置を実現するための具体例を示す図である。
図7に示す例では、プリント基板の一方の面(本例では表面)に第1ループ回路10が配置され、同プリント基板の他方の面(本例では裏面)に第2ループ回路12が配置される。尚、共有のインダクタンスLは、プリント基板のいずれか一方の面に配置され、第1ループ回路10及び第2ループ回路12にスルーホールを介して共有されてよい。本例では、インダクタンスLは、第1ループ回路10の主要構成と共にプリント基板の表面に配置され、スルーホールにより第2ループ回路12に接続されている。
ところで、上述の発明が解決しようとする課題の欄で記載したように、上述のような第1ループ回路10と第2ループ回路12が対向配置されるループ対向構成では、第1ループ回路10と第2ループ回路12のそれぞれにおけるスイッチング素子Q1,Q2同士が、プリント基板の上面と下面から略対向する位置関係となり、熱が集中し易い構造となる。そこで、以下では、かかる熱を効率的に外部に放出するための本実施例による放熱構造について詳説する。
図8は、本実施例の電圧変換装置1の第1ループ回路10と第2ループ回路12が形成されたプリント基板の断面図である。図8には、放熱板70の配置方法の一例が示されている。
放熱板70は、図8に示すように、プリント基板80の一方の面(本例では裏面)に配置される。放熱板70は、伝熱性の材料(例えばアルミブロック)で形成されてよい。放熱板70は、放熱性を高めるためにフィン等が表面に形成されてもよい。
プリント基板80は、銅のような金属材料のベタパターンで形成された伝熱層82が設けられる。即ち、プリント基板80は、伝熱性材料からなる伝熱層82を備える。図示の例では、プリント基板80は、プリプレグからなる中間層81を備え、中間層81にベタパターンの伝熱層82が設けられる。伝熱層82は、プリント基板80の表面に対して法線方向で見た上面視で、スイッチング素子Q1,Q2の搭載領域を完全に含む領域に延在する共に、放熱板70の搭載領域を含む領域に延在する。尚、典型的には、伝熱層82は、プリント基板80の表面積の略全体に対応する面積で設けられる。
プリント基板80には、スルーホール72が形成される。スルーホール72は、プリント基板80の表面に対して法線方向で見た上面視で、放熱板70の搭載領域内で伝熱層82を貫通するように形成される。スルーホール72は、例えば銅メッキ等により、伝熱層82と放熱板70との間の伝熱性を確保する。このようにして、伝熱層82はスルーホール72を介して放熱板70に伝熱的に接続される。
図8に示す例では、スイッチング素子Q1,Q2からの熱は、図8に矢印(太い実線の矢印)にて示すように、伝熱層82に伝わり、次いで伝熱層82からスルーホール72を介して放熱板70に伝わることで、放熱される。このようにして、図8に示す例によれば、スイッチング素子Q1,Q2同士がプリント基板80の上面と下面から略対向する位置関係となり熱が局部に集中し易い構造であっても、スイッチング素子Q1,Q2からの熱を効率的に放熱することができ、熱の局部的な集中を防止することができる。
また、伝熱層82が銅のベタパターンのような金属層で構成されている場合、図8に矢印(太い破線の矢印)にて概念的に示すように、伝熱層82による磁界の抑制効果を得ることができる。即ち、伝熱層82は、上述の第1ループ回路10及び第2ループ回路12を貫く磁束の変化を抑制するように働き、上述の第1ループ回路10及び第2ループ回路12を貫く磁界の変動を抑制することができる。尚、図6(C)、図6(C)及び図6(E)には、かかる伝熱層82による磁界変動抑制効果が概念的に示される。即ち、図6(C)、図6(C)及び図6(E)には、伝熱層82が存在しない場合の波形が点線で示され、伝熱層82が存在する場合の波形が実線で示されている。
図9は、本実施例の電圧変換装置1の第1ループ回路10と第2ループ回路12が形成されたプリント基板の断面図である。図9には、放熱板70の配置方法のその他の一例が示されている。
図9に示す例では、放熱板70は、プリント基板80の側面に接触して配置される。伝熱層82は、プリント基板80の側面まで至るように設けられる。即ち、伝熱層82は、プリント基板80の側面にて、放熱板70に接触するように設けられる。このため、図9に示す例では、図8に示す例のようなスルーホール72は不要となる。伝熱層82は、プリント基板80の表面に対して法線方向で見た上面視で、スイッチング素子Q1,Q2の搭載領域を完全に含む領域に延在する。また、伝熱層82は、好ましくは、上述の磁界の変動抑制効果を得るために、プリント基板80の表面に対して法線方向で見た上面視で、第1ループ回路10及び第2ループ回路12の全体を含む範囲に設けられる。
図9に示す例では、スイッチング素子Q1,Q2からの熱は、図9に矢印(太い実線の矢印)にて示すように、伝熱層82に伝わり、次いで伝熱層82から放熱板70に伝わることで、放熱される。このようにして、図9に示す例によれば、スイッチング素子Q1,Q2同士がプリント基板80の上面と下面から略対向する位置関係となり熱が局部に集中し易い構造であっても、スイッチング素子Q1,Q2からの熱を効率的に放熱することができ、熱の局部的な集中を防止することができる。また、図8に示す例と同様に、伝熱層82は、上述の第1ループ回路10及び第2ループ回路12を貫く磁束の変化を抑制するように働き、上述の第1ループ回路10及び第2ループ回路12を貫く磁界の変動を抑制することができる。
図9に示す例において、放熱板70は、他方の端部(プリント基板80の側面側でない方の端部)が電圧変換装置1の筐体(図示せず)に固定されてもよい。或いは、放熱板70は、電圧変換装置1の筐体と一体に形成されてもよい。即ち、放熱板70の機能は、電圧変換装置1の金属製の筐体により実現されてもよい。
図10は、本実施例の電圧変換装置1の第1ループ回路10と第2ループ回路12が形成されたプリント基板の断面図である。図10には、放熱板70の配置方法の更なるその他の一例が示されている。
図10に示す例では、放熱板70は、プリント基板80の側面(側方)に設けられる。但し、図10に示す例では、図9に示す例と異なり、放熱板70は、プリント基板80の側面に直接接触するのではなく、プリント基板80の端部の一方の面(本例では裏面)を支持するように配置される。放熱板70は、同様の構成で、プリント基板80の複数の端部をそれぞれ支持する態様で、複数個設定されてもよい。例えば、放熱板70は、プリント基板80の端部を全周に亘って支持するように設けられてもよい。また、放熱板70は、図10に示すように、電圧変換装置1の筐体90に固定されてもよいし、電圧変換装置1の筐体90と一体に形成されてもよい。後者の場合、放熱板70は、電圧変換装置1の金属製の筐体90の内方に突出した部位により構成されてもよい。
伝熱層82は、プリント基板80の側面から出て放熱板70まで至るように設けられる。即ち、伝熱層82は、プリント基板80の側面を越えて延在し、下方に延在して放熱板70に接触するように設けられる。このため、図10に示す例では、図8に示す例のようなスルーホール72は不要となる。同様に、伝熱層82は、プリント基板80の表面に対して法線方向で見た上面視で、スイッチング素子Q1,Q2の搭載領域を完全に含む領域に延在する。また、伝熱層82は、好ましくは、上述の磁界の変動抑制効果を得るために、プリント基板80の表面に対して法線方向で見た上面視で、第1ループ回路10及び第2ループ回路12の全体を含む範囲に設けられる。
図10に示す例では、スイッチング素子Q1,Q2からの熱は、図10に矢印(太い実線の矢印)にて示すように、伝熱層82に伝わり、次いで伝熱層82から放熱板70に伝わることで、放熱される。このようにして、図10に示す例によれば、スイッチング素子Q1,Q2同士がプリント基板80の上面と下面から略対向する位置関係となり熱が局部に集中し易い構造であっても、スイッチング素子Q1,Q2からの熱を効率的に放熱することができ、熱の局部的な集中を防止することができる。また、図8に示す例と同様に、伝熱層82は、上述の第1ループ回路10及び第2ループ回路12を貫く磁束の変化を抑制するように働き、上述の第1ループ回路10及び第2ループ回路12を貫く磁界の変動を抑制することができる。
図11は、放熱板70の固定方法の一例を示す断面図である。図11は、放熱板70の固定方法の一例を図8に示した放熱板70の配置方法に適用した場合を示す。図11に示す例では、放熱板70は、プリント基板80に形成されたスルーホール72を貫通するネジ60により締結・固定される。この目的のため、放熱板70には、プリント基板80に対向する側に、雌ネジ山が切られた穴が形成される。ネジ60の頭部は、スルーホール72の径よりも大きい。また、ネジ60の軸部の径は、スルーホール72の径と略同様であってよい。
図12は、本発明による電気負荷駆動装置200の一実施例を示す構成図である。
本実施例の電気負荷駆動装置200は、電気負荷駆動回路装置201と、制御目標信号発生装置(PCM)202と、直流電源203とを備える。電気負荷駆動回路装置201は、上述の電圧変換装置1を備えると共に、内部電源回路101、入力信号インターフェース回路102、スイッチングデューティ生成回路103及びスイッチング素子駆動回路104を備える。尚、端子T1及びT4は、上述の+端子に対応し、端子T3は−端子に対応し、T5は電圧変換装置1の出力端子20に対応する。
図12に示す例では、電気負荷40は、誘導性負荷であり、車両のエンジンに用いられるフューエルポンプである。但し、電気負荷40は、ファンや、ステアリングのアシストモータ等のような、任意の電気負荷であってよい。また、符号S1で示されるスイッチは、イグニッションスイッチに相当する。
制御目標信号発生装置202は、マイクロコンピューターにより構成され、例えば車両のエンジンを制御するEFI・ECUであってよい。制御目標信号発生装置202は、フューエルポンプの制御目標値(例えば目標回転数)を決定し、当該制御目標値を表す制御目標信号を電気負荷駆動回路装置201に入力する。尚、制御目標信号発生装置202は、直流電源203からの電源電圧に基づき動作するが、内部に降圧回路等を備えてもよい。
制御目標信号発生装置202からの制御目標信号は、制御目標信号発生装置202の入力信号インターフェース回路102で処理され、スイッチングデューティ生成回路103により当該制御目標値を実現するためのデューティが決定される。そして、決定されたデューティに従ってスイッチング素子駆動回路104によりスイッチング素子Q1,Q2がON/OFF制御される。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
例えば、上述した実施例では、降圧型の電圧変換装置が用いられているが、昇圧型や双方向の電圧変換装置に適用されてもよい。
L インダクタンス
C1 コンデンサ
C2 コンデンサ
Q1 スイッチング素子
Q2 スイッチング素子
1 電圧変換装置
10 第1ループ回路
12 第2ループ回路
20 出力端子
40 電気負荷
70 放熱板
72 スルーホール
80 プリント基板
82 伝熱層
90 筐体
203 直流電源

Claims (4)

  1. インダクタンス成分を共有する第1ループ回路と第2ループ回路とを備え、前記第1ループ回路に設けられる第1スイッチング素子のON/OFF動作に伴い前記第1ループ回路と前記第2ループ回路に交互に電流が流れる電圧変換装置であって、
    前記第1ループ回路のスイッチング素子のON動作時に形成される前記第1ループ回路を貫く磁界の向きと、前記第1ループ回路の第1スイッチング素子のON動作後のOFF動作時に形成される前記第2ループ回路を貫く磁界の向きが同方向であり、
    前記第1ループ回路と前記第2ループ回路とが、それぞれのループ回路に対する法線方向で互いに対向するように、前記第1ループ回路と前記第2ループ回路がプリント基板の上面及び下面にそれぞれ配置され、
    前記プリント基板の表面に放熱板が配置され、
    前記プリント基板の内層に、前記放熱板にスルーホールを介して接続される金属材料のベタパターンが設けられることを特徴とする、電圧変換装置。
  2. インダクタンス成分を共有する第1ループ回路と第2ループ回路とを備え、前記第1ループ回路に設けられる第1スイッチング素子のON/OFF動作に伴い前記第1ループ回路と前記第2ループ回路に交互に電流が流れる電圧変換装置であって、
    前記第1ループ回路のスイッチング素子のON動作時に形成される前記第1ループ回路を貫く磁界の向きと、前記第1ループ回路の第1スイッチング素子のON動作後のOFF動作時に形成される前記第2ループ回路を貫く磁界の向きが同方向であり、
    前記第1ループ回路と前記第2ループ回路とが、それぞれのループ回路に対する法線方向で互いに対向するように、前記第1ループ回路と前記第2ループ回路がプリント基板の上面及び下面にそれぞれ配置され、
    前記プリント基板の側面に放熱板が配置され、
    前記プリント基板の内層に、前記放熱板に接続される金属材料のベタパターンが設けられることを特徴とする、電圧変換装置。
  3. 前記放熱板は、当該電圧変換装置の筐体に固定され又は筐体に一体化され、前記放熱板は、前記プリント基板の端部を支持するように設けられる、請求項2に記載の電圧変換装置。
  4. 電気負荷を駆動する電気負荷駆動装置であって、
    直流電源と、
    前記直流電源から受けた直流電源の電圧レベルを変換して前記電気負荷に出力する請求項1〜3のうちのいずれか1項に記載の電圧変換装置と、
    前記電圧変換装置を制御する制御装置とを含むことを特徴とする、電気負荷駆動装置。
JP2009180951A 2009-08-03 2009-08-03 電圧変換装置及び電気負荷駆動装置 Active JP4963505B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009180951A JP4963505B2 (ja) 2009-08-03 2009-08-03 電圧変換装置及び電気負荷駆動装置
EP10739715.0A EP2462685B1 (en) 2009-08-03 2010-07-14 Voltage conversion apparatus and electrical load driving apparatus
US13/322,771 US8829870B2 (en) 2009-08-03 2010-07-14 Voltage conversion apparatus and electrical load driving apparatus
CN201080034427.3A CN102474174B (zh) 2009-08-03 2010-07-14 电压转换设备和电气负载驱动设备
PCT/JP2010/062285 WO2011016341A2 (en) 2009-08-03 2010-07-14 Voltage conversion apparatus and electrical load driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009180951A JP4963505B2 (ja) 2009-08-03 2009-08-03 電圧変換装置及び電気負荷駆動装置

Publications (2)

Publication Number Publication Date
JP2011036053A JP2011036053A (ja) 2011-02-17
JP4963505B2 true JP4963505B2 (ja) 2012-06-27

Family

ID=43544743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180951A Active JP4963505B2 (ja) 2009-08-03 2009-08-03 電圧変換装置及び電気負荷駆動装置

Country Status (5)

Country Link
US (1) US8829870B2 (ja)
EP (1) EP2462685B1 (ja)
JP (1) JP4963505B2 (ja)
CN (1) CN102474174B (ja)
WO (1) WO2011016341A2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029917A1 (ja) * 2008-09-09 2010-03-18 トヨタ自動車株式会社 電圧変換装置及び電気負荷駆動装置
JP5081202B2 (ja) * 2009-07-17 2012-11-28 トヨタ自動車株式会社 スイッチング装置
US8823345B2 (en) * 2012-10-19 2014-09-02 Linear Technology Corporation Magnetic field cancellation in switching regulators
JP5701412B2 (ja) * 2013-02-21 2015-04-15 株式会社デンソー 電力変換装置
JP5707435B2 (ja) * 2013-02-21 2015-04-30 株式会社日本自動車部品総合研究所 ノイズフィルタ
JP5840669B2 (ja) * 2013-12-17 2016-01-06 株式会社デンソー 電力変換装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625695A (ja) 1985-07-02 1987-01-12 松下電器産業株式会社 パワ−モジユ−ル
JPH0748946B2 (ja) 1990-06-29 1995-05-24 三洋電機株式会社 スイッチング電源装置
JPH04125065A (ja) * 1990-09-14 1992-04-24 Canon Inc スイッチング回路装置
JP3422002B2 (ja) * 1994-11-11 2003-06-30 株式会社小松製作所 Dc−dcコンバータ回路およびこのdc−dcコンバータ回路を用いた誘導負荷駆動装置
JPH11233904A (ja) 1998-02-18 1999-08-27 Nec Corp 放熱構造プリント基板
US6300679B1 (en) * 1998-06-01 2001-10-09 Semiconductor Components Industries, Llc Flexible substrate for packaging a semiconductor component
JP3684907B2 (ja) 1999-03-26 2005-08-17 松下電工株式会社 電源装置
US6518868B1 (en) * 2000-08-15 2003-02-11 Galaxy Power, Inc. Thermally conducting inductors
JP4310461B2 (ja) * 2003-10-01 2009-08-12 株式会社村田製作所 スイッチング電源モジュール
JP4353951B2 (ja) * 2006-03-06 2009-10-28 三菱電機株式会社 電動式パワーステアリング装置
JP4757683B2 (ja) 2006-03-30 2011-08-24 オリジン電気株式会社 電源
TWI303973B (en) * 2006-09-06 2008-12-01 Delta Electronics Inc Heat sink fastening device and manufacturing method thereof
TW200832875A (en) * 2007-01-19 2008-08-01 Murata Manufacturing Co DC-DC converter module
WO2010029917A1 (ja) 2008-09-09 2010-03-18 トヨタ自動車株式会社 電圧変換装置及び電気負荷駆動装置

Also Published As

Publication number Publication date
CN102474174A (zh) 2012-05-23
WO2011016341A2 (en) 2011-02-10
EP2462685B1 (en) 2016-09-07
EP2462685A2 (en) 2012-06-13
WO2011016341A3 (en) 2011-05-19
JP2011036053A (ja) 2011-02-17
US8829870B2 (en) 2014-09-09
US20120119723A1 (en) 2012-05-17
CN102474174B (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
JP4963518B2 (ja) 電圧変換装置及び電気負荷駆動装置
JP4963505B2 (ja) 電圧変換装置及び電気負荷駆動装置
JP6158051B2 (ja) 電力変換装置
JP2011152011A (ja) 半導体装置及びそれを用いた電源装置
JP2010207068A (ja) 電源装置および電子機器
US20180226886A1 (en) Low-inductance half-bridge arrangement
JP5529100B2 (ja) スイッチングレギュレータおよびそれを備える電源装置
US20140169042A1 (en) Power supply device
JP4558407B2 (ja) スイッチング電源装置
JP5652019B2 (ja) スイッチング電源モジュールおよび電気機器
WO2010119514A1 (ja) 電源装置
JP2012156298A (ja) Dc/dcコンバータモジュール
JP6818873B2 (ja) スイッチング素子駆動ユニット
JP4621767B2 (ja) 電圧変換装置及び電気負荷駆動装置
JP2015133281A (ja) 端子台、及びこの端子台を備えた電力変換装置
JP2011192724A (ja) 複合トランスモジュール
US9281757B2 (en) Voltage conversion device and electrical load driving device
JP4621768B2 (ja) 電圧変換装置及び電気負荷駆動装置
JP2011172431A (ja) スイッチング電源回路
JP2007019065A (ja) プリント基板ユニット
JP2010034310A (ja) トランス及び電力変換装置
US20140252541A1 (en) Systems and methods for power train assemblies
JP2014176151A (ja) コイル駆動装置、並びにそれを用いた変圧器及び電動機
JP2013131296A (ja) 光源点灯装置及び照明器具
KR20180060270A (ko) 알터네이터 정류기 어셈블리

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

R151 Written notification of patent or utility model registration

Ref document number: 4963505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250