JP4954461B2 - POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY - Google Patents

POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY Download PDF

Info

Publication number
JP4954461B2
JP4954461B2 JP2004301039A JP2004301039A JP4954461B2 JP 4954461 B2 JP4954461 B2 JP 4954461B2 JP 2004301039 A JP2004301039 A JP 2004301039A JP 2004301039 A JP2004301039 A JP 2004301039A JP 4954461 B2 JP4954461 B2 JP 4954461B2
Authority
JP
Japan
Prior art keywords
polylactic acid
resin composition
compound
foam
acid resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004301039A
Other languages
Japanese (ja)
Other versions
JP2006111735A (en
Inventor
友紀 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004301039A priority Critical patent/JP4954461B2/en
Publication of JP2006111735A publication Critical patent/JP2006111735A/en
Application granted granted Critical
Publication of JP4954461B2 publication Critical patent/JP4954461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリ乳酸樹脂を主たる原料とし、耐加水分解性と発泡性、成形性を兼ね備えた発泡成形体用樹脂組成物およびその発泡粒子およびその発泡成形体に関するものである。   The present invention relates to a resin composition for a foamed molded article having polylactic acid resin as a main raw material and having hydrolysis resistance, foamability and moldability, and its foamed particles and foamed molded article thereof.

今日、一般的に使用されているプラスチックは石油を原料とするものが多く存在しているが、石油は有限の天然資源であり、このまま使用し続けると枯渇してしまう問題がある。そのため、広く使用されているプラスチックを非石油資源のものとする動きは毎年加速度的に拡大している。   Today, there are many plastics that are generally used from petroleum. However, petroleum is a finite natural resource, and there is a problem that it will be exhausted if it is used as it is. For this reason, the movement to make widely used plastics non-petroleum resources is accelerating every year.

例えば、石油起源のプラスチックの代表的なもののひとつである発泡スチロールは日本だけでも年間20万トン近い製品が生産されている。これらの多くは魚箱や家電緩衝材等の包装資材向けであり、使用後はゴミとなることが多い。そのうち家電緩衝材の一部はリサイクルされ、ビデオテープカセットのハウジング等に使用されているが、それはごく一部であり、魚箱等、大半の発泡スチロール製品は回収減容した後、燃料として使用されている。   For example, polystyrene foam, one of the typical oil-derived plastics, produces nearly 200,000 tons per year in Japan alone. Many of these are for packaging materials such as fish boxes and household appliance cushioning materials, and often become garbage after use. Among them, some of the home appliance cushioning materials are recycled and used for video tape cassette housings, etc., but it is only a part, and most of the polystyrene foam products such as fish boxes are recovered and reduced and then used as fuel. ing.

このため、本研究者らは非石油資源であるポリ乳酸を用いて発泡スチロールの代替を行なう開発を進めてきた(特許文献1)。ポリ乳酸は使用後の処分において、燃焼カロリーが発泡スチロールよりも低く、また、生分解性であるため、微生物等による分解が可能で、埋め立てをしても水と二酸化炭素に分解される。さらに、コンポスト化(堆肥化)も可能であり、地球環境への負荷を与えない物質である。   For this reason, these researchers have advanced the development which substitutes a polystyrene foam using polylactic acid which is a non-petroleum resource (patent document 1). Polylactic acid, when disposed after use, has a lower calorie burn than styrene foam and is biodegradable, so it can be decomposed by microorganisms and the like, and is decomposed into water and carbon dioxide even when landfilled. Furthermore, composting (composting) is possible, and it is a substance that does not give a burden to the global environment.

しかし、ポリ乳酸は水中もしくは大気中の水分によってでも徐々に加水分解する性質を持っており、長期の品質安定性に劣ることが問題である。特許文献1では、ポリ乳酸にイソシアネート化合物を用いて架橋させた樹脂を用いているが、この反応は主に分子鎖末端の水酸基との間で起こる反応であり、分子鎖末端のカルボキシル基の封鎖は充分でなく、水分の存在する環境における長期の品質安定性は保証されるものではない。   However, polylactic acid has a property of being gradually hydrolyzed even by water in water or air, and has a problem that it is inferior in long-term quality stability. In Patent Document 1, a resin obtained by crosslinking polylactic acid with an isocyanate compound is used, but this reaction is a reaction that occurs mainly with a hydroxyl group at the end of the molecular chain, and the carboxyl group at the end of the molecular chain is blocked. Is not sufficient, and long-term quality stability in an environment with moisture is not guaranteed.

一方、ポリ乳酸の加水分解は分子鎖末端にあるカルボキシル基の自己触媒的作用で起こる反応であることから、分子鎖末端のカルボキシル基をカルボジイミド化合物で封鎖することによってポリ乳酸の加水分解が高度に抑制されることが知られている(特許文献2および特許文献3)。   On the other hand, hydrolysis of polylactic acid is a reaction that occurs due to the autocatalytic action of the carboxyl group at the end of the molecular chain, so that the hydrolysis of polylactic acid is highly enhanced by blocking the carboxyl group at the end of the molecular chain with a carbodiimide compound. It is known to be suppressed (Patent Document 2 and Patent Document 3).

特許文献2および特許文献3では、ポリ乳酸の耐加水分解性向上を目的としてカルボジイミド化合物を用いているが、これらの実施例ではポリ乳酸を主とする生分解性プラスチックにカルボジイミド化合物はモノカルボジイミド化合物あるいはポリカルボジイミド化合物のいずれか一方のみしか用いられておらず、具体的に併用した例は開示されていない。   In Patent Document 2 and Patent Document 3, a carbodiimide compound is used for the purpose of improving the hydrolysis resistance of polylactic acid. In these examples, the carbodiimide compound is a monocarbodiimide compound in a biodegradable plastic mainly composed of polylactic acid. Alternatively, only one of the polycarbodiimide compounds is used, and a specific example in combination is not disclosed.

しかも特許文献2および特許文献3のいずれも発泡粒子の型内成形によって得られる発泡成形体については触れられていない。   Moreover, neither Patent Document 2 nor Patent Document 3 mentions a foamed molded article obtained by in-mold molding of foamed particles.

WO99/21915号公報WO99 / 21915 特開平11−80522号公報Japanese Patent Laid-Open No. 11-80522 特開2001−261797号公報JP 2001-261797 A 特公昭47−33279号公報Japanese Patent Publication No. 47-33279 特公昭52−16759号公報Japanese Patent Publication No. 52-16759 特開平11−322888号公報JP-A-11-322888

本発明の目的は、上述の従来技術の問題点を解消し、ポリ乳酸を主たる原料とし、耐加水分解性に優れ、且つ、発泡性、成形性に優れたポリ乳酸系樹脂組成物およびそれからなる発泡粒子、ならびにその発泡成形体を開発することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, use polylactic acid as a main raw material, have excellent hydrolysis resistance, and have a foaming property and moldability, and a polylactic acid resin composition comprising the same The goal is to develop expanded particles, as well as expanded molded articles thereof.

上記課題は、ポリ乳酸のカルボキシル基末端の一部又は全部をポリカルボジイミド化合物およびモノカルボジイミド化合物により封鎖することによって達成される。   The above object is achieved by blocking a part or all of the carboxyl group terminals of polylactic acid with a polycarbodiimide compound and a monocarbodiimide compound.

本発明のポリ乳酸系樹脂組成物は耐加水分解性に優れ、その発泡成形体においては、ポリカルボジイミド化合物もしくはモノカルボジイミド化合物のみを加えたポリ乳酸系樹脂組成物のそれと比較して成形性に優れ、従来以上に幅広い分野に利用することが可能となる。   The polylactic acid resin composition of the present invention is excellent in hydrolysis resistance, and in the foamed molded article, it is excellent in moldability compared with that of a polylactic acid resin composition to which only a polycarbodiimide compound or a monocarbodiimide compound is added. It can be used in a wider range of fields than before.

本発明に用いるポリ乳酸樹脂は、発泡剤を含浸させる時に結晶化しないために低結晶性もしくは非晶性のものを用いるのがよく、具体的には光学異性体のL体とD体のモル比が95/5乃至60/40のものを用いるのがよい。このモル比から外れた樹脂に関しては結晶性が高く、発泡倍率が上がらなかったり、発泡が不均一になり使用できない。さらに好ましくは90/10乃至85/15とするのがよい。   As the polylactic acid resin used in the present invention, it is preferable to use a low crystalline or non-crystalline one because it does not crystallize when impregnated with a foaming agent. Specifically, the moles of L isomer and D isomer of optical isomers are used. It is preferable to use one having a ratio of 95/5 to 60/40. Resins that deviate from this molar ratio have high crystallinity and cannot be used because the expansion ratio does not increase or the foaming becomes uneven. More preferably, it is 90/10 to 85/15.

本発明に用いるポリカルボジイミド化合物としては、高分子鎖中にカルボジイミド基を複数個有するものであれば、特に限定されない。ポリカルボジイミド化合物は、任意の有機ジイソシアネートを縮合させることにより得ることができ、その方法は公知の技術を利用することができる。例えば、特許文献2および特許文献4乃至6に示されているように、有機ジイソシアネートの脱炭酸ガス縮合反応により得られるものを用いることができる。具体的にはポリ[1,1−ジシクロヘキシルメタン(4,4−ジイソシアナート)]とシクロヘキシルアミンのウレア付加物などが挙げられるが、常温で細かい顆粒状のポリカルボジイミド化合物である日清紡績社製の“カルボジライト HMV−8CA”、“カルボジライト LA−1”などが入手のし易さおよび操作性の面においてより好ましい。   The polycarbodiimide compound used in the present invention is not particularly limited as long as it has a plurality of carbodiimide groups in the polymer chain. The polycarbodiimide compound can be obtained by condensing an arbitrary organic diisocyanate, and a known technique can be used for the method. For example, as shown in Patent Document 2 and Patent Documents 4 to 6, those obtained by decarboxylation condensation reaction of organic diisocyanate can be used. Specific examples include poly [1,1-dicyclohexylmethane (4,4-diisocyanate)] and a urea adduct of cyclohexylamine. Nisshinbo Co., Ltd. is a fine granular polycarbodiimide compound at room temperature. “Carbodilite HMV-8CA”, “Carbodilite LA-1” and the like are more preferable in terms of availability and operability.

本発明に用いるモノカルボジイミド化合物としては、カルボジイミド基を1個有しているものであれば、特に限定されない。具体的には、ジメチルカルボジイミド、ジエチルカルボジイミド、ジイソプロピルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t−ブチルイソプロピルカルボジイミド、ジ−t−ブチルカルボジイミド、ジシクロヘキシルカルボジイミド、ジフェニルカルボジイミド、2,2,6,6−テトラメチルジフェニルカルボジイミド、2,2,6,6−テトラエチルジフェニルカルボジイミド、2,2,6,6−テトライソプロピルジフェニルカルボジイミド、ジ−β−
ナフチルカルボジイミドなどが挙げられるが、常温で細かい顆粒状のモノカルボジイミド化合物である松本油脂製薬社製の“NCN”などが入手のし易さおよび操作性の面においてより好ましい。
The monocarbodiimide compound used in the present invention is not particularly limited as long as it has one carbodiimide group. Specifically, dimethylcarbodiimide, diethylcarbodiimide, diisopropylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, di-t-butylcarbodiimide, dicyclohexylcarbodiimide, diphenylcarbodiimide, 2,2,6,6-tetramethyldiphenyl Carbodiimide, 2,2,6,6-tetraethyldiphenylcarbodiimide, 2,2,6,6-tetraisopropyldiphenylcarbodiimide, di-β-
Naphthylcarbodiimide and the like can be mentioned, but “NCN” manufactured by Matsumoto Yushi Seiyaku Co., Ltd., which is a fine granular monocarbodiimide compound at room temperature, is more preferable in terms of availability and operability.

本発明に用いるポリカルボジイミド化合物およびモノカルボジイミド化合物のポリ乳酸への添加量の総和は、ポリ乳酸樹脂100重量部に対して0.5重量部以上2.5重量部以下が好ましい。添加量がこの範囲にあると、発泡倍率が高くなり、成形性が良好となる。さらに好ましくは、1.0重量部以上2.0重量部とするのがよい。   The total addition amount of the polycarbodiimide compound and monocarbodiimide compound used in the present invention to polylactic acid is preferably 0.5 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the polylactic acid resin. When the addition amount is within this range, the expansion ratio becomes high and the moldability becomes good. More preferably, it is 1.0 to 2.0 parts by weight.

また、本発明に用いるポリカルボジイミド化合物およびモノカルボジイミド化合物のポリ乳酸への添加量の重量比は3/1乃至1/3が好ましい。重量比がこの範囲にあると、発泡倍率が高くなり、成形性が良好となる。さらに好ましくは、5/2乃至2/5とするのがよい。   In addition, the weight ratio of the polycarbodiimide compound and the monocarbodiimide compound used in the present invention to the polylactic acid is preferably 3/1 to 1/3. When the weight ratio is within this range, the expansion ratio becomes high and the moldability becomes good. More preferably, it should be 5/2 to 2/5.

次に本発明のポリ乳酸系樹脂組成物の製造方法について説明する。ポリ乳酸のカルボキシル基末端の一部をポリカルボジイミド化合物およびモノカルボジイミド化合物により封鎖させてポリ乳酸系樹脂組成物を得る手段としては公知の技術が利用できるが、ペレット化されたポリ乳酸にポリカルボジイミド化合物を添加し、二軸混練機により溶融混練する方法が一般的である。   Next, the manufacturing method of the polylactic acid-type resin composition of this invention is demonstrated. As a means for obtaining a polylactic acid-based resin composition by blocking a part of the carboxyl group terminal of polylactic acid with a polycarbodiimide compound and a monocarbodiimide compound, a known technique can be used, but a polycarbodiimide compound is added to pelletized polylactic acid. Is generally used, and melt kneading with a twin-screw kneader.

このようにして得られたポリ乳酸系樹脂組成物の190℃、荷重20kg、オリフィス径2mmの単位時間当たりの押出し量から求められる溶融粘度は、2,000Pa・s以上5,000Pa・s以下であることが好ましい。この溶融粘度が2,000Pa・s未満であると成形時における耐熱性が悪く、良好な発泡成形体が得られない。また、5,000Pa・sを超えると、発泡しにくくなり、成形時に発泡粒子同士の接着が悪くなるので成形を目的とする場合には適さない。より高い発泡倍率および品位の高い成形体を期待するならば、2,500Pa・s以上3,000Pa・s以下とするのが好ましい。   The melt viscosity obtained from the extrusion amount per unit time of the polylactic acid-based resin composition thus obtained at 190 ° C., a load of 20 kg, and an orifice diameter of 2 mm is 2,000 Pa · s to 5,000 Pa · s. Preferably there is. If the melt viscosity is less than 2,000 Pa · s, the heat resistance during molding is poor, and a good foamed molded article cannot be obtained. On the other hand, if it exceeds 5,000 Pa · s, it becomes difficult to foam, and adhesion between the foamed particles becomes worse at the time of molding, so it is not suitable for the purpose of molding. If a molded article having a higher expansion ratio and higher quality is expected, it is preferable that the pressure is 2,500 Pa · s to 3,000 Pa · s.

さらに、発泡粒子の均一化、細孔化を目的として、無機系もしくは有機系核剤を添加してもよい。例えば、タルク、雲母、シリカ、粘土鉱物、炭酸カルシウム、有機カルボン酸金属塩などが使用可能であるが、特にこれらに限定されるものではない。   Furthermore, an inorganic or organic nucleating agent may be added for the purpose of making the foamed particles uniform and pores. For example, talc, mica, silica, clay mineral, calcium carbonate, organic carboxylic acid metal salt and the like can be used, but are not particularly limited thereto.

次に本発明のポリ乳酸系発泡性粒子の製造方法について説明する。この製造方法においては、ポリ乳酸系樹脂組成物をペレット又はビーズ状粒子化したものを原料とし、水の存在下で発泡剤を含浸する。   Next, the method for producing the polylactic acid-based expandable particles of the present invention will be described. In this production method, a polylactic acid resin composition formed into pellets or beads is used as a raw material, and impregnated with a foaming agent in the presence of water.

含浸時に添加する水分量については、ペレット又はビーズ状粒子の分散性を損なわなければ特に限定されない。また、ペレット又はビーズ状粒子同士が膠着もしくは融着してしまうのを回避するため、分散剤を用いることも可能である。   The amount of water added at the time of impregnation is not particularly limited as long as the dispersibility of the pellets or beads is not impaired. Also, a dispersant can be used in order to prevent the pellets or bead-like particles from sticking or fusing together.

含浸時に添加する分散剤については、カチオン系界面活性剤、アニオン系界面活性剤、非イオン系界面活性剤のいずれもが使用可能であるが、特にこれらに限定されるものではない。   As the dispersant added at the time of impregnation, any of a cationic surfactant, an anionic surfactant, and a nonionic surfactant can be used, but is not particularly limited thereto.

ポリ乳酸系樹脂組成物に含浸させる発泡剤としては、窒素、二酸化炭素の無機ガス、プロパン、ブタン、イソブタン、ペンタン、イソペンタン等の炭化水素類およびその混合物が用いられる。フロンガス類も発泡剤として好適ではあるが、環境への配慮が必要である場合は避ける方が好ましい。   As the foaming agent to be impregnated into the polylactic acid resin composition, nitrogen, carbon dioxide inorganic gas, propane, butane, isobutane, pentane, isopentane and other hydrocarbons and mixtures thereof are used. Although chlorofluorocarbons are also suitable as blowing agents, it is preferable to avoid them when environmental considerations are necessary.

含浸条件はポリ乳酸系樹脂組成物の物性によって調整されるが、含浸温度82℃の場合
を例にとると、含浸時間は60分以上150分以下が適当である。
The impregnation conditions are adjusted according to the physical properties of the polylactic acid-based resin composition. Taking the case of an impregnation temperature of 82 ° C. as an example, the impregnation time is suitably from 60 minutes to 150 minutes.

次に本発明のポリ乳酸系発泡粒子の製造方法について説明する。発泡剤の含浸によって得られたポリ乳酸系発泡性粒子の発泡には公知の技術が利用できるが、高温の水蒸気と空気の混合気体に接触させることにより発泡させる方法が一般的である。   Next, the manufacturing method of the polylactic acid-type expanded particle of this invention is demonstrated. A known technique can be used for foaming the polylactic acid-based expandable particles obtained by impregnation with a foaming agent, but a method of foaming by contacting with a mixed gas of high-temperature steam and air is common.

発泡時に発泡粒子同士が融着してしまう現象(ブロッキング)を防ぐため、発泡性、成形性を著しく損なわない範囲でブロッキング防止剤を用いることも可能である。   In order to prevent a phenomenon (blocking) in which foamed particles are fused with each other at the time of foaming, it is possible to use an anti-blocking agent as long as foamability and moldability are not significantly impaired.

ブロッキング防止剤としては、発泡スチロールのブロッキング防止剤として使われるものが概ね使用可能であり、高級脂肪酸の金属塩があげられるが、特にそれに限定されるものではない。具体的には、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛などを用いることができ、これらは単独又は2種類以上組み合わせて用いられる。   As the anti-blocking agent, those used as an anti-blocking agent for polystyrene foam can be generally used, and examples thereof include metal salts of higher fatty acids, but are not particularly limited thereto. Specifically, magnesium stearate, calcium stearate, zinc stearate, or the like can be used, and these can be used alone or in combination of two or more.

次に本発明のポリ乳酸系発泡成形体の製造方法について説明する。発泡によって得られたポリ乳酸系発泡粒子の成形には公知の技術が利用できるが、発泡粒子を金型内に導入し、型内成形を行なう方法が一般的である。型内成形時の加熱には高温の水蒸気を用いるが、高温の水蒸気と空気を混合させたガスを用いて低熱容量の水蒸気を使用するのが好ましい。   Next, the manufacturing method of the polylactic acid-type foaming molding of this invention is demonstrated. A known technique can be used to mold the polylactic acid-based foamed particles obtained by foaming, but a general method is to introduce the foamed particles into a mold and perform in-mold molding. Although high-temperature steam is used for heating during molding in the mold, it is preferable to use low-heat capacity steam using a gas in which high-temperature steam and air are mixed.

以下に、実施例によって本発明をさらに詳細に説明するが、これらは本発明を限定するものではない。まず物性評価方法を紹介する。   The present invention will be described in more detail below by way of examples, but these examples do not limit the present invention. First, the physical property evaluation method is introduced.

<溶融粘度>
島津製作所製CFT−500Dを用いて、温度190℃、荷重20kg、オリフィス径2mmにて測定を行なった。
<Melt viscosity>
Measurement was performed using a CFT-500D manufactured by Shimadzu Corporation at a temperature of 190 ° C., a load of 20 kg, and an orifice diameter of 2 mm.

<耐加水分解性試験>
60℃、80%RHの恒温恒湿条件における樹脂の溶融粘度の経時変化を調べた。耐加水分解性を表わす指標として、二段階評価(○:5日経過後の粘度保持率が50%を上回るもの、×:5日経過後の粘度保持率が50%を下回ったもの)を行なった。
<Hydrolysis resistance test>
The change with time of the melt viscosity of the resin under constant temperature and humidity conditions of 60 ° C. and 80% RH was examined. As an index representing the hydrolysis resistance, a two-stage evaluation was performed (◯: viscosity retention after 5 days exceeded 50%, x: viscosity retention after 5 days less than 50%).

<発泡倍率>
ポリ乳酸系発泡粒子の重量および体積を測定し、次の式(1)により発泡倍率を算出した。
(発泡倍率(倍))=(発泡粒子の体積)/(発泡粒子の重量) (1)
<Foaming ratio>
The weight and volume of the polylactic acid-based expanded particles were measured, and the expansion ratio was calculated by the following formula (1).
(Expansion ratio (times)) = (Volume of expanded particles) / (Weight of expanded particles) (1)

(実施例1〜4)
ポリ乳酸は、光学異性体のL体とD体のモル比が88/12であり、溶融粘度が2,070Pa・sであるものを使用した。これにポリカルボジイミド化合物(日清紡績社製“カルボジライト LA−1“)とモノカルボジイミド化合物(松本油脂製薬社製”NCN“)を添加した後、二軸混練機(東芝機械社製TEM35B)によりシリンダ温度185℃にて溶融混練させてポリ乳酸系樹脂組成物を得、溶融粘度測定および耐加水分解性試験を行なった(表1)。
(Examples 1-4)
A polylactic acid having an optical isomer L-form and D-form molar ratio of 88/12 and a melt viscosity of 2,070 Pa · s was used. After adding a polycarbodiimide compound (“Carbodilite LA-1” manufactured by Nisshinbo Industries Inc.) and a monocarbodiimide compound (“NCN” manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) to this, the cylinder temperature was measured by a twin-screw kneader (TEM35B manufactured by Toshiba Machine Co., Ltd.). A polylactic acid resin composition was obtained by melt-kneading at 185 ° C., and a melt viscosity measurement and a hydrolysis resistance test were performed (Table 1).

(比較例1〜3)
ポリ乳酸は、光学異性体のL体とD体のモル比が88/12であり、溶融粘度が2,070Pa・sであるものを使用した。これにポリカルボジイミド化合物(日清紡績社製“
カルボジライト LA−1“)を添加した後、二軸混練機(東芝機械社製TEM35B)によりシリンダ温度185℃にて溶融混練させて、ポリ乳酸系樹脂組成物を得、溶融粘度測定および耐加水分解性試験を行なった(表1)。
(Comparative Examples 1-3)
A polylactic acid having an optical isomer L-form and D-form molar ratio of 88/12 and a melt viscosity of 2,070 Pa · s was used. Polycarbodiimide compound (Nisshinbo Co., Ltd. “
Carbodilite LA-1 ") was added and then melt kneaded at a cylinder temperature of 185 ° C with a twin-screw kneader (TEM35B manufactured by Toshiba Machine Co., Ltd.) to obtain a polylactic acid resin composition, and measurement of melt viscosity and hydrolysis resistance A sex test was performed (Table 1).

(比較例4)
ポリ乳酸は、光学異性体のL体とD体のモル比が88/12であり、溶融粘度が2,070Pa・sであるものを使用した。これにモノカルボジイミド化合物(松本油脂製薬社製”NCN“)を添加した後、二軸混練機(東芝機械社製TEM35B)によりシリンダ温度185℃にて溶融混練させて、ポリ乳酸系樹脂組成物を得、溶融粘度測定および耐加水分解性試験を行なった(表1)。
(Comparative Example 4)
A polylactic acid having an optical isomer L-form and D-form molar ratio of 88/12 and a melt viscosity of 2,070 Pa · s was used. After adding a monocarbodiimide compound (“NCN” manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) to this, it was melt-kneaded at a cylinder temperature of 185 ° C. by a twin-screw kneader (TEM35B manufactured by Toshiba Machine Co., Ltd.) to obtain a polylactic acid resin composition. The melt viscosity measurement and the hydrolysis resistance test were performed (Table 1).

耐加水分解性試験の代表例として、ポリ乳酸樹脂と実施例2のポリ乳酸系樹脂組成物の溶融粘度の経時変化を図1に示した。   As a representative example of the hydrolysis resistance test, the change over time in the melt viscosity of the polylactic acid resin and the polylactic acid resin composition of Example 2 is shown in FIG.

<発泡剤の含浸>
実施例1〜4および比較例1〜4で得られたポリ乳酸系樹脂組成物はペレット又はビーズ状粒子とした後、発泡剤の含浸を行なった。すなわち、回転式の耐圧容器にポリ乳酸系樹脂組成物と水とを同量混合し、発泡剤としてイソブタンをポリ乳酸系樹脂組成物に対して25%、分散剤として界面活性剤(三洋化成社製“イオネットDO−1000“)をポリ乳酸系樹脂組成物に対して1.5%注入し、密封状態とした後、耐圧容器の回転数15回転/分、耐圧容器内温度条件を1時間で30℃から82℃に昇温、その後82℃にて2時間保持し、さらにその後40分で82℃から50℃に降温するとし、耐圧容器内の温度が室温になったところで容器内から取り出し、風乾させることによりポリ乳酸系発泡性粒子を得た。
<Impregnation of foaming agent>
The polylactic acid resin compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were pelletized or bead-like particles, and then impregnated with a foaming agent. That is, the same amount of polylactic acid resin composition and water are mixed in a rotary pressure-resistant container, and isobutane as a foaming agent is 25% with respect to the polylactic acid resin composition, and a surfactant (Sanyo Kasei Co., Ltd.). "Ionette DO-1000") 1.5% of the polylactic acid resin composition was injected into the sealed state, and the pressure vessel was rotated at 15 revolutions / minute, and the temperature inside the pressure vessel was 1 hour. The temperature was raised from 30 ° C. to 82 ° C., then held at 82 ° C. for 2 hours, and then further lowered from 82 ° C. to 50 ° C. in 40 minutes. Polylactic acid-based expandable particles were obtained by air drying.

<予備発泡;発泡粒子の調製>
次いで、ポリ乳酸系発泡性粒子を高温の水蒸気と空気の混合ガスにより温度を約1分で50℃から76℃に昇温させ、約1分30秒間76℃で保持させることによりポリ乳酸系発泡粒子を得た。
<Prefoaming; Preparation of foamed particles>
Next, the polylactic acid-based foamed particles are heated from 50 ° C. to 76 ° C. in about 1 minute with a mixed gas of high-temperature water vapor and air, and held at 76 ° C. for about 1 minute and 30 seconds, thereby polylactic acid-based foamed particles. Particles were obtained.

<成形>
ポリ乳酸系発泡粒子は室温で大気圧下にて3日間保存し、その後縦307mm横307mm厚さ30mmの金型にポリ乳酸系発泡粒子を充填し、型内成形を行なった。得られたポリ乳酸系発泡成形体について、三段階(◎:形状および発泡粒子の接着具合良好、○:形状は良いが発泡粒子の接着具合不良、×:形状および発泡粒子の接着具合不良)の視覚評価を行なった。
<Molding>
The polylactic acid-based expanded particles were stored at room temperature under atmospheric pressure for 3 days, and then filled with polylactic acid-based expanded particles in a mold having a length of 307 mm, a width of 307 mm, and a thickness of 30 mm, followed by in-mold molding. About the obtained polylactic acid-based foamed molded article, three stages (◎: shape and good adhesion of foam particles, ○: good shape but poor adhesion of foam particles, ×: poor adhesion of shape and foam particles) Visual evaluation was performed.

表1より、実施例のようにポリカルボジイミド化合物およびモノカルボジイミド化合物を併用して用いた場合には、耐加水分解性が良好で、高発泡が可能で、且つ、成形性に関しても形状および発泡粒子の接着具合の良好な発泡成形体が得られる。但し、実施例3では発泡倍率が若干低く、より高い発泡倍率と良好な成形性を得るためには、ポリカルボジイミド化合物とモノカルボジイミド化合物の添加重量比が5/2乃至2/5であることが好ましいことがわかる。   From Table 1, when a polycarbodiimide compound and a monocarbodiimide compound are used in combination as in the examples, the hydrolysis resistance is good, high foaming is possible, and the moldability and shape of the foamed particles A foamed molded article having good adhesion can be obtained. However, in Example 3, the expansion ratio is slightly low, and in order to obtain a higher expansion ratio and good moldability, the addition weight ratio of the polycarbodiimide compound and the monocarbodiimide compound is 5/2 to 2/5. It turns out that it is preferable.

一方、比較例1〜3のようにポリカルボジイミド化合物のみを用いた場合、耐加水分解性および成形性が良好となる樹脂組成は無いことがわかる。比較例4のようにモノカルボジイミド化合物のみを用いた場合、耐加水分解性は良好であったが、成形性に関しては発泡成形体が収縮し、成形性は不良であった。   On the other hand, when only a polycarbodiimide compound is used like Comparative Examples 1-3, it turns out that there is no resin composition from which hydrolysis resistance and a moldability become favorable. When only the monocarbodiimide compound was used as in Comparative Example 4, the hydrolysis resistance was good, but regarding the moldability, the foamed molded product contracted and the moldability was poor.

比較例1については含浸時にビーズ状粒子同士が膠着してしまい、発泡工程および成形工程に進むことができなかった。   In Comparative Example 1, the bead-like particles were stuck together during the impregnation, and it was not possible to proceed to the foaming process and the molding process.

以上の結果より、耐加水分解性に優れ、且つ、発泡性、成形性に優れた発泡成形体が本発明を用いた場合に限られていることは明らかである。   From the above results, it is clear that a foamed molded article having excellent hydrolysis resistance and excellent foamability and moldability is limited to the case where the present invention is used.

本発明のポリ乳酸系発泡成形体は、耐加水分解性、発泡性、成形性に優れており、常時水分と接触したり、使用が長期間に及ぶ環境においても利用可能で、食品包装用、農業用、園芸用、建築土木用の資材等に利用することができる。具体的には、フロート、緩衝材、断熱材、魚箱等の他、従来より発泡スチロールが利用されている分野において、広く代替品として用いることができる。   The polylactic acid-based foam molded article of the present invention is excellent in hydrolysis resistance, foamability and moldability, and can be used even in an environment where it is always in contact with moisture or used for a long period of time. It can be used for materials for agriculture, horticulture, and civil engineering. Specifically, in addition to floats, cushioning materials, heat insulating materials, fish boxes, and the like, they can be widely used as substitutes in fields where polystyrene foam is conventionally used.

ポリ乳酸樹脂と実施例2のポリ乳酸系樹脂組成物の溶融粘度経時変化。Changes in melt viscosity over time of the polylactic acid resin and the polylactic acid resin composition of Example 2.

Claims (8)

ポリ乳酸のカルボキシル基末端の一部又は全部をポリカルボジイミド化合物およびモノカルボジイミド化合物により封鎖してなるポリ乳酸系樹脂組成物に、発泡剤を含浸してなるポリ乳酸系発泡性樹脂組成物。 A polylactic acid-based foamable resin composition obtained by impregnating a polylactic acid-based resin composition obtained by blocking a part or all of the carboxyl group terminals of polylactic acid with a polycarbodiimide compound and a monocarbodiimide compound . ポリ乳酸系樹脂組成物のポリカルボジイミド化合物およびモノカルボジイミド化合物の添加量の総和がポリ乳酸系樹脂100重量部に対して、0.5重量部以上2.5重量部以下であり、且つ、ポリカルボジイミド化合物およびモノカルボジイミド化合物の添加重量比が3/1乃至1/3である請求項1に記載のポリ乳酸系発泡性樹脂組成物。 The total addition amount of the polycarbodiimide compound and the monocarbodiimide compound in the polylactic acid resin composition is 0.5 to 2.5 parts by weight with respect to 100 parts by weight of the polylactic acid resin, and the polycarbodiimide The polylactic acid-based foamable resin composition according to claim 1, wherein an addition weight ratio of the compound and the monocarbodiimide compound is 3/1 to 1/3 . ポリ乳酸系樹脂組成物の190℃、荷重20kg、オリフィス径2mmにおける溶融粘度が2,000Pa・s以上5,000Pa・s以下である請求項1又は2のいずれかに記載のポリ乳酸系発泡性樹脂組成物190 ° C. of the polylactic acid-based resin composition, load 20 kg, polylactic acid according to claim 1 or 2 melting viscosity that put the orifice diameter 2mm is not more than 2,000 Pa · s or more 5,000 Pa · s -Based foamable resin composition . 発泡剤が炭化水素である請求項1〜3のいずれか1項に記載のポリ乳酸系発泡性樹脂組成物。   The polylactic acid-based foamable resin composition according to any one of claims 1 to 3, wherein the foaming agent is a hydrocarbon. 請求項1〜4のいずれか1項に記載のポリ乳酸系発泡性樹脂組成物からなるポリ乳酸系発泡性粒子。 The polylactic acid-type expandable particle which consists of a polylactic acid-type expandable resin composition of any one of Claims 1-4. 請求項5に記載のポリ乳酸系発泡性粒子を発泡させることにより得られるポリ乳酸系発泡粒子。   Polylactic acid-based expanded particles obtained by foaming the polylactic acid-based expandable particles according to claim 5. 発泡倍率が30倍以上である請求項6に記載のポリ乳酸系発泡粒子。   The polylactic acid-based expanded particles according to claim 6, wherein the expansion ratio is 30 times or more. 請求項6又は7のいずれかに記載のポリ乳酸系発泡粒子を成形してなるポリ乳酸系発泡成形体。   A polylactic acid-based foam molded article obtained by molding the polylactic acid-based foamed particle according to claim 6.
JP2004301039A 2004-10-15 2004-10-15 POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY Active JP4954461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301039A JP4954461B2 (en) 2004-10-15 2004-10-15 POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301039A JP4954461B2 (en) 2004-10-15 2004-10-15 POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY

Publications (2)

Publication Number Publication Date
JP2006111735A JP2006111735A (en) 2006-04-27
JP4954461B2 true JP4954461B2 (en) 2012-06-13

Family

ID=36380524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301039A Active JP4954461B2 (en) 2004-10-15 2004-10-15 POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY

Country Status (1)

Country Link
JP (1) JP4954461B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821210B2 (en) * 2005-08-22 2011-11-24 三菱化学株式会社 Biodegradable resin foam particles, method for producing biodegradable resin foam particles, and in-mold foam molding
JPWO2008010355A1 (en) * 2006-07-21 2009-12-17 日本電気株式会社 Aliphatic polyester resin composition and method for producing the same
JP5419698B2 (en) * 2007-09-27 2014-02-19 ユニチカ株式会社 Resin composition and molded body obtained by molding the same
JP5319970B2 (en) * 2008-06-24 2013-10-16 花王株式会社 Polylactic acid resin composition
JP5112364B2 (en) * 2009-03-09 2013-01-09 積水化成品工業株式会社 Process for producing polylactic acid-based resin foam molding
JP5620733B2 (en) * 2010-07-26 2014-11-05 株式会社ジェイエスピー Method for producing foamed polylactic acid resin particles
JP5619638B2 (en) * 2011-01-27 2014-11-05 ユニチカ株式会社 Polylactic acid resin composition, and molded product and foam obtained therefrom
JP5636310B2 (en) * 2011-02-23 2014-12-03 積水化成品工業株式会社 Method for producing polylactic acid resin foam, polylactic acid resin foam, and polylactic acid resin foam molded article
WO2012128006A1 (en) * 2011-03-22 2012-09-27 日本電気株式会社 Aliphatic polyester resin composition, method for manufacturing same, and molded article
CN111808408B (en) * 2020-08-06 2022-04-15 苏州环诺新材料科技有限公司 Photosensitive antibacterial biodegradable 3D printing wire and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228977B2 (en) * 1991-03-14 2001-11-12 ジョーンズ・マンヴィル・インターナショナル・インコーポレーテッド Carbodiimide-modified polyester fiber and method for producing the same
DE4318979A1 (en) * 1993-06-08 1994-12-15 Basf Ag Carbodiimides and / or oligomeric polycarbodiimides based on 1,3-bis (1-methyl-1-isocyanatoethyl) benzene, a process for their preparation and their use as a hydrolysis stabilizer
JP3386245B2 (en) * 1994-09-29 2003-03-17 大日本インキ化学工業株式会社 Method for producing lactic acid-based copolymer
JP3776578B2 (en) * 1997-07-09 2006-05-17 日清紡績株式会社 Biodegradable plastic composition and method for adjusting biodegradation rate of biodegradable plastic
JP2000020525A (en) * 1998-07-07 2000-01-21 Toshiba Corp Program annotation machine translation device and recording medium having recorded program for driving the device thereon
JP2000086802A (en) * 1998-09-10 2000-03-28 Kanebo Ltd Electrically conductive resin composition for biodegradable foamed article
JP3871822B2 (en) * 1998-12-09 2007-01-24 株式会社カネカ Expandable resin composition having biodegradability
JP3737396B2 (en) * 2000-10-02 2006-01-18 株式会社カネカ Expanded particles and molded bodies
JP2003253028A (en) * 2002-02-27 2003-09-10 Toray Ind Inc Crosslinked polyester resin foam, laminated sheet therefrom and molded article using the sheet
JP4077670B2 (en) * 2002-07-05 2008-04-16 ミヨシ油脂株式会社 Biodegradable resin aqueous dispersion
JP2004124010A (en) * 2002-10-07 2004-04-22 Toray Ind Inc Tablet for polymer modifications, preparation process of molded products using the same, and fibers and fabric
JP4112961B2 (en) * 2002-12-06 2008-07-02 東レ株式会社 Polyester monofilament and industrial fabric
JP4284058B2 (en) * 2002-12-06 2009-06-24 東レ株式会社 Polyester monofilament and industrial fabric

Also Published As

Publication number Publication date
JP2006111735A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
NZ580424A (en) Particulate expandable polylactic acid, a method for producing the same, a foamed moulded product based on particulate expandable polylactic acid, as well as a method for producing the same
US6310171B1 (en) Resin composition with biodegradability and foamability
JP3802680B2 (en) Expandable resin composition having biodegradability
JP4954461B2 (en) POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY
US20130040125A1 (en) Expandable polymers of cellulose acetate butyrate
JP5339857B2 (en) Resin composition for foaming biodegradable flame retardant polyester, foam obtained therefrom, and molded product thereof
JP2005264166A (en) Foamed particle and molded product
JP4038673B2 (en) Polylactic acid-based expandable resin particles and foamed molded products
TWI410459B (en) Heat - resistant lightweight environmental protection package and its composition
JP2002020526A (en) Expandable resin beads
JP2000230029A (en) Anti-static resin composition
JP3737396B2 (en) Expanded particles and molded bodies
JP2012241166A (en) Poly(3-hydroxyalkanoate)-based preliminarily foamed particle and in-mold expansion-molded body
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
US20220162377A1 (en) Foam sheet, product, and method for producing foam sheet
JP3811747B2 (en) Expandable resin composition having biodegradability
JP3907047B2 (en) Method for producing foamed molding
JP4570406B2 (en) Polylactic acid-based resin expanded particles and molded articles thereof
JP3899303B2 (en) Foam molded body and method for producing the same
JP3787447B2 (en) Expandable resin composition having biodegradability
JP2021055084A (en) Film
JP2001098104A (en) Expanded particle having biodegradability and mold thereof
JP4781334B2 (en) Resin composition for foaming beads
JP2000017039A (en) Expandable resin composition having biodegadability
JP2004107505A5 (en)

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250