JP3737396B2 - Expanded particles and molded bodies - Google Patents

Expanded particles and molded bodies Download PDF

Info

Publication number
JP3737396B2
JP3737396B2 JP2001203353A JP2001203353A JP3737396B2 JP 3737396 B2 JP3737396 B2 JP 3737396B2 JP 2001203353 A JP2001203353 A JP 2001203353A JP 2001203353 A JP2001203353 A JP 2001203353A JP 3737396 B2 JP3737396 B2 JP 3737396B2
Authority
JP
Japan
Prior art keywords
particles
foaming
foamed
polylactic acid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001203353A
Other languages
Japanese (ja)
Other versions
JP2002179832A (en
Inventor
真弘 山
正樹 山本
孝敬 久保
綱大 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2001203353A priority Critical patent/JP3737396B2/en
Publication of JP2002179832A publication Critical patent/JP2002179832A/en
Application granted granted Critical
Publication of JP3737396B2 publication Critical patent/JP3737396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性を有する梱包用緩衝材として用いられる発泡粒子および成形体に関する。
【0002】
【従来の技術】
軽量性、緩衝性、成形加工性を生かしたプラスチック発泡体が包装、梱包材として多量に用いられているが、その素材はポリスチレン(PS)、ポリオレフィンといった石油を原料とする化学製品である。このため使用後の処分が困難で、焼却するにしても燃焼カロリーが高く、焼却炉をいためたり、埋め立てをしても分解しない上に容積が大きいため、処分場のスペースを占有してしまうという大きな社会問題となってきている。
【0003】
又、処分されずに投棄された発泡体が及ぼす、河川、海洋など、自然態系への影響も無視できなくなってきている。そこで、生態系の中で分解し、地球環境への悪影響が少ない樹脂が開発された。
【0004】
生分解性の素材としてグリコール酸や乳酸などもグリコリドやラクチドの開環重合によりポリマーが得られ、かかるポリマーを使用し、実用上十分な生産性を有する生分解性発泡樹脂組成物を見出し、既に発明提案(特願平9−314479号)を行った。該発明で得られる発泡樹脂組成物から得られる発泡粒子あるいは成形体は、成形性、2次加工性が良好であり、通常の梱包用緩衝材として十分使用できるものであった。
しかしながら、上記の発明における発泡成形体は、発泡粒子の発泡倍率が低いため、柔軟性、緩衝性等が特に必要な緩衝材(例えば発泡ポリエチレンの代替用途)においては物性が不十分であり、用途が制限されていた。
【0005】
【発明が解決しようとする課題】
本発明の目的とするところは、軽量性および発泡ポリエチレン並みの物性(柔軟性、緩衝性等)、2次加工性を有し、かつ生分解性で環境負荷の少ない発泡成形体を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、かかる課題を解決すべく鋭意検討の結果、発泡倍率45倍以上のポリ乳酸系発泡粒子を製造することに初めて成功し、これを成形体にすることによって上記目的が達成されることを見出し、本発明を完成するに至ったものである。
【0007】
【発明の実施の形態】
本発明の発泡倍率45倍以上のポリ乳酸系発泡粒子は、発泡方法のみで達成されるものではなく、用いる樹脂組成物の性質との組合わせによって達成される。例えば、以下に記述する樹脂組成物をベースとして(1)発泡剤、発泡助剤等を含浸して予備発泡した後、乾熱処理をする方法、(2)プロパンの如き低沸点のガスを発泡剤として用いて発泡させる方法、(3)発泡剤、発泡助剤を含浸して減圧下で発泡し、樹脂のTg以下に冷却した後、徐々に常圧に戻す方法などによって達成される。
【0008】
45倍発泡粒子の元となる樹脂組成物について、以下に詳細に記す。
本発明で好ましく用いられる樹脂組成物の元となるポリ乳酸は、実質的に非晶性のポリ乳酸、即ち、DSC測定による融解熱(2nd scanΔH)が0.1J/g以下のポリ乳酸であり、L体とD体のモル比が95/5〜5/95、更に好ましくは92/8〜8/92の乳酸である。L体/D体のモル比がこの範囲のものは結晶性が低いため発泡倍率が上がり易く、発泡が均一になるからである。
【0009】
また、ポリ乳酸は高分子量であることが好ましく、JIS K 7210(荷重21.18N)に準拠したメルトインデックス値(MI)で1〜10の範囲であり、更に好ましくは1〜5の範囲である。
その理由は、MIが上記範囲のものは、以下に述べるポリイソシアネートと反応させて超高粘度樹脂を得たとき、適度な架橋密度となり、発泡に適した架橋構造になるためである。
【0010】
このような高溶融粘度のポリ乳酸を得る手段として、通常の反応釜での高真空下、攪拌効率の良好な状態での溶融重合、二軸混練反応機による溶融重合、溶融重合と固相重合との組み合わせ等があるが、高粘度であるため反応サイクル低下による生産性の低下、樹脂の熱分解による品質低下に十分注意する事が必要である。
【0011】
しかし、上述のポリ乳酸に発泡剤を含浸、発泡させても発泡倍率は高くすることは困難であり、実用に耐え得るものではない。高発泡倍率を得るには、更に高い溶融粘度の樹脂が必要であり、単なる重合のみでは限界がある。
【0012】
さらなる高粘度化は、イソシアネート基≧2.0当量/モルのポリイソシアネートを該ポリ乳酸に対して0.1〜5重量%、好ましくは1〜3重量%をポリ乳酸と溶融状態で混合、反応、更に溶融混練後の固体状態で徐々に水分と反応させ、アロハネート結合やユリア結合による架橋を進行させることにより達成され、溶融粘度がJIS K 7210(荷重211.8N)に準拠したメルトインデックス値(MI)で5以下の範囲の発泡性の良好な樹脂組成物を得ることが出来る。イソシアネート基<2.0当量/モルのポリイソシアネートを使用した場合、溶融粘度の上昇が不十分である。ポリイソシアネートが0.1重量%以上で樹脂組成物の溶融粘度が上昇し易く、また5重量%以下で、未反応のポリイソシアネートの残留が少なく、架橋反応が進行したゲル化物の発生が少ないため、発泡性が高くなる。
【0013】
ポリ乳酸とポリイソシアネートを溶融状態で混合する方法としては、通常の公知の方法を用いることができる。例えば、ペレット化したポリ乳酸にポリイソシアネートを添加混合し、単軸又は二軸混練機等で溶融混合する方法、予めポリ乳酸を単軸又は二軸混練機等で溶融した後ポリイソシアネートを添加する方法、単軸又は二軸混練機等で溶融重合によりポリ乳酸を製造する際にポリイソシアネートを添加する方法などが挙げられる。
【0014】
使用されるポリイソシアネートとしては芳香族、脂環族、脂肪族系のポリイソシアネートがあり、例えば、芳香族ポリイソシアネートとしてはトリレン、ジフェニルメタン、ナフタレン、トリジン、キシレン、トリフェニルメタンを骨格とするポリイソシアネート、脂環族ポリイソシアネートとしてはイソホロン、水素化ジフェニルメタンを骨格とするポリイソシアネート、脂肪族ポリイソシアネートとしてはヘキサメチレン、リジンを骨格とするポリイソシアネートがあり、いずれも使用可能であるが汎用性、取り扱い性、耐候性等からトリレン、ジフェニルメタン、特にジフェニルメタンを骨格とするイソシアネートが好ましく使用される。
【0015】
また、均一で微細な発泡セルを形成させるためには発泡核剤を配合することが好ましい。使用する発泡核剤としては、固体状の粒子状物、例えば、タルク、シリカ、カオリン、ゼオライト、マイカ、アルミナ等の無機粒子が好適である。この中でもタルクは本発明の樹脂組成物に対して好ましく使用される。
【0016】
また、その他の添加剤についても、目的に応じ、適宜添加することが出来、例えば熱安定剤、酸化防止剤、難燃剤、紫外線吸収剤、可塑剤等がある。但し、難燃剤等は塩素等のハロゲン化物であることが多く、生分解性や焼却処分時の有害物質発生という観点から最小限に留めておくのがよい。
【0017】
こうして得られた樹脂組成物を、ペレット又はビーズ状粒子とした後、発泡剤及び発泡助剤を含浸させる。
【0018】
ここで用いる発泡剤としては、例えばn−ブタン、イソブタン、n−ペンタン、イソペンタン、シクロペンタン、ヘキサン等の炭化水素、塩化メチレン、塩化メチル、ジクロロジフルオロメタン等のハロゲン化炭化水素類、ジメチルエーテル、メチルエチルエーテル等のエーテル類が挙げられ、発泡助剤としては、例えば炭素数1〜4のアルコール、ケトン類、エーテル、ベンゼン、トルエン等が用いられる。
【0019】
発泡剤と発泡助剤の組み合わせは、使用する樹脂によって適宜選択すれば良い。本発明に使用するL体/D体共重合ポリ乳酸等のポリマーの場合、発泡剤として低分子量アルカンが好ましく用いられるが、これと組み合わせる発泡助剤としては例えばメタノール、エタノール等の単素数1〜4の1価のアルコールが好適である。その他の組み合わせも種々あり、目的や経済性に鑑みて選択することができる。
【0020】
発泡剤と発泡助剤の使用比率は、発泡剤/発泡助剤=1/2〜20/1が可能であるが、発泡剤と発泡助剤の組み合わせによってこの比率は変わり、1/1〜10/1が一般的である。
【0021】
発泡剤や発泡助剤を含浸させるペレット及びビーズの大きさ、形状等は必要に応じて適宜選択することができるが、通常、直径0.5〜2mmの大きさのものが用いられる。精密な成形体の場合は直径0.5〜1mmの粒子が好ましい。
【0022】
通常、発泡剤を含浸した粒子を加熱によって発泡させるが、この場合の発泡倍率は、数倍から40倍程度であり、これを成形しても発泡スチロール並みの性能の成形体は得られるものの、発泡ポリエチレンに匹敵する柔軟かつ緩衝性能の高い成形体は得られなかった。
【0023】
本願発明者等は、鋭意検討を重ねた結果、上述の発泡粒子をさらに乾熱処理することにより45倍を越える発泡倍率の予備発泡粒子を作ることに成功し、これを成形することによって発泡ポリエチレンに匹敵する柔軟性と緩衝性能をもったポリ乳酸系発泡成型体を得るに至った。
【0024】
本発明で用いる発泡粒子の熱処理の方法、装置はいかなる公知のものも使用できるが、温度制御した熱風で熱処理できる装置が好ましい。例えば、オーブン、ホッパードライヤー等が挙げられる。熱処理の温度は、40〜70℃が好ましく、更に好ましくは50〜60℃であり、熱処理の時間は装置、発泡倍率により異なるが、通常、数分〜数日である。
【0025】
また、45倍以上の発泡倍率を獲得する方法についてさらに検討を行った結果、発泡剤としてその揮散性や取扱いの困難さから通常用いられることが少ないプロパンを発泡剤として用いる方法や予備発泡を減圧環境下で行い、樹脂のTg以下に冷却後、徐々に常圧に戻す方法によっても45倍以上の発泡粒子が得られ、これらを成形しても同様の成形体が得られることを見出した。
【0026】
本発明で用いる予備発泡時の減圧方法、装置はいかなる公知のものも使用できる。例えば、発泡前に予備発泡機内を0〜0.1MPa減圧にし、水蒸気で一気に発泡倍率45倍以上に発泡させた後、該発泡粒子のTg以下(ポリ乳酸系樹脂の場合、通常60℃以下)に冷却し、徐々に常圧に戻すことにより達成することができる。
【0027】
本発明の発泡粒子を成形して得られる成形体のかさ密度は、0.030g/cm3以下であることが好ましく、更に好ましくは0.025g/cm3である。0.030g/cm3以下であると、柔軟性に優れるからである。
【0028】
また、成形体の曲げ弾性率(JIS K−7221)は、発泡ポリエチレン代替を目的とする場合、柔軟性の点で9.80MPa以下が好ましく、更に好ましくは7.85MPa以下、最も好ましくは5.88MPa以下である。
【0029】
【実施例】
以下に実施例及び比較例により、本発明を更に具体的に説明する。尚、評価は下記の方法で行った。
【0030】
(評価方法)
(1)MI:JIS K7210に準拠した方法で測定。
(測定温度190℃、オリフィス径2mm、荷重 ポリ乳酸:21.18N、混練樹脂:211.8Nの条件)
【0031】
(2)発泡粒子の発泡倍率:1Lメスシリンダーを用いて、発泡粒子のかさ密度(g/L)を測定し、下記のように算出した。
発泡倍率(倍)=1000/かさ密度(g/L)
【0032】
(3)成形体のかさ密度:300×300×30mmボードの重量、体積を測定し、下記のように算出した。
かさ密度(g/cm3)=重量(g)/体積(cm3)
【0033】
(4)物性:JISに準拠して測定した。
曲げ応力、初期弾性率:JIS K−7221
動的緩衝係数:JIS Z―0235
【0034】
(5)生分解性:30×30×30mmの成形体をコンポストに2ヶ月間入れ、外観状態で次のように評価した。
○:原形をとどめない状態まで分解
×:全く変化なし
【0035】
(6)2次加工性:300×300×30mmボードを用いて、打ち抜き加工性およびドライヤーによる熱溶着性で評価した。
【0036】
比較例1
MI1.4、L/D=88.5/11.5のポリ乳酸((株)カーギルジャパン製)にイソシアネート化合物「ミリオネートMR―200」(イソシアネート基2.7〜2.8当量/モル、日本ポリウレタン工業(株))2.0重量%、タルク「LMP―100」(富士タルク工業(株))3.0重量%を二軸混練機(TEM35B、東芝機械(株))にてシリンダー温度185℃で混練し、ペレット状の樹脂組成物を得た。
【0037】
この樹脂組成物のMIを測定した後、オートクレーブに樹脂組成物5000部、発泡剤としてイソブタン2000部、発泡助剤としてメタノール240部を仕込み、密封して昇温し、85℃に3時間保持した。その後、25℃で冷却してから樹脂を取り出し、風乾後、重量を測定し、含浸率を求めた。次いで得られた発泡剤含浸ペレットを水蒸気(94℃、1分)で予備発泡させて発泡粒子とし、発泡倍率を評価した。
【0038】
1日熟成後、この発泡粒子を密閉金型に充填してスチーム成形機で水蒸気圧0.07MPa、20秒間加熱して成形を行い、300×300×30mmの成形体を得た。この成形体より試験片を切り出し生分解性、物性を評価した。また、この成形体を用いて2次加工性を評価した。評価結果は表1、2の通りであった。
【0039】
実施例1〜5
比較例1の発泡粒子を50℃のオーブンで各々1時間(実施例1、2)、2時間(実施例3)、12時間(実施例4)、24時間(実施例5)熱処理する以外は比較例1と全く同様な方法で実施し、表1、2の結果を得た。
【0040】
比較例2
イソシアネート化合物「ミリオネートMR−200」の添加量を1.0重量%に変える以外は比較例1と全く同様な方法で実施し、表1、2の結果を得た。
【0041】
実施例6
発泡剤をプロパンに変える以外は比較例1と全く同様な方法で実施し、表1、2の結果を得た。
【0042】
実施例7
比較例1と同様にして、イソブタン含浸発泡性粒子を得た。該発泡粒子を20L試験発泡容器に100g投入し、容器内を0.07MPa減圧にした。次いで水蒸気を容器内に導入して、85℃、1分間保持した状態で一気に発泡させた後、容器内を密閉したまま25℃まで冷却し、24時間かけて徐々に容器内圧力を常圧に戻して発泡粒子を得た。
該発泡粒子を密閉金型に充填してスチーム成形機で水蒸気圧0.07MPa、20秒間加熱して成形を行い、300×300×30mmの成形体を得た。この成形体より試験片を切り出し生分解性、物性を評価した。また、この成形体を用いて2次加工性を評価した。評価結果は表1、2の通りであった。
【0043】
比較例3、4
市販の発泡ポリエチレン(比較例3)、コハク酸と1,4−ブタンジオールからなるポリエステルの発泡体(比較例4)を評価し、表1、2の結果を得た。
【0044】
【表1】

Figure 0003737396
【0045】
【表2】
Figure 0003737396
【0046】
評価結果
実施例1〜7は発泡倍率45倍以上であり、生分解性、軽量性、成形性、2次加工性に優れ、発泡ポリエチレン並みの物性(柔軟性、緩衝性)を有するため、発泡ポリエチレンを使用している緩衝材に適用できる。一方、45倍未満のポリ乳酸系樹脂からなる発泡粒子の成形体は(比較例1、2)、柔軟性、緩衝性が不十分であり、発泡ポリエチレンを使用している緩衝材の代替用途には適用できない。また、比較例4の発泡ポリエステルは成形性、2次加工性が不良であり、発泡ポリエチレンを使用している緩衝材の代替用途には適用できない。
【0047】
【発明の効果】
本発明のポリ乳酸系樹脂を主成分とする発泡倍率45倍以上の発泡粒子の成形体は、生分解性、軽量性、成形性、2次加工性に優れ、発泡ポリエチレン並みの物性(柔軟性、緩衝性)を有するため、広く梱包材として適用でき、地球環境保全に資する発泡体である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to expanded particles and molded bodies used as cushioning materials for packaging having biodegradability.
[0002]
[Prior art]
Plastic foams that take advantage of lightness, shock-absorbing properties, and moldability are used in large quantities as packaging and packaging materials, but the materials are chemical products made from petroleum such as polystyrene (PS) and polyolefin. For this reason, disposal after use is difficult, and even if incinerated, the calorie burned is high, and it will not decompose even if it is incinerated or landfilled, and it will occupy the space of the disposal site because it has a large volume It has become a big social problem.
[0003]
In addition, the influence of natural foams, such as rivers and oceans, caused by foams that have been discarded without being disposed of has become impossible to ignore. Therefore, a resin was developed that decomposes in the ecosystem and has little adverse effect on the global environment.
[0004]
As a biodegradable material, glycolic acid and lactic acid are also obtained by ring-opening polymerization of glycolide and lactide, and using such a polymer, a biodegradable foamed resin composition having practically sufficient productivity has been found. An invention proposal (Japanese Patent Application No. 9-314479) was made. The foamed particles or molded product obtained from the foamed resin composition obtained in the present invention had good moldability and secondary processability, and could be used satisfactorily as a normal packing cushioning material.
However, the foamed molded article in the above invention has insufficient physical properties in a cushioning material (for example, an alternative use of foamed polyethylene) that particularly requires flexibility, buffering properties, etc., because the expansion ratio of the foamed particles is low. Was restricted.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to provide a foamed molded article having light weight and physical properties (flexibility, cushioning properties, etc.) similar to foamed polyethylene, secondary processability, biodegradability and low environmental impact. It is in.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have succeeded for the first time in producing polylactic acid-based expanded particles having an expansion ratio of 45 times or more, and the above object is achieved by making this into a molded body. The present invention has been found and the present invention has been completed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The polylactic acid-based expanded particles having an expansion ratio of 45 times or more according to the present invention can be achieved not only by the foaming method but also by a combination with the properties of the resin composition used. For example, based on the resin composition described below, (1) a method of pre-foaming by impregnating a foaming agent, a foaming aid and the like, followed by dry heat treatment, (2) a gas having a low boiling point such as propane as a foaming agent And (3) a method of impregnating a foaming agent and a foaming aid, foaming under reduced pressure, cooling to Tg of the resin or lower, and gradually returning to normal pressure.
[0008]
The resin composition that is the basis of the 45-fold expanded particles will be described in detail below.
The polylactic acid that is the basis of the resin composition preferably used in the present invention is a substantially amorphous polylactic acid, that is, a polylactic acid having a heat of fusion (2nd scan ΔH) of 0.1 J / g or less as measured by DSC. Lactic acid having a molar ratio of L-form to D-form of 95/5 to 5/95, more preferably 92/8 to 8/92. This is because when the molar ratio of L-form / D-form is within this range, the foaming ratio is easily increased and foaming becomes uniform because of low crystallinity.
[0009]
Moreover, it is preferable that polylactic acid is high molecular weight, It is the range of 1-10 by the melt index value (MI) based on JISK7210 (load 21.18N), More preferably, it is the range of 1-5. .
The reason for this is that when the MI is in the above range, when an ultrahigh viscosity resin is obtained by reacting with the polyisocyanate described below, an appropriate crosslinking density is obtained and a crosslinked structure suitable for foaming is obtained.
[0010]
As a means to obtain such a high melt viscosity polylactic acid, melt polymerization with good stirring efficiency under high vacuum in a normal reaction vessel, melt polymerization with a biaxial kneading reactor, melt polymerization and solid phase polymerization However, due to its high viscosity, it is necessary to pay sufficient attention to the reduction in productivity due to a reduction in reaction cycle and the reduction in quality due to thermal decomposition of the resin.
[0011]
However, even if the above-mentioned polylactic acid is impregnated with foaming agent and foamed, it is difficult to increase the expansion ratio, and it cannot be practically used. In order to obtain a high expansion ratio, a resin having a higher melt viscosity is required, and there is a limit to mere polymerization.
[0012]
To further increase the viscosity, 0.1 to 5% by weight, preferably 1 to 3% by weight of a polyisocyanate having an isocyanate group ≧ 2.0 equivalents / mol is mixed with the polylactic acid in a molten state and reacted. Further, it is achieved by gradually reacting with moisture in the solid state after melt-kneading and proceeding with crosslinking by allophanate bond or urea bond, and melt viscosity value according to JIS K 7210 (load 211.8N) ( It is possible to obtain a resin composition having good foamability in the range of MI) of 5 or less. When a polyisocyanate having an isocyanate group <2.0 equivalent / mol is used, the rise in melt viscosity is insufficient. When the polyisocyanate content is 0.1% by weight or more, the melt viscosity of the resin composition is likely to increase. When the polyisocyanate content is 5% by weight or less, there is little residual unreacted polyisocyanate, and there is little generation of gelled products that have undergone a crosslinking reaction. , Foaming becomes higher.
[0013]
As a method of mixing polylactic acid and polyisocyanate in a molten state, an ordinary known method can be used. For example, polyisocyanate is added to and mixed with pelletized polylactic acid, and melt-mixed with a single-screw or twin-screw kneader or the like. After polylactic acid is previously melted with a single-screw or twin-screw kneader or the like, polyisocyanate is added. Examples thereof include a method, a method of adding polyisocyanate when polylactic acid is produced by melt polymerization using a uniaxial or biaxial kneader or the like.
[0014]
Examples of the polyisocyanate used include aromatic, alicyclic and aliphatic polyisocyanates. Examples of the aromatic polyisocyanate include polyisocyanates having a skeleton of tolylene, diphenylmethane, naphthalene, tolidine, xylene and triphenylmethane. The cycloaliphatic polyisocyanate includes isophorone, polyisocyanate having a hydrogenated diphenylmethane skeleton, and the aliphatic polyisocyanate has a polyisocyanate having a skeleton of hexamethylene and lysine. From the viewpoint of properties and weather resistance, tolylene, diphenylmethane, particularly isocyanate having diphenylmethane as a skeleton is preferably used.
[0015]
In order to form uniform and fine foam cells, it is preferable to add a foam nucleating agent. As the foam nucleating agent to be used, solid particles such as talc, silica, kaolin, zeolite, mica and alumina are suitable. Among these, talc is preferably used for the resin composition of the present invention.
[0016]
Further, other additives can be appropriately added according to the purpose, and examples thereof include a heat stabilizer, an antioxidant, a flame retardant, an ultraviolet absorber, and a plasticizer. However, flame retardants are often halides such as chlorine and should be kept to a minimum from the viewpoint of biodegradability and generation of harmful substances during incineration.
[0017]
The resin composition thus obtained is made into pellets or beads, and then impregnated with a foaming agent and a foaming aid.
[0018]
Examples of the blowing agent used here include hydrocarbons such as n-butane, isobutane, n-pentane, isopentane, cyclopentane, and hexane, halogenated hydrocarbons such as methylene chloride, methyl chloride, and dichlorodifluoromethane, dimethyl ether, and methyl. Examples include ethers such as ethyl ether, and examples of foaming aids include alcohols having 1 to 4 carbon atoms, ketones, ethers, benzene, and toluene.
[0019]
The combination of the foaming agent and the foaming aid may be appropriately selected depending on the resin used. In the case of a polymer such as L-form / D-form copolymer polylactic acid used in the present invention, a low molecular weight alkane is preferably used as a foaming agent. 4 monohydric alcohols are preferred. There are various other combinations and can be selected in view of the purpose and economy.
[0020]
The use ratio of the foaming agent and the foaming aid can be foaming agent / foaming aid = 1/2 to 20/1, but this ratio varies depending on the combination of the foaming agent and the foaming aid. / 1 is common.
[0021]
The size and shape of the pellets and beads impregnated with the foaming agent or foaming aid can be appropriately selected as necessary, but those having a diameter of 0.5 to 2 mm are usually used. In the case of a precise molded body, particles having a diameter of 0.5 to 1 mm are preferable.
[0022]
Usually, particles impregnated with a foaming agent are foamed by heating. In this case, the foaming ratio is several to 40 times, and even if this is molded, a molded product having the same performance as a polystyrene foam can be obtained. A molded article having high flexibility and high buffering performance comparable to polyethylene could not be obtained.
[0023]
As a result of intensive studies, the inventors of the present application have succeeded in producing pre-foamed particles having a foaming ratio exceeding 45 times by further subjecting the above-mentioned foamed particles to dry heat treatment, and by molding this, foamed polyethylene is obtained. A polylactic acid-based foamed molding having comparable flexibility and buffering performance has been obtained.
[0024]
Any known method and apparatus for heat treatment of the expanded particles used in the present invention can be used, but an apparatus that can be heat-treated with temperature-controlled hot air is preferred. Examples thereof include an oven and a hopper dryer. The temperature of the heat treatment is preferably 40 to 70 ° C., more preferably 50 to 60 ° C., and the heat treatment time is usually several minutes to several days, although it varies depending on the apparatus and the expansion ratio.
[0025]
In addition, as a result of further investigation on a method for obtaining a foaming ratio of 45 times or more, as a foaming agent, propane, which is rarely used because of its volatility and difficulty in handling, is used as a foaming agent, and preliminary foaming is reduced in pressure. It was found that 45-fold or more expanded particles can be obtained by a method of performing under an environment, cooling to Tg of the resin or lower, and gradually returning to normal pressure, and molding these to obtain similar molded bodies.
[0026]
Any known decompression method and apparatus for prefoaming can be used in the present invention. For example, the pressure in the pre-foaming machine is reduced to 0 to 0.1 MPa before foaming, and after foaming at a foaming ratio of 45 times or more with water vapor, Tg or less of the foamed particles (in the case of polylactic acid resin, usually 60 ° C. or less) This can be achieved by cooling to room temperature and gradually returning to normal pressure.
[0027]
The bulk density of the molded product obtained by molding the expanded particles of the present invention is preferably 0.030 g / cm 3 or less, more preferably 0.025 g / cm 3 . It is because it is excellent in a softness | flexibility in it being 0.030 g / cm < 3 > or less.
[0028]
Further, the flexural modulus of the molded article (JIS K-7221) is, for the purpose of foamed polyethylene alternative, less preferred 9.80MPa in terms of flexibility, more preferably 7.85MPa or less, most preferably 5. 88 MPa or less.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The evaluation was performed by the following method.
[0030]
(Evaluation methods)
(1) MI: Measured by a method based on JIS K7210.
(Measurement temperature: 190 ° C., orifice diameter: 2 mm, load: polylactic acid: 21.18 N, kneaded resin: 211.8 N)
[0031]
(2) Foaming ratio of the foamed particles: The bulk density (g / L) of the foamed particles was measured using a 1 L graduated cylinder and calculated as follows.
Expansion ratio (times) = 1000 / bulk density (g / L)
[0032]
(3) Bulk density of compact: 300 × 300 × 30 mm The weight and volume of the board were measured and calculated as follows.
Bulk density (g / cm 3 ) = weight (g) / volume (cm 3 )
[0033]
(4) Physical properties: Measured according to JIS.
Bending stress, initial elastic modulus: JIS K-7221
Dynamic buffer coefficient: JIS Z-0235
[0034]
(5) Biodegradability: A molded body of 30 × 30 × 30 mm was put in compost for 2 months, and the appearance was evaluated as follows.
○: Decompose until the original shape does not remain ×: No change at all [0035]
(6) Secondary workability: Using a 300 × 300 × 30 mm board, evaluation was made by punching workability and heat weldability by a dryer.
[0036]
Comparative Example 1
MI1.4, L / D = 88.5 / 11.5 polylactic acid (manufactured by Cargill Japan Co., Ltd.) and isocyanate compound “Millionate MR-200” (2.7 to 2.8 equivalents / mol of isocyanate groups, Japan) Polyurethane Industry Co., Ltd. 2.0% by weight and talc “LMP-100” (Fuji Talc Industrial Co., Ltd.) 3.0% by weight in a twin-screw kneader (TEM35B, Toshiba Machine Co., Ltd.) with a cylinder temperature of 185 The mixture was kneaded at 0 ° C. to obtain a pellet-shaped resin composition.
[0037]
After measuring MI of this resin composition, an autoclave was charged with 5000 parts of the resin composition, 2000 parts of isobutane as a foaming agent, and 240 parts of methanol as a foaming aid, sealed, heated, and held at 85 ° C. for 3 hours. . Then, after cooling at 25 ° C., the resin was taken out, air-dried, weighed, and the impregnation rate was determined. Next, the obtained foaming agent-impregnated pellets were prefoamed with water vapor (94 ° C., 1 minute) to obtain expanded particles, and the expansion ratio was evaluated.
[0038]
After aging for one day, the foamed particles were filled into a closed mold and molded by heating with a steam molding machine at a water vapor pressure of 0.07 MPa for 20 seconds to obtain a molded body of 300 × 300 × 30 mm. A test piece was cut out from the molded body and evaluated for biodegradability and physical properties. Moreover, secondary workability was evaluated using this molded object. The evaluation results are as shown in Tables 1 and 2.
[0039]
Examples 1-5
Except that the expanded particles of Comparative Example 1 were heat-treated in an oven at 50 ° C. for 1 hour (Examples 1 and 2), 2 hours (Example 3), 12 hours (Example 4), and 24 hours (Example 5), respectively. It implemented by the completely same method as the comparative example 1, and obtained the result of Tables 1 and 2.
[0040]
Comparative Example 2
The results of Tables 1 and 2 were obtained in the same manner as in Comparative Example 1 except that the addition amount of the isocyanate compound “Millionate MR-200” was changed to 1.0% by weight.
[0041]
Example 6
Except that the blowing agent was changed to propane, the same procedure as in Comparative Example 1 was performed, and the results shown in Tables 1 and 2 were obtained.
[0042]
Example 7
In the same manner as in Comparative Example 1, isobutane-impregnated expandable particles were obtained. 100 g of the expanded particles were put into a 20 L test foam container, and the inside of the container was evacuated to 0.07 MPa. Next, water vapor is introduced into the container and foamed at a stretch while maintaining at 85 ° C. for 1 minute, and then cooled to 25 ° C. with the inside of the container sealed, and the pressure inside the container is gradually brought to normal pressure over 24 hours. This was returned to obtain expanded particles.
The foamed particles were filled in a hermetically sealed mold and molded by heating with a steam molding machine at a water vapor pressure of 0.07 MPa for 20 seconds to obtain a molded body of 300 × 300 × 30 mm. A test piece was cut out from the molded body and evaluated for biodegradability and physical properties. Moreover, secondary workability was evaluated using this molded object. The evaluation results are as shown in Tables 1 and 2.
[0043]
Comparative Examples 3 and 4
A commercially available foamed polyethylene (Comparative Example 3) and a polyester foam (Comparative Example 4) composed of succinic acid and 1,4-butanediol were evaluated, and the results shown in Tables 1 and 2 were obtained.
[0044]
[Table 1]
Figure 0003737396
[0045]
[Table 2]
Figure 0003737396
[0046]
Evaluation results Examples 1 to 7 have an expansion ratio of 45 times or more, are excellent in biodegradability, lightness, moldability, secondary processability, and have physical properties (flexibility, buffering properties) similar to foamed polyethylene. Applicable to cushioning material using polyethylene. On the other hand, the molded article of expanded particles made of a polylactic acid resin less than 45 times (Comparative Examples 1 and 2) has insufficient flexibility and buffering properties, and can be used as an alternative to cushioning materials using expanded polyethylene. Is not applicable. Further, the foamed polyester of Comparative Example 4 has poor moldability and secondary processability, and cannot be applied to an alternative use for a cushioning material using foamed polyethylene.
[0047]
【The invention's effect】
The molded product of expanded particles having a foaming ratio of 45 times or more mainly composed of the polylactic acid-based resin of the present invention is excellent in biodegradability, lightness, moldability, and secondary processability, and has the same physical properties (flexibility as expanded polyethylene). Therefore, it is a foam that can be widely applied as a packaging material and contributes to global environmental conservation.

Claims (4)

ポリ乳酸を含んでなる樹脂組成物を、ペレット又はビーズ状粒子とした後、発泡剤及び発泡助剤を含浸させた粒子を加熱によって発泡させて発泡粒子を製造する製造方法であって、該発泡粒子をさらに乾熱処理することを特徴とする発泡倍率45倍以上の発泡粒子の製造方法。A method for producing foamed particles by making a resin composition comprising polylactic acid into pellets or bead-like particles and then foaming the particles impregnated with a foaming agent and a foaming aid by heating to produce the foamed particles. A method for producing expanded particles having an expansion ratio of 45 times or more, wherein the particles are further subjected to a dry heat treatment. ポリ乳酸を含んでなる樹脂組成物を、ペレット又はビーズ状粒子とした後、発泡剤及び発泡助剤を含浸させた粒子を加熱によって発泡させて発泡粒子を製造する製造方法であって、予備発泡を減圧環境下で行い、樹脂のTg以下に冷却後、徐々に常圧に戻すことを特徴とする発泡倍率45倍以上の発泡粒子の製造方法。A method for producing foamed particles by making a resin composition comprising polylactic acid into pellets or bead-like particles and then foaming the particles impregnated with a foaming agent and a foaming aid by heating, wherein the foamed particles are prefoamed. In a reduced pressure environment, cooled to below Tg of the resin, and then gradually returned to normal pressure. A method for producing expanded particles having an expansion ratio of 45 times or more . 請求項1又2に記載の製造方法によって製造された発泡粒子を成形してなる成形体の製造方法。  The manufacturing method of the molded object formed by shape | molding the expanded particle manufactured by the manufacturing method of Claim 1 or 2. 成形体のかさ密度が0.030g/cm以下である請求項3に記載の成形体の製造方法。The method for producing a molded body according to claim 3, wherein the bulk density of the molded body is 0.030 g / cm 3 or less.
JP2001203353A 2000-10-02 2001-07-04 Expanded particles and molded bodies Expired - Fee Related JP3737396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203353A JP3737396B2 (en) 2000-10-02 2001-07-04 Expanded particles and molded bodies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000301602 2000-10-02
JP2000-301602 2000-10-02
JP2001203353A JP3737396B2 (en) 2000-10-02 2001-07-04 Expanded particles and molded bodies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005140690A Division JP2005264166A (en) 2000-10-02 2005-05-13 Foamed particle and molded product

Publications (2)

Publication Number Publication Date
JP2002179832A JP2002179832A (en) 2002-06-26
JP3737396B2 true JP3737396B2 (en) 2006-01-18

Family

ID=26601318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203353A Expired - Fee Related JP3737396B2 (en) 2000-10-02 2001-07-04 Expanded particles and molded bodies

Country Status (1)

Country Link
JP (1) JP3737396B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578094B2 (en) * 2002-12-27 2010-11-10 株式会社カネカ Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP2005105097A (en) * 2003-09-30 2005-04-21 Kanebo Ltd Foam
JP4954461B2 (en) * 2004-10-15 2012-06-13 三井化学株式会社 POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY
CN102617999B (en) 2007-03-29 2014-06-25 积水化成品工业株式会社 Polylactic acid resin foam particle for in-mold foam forming, process for producing the same, and process for producing polylactic acid resin foam molding
JP2011213887A (en) * 2010-03-31 2011-10-27 Sekisui Plastics Co Ltd Method for reducing volatile organic compound in polylactic acid-based resin foamed particle, polylactic acid-based resin foamed particle, and foam molded article
US20120009420A1 (en) 2010-07-07 2012-01-12 Lifoam Industries Compostable or Biobased Foams
US8962706B2 (en) 2010-09-10 2015-02-24 Lifoam Industries, Llc Process for enabling secondary expansion of expandable beads
WO2024043103A1 (en) * 2022-08-24 2024-02-29 旭化成株式会社 Method for producing foam beads, amorphous resin foam beads, crystalline resin foam beads and foam molded body

Also Published As

Publication number Publication date
JP2002179832A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP3937727B2 (en) Resin composition for foam having biodegradability
JP3802680B2 (en) Expandable resin composition having biodegradability
JP2005264166A (en) Foamed particle and molded product
JP3737396B2 (en) Expanded particles and molded bodies
JP4019747B2 (en) Expandable particles, expanded particles and expanded molded articles comprising a polyester resin composition
JP3871822B2 (en) Expandable resin composition having biodegradability
JP4954461B2 (en) POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP2000230029A (en) Anti-static resin composition
JP2609795B2 (en) Polyester expandable particles and foam
JP3811747B2 (en) Expandable resin composition having biodegradability
JP3879433B2 (en) Polyester resin composition
JP2002020526A (en) Expandable resin beads
JP3907047B2 (en) Method for producing foamed molding
JP2008056869A (en) Polylactic acid-based expandable particle, expanded particle, and expanded molding therefrom
JP4293489B2 (en) Method for producing foamed molded article having biodegradation
JP3802681B2 (en) Expandable resin composition having biodegradability
JP3787447B2 (en) Expandable resin composition having biodegradability
JP2007138097A (en) Polylactic acid-based resin composition
JP2001164027A (en) Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JP3899303B2 (en) Foam molded body and method for producing the same
JP2005105097A (en) Foam
JP4236516B2 (en) Method for producing polylactic acid-based expandable resin particles
JP2003301068A (en) Molded product made of foamed particles of polylactic acid and manufacturing method thereof
JP2007314670A (en) Foamed polylactic acid-resin particle molding and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees