JP3907047B2 - Method for producing foamed molding - Google Patents

Method for producing foamed molding Download PDF

Info

Publication number
JP3907047B2
JP3907047B2 JP2002272704A JP2002272704A JP3907047B2 JP 3907047 B2 JP3907047 B2 JP 3907047B2 JP 2002272704 A JP2002272704 A JP 2002272704A JP 2002272704 A JP2002272704 A JP 2002272704A JP 3907047 B2 JP3907047 B2 JP 3907047B2
Authority
JP
Japan
Prior art keywords
mpa
molded product
beads
polylactic acid
dimensional stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002272704A
Other languages
Japanese (ja)
Other versions
JP2004107505A (en
JP2004107505A5 (en
Inventor
孝敬 久保
真弘 山
綱大 中江
鉄太郎 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2002272704A priority Critical patent/JP3907047B2/en
Publication of JP2004107505A publication Critical patent/JP2004107505A/en
Publication of JP2004107505A5 publication Critical patent/JP2004107505A5/ja
Application granted granted Critical
Publication of JP3907047B2 publication Critical patent/JP3907047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、天然素材を出発原料とした生分解性、軽量性、機械物性、寸法安定性の優れた発泡成形物の製造方法に関する。
【0002】
【従来の技術】
軽量性、緩衝性、成形加工性等の特性を生かしたプラスチック発泡体が包装、梱包材として多量に用いられいるが、それら素材はポリスチレン(PS)、ポリオレフィン(PO)といった石油を原料とする化学製品であるため、使用後の処分が困難で、焼却しても燃焼熱量が高く、焼却炉をいためたり、埋め立てをしても分解しない上に容積が大きいために処分場のスペースを占有してしまうといった大きな社会問題となってきている。
【0003】
最近天然素材を出発原料とした生分解性を有するポリ乳酸が注目され、種々の商品が開発、市販されつつある。本発明者等は、以前から該ポリ乳酸に着目しその発泡体の開発に注力した結果、生分解性、軽量性、機械物性等優れた機能を有する発泡性ビーズ及び該ビーズから得られる発泡成形物を得、市場に提案している。しかし、該発泡成形体には高温時での寸法安定性が劣るという課題があるため、高温が予想される輸出梱包包装材等の使用用途が制限されている。
【0004】
【特許文献1】
特開2000−17037号公報
【0005】
【発明が解決しようとする課題】
本発明は、ポリ乳酸又はその組成物からなる生分解性、軽量性、機械物性等優れた機能を有し、実用的に問題となる高温高湿(60℃×80%RH)に於ける寸法安定性の優れた発泡成形物の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、かかる課題を解決すべく鋭意研究の結果、L体とD体のモル比が95/5〜6/40、又は40/60〜5/95であるポリ乳酸又はその組成物からなる生分解性発泡ビーズを0.105MPa以上の気体雰囲気中に保持した後、該ビーズを金型に導入し型内成形することを特徴とする発泡成形物の製造方法を見出し、本発明に到達したものである。
【0007】
【発明の実施の形態】
ポリ乳酸は、通常繊維用又はフィルム用として使われる樹脂は結晶性が必要であることから、光学異性体のL体が100%に近いポリ乳酸が用いられている。これに対し、発泡体を形成するためには少なくとも結晶性はできうる限り小さくする必要がある。その理由は、結晶性樹脂は発泡剤を含浸する工程で結晶化が進行し、発泡性を阻害するからである。
【0008】
従って、本発明でいうポリ乳酸とは、乳酸を脱水縮合又はラクチドを開環重合して得られる実質的に非晶性に近いポリ乳酸であり、L体とD体のモル比が95/5〜60/40、又は40/60〜5/95の乳酸を用いる。
L体/D体のモル比が95/5を超えるもの、あるいは5/95未満のものは結晶性が高く、発泡倍率が上がらなかったり発泡が不均一になり使用できない。また、D体比率が40%を超え60%に満たないものは耐熱性が劣り使用できない。好ましくは、93/7〜70/30、又は30/70〜7/93が良い
【0009】
又、本発明で言うポリ乳酸組成物とはポリ乳酸に増粘剤、フィラー、耐熱剤、紫外線吸収剤、制電剤等各種添加剤を配合した組成物又は他の化合物を10モル%以下好ましくは5モル%以下共重合したポリ乳酸、ポリブチレンサクシネート、ポリカプロラクトン、ポリブチレンテレフタレート共重合物、セルロース誘導体等を配合したものをいう。
【0010】
しかし、該ポリ乳酸又はその組成物に発泡剤を含浸、発泡させて得られる発泡ビーズを金型に導入し、通常製造される水蒸気による成形加工を行って得られる成形物は、生分解性、軽量性、機械物性等に優れるが、高温高湿(60℃×80%RH)下に放置すると短時間で寸法が大きく変化する等寸法安定性に劣るため輸出梱包等の包装材に使用できず、その用途は大きく制限される。
【0011】
本発明者等はこの課題を解決すべく鋭意検討の結果、発泡ビーズを所定の条件下で処理した後、金型に導入し通常製造される水蒸気による成形加工を行うことにより寸法安定性が大幅に改善されることを見出した。即ち、本発明によるポリ乳酸又はその組成物から得られる発泡ビーズを0.105Mpa以上の気体雰囲気中で処理した後、上記成形加工することにより、高温高湿(60℃×80%RH)における寸法変化が極めて小さくなることを見出した。
【0012】
使用する気体は、空気、窒素、炭酸ガス、ヘリウム、アルゴン又はそれらの混合ガスのいずれも使用することが可能であるが、空気、窒素、炭酸ガス又はそれらの混合ガスを使用するのが経済面から好ましい。炭化水素、ハロゲン化炭化水素等の有機系気体も使用可能であるが地球環境負荷の増加が懸念され好ましくない。
【0013】
次に気体の使用圧力は0.105MPa以上、好ましくは0.11MPa以上1MPa未満、更に好ましくは0.15MPa以上0.5MPa未満である。使用圧力が0.105MPa未満では寸法安定性良好な成形物を得るに必要な発泡ビーズを得るには極めて長時間を要するため経済的でなく、圧力が高すぎると発泡ビーズの壁膜が圧力により破壊されるため良好な成形物を得ることが出来ない。加圧方法は瞬時又は時間をかけてのいずれでも可能であるが、ビーズ壁膜の損傷を考慮すると時間をかけて行うのが好ましい。
【0014】
発泡ビーズを所定圧力下で処理する時間は、処理する温度又は気体が保有する湿度等により影響され一義的に決めることは出来ないが、一般的には、1時間以上好ましくは3時間以上である。この最適最短処理時間は、処理温度が高く、使用気体の湿度が高いほど短縮される傾向がある。
発泡ビーズを所定圧力下で処理する設備は、耐圧性が保証される容器であれば形状大きさを問わず使用できる。該容器が30℃から50℃の範囲に加温可能であればより好ましいが必ずしも必要ではなく、使用する気体も同様である。
【0015】
発泡性を有するポリ乳酸又はその組成物としては、高粘性、分岐ポリマーが有利であるが、これらポリ乳酸又はその組成物を製造する方法としては、例えば、通常の反応釜での高真空下、攪拌効率の良好な状態での溶融重合、二軸混練反応機による溶融重合、溶融重合と固相重合との組み合わせにより得る事は可能である。更に、エポキシ化合物、酸無水化合物、イソシアネート化合物等の増粘剤を添加して、高粘性、分岐ポリマーを得ることも可能である。
【0016】
本発明の発泡ビーズに使用されるポリ乳酸には各種の化合物を配合することが出来る。例えば、ポリブチレンサクシネート、ポリカプロラクトンに代表される脂肪族ポリエステル、ポリブチレンテレフタレート共重合物、セルロースアセテート等の各種ポリマーを配合することが可能である。その配合量は、樹脂の特性により異なるがポリ乳酸又はその組成物の性質を維持するためには多くとも50重量%以下に抑えることが好ましい。
【0017】
本発明に使用するエポキシ化合物としてはグリシジルエーテル化合物、酸無水化合物としてはピロメリット酸、トリメリット酸、イソシアネート化合物としてはトリレン、ジフェニルメタンを骨格とする芳香族ポリイソシアネート、水素化ジフェニルメタンを骨格とする脂環族ポリイソシアネート、ヘキサメチレン基を代表とする脂肪族ポリイソシアネートがある。
これら増粘剤の添加量は、任意に選定することが可能であるが、5重量%以下が好ましく使用される。
【0018】
更に、本発明には各種のフィラーを配合することが出来る。無機フィラーとしては、タルク、シリカ、カオリン、ゼオライト、マイカ、アルミナ、モンモリロナイト等があり、単独又はそれらの混合物を任意量配合することが可能であるが、配合量は0.1重量%から20重量%の範囲、好ましくは1重量%から5重量%の範囲が使用される。一方、有機フィラーとしてはポリオレフィン類、芳香族ポリエステル類、ポリアミド類、ポリカーボネート、セルロース、ポリアルキレングリコール類が使用可能であるが、実質的にポリ乳酸又はその組成物の生分解性を損なわない範囲に留めるべきであり、一般的には10重量%以下が好ましい
【0019】
また、その他の添加剤についても、目的に応じ、適宜添加することが出来、例えば制電剤、熱安定剤、酸化防止剤、難燃剤、紫外線吸収剤、可塑剤等がある。但し、難燃剤等は塩素等のハロゲン化物であることが多く、生分解性や焼却処分時の有害物質発生という観点から最小限に留めておくのがよい。
【0020】
発泡ビーズを得るには、ポリ乳酸又はその組成物を各種添加剤と共に混練し、ペレット又はビーズ状粒子とした後、発泡剤及び発泡助剤を含浸させる。次いで、これら含浸粒子通常水蒸気加熱により発泡させ、数倍から100倍の発泡ビーズとする。
ペレット及びビーズの大きさ、形状等適宜選択することができるが、通常、直径0.5〜2mmの大きさのものが用いられる。精密な成形体の場合は直径0.5〜1mmの粒子が一般的である。
【0021】
ここで用いる発泡剤及び発泡助剤としては、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、シクロペンタン、ヘキサン等の炭化水素、塩化メチレン、塩化メチル、ジクロロジフルオロメタン等のハロゲン化炭化水素類、ジメチルエーテル、メチルエチルエーテル等のエーテル類が発泡剤として、又、炭素数1〜4のアルコール、ケトン類、エーテル、ベンゼン、トルエン等が発泡助剤として用いられる。
【0022】
本発明で使用する発泡ビーズの成形加工設備は、その目的が達成されればいかなるものでも良いが、PS又はPO成形設備が好ましく使用される。
【0023】
本発明の一例として、本発明の発泡ビーズをタンクに充填後、0.3MPaの空気で加圧、6時間保持した後降圧しPS成形機で通常の方法で成形加工して得られた成形物は、高温高湿(60℃×80%RH)に曝しても、寸法変化は殆ど見られない。
【0024】
本発明によって得られた成形物は、種々の用途に使用することが出来る。例えば、精密機器、電化製品、電子機器、電子部品等の緩衝材、食品類、酒類、薬品類等の包装材、展示パネル、マネキン、デコレーション等の美粧剤、食品、機械部品、電子部品等の函箱、断熱材、建築材、アイスクリーム、冷凍食品等の保温材などがある。
【0025】
【実施例】
以下に実施例及び比較例により、本発明を更に具体的に説明する。
尚、評価は下記の方法で行った。
【0026】
(評価方法)
(1)溶液粘度:フェノール/テトラクロロエタン(60/40)混合液に試料0.5gを溶解して50mlとし、自動キャピラリー粘度計 model SS−600−L1(柴山科学)を使用し、25℃での相対粘度を測定した。
【0027】
(2)融点(℃):樹脂量10mgを採取し、DSC(Differential Scanning Calorimeter PerkinElmer製)の吸熱ピークより求めた。測定条件は窒素フロー中で、25℃から200℃まで10℃/分の速度で昇温して測定した。
【0028】
(3)含浸率(%):含浸前のビーズ重量(W)及び含浸後のビーズ重量(W)から下式により算出した。
含浸率(%)=(W/W−1)×100
【0029】
(4)発泡倍率:メスシリンダーを用いて、発泡剤含浸ペレツトの重量(g)及び発泡後のビーズ体積(mL)を測定し、発泡倍率を次のように求めた。
発泡倍率(倍)=発泡ビーズの体積/含浸ペレットの重量
【0030】
(5)寸法安定性:発泡成形機に縦300×横300×高さ30mmの金型を設置し、発泡ビーズを充填し、スチーム圧0.1MPaで処理し成形加工した。得られた成形体を25℃、60%RHの条件下に4日静置し、各寸法を測定した。
次いで、60℃、80%RHの条件下に24時間処理した後、同様に各寸法を測定した。以下の計算式により寸法安定性を算出した。
寸法安定性(変率%)=((処理後の成形体体積(S2)/処理前の成形体体積(S1))−1)×100
評価:変形率≧10%又は変形率≦−10%:寸法安定性不良
5%≦変形率<10%:寸法安定性良好
−5%<変形率<5%:寸法安定性特に良好
−10%<変形率≦−5%:寸法安定性良好
【0031】
(6)生分解性:牛糞を主体とした発酵中の堆肥に各試料を埋め込み、48時間後の分解状態を目視で観察した。
評価
○:殆ど分解
×:分解せず原形をとどめている
【0032】
(製造例)
精製したL−ラクチド、D―ラクチド及び触媒としてオクチル酸スズを表1の組成になるように攪拌機付きオートクレーブに仕込み、減圧脱気した後、窒素雰囲気下で各々の重合条件で開環重合した。反応終了後、オートクレーブよりポリマーを取り出し、粘度(ηr)を測定し、ηrが3.3〜3.5のポリマーを得た。
【0033】
次いでこれらポリ乳酸にイソシアネート化合物「ミリオネートMR―200」(イソシアネート基2.7〜2.8当量/モル、日本ポリウレタン工業(株))及びタルク「LMP―100」(富士タルク工業(株))を2重量%及び3重量%を二軸混練機(PCM―30,池貝鉄工(株))にてシリンダー温度180℃で混練し、ペレット状の樹脂組成物を得た。
【0034】
これらの樹脂組成物をオートクレーブに各々2000部、発泡剤としてイソブタン800部、発泡助剤としてメタノール100部を仕込み、密封し、20℃/時間の速度で昇温し、85℃に2時間保持した。その後、25℃まで冷却してから樹脂を取り出し、風乾後、重量を測定し、含浸率を求めた。次いで得られた発泡剤含浸ペレツトを水蒸気(92℃、1分)で処理し、発泡ビーズを得た。各組成物の含浸率及び発泡倍率は実施例又は比較例と共に記載した。
【0035】
【表1】

Figure 0003907047
【0036】
(実施例1〜7、比較例1〜4)
該ビーズを2日熟成後、内容積200Lのオートクレーブに仕込み、空気で0.3MPaに加圧し、10時間保持した。その後降圧し、縦300mm、横300mm、厚み30mmの金型を装着したPS成形機に充填して水蒸気圧0.1MPa、30秒加熱し成形物を得た。評価の対照として市販の発泡ポリスチレン「リューパール55KSY−3171」(大日本インキ製)を同条件で行いそれぞれ成形物を得た。但し、発泡ポリスチレンは空気による加圧処理は行わなかった。
【0037】
次いで該成形物を25℃、湿度65%の条件下に2日間放置した後、60℃、湿度80%の条件下に24時間処理し、それぞれの寸法を測定し体積を算出した。処理前の成形物体積(S1)及び処理後の成形物体積(S2)から変形率を算出した。評価結果は表2の通りであった。
【0038】
【表2】
Figure 0003907047
【0039】
(評価結果)
比較例1(P1)及び比較例3(P10)は結晶性樹脂であるため、殆ど発泡しなかった。本発明である実施例1〜6(P2〜P7)及び実施例7(P9)は発泡性、寸法安定性(変形率)及び生分解性いずれも良好であった。比較例2(P8)は発泡性及び生分解性は良好であったが寸法安定性(変形率)不良であり、本発明の趣旨に沿う結果とはならなかった。一方、PS成形物は生分解性が全く認められなかった。
【0040】
(実施例8〜13 比較例5)
実施例3(ポリマーP4)の発泡ビーズを使用し、加圧する気体の種類を変更した以外は表2の実施例1〜7と同様な操作を行い成形物を得た。得られた成形物の寸法安定性(変形率)を評価した。結果を表3に示した。
【0041】
【表3】
Figure 0003907047
【0042】
(評価結果)
気体として、空気、炭酸ガス、窒素、ヘリュウム、アルゴン、空気/窒素混合ガス及び空気/炭酸ガス混合ガスについて評価した結果、いずれも寸法安定性(変形率)は良好であった。一方、気体で処理しないビーズから得た成形物は変形率35.5%と不良であった。
【0043】
(実施例14〜20、比較例5〜7)
実施例3(ポリマーP4)の発泡ビーズを使用し、加圧する空気の圧力及び加圧時間を変更した以外は表2の実施例1〜7と同様な操作を行い成形物を得た。得られた成形物の寸法安定性(変形率)を評価した。結果を表4に示した。
【0044】
【表4】
Figure 0003907047
【0045】
(評価結果)
表4から明らかなように空気加圧処理しない比較例5及び空気圧の低い比較例6は寸法安定性(変形率)が不良であった。寸法安定性(変形率)が良好であったのは空気圧が0.105MPa〜1.0MPaであり、特に空気圧が0.15MPa〜0.5MPaの範囲が良好であった。
【0046】
【発明の効果】
以上、本発明の製造方法により得られる発泡成形物は、従来から課題であった寸法安定性(変形率)が改善され、生分解性、軽量性、機械物性は従来の性能を維持していた。現在使用されているPS又はPO発泡成形体を代替することにより地球環境保全に資することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a foamed molded article having excellent biodegradability, lightness, mechanical properties, and dimensional stability using a natural material as a starting material.
[0002]
[Prior art]
Plastic foams that make use of characteristics such as lightness, shock-absorbing properties, and moldability are used in large quantities as packaging and packaging materials. These materials are chemicals that use petroleum such as polystyrene (PS) and polyolefin (PO) as raw materials. Because it is a product, it is difficult to dispose of it after use, and its combustion heat is high even if it is incinerated. It will not decompose even if it is incinerated or landfilled. It has become a big social problem.
[0003]
Recently, polylactic acid having biodegradability starting from natural materials has attracted attention, and various products are being developed and marketed. As a result of the inventors focusing on the polylactic acid and focusing on the development of the foam from the past, the foamable beads having excellent functions such as biodegradability, light weight, and mechanical properties, and foam molding obtained from the beads Get things and make proposals to the market. However, since the foamed molded article has a problem that the dimensional stability at high temperatures is inferior, the usage of export packaging materials and the like that are expected to be high is limited.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-17037
[Problems to be solved by the invention]
The present invention has excellent functions such as biodegradability, light weight, and mechanical properties made of polylactic acid or a composition thereof, and dimensions at high temperature and high humidity (60 ° C. × 80% RH) that are practically problematic. An object of the present invention is to provide a method for producing a foam molded article having excellent stability.
[0006]
[Means for Solving the Problems]
The present invention intensively studied to solve the above problems, polylactic acid or the composition molar ratio of the L-form and D-form is 95 / 5-6 0/40, or 40/60 to 5/95 The present invention has found a method for producing a foam-molded product characterized in that a biodegradable foam bead made of a product is held in a gas atmosphere of 0.105 MPa or more, and then the bead is introduced into a mold and molded in-mold. Has reached
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As polylactic acid, a resin usually used for fibers or films needs to have crystallinity, and therefore polylactic acid having an L isomer of nearly 100% is used. On the other hand, in order to form a foam, at least the crystallinity needs to be as small as possible. The reason is that the crystalline resin progresses in crystallization in the step of impregnating the foaming agent, thereby inhibiting the foamability.
[0008]
Therefore, the polylactic acid referred to in the present invention is a polylactic acid that is substantially non-crystalline obtained by dehydration condensation of lactic acid or ring-opening polymerization of lactide, and the molar ratio of L-form to D-form is 95/5. ~ 60/40 or 40 / 60-5 / 95 lactic acid is used.
Those in which the molar ratio of L-form / D-form exceeds 95/5 or less than 5/95 has high crystallinity and cannot be used because the foaming ratio does not increase or foaming becomes uneven. Also, those having a D-form ratio exceeding 40% and less than 60% are inferior in heat resistance and cannot be used. Preferably, 93 / 7-70 / 30 or 30 / 70-7 / 93 is good .
[0009]
The polylactic acid composition referred to in the present invention is preferably a composition containing other additives such as a thickener, a filler, a heat-resistant agent, an ultraviolet absorber, an antistatic agent, etc. in polylactic acid or other compounds, preferably 10 mol% or less. Means a blend of polylactic acid, polybutylene succinate, polycaprolactone, polybutylene terephthalate copolymer, cellulose derivative and the like copolymerized at 5 mol% or less.
[0010]
However, the polylactic acid or its composition is impregnated with a foaming agent, and foamed beads obtained by foaming are introduced into a mold, and a molded product obtained by performing a molding process using water vapor that is normally produced is biodegradable, It is excellent in light weight and mechanical properties, but cannot be used for packaging materials such as export packaging because it is inferior in dimensional stability, such as large changes in dimensions in a short time when left under high temperature and high humidity (60 ° C x 80% RH). Its use is greatly limited.
[0011]
As a result of intensive studies to solve this problem, the present inventors processed foamed beads under predetermined conditions, and then introduced them into a mold and performed molding processing using steam that is normally produced, thereby greatly improving dimensional stability. I found it to be improved. That is, after processing the foamed beads obtained from the polylactic acid according to the present invention or a composition thereof in a gas atmosphere of 0.105 Mpa or more, the above molding is performed, thereby the dimensions at high temperature and high humidity (60 ° C. × 80% RH). We found that the change was very small.
[0012]
As the gas to be used, any of air, nitrogen, carbon dioxide, helium, argon or a mixed gas thereof can be used. However, it is economical to use air, nitrogen, carbon dioxide or a mixed gas thereof. To preferred. Although organic gases such as hydrocarbons and halogenated hydrocarbons can be used, it is not preferable because of an increase in global environmental load.
[0013]
Next, the working pressure of the gas is 0.105 MPa or more, preferably 0.11 MPa or more and less than 1 MPa, more preferably 0.15 MPa or more and less than 0.5 MPa. If the working pressure is less than 0.105 MPa, it takes a very long time to obtain the foamed beads necessary to obtain a molded article having good dimensional stability, and if the pressure is too high, the wall membrane of the foamed beads is affected by the pressure. Since it is destroyed, a good molded product cannot be obtained. The pressurizing method can be either instantaneous or time-consuming, but it is preferable to take time in consideration of damage to the bead wall membrane.
[0014]
The time for processing the expanded beads under a predetermined pressure is influenced by the temperature to be processed or the humidity held by the gas and cannot be uniquely determined, but is generally 1 hour or more, preferably 3 hours or more. . This optimum shortest processing time tends to be shortened as the processing temperature is higher and the humidity of the gas used is higher.
The equipment for processing the expanded beads under a predetermined pressure can be used regardless of the shape and size as long as the pressure resistance is guaranteed. Although it is more preferable if the container can be heated in the range of 30 ° C. to 50 ° C., it is not always necessary, and the same gas is used.
[0015]
As the polylactic acid having foamability or a composition thereof, a highly viscous and branched polymer is advantageous, but as a method for producing these polylactic acid or a composition thereof, for example, under a high vacuum in a normal reaction kettle, It can be obtained by melt polymerization with good stirring efficiency, melt polymerization by a biaxial kneading reactor, or a combination of melt polymerization and solid phase polymerization. Furthermore, it is possible to obtain a highly viscous and branched polymer by adding a thickener such as an epoxy compound, an acid anhydride compound, or an isocyanate compound.
[0016]
Various compounds can be blended in the polylactic acid used in the expanded beads of the present invention. For example, various polymers such as polybutylene succinate, aliphatic polyester typified by polycaprolactone, polybutylene terephthalate copolymer, and cellulose acetate can be blended. The blending amount varies depending on the properties of the resin, but it is preferably suppressed to 50% by weight or less in order to maintain the properties of polylactic acid or a composition thereof.
[0017]
The epoxy compound used in the present invention is a glycidyl ether compound, pyromellitic acid is trimellitic acid as an acid anhydride compound, tolylene is an isocyanate compound, aromatic polyisocyanate having diphenylmethane as a skeleton, and fat having hydrogenated diphenylmethane as a skeleton. There are cyclic polyisocyanates and aliphatic polyisocyanates typified by hexamethylene groups.
Although the addition amount of these thickeners can be selected arbitrarily, 5 wt% or less is preferably used.
[0018]
Furthermore, various fillers can be mix | blended with this invention. As the inorganic filler, there are talc, silica, kaolin, zeolite, mica, alumina, montmorillonite, etc., and any amount thereof can be blended alone or a mixture thereof, but the blending amount is from 0.1% by weight to 20% by weight. % Range, preferably 1% to 5% by weight is used. On the other hand, polyolefins, aromatic polyesters, polyamides, polycarbonates, celluloses, and polyalkylene glycols can be used as organic fillers, but within a range that does not substantially impair the biodegradability of polylactic acid or its composition. Generally, it is preferably 10% by weight or less.
[0019]
Further, other additives can be appropriately added according to the purpose, and examples thereof include antistatic agents, heat stabilizers, antioxidants, flame retardants, ultraviolet absorbers, and plasticizers. However, flame retardants are often halides such as chlorine and should be kept to a minimum from the viewpoint of biodegradability and generation of harmful substances during incineration.
[0020]
In order to obtain foam beads, polylactic acid or a composition thereof is kneaded with various additives to form pellets or bead-like particles, and then impregnated with a foaming agent and a foaming aid. Subsequently, these impregnated particles are usually foamed by heating with steam to obtain expanded beads of several to 100 times.
Pellet and bead size, the shape or the like may be suitably selected, usually, those having a diameter of 0.5~2mm used. In the case of a precise molded body, particles having a diameter of 0.5 to 1 mm are common.
[0021]
The foaming agent and foaming aid used here are hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, cyclopentane and hexane, and halogenated hydrocarbons such as methylene chloride, methyl chloride and dichlorodifluoromethane. Ethers such as dimethyl ether and methyl ethyl ether are used as blowing agents, and alcohols having 1 to 4 carbon atoms, ketones, ethers, benzene, toluene and the like are used as foaming aids.
[0022]
The foamed bead molding processing equipment used in the present invention may be any equipment as long as the object is achieved, but a PS or PO molding equipment is preferably used.
[0023]
As an example of the present invention, the foam after filling beads in the tank, the air under pressure of 0.3 MPa, the molded product obtained by molding in the usual way with the step-down and PS molding machine was maintained for 6 hours of the invention Even when exposed to high temperature and high humidity (60 ° C. × 80% RH), there is almost no dimensional change.
[0024]
The molded product obtained by the present invention can be used for various applications. For example, cushioning materials for precision instruments, electrical appliances, electronic devices, electronic parts, packaging materials for foods, liquors, chemicals, cosmetics such as display panels, mannequins, decorations, foods, machine parts, electronic parts, etc. There are heat insulation materials such as box boxes, heat insulating materials, building materials, ice cream, frozen foods, and the like.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
The evaluation was performed by the following method.
[0026]
(Evaluation methods)
(1) Solution viscosity: 0.5 g of a sample is dissolved in a phenol / tetrachloroethane (60/40) mixed solution to 50 ml, and an automatic capillary viscometer model SS-600-L1 (Shibayama Kagaku) is used at 25 ° C. The relative viscosity of was measured.
[0027]
(2) Melting point (° C.): A resin amount of 10 mg was collected and determined from an endothermic peak of DSC (manufactured by Differential Scanning Calipermeter PerkinElmer). Measurement conditions were measured by raising the temperature from 25 ° C. to 200 ° C. at a rate of 10 ° C./min in a nitrogen flow.
[0028]
(3) Impregnation rate (%): It was calculated from the weight of beads before impregnation (W 0 ) and the weight of beads after impregnation (W 1 ) by the following formula.
Impregnation rate (%) = (W 1 / W 0 −1) × 100
[0029]
(4) Foaming ratio: Using a graduated cylinder, the weight (g) of the foaming agent-impregnated pellet and the volume of the beads after foaming (mL) were measured, and the foaming ratio was determined as follows.
Expansion ratio (times) = volume of expanded beads / weight of impregnated pellets
(5) Dimensional stability: A mold having a length of 300 × width of 300 × height of 30 mm was placed in a foam molding machine, filled with foam beads, and processed at a steam pressure of 0.1 MPa for molding. The obtained molded body was allowed to stand for 4 days under conditions of 25 ° C. and 60% RH, and each dimension was measured.
Subsequently, after processing for 24 hours under conditions of 60 ° C. and 80% RH, each dimension was measured in the same manner. The dimensional stability was calculated by the following formula.
Dimensional stability (deformation rate%) = ((the compact volume of the preform volume (S2) / treatment after treatment (S1)) - 1) × 100
Evaluation: Deformation rate ≧ 10% or Deformation rate ≦ −10% : poor dimensional stability
5% ≦ deformation rate <10% : good dimensional stability
−5% <deformation rate <5% : dimensional stability is particularly good
−10% <deformation rate ≦ −5% : good dimensional stability
(6) Biodegradability: Each sample was embedded in a compost during fermentation mainly composed of cow dung, and the decomposition state after 48 hours was visually observed.
Evaluation ○: Almost decomposed ×: The original shape is not decomposed. [0032]
(Production example)
Purified L-lactide, D-lactide and tin octylate as a catalyst were charged into an autoclave equipped with a stirrer so as to have the composition shown in Table 1, degassed under reduced pressure, and then subjected to ring-opening polymerization under each polymerization condition in a nitrogen atmosphere. After completion of the reaction, the polymer was taken out from the autoclave and the viscosity (ηr) was measured to obtain a polymer having ηr of 3.3 to 3.5.
[0033]
Next, an isocyanate compound “Millionate MR-200” (2.7 to 2.8 equivalents / mol of isocyanate groups, Nippon Polyurethane Industry Co., Ltd.) and talc “LMP-100” (Fuji Talc Industry Co., Ltd.) were added to these polylactic acids. 2 wt% and 3 wt% were kneaded at a cylinder temperature of 180 ° C. with a twin-screw kneader (PCM-30, Ikegai Iron Works Co., Ltd.) to obtain a pellet-shaped resin composition.
[0034]
Each of these resin compositions was charged in an autoclave with 2000 parts each, 800 parts isobutane as a foaming agent, and 100 parts methanol as a foaming aid, sealed, heated at a rate of 20 ° C./hour, and held at 85 ° C. for 2 hours. . Then, after cooling to 25 ° C., the resin was taken out, air-dried, weighed, and the impregnation rate was determined. Next, the obtained foaming agent-impregnated pellet was treated with water vapor (92 ° C., 1 minute) to obtain expanded beads. The impregnation rate and expansion ratio of each composition are described together with the examples or comparative examples.
[0035]
[Table 1]
Figure 0003907047
[0036]
(Examples 1-7, Comparative Examples 1-4)
The beads were aged for 2 days, charged into an autoclave with an internal volume of 200 L, pressurized to 0.3 MPa with air, and held for 10 hours. Thereafter, the pressure was reduced, and a PS molding machine equipped with a mold having a length of 300 mm , a width of 300 mm, and a thickness of 30 mm was filled and heated to a water vapor pressure of 0.1 MPa for 30 seconds to obtain a molded product. As a control for evaluation, commercially available expanded polystyrene “Ryupearl 55KSY-3171” (manufactured by Dainippon Ink) was used under the same conditions to obtain molded products. However, the polystyrene foam was not pressurized with air.
[0037]
Next, the molded product was allowed to stand for 2 days under conditions of 25 ° C. and humidity 65%, and then treated for 24 hours under conditions of 60 ° C. and humidity 80%. The respective dimensions were measured, and the volume was calculated. The deformation rate was calculated from the molded product volume (S1) before treatment and the molded product volume (S2) after treatment. The evaluation results are shown in Table 2.
[0038]
[Table 2]
Figure 0003907047
[0039]
(Evaluation results)
Since Comparative Example 1 (P1) and Comparative Example 3 (P10) are crystalline resins, they hardly foamed. Examples 1 to 6 (P2 to P7) and Example 7 (P9) according to the present invention were good in foamability, dimensional stability (deformation rate) and biodegradability. Comparative Example 2 (P8) had good foamability and biodegradability, but had poor dimensional stability (deformation rate), and did not result in the spirit of the present invention. On the other hand, no PS biodegradability was observed in the PS molded product.
[0040]
(Examples 8-13 Comparative Example 5)
Using the foam beads of Example 3 (Polymer P4) and changing the type of gas to be pressurized, the same operation as in Examples 1 to 7 in Table 2 was performed to obtain a molded product. The dimensional stability (deformation rate) of the obtained molded product was evaluated. The results are shown in Table 3.
[0041]
[Table 3]
Figure 0003907047
[0042]
(Evaluation results)
As a result of evaluating air, carbon dioxide, nitrogen, helium, argon, air / nitrogen mixed gas and air / carbon dioxide mixed gas as gases, all had good dimensional stability (deformation rate). On the other hand, a molded product obtained from beads not treated with gas was poor at a deformation rate of 35.5%.
[0043]
(Examples 14-20, Comparative Examples 5-7)
Using the expanded beads of Example 3 (Polymer P4) and changing the pressure of the pressurized air and the pressurizing time, the same operations as in Examples 1 to 7 in Table 2 were performed to obtain a molded product. The dimensional stability (deformation rate) of the obtained molded product was evaluated. The results are shown in Table 4.
[0044]
[Table 4]
Figure 0003907047
[0045]
(Evaluation results)
As is apparent from Table 4, Comparative Example 5 without air pressure treatment and Comparative Example 6 with low air pressure had poor dimensional stability (deformation rate). The dimensional stability (deformation rate) was good when the air pressure was 0.105 MPa to 1.0 MPa, and particularly when the air pressure was within the range of 0.15 MPa to 0.5 MPa.
[0046]
【The invention's effect】
As described above, the foam molded product obtained by the production method of the present invention has improved dimensional stability (deformation rate), which has been a problem in the past, and has maintained the conventional performance of biodegradability, light weight, and mechanical properties. . Substituting PS or PO foam moldings currently used can contribute to global environmental conservation.

Claims (4)

L体とD体のモル比が95/5〜6/40、又は40/60〜5/95であるポリ乳酸又はその組成物からなる生分解性発泡ビーズを0.105MPa以上、1.0MPa以下の気体雰囲気中に保持した後、該ビーズを金型に導入し型内成形することを特徴とする発泡成形物の製造方法。The molar ratio of L-form and D-form is 95 / 5-6 0/40, or 40/60 to 5/95 in a polylactic acid or 0.105MPa or more biodegradable foam beads made of the composition, 1.0 MPa A method for producing a foamed molded product, comprising: holding in the following gas atmosphere, then introducing the beads into a mold and molding the mold in the mold. 使用する気体が空気、窒素、炭酸ガス、ヘリウム、アルゴン又はそれらの混合ガスであることを特徴とする請求項1に記載の発泡成形物の製造方法。The method for producing a foamed molded product according to claim 1, wherein the gas used is air, nitrogen, carbon dioxide, helium, argon, or a mixed gas thereof. 使用する気体の圧力が0.11MPa以上、1.0MPa未満であることを特徴とする請求項1に記載の発泡成形物の製造方法。The method for producing a foamed molded product according to claim 1, wherein the pressure of the gas used is 0.11 MPa or more and less than 1.0 MPa. 使用する気体の圧力が0.15MPa以上、0.5MPa未満であることを特徴とする請求項1に記載の発泡成形物の製造方法。The method for producing a foamed molded product according to claim 1, wherein the pressure of the gas used is 0.15 MPa or more and less than 0.5 MPa.
JP2002272704A 2002-09-19 2002-09-19 Method for producing foamed molding Expired - Fee Related JP3907047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272704A JP3907047B2 (en) 2002-09-19 2002-09-19 Method for producing foamed molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272704A JP3907047B2 (en) 2002-09-19 2002-09-19 Method for producing foamed molding

Publications (3)

Publication Number Publication Date
JP2004107505A JP2004107505A (en) 2004-04-08
JP2004107505A5 JP2004107505A5 (en) 2005-06-09
JP3907047B2 true JP3907047B2 (en) 2007-04-18

Family

ID=32269655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272704A Expired - Fee Related JP3907047B2 (en) 2002-09-19 2002-09-19 Method for producing foamed molding

Country Status (1)

Country Link
JP (1) JP3907047B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578094B2 (en) * 2002-12-27 2010-11-10 株式会社カネカ Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
CN101193956B (en) 2005-04-14 2011-02-09 株式会社钟化 Polyhydroxyalkanoate-based resin foam particle, molded article comprising the same and process for producing the same
EP1947127B1 (en) 2005-10-26 2011-03-30 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead
JP2008214423A (en) * 2007-03-01 2008-09-18 Kaneka Corp Method for producing polylactic acid-based foam-molded article
JP2008214422A (en) * 2007-03-01 2008-09-18 Kaneka Corp Method for producing polylactic acid-based foam-molded article
JP2009061754A (en) * 2007-09-10 2009-03-26 Kaneka Corp Foam molding machine of thermoplastic resin

Also Published As

Publication number Publication date
JP2004107505A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3937727B2 (en) Resin composition for foam having biodegradability
JP3802680B2 (en) Expandable resin composition having biodegradability
JP3907047B2 (en) Method for producing foamed molding
JP2005264166A (en) Foamed particle and molded product
JP4019747B2 (en) Expandable particles, expanded particles and expanded molded articles comprising a polyester resin composition
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP3871822B2 (en) Expandable resin composition having biodegradability
JP2000230029A (en) Anti-static resin composition
JP2002020526A (en) Expandable resin beads
JP4954461B2 (en) POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY
JP2609795B2 (en) Polyester expandable particles and foam
JP3737396B2 (en) Expanded particles and molded bodies
JP3802681B2 (en) Expandable resin composition having biodegradability
JP2015000963A (en) Polylactic acid expanded material and method for producing the same
JP3550782B2 (en) Expandable particles of lactic acid-based polyester
JP3811747B2 (en) Expandable resin composition having biodegradability
JP4293489B2 (en) Method for producing foamed molded article having biodegradation
JP3787447B2 (en) Expandable resin composition having biodegradability
JP2007138097A (en) Polylactic acid-based resin composition
JP3879433B2 (en) Polyester resin composition
JP2001164027A (en) Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JP2001098104A (en) Expanded particle having biodegradability and mold thereof
JP2003301067A (en) Heat resistant foamed particle of polylactic acid and its molded product, and manufacturing method thereof
JP2004107505A5 (en)
JP3899303B2 (en) Foam molded body and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees