JP2007314670A - Foamed polylactic acid-resin particle molding and method for producing the same - Google Patents

Foamed polylactic acid-resin particle molding and method for producing the same Download PDF

Info

Publication number
JP2007314670A
JP2007314670A JP2006146188A JP2006146188A JP2007314670A JP 2007314670 A JP2007314670 A JP 2007314670A JP 2006146188 A JP2006146188 A JP 2006146188A JP 2006146188 A JP2006146188 A JP 2006146188A JP 2007314670 A JP2007314670 A JP 2007314670A
Authority
JP
Japan
Prior art keywords
resin
polylactic acid
foamed
particles
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006146188A
Other languages
Japanese (ja)
Inventor
Toshio Miyagawa
登志夫 宮川
Keisuke Okuma
敬介 大熊
Fuminobu Hirose
文信 廣瀬
Shinichi Fukunaga
真一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006146188A priority Critical patent/JP2007314670A/en
Publication of JP2007314670A publication Critical patent/JP2007314670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foamed polylactic acid-resin particle molding improved in heat resistance and a method for producing the same. <P>SOLUTION: This foamed polylactic acid-resin particle molding is obtained by mixing almost uniformly >50 vol.% and <99 vol.% foamed resin particles consisting of (5/95) to (95/5) molar ratio of its L-form and D-form compounds and >1 vol.% to <50 mol% foamed resin particles consisting of a resin different from the polylactic acid-resin, and fusion-bonding them with each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

ポリ乳酸系樹脂発泡粒子を含んでなる発泡粒子成形体、及びその製造方法に関する。   The present invention relates to a foamed particle molded body comprising polylactic acid-based resin expanded particles and a method for producing the same.

近年、軽量性、緩衝性、断熱性、成形性等の点に特徴を有するプラスチック発泡体は機能性、取り扱い性等が良く、主に包装容器、緩衝材等に多く用いられている。一方、プラスチックは分解しないか、あるいは分解しても長い年月が必要であり、これらが自然界に放置された場合、自然環境汚染に繋がる可能性を有し社会問題となっている。このために自然環境中で微生物により分解処理される生分解性プラスチックが研究され、これまでにポリ乳酸やポリブチレンサクシネート等の脂肪族ポリエステル発泡体や、澱粉発泡体等が商品化されている。   In recent years, plastic foams characterized by lightness, shock-absorbing properties, heat insulation properties, moldability, etc. have good functionality and handleability, and are often used mainly for packaging containers and shock-absorbing materials. On the other hand, plastics do not decompose, or even if they are decomposed, it takes a long time. If they are left in the natural world, there is a possibility that they will lead to pollution of the natural environment, which is a social problem. For this purpose, biodegradable plastics that are decomposed by microorganisms in the natural environment have been studied, and aliphatic polyester foams such as polylactic acid and polybutylene succinate, starch foams, etc. have been commercialized so far. .

その中でも、植物を原料とした生分解性プラスチックは石油資源を使用せず、かつ、植物の成長に伴う二酸化炭素の吸収、固定化効果が地球温暖化防止策の手段の一つとして期待されている。   Among them, biodegradable plastics made from plants do not use petroleum resources, and carbon dioxide absorption and fixation effects associated with plant growth are expected as one of the measures to prevent global warming. Yes.

その植物由来の生分解性プラスチックとしては、(1)ポリヒドロキシアルカノエート(本発明においては特にポリ(3−ヒドロキシアルカノエート)、即ちP3HAを示す)といった微生物産生系脂肪族ポリエステル、(2)とうもろこし等の植物から得られる乳酸の重合により得られるポリ乳酸が挙げられる。特に、(2)のポリ乳酸は現在最も実用化に近い植物由来の生分解性プラスチックとして、盛んに研究開発が行われている。特徴としては、植物を原料とする環境適合性に優れた素材であり、例えばポリスチレンに似た比較的硬質系の性質を得ることができる。しかしながら、ポリ乳酸を発泡させた発泡粒子及びその成形体は、高温高湿条件下で著しく体積膨張し、海外輸出等の過酷な条件下では使用できないといった課題があった。その課題解決に向けた取り組みとして、例えば、ポリ乳酸にポリ酢酸ビニルを混合した樹脂組成物を発泡粒子とすることで、ポリ乳酸の発泡ガスや空気に対するバリアー性を低下させる(特許文献1)、ポリ乳酸のL体、D体比率を調整し、かつ、成形時の熱処理を施す(特許文献2)等が挙げられる。しかしながら、特許文献1のように、樹脂の混合物として樹脂特性を改善し発泡粒子にする場合、樹脂ブレンド系では、完全に混ざった状態を作り出す事が難しいため、バリアー性を低下させる反面、発泡倍率の向上が見込まれない等、発泡性を阻害することが見受けられる。又、特許文献2では、成形時に熱処理時間を要することでトータルの成形時間が長くなり、その結果、製造コストが高くなるといった課題が残される。
特開2006−22242号公報 特開2003−301068号公報
The plant-derived biodegradable plastics include (1) microbially-produced aliphatic polyesters such as polyhydroxyalkanoates (in the present invention, particularly poly (3-hydroxyalkanoates), ie, P3HA), and (2) corn. And polylactic acid obtained by polymerization of lactic acid obtained from plants such as In particular, polylactic acid (2) has been actively researched and developed as a plant-derived biodegradable plastic that is most practically used at present. As a feature, it is a material excellent in environmental compatibility using a plant as a raw material. For example, a relatively hard property similar to polystyrene can be obtained. However, the foamed particles obtained by foaming polylactic acid and the molded body thereof have a problem that the volume of the foamed particles expands significantly under high temperature and high humidity conditions and cannot be used under severe conditions such as overseas export. As an approach for solving the problem, for example, by making a foamed particle a resin composition in which polyvinyl acetate is mixed with polylactic acid, the barrier property against foaming gas and air of polylactic acid is reduced (Patent Document 1). Examples include adjusting the L-form and D-form ratio of polylactic acid and performing heat treatment during molding (Patent Document 2). However, as in Patent Document 1, in the case of improving the resin characteristics as a resin mixture to form expanded particles, it is difficult to create a completely mixed state in the resin blend system. It can be seen that foaming properties are inhibited, such as improvement in the amount of water is not expected. Moreover, in patent document 2, since the heat processing time is required at the time of molding, the total molding time becomes long, and as a result, the problem that the manufacturing cost becomes high remains.
JP 2006-22242 A Japanese Patent Laid-Open No. 2003-301068

本発明の目的は、上記問題点に鑑み、耐熱性が改善されたポリ乳酸系樹脂発泡粒子成形体及びその製造方法を提供することにある   In view of the above problems, an object of the present invention is to provide a polylactic acid-based resin expanded particle molded body having improved heat resistance and a method for producing the same.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、ポリ乳酸系樹脂発泡粒子と他の樹脂からなる発泡粒子を略均一混合し、金型に充填し、加熱成形することで、ポリ乳酸系樹脂発泡粒子からなる発泡成形体が有していた耐熱性の課題を解決しうることを見出し本発明の完成に至った。   As a result of intensive studies to solve the above problems, the present inventors have mixed polylactic acid resin expanded particles and expanded particles composed of other resins substantially uniformly, filled a mold, and then heat molded. As a result, the inventors have found that the heat-resistant problem of the foamed molded article made of the polylactic acid-based resin expanded particles can be solved, thereby completing the present invention.

即ち、本発明の第1は、L体とD体のモル比が5/95〜95/5であるポリ乳酸系樹脂からなる樹脂発泡粒子を50体積%を超えて99体積%以下と、ポリ乳酸系樹脂と異なる樹脂からなる樹脂発泡粒子1体積%以上50体積%未満とを略均一に混合し、互いに融着してなるポリ乳酸系樹脂発泡粒子成形体に関する。   That is, according to the first aspect of the present invention, the foamed resin particles composed of a polylactic acid resin having a molar ratio of L-form to D-form of 5/95 to 95/5 are more than 50 volume% and 99 volume% or less. The present invention relates to a molded article of polylactic acid resin foamed particles obtained by mixing resin foam particles made of a resin different from lactic acid resin in an amount of 1% by volume or more and less than 50% by volume, and fusing them together.

好ましい実施態様としては、
(1)ポリ乳酸系樹脂と異なる樹脂が、式(1)
[−O−CHR−CH2−CO−] (1)
(ここでRはCn2n+1で表されるアルキル基で、nは1以上15以下の整数である。)
で示される一種以上の単位からなる共重合体(以下、ポリ(3−ヒドロキシアルカノエート):略称はP3HA)である、
(2)P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(以下、略称はPHBH)である、
(3)PHBHの共重合成分の組成中、ポリ(3−ヒドロキシヘキサノエート)が1mol%以上20mol%以下である、
前記記載のポリ乳酸系樹脂発泡粒子成形体に関する。
As a preferred embodiment,
(1) Resin different from polylactic acid resin is represented by the formula (1)
[—O—CHR—CH 2 —CO—] (1)
(Here, R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1-15)
A copolymer comprising one or more units represented by the following (hereinafter, poly (3-hydroxyalkanoate): abbreviated as P3HA).
(2) P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter abbreviated as PHBH).
(3) In the composition of the copolymerization component of PHBH, poly (3-hydroxyhexanoate) is 1 mol% or more and 20 mol% or less.
The present invention relates to the above-mentioned polylactic acid-based resin expanded particle molded body.

本発明の第2は、ポリ乳酸系樹脂からなる樹脂発泡粒子と、ポリ乳酸と異なる樹脂からなる樹脂発泡粒子とを略均一に混合して、金型に充填し、次いで加熱成形してなる、前記記載のポリ乳酸系樹脂発泡粒子成形体の製造方法に関する。   The second aspect of the present invention is that the resin foam particles made of a polylactic acid resin and the resin foam particles made of a resin different from polylactic acid are mixed almost uniformly, filled in a mold, and then heat-molded. The present invention relates to a method for producing the polylactic acid-based resin expanded particle molded body described above.

本発明により、耐熱性が改善され、かつ、発泡性を阻害することなく、発泡粒子の混合割合により、所望する発泡倍率を得ることが可能となった、ポリ乳酸系樹脂発泡粒子成形体を得ることが出来る。   According to the present invention, a polylactic acid-based resin foamed particle molded body having improved heat resistance and capable of obtaining a desired foaming ratio according to the mixing ratio of the foamed particles without inhibiting foamability is obtained. I can do it.

以下、本発明につき、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明におけるポリ乳酸系樹脂とは、例えば、とうもろこしやサツマイモ等の植物資源から得られる澱粉を酵素分解して得たグルコースを乳酸菌で発酵して乳酸とし、単量体単位として、樹脂中70重量%以上含有したものを言う。単量体単位として、乳酸を70重量%以上含んでいれば、乳酸のホモポリマーは勿論のこと、他のヒドロキシカルボン酸単位等との共重合体でも、他の樹脂とのブレンドでもよい。   The polylactic acid-based resin in the present invention is, for example, glucose obtained by enzymatic decomposition of starch obtained from plant resources such as corn and sweet potato, fermented with lactic acid bacteria to give lactic acid, and 70 wt. It is said to contain more than%. As long as it contains 70% by weight or more of lactic acid as a monomer unit, it may be a copolymer with other hydroxycarboxylic acid units, as well as a homopolymer of lactic acid, or a blend with other resins.

又、発泡に用いるポリ乳酸系樹脂としては、出来る限り結晶性を小さくすることが好ましい。その理由に関して、結晶性樹脂は発泡剤を含浸する工程で結晶化が進行し、発泡を阻害するからである。結晶性を小さくするためには、光学異性体を有するポリ乳酸系樹脂のL体とD体のモル比を5/95〜95/5であることが必要であり、好ましくは、L体とD体のモル比が60/40〜95/5、又は5/95〜40/60の範囲の実質的に非晶性のポリ乳酸系樹脂である。L体とD体のモル比が95/5を超えるもの、或いは5/95未満のものは結晶性が高く、発泡倍率が上がらなかったり、発泡が不均一になり使用できない。さらに好ましくはL体とD体のモル比が90/10〜70/30、又は30/70〜10/90の範囲が良い。   The polylactic acid resin used for foaming preferably has as little crystallinity as possible. The reason is that the crystalline resin is crystallized in the step of impregnating the foaming agent and inhibits foaming. In order to reduce the crystallinity, it is necessary that the molar ratio of the L-form and D-form of the polylactic acid resin having optical isomers is 5/95 to 95/5, and preferably the L-form and D-form. It is a substantially non-crystalline polylactic acid resin having a body molar ratio in the range of 60/40 to 95/5, or 5/95 to 40/60. When the molar ratio of L-form to D-form exceeds 95/5 or less than 5/95, the crystallinity is high, the foaming ratio does not increase, and foaming becomes uneven and cannot be used. More preferably, the molar ratio of L-form to D-form is in the range of 90/10 to 70/30, or 30/70 to 10/90.

本発明において、ポリ乳酸系樹脂と異なる樹脂とは、特に、限定はなく公知の樹脂を使用することが出来る。例えば、ポリ(3−ヒドロキシアルカノエート)等の脂肪族ポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエチレンテレフタレート系樹脂、ウレタン系樹脂等の樹脂からなる発泡粒子が挙げられる。中でも、脂肪族ポリエステル系樹脂を使用する事が、ポリ乳酸系樹脂と熱融着しやすいため好ましい。さらには、環境適合性、耐熱性の改善という観点から、ポリ(3−ヒドロキシアルカノエート)を用いることが好ましい。   In the present invention, the resin different from the polylactic acid resin is not particularly limited, and a known resin can be used. Examples thereof include foamed particles made of a resin such as an aliphatic polyester resin such as poly (3-hydroxyalkanoate), a polyolefin resin, a polystyrene resin, a polyethylene terephthalate resin, and a urethane resin. Among these, it is preferable to use an aliphatic polyester-based resin because it is easily heat-sealed with a polylactic acid-based resin. Furthermore, it is preferable to use poly (3-hydroxyalkanoate) from the viewpoint of improving environmental compatibility and heat resistance.

本発明においてポリ(3−ヒドロキシアルカノエート)とは、式(1)で示される3−ヒドロキシアルカノエートよりなる繰り返し構造を有し、かつ微生物から生産される脂肪族ポリエステルである、ポリ(3−ヒドロキシアルカノエート)(以下、P3HAと称す場合がある)からなる組成物である。   In the present invention, poly (3-hydroxyalkanoate) is a poly (3-hydroxyalkanoate) having a repeating structure composed of 3-hydroxyalkanoate represented by the formula (1) and is an aliphatic polyester produced from microorganisms. Hydroxyalkanoate) (hereinafter sometimes referred to as P3HA).

[−CHR−CH2−CO−O−]………式(1)
ここで、RはCn2n+1で表されるアルキル基で、n=1〜15の整数である。
[—CHR—CH 2 —CO—O—] Formula (1)
Here, R is an alkyl group represented by C n H 2n + 1 and is an integer of n = 1-15.

本発明におけるP3HAとしては、前記3−ヒドロキシアルカノエートのホモポリマー、またはnの異なる2種以上の3−ヒドロキシアルカノエート組み合わせからなる共重合体、つまりジ−コポリマー、トリ−コポリマー、テトラ−コポリマーなど、またはこれらホモポリマー及び共重合体から選ばれる2種以上のブレンド物が挙げられ、中でもn=1の3−ヒドロキシブチレート、n=2の3−ヒドロキシバリレート、n=3の3−ヒドロキシヘキサノエート、n=5の3−ヒドロキシオクタノエート、n=15の3−ヒドロキシオクタデカノエートなどのホモポリマー、又はこれら前記nが異なる3−ヒドロキシアルカノエート単位2種以上の組み合わせからなる共重合体、又はこれらのブレンド物が好ましく使用できる。P3HAとしては、n=1の3−ヒドロキシブチレートとn=3の3−ヒドロキシヘキサノエートの共重合体であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)がより好ましく、さらにその組成比としては、3−ヒドロキシブチレート/3−ヒドロキシヘキサノエート=99/1〜80/20(mol/mol)であるのが更に好ましい。3−ヒドロキシブチレート/3−ヒドロキシヘキサノエート組成比が当該範囲内であると、高温に加熱せずとも加工できるため、加熱加工時の熱分解による分子量低下を抑制することが出来、また加熱加工時の再結晶化に多くの時間を要さない傾向にある。   As P3HA in the present invention, a homopolymer of the above-mentioned 3-hydroxyalkanoate or a copolymer comprising a combination of two or more different 3-hydroxyalkanoates, that is, a di-copolymer, a tri-copolymer, a tetra-copolymer, etc. Or a blend of two or more selected from these homopolymers and copolymers, among which n = 1 3-hydroxybutyrate, n = 2 3-hydroxyvalerate, n = 3 3-hydroxy It consists of a homopolymer such as hexanoate, 3-hydroxyoctanoate with n = 5, 3-hydroxyoctadecanoate with n = 15, or a combination of two or more 3-hydroxyalkanoate units having different n. A copolymer or a blend thereof can be preferably used. P3HA is more preferably poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), which is a copolymer of n = 1 3-hydroxybutyrate and n = 3 3-hydroxyhexanoate. The composition ratio is more preferably 3-hydroxybutyrate / 3-hydroxyhexanoate = 99/1 to 80/20 (mol / mol). When the composition ratio of 3-hydroxybutyrate / 3-hydroxyhexanoate is within the above range, processing can be performed without heating to a high temperature, so that a decrease in molecular weight due to thermal decomposition during heat processing can be suppressed. There is a tendency that much time is not required for recrystallization during processing.

本発明のポリ乳酸系樹脂発泡粒子成形体とは、前記ポリ乳酸系樹脂からなる樹脂発泡粒子と、ポリ乳酸系樹脂と異なる樹脂からなる樹脂発泡粒子とを略均一混合し互いに融着してなるものであり、両者の樹脂発泡粒子の混合割合は、目的に応じて適宜調整可能であるが、ポリ乳酸系樹脂からなる樹脂発泡粒子を50体積%より大きく99体積%以下用い、ポリ乳酸系樹脂と異なる樹脂からなる樹脂発泡粒子1体積%以上50体積%未満を用いる。この様に混合して発泡成形体とすることで、発泡性を阻害することなく、発泡粒子の混合割合により、所望する発泡倍率を得ることが可能となり、かつ、耐熱性を向上させることが可能となる。   The polylactic acid-based resin expanded particle molded body of the present invention is obtained by substantially uniformly mixing and fusing together resin expanded particles composed of the polylactic acid-based resin and resin expanded particles composed of a resin different from the polylactic acid-based resin. The mixing ratio of the two resin foam particles can be appropriately adjusted according to the purpose, but the resin foam particles made of polylactic acid resin are used in an amount of more than 50% by volume and 99% by volume or less. 1% by volume or more and less than 50% by volume of resin foam particles made of a different resin. By mixing in this way to form a foamed molded article, it is possible to obtain a desired expansion ratio and improve heat resistance by inhibiting the foamability without depending on the mixing ratio of the expanded particles. It becomes.

本発明のポリ乳酸系樹脂を発泡させてなる樹脂発泡粒子は例えば以下のようにして製造する事ができる。   The foamed resin particles obtained by foaming the polylactic acid resin of the present invention can be produced, for example, as follows.

まず、ポリ乳酸系樹脂に発泡剤を含浸させるが、その方法としては、所望の発泡性が得られる発泡剤の存在下で、十分な圧力がかかる条件さえそろっていれば特に限定されるものではなく、水系、非水系のいずれでも含浸が可能である。   First, a polylactic acid resin is impregnated with a foaming agent. The method is not particularly limited as long as sufficient pressure is applied in the presence of a foaming agent that provides desired foamability. In addition, impregnation is possible with either aqueous or non-aqueous systems.

発泡性を付与するために用いられる発泡剤としては、プロパン、n−ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン等の炭化水素系発泡剤に加え、フロンガスも好適に用いることが可能であるが、上述同様に、環境適合性を考えるとハロゲン化炭化水素以外の発泡剤が好ましい。   As the foaming agent used for imparting foaming properties, in addition to hydrocarbon-based foaming agents such as propane, n-butane, isobutane, pentane, isopentane, hexane and the like, chlorofluorocarbon can also be suitably used. Similarly, foaming agents other than halogenated hydrocarbons are preferable in view of environmental compatibility.

本発明で使用する、ポリ乳酸系樹脂と異なる樹脂からなる樹脂発泡粒子の製造方法は公知の方法を用いることが出来る。例えば、ポリ(3−ヒドロキシアルカノエート)を発泡させてなる樹脂発泡粒子は、以下のようにして製造する事ができる。   A known method can be used as a method for producing the resin expanded particles made of a resin different from the polylactic acid resin used in the present invention. For example, resin foam particles obtained by foaming poly (3-hydroxyalkanoate) can be produced as follows.

まず基材樹脂であるP3HAを押出機、ニーダー、バンバリーミキサー、ロールなどを用いて加熱溶融混錬し、次いで円柱状、楕円柱状、球状、立方体状、直方体状などの本発明の発泡に利用しやすい粒子形状に成形することにより得られるP3HA樹脂粒子を使用する。粒子1個当たりの重量は0.1mg以上、好ましくは0.5mg以上が好ましい。0.1mg未満ではP3HA樹脂粒子自体の製造が困難な場合がある。   First, P3HA, which is a base resin, is heat-melted and kneaded using an extruder, kneader, Banbury mixer, roll, etc., and then used for foaming of the present invention such as cylindrical, elliptical, spherical, cubic, rectangular parallelepiped. P3HA resin particles obtained by molding into an easy particle shape are used. The weight per particle is 0.1 mg or more, preferably 0.5 mg or more. If it is less than 0.1 mg, it may be difficult to produce the P3HA resin particles themselves.

又、発泡性を向上させるために、変性剤等を用い、樹脂変性を行うことも可能である。変性剤として、発泡性を向上させるものであれば、何ら限定されるものではないが、例えば、反応性の点からイソシアネート化合物を好ましく使用することができる。イソシアネート化合物としては、1分子中にイソシアネート基を2個以上有するものであり、種類としては芳香族、脂環族、脂肪族系のイソシアネート等がある。例えば、芳香族イソシアネートとしてはトリレン、ジフェニルメタン、ナフチレン、トリジン、キシレン、トリフェニルメタンを骨格とするイソシアネート化合物、脂環族イソシアネートとしてはイソホロン、水素化ジフェニルメタンを骨格とするイソシアネート化合物、脂肪族イソシアネートとしてはヘキサメチレン、リジンを骨格とするイソシアネート化合物等がある。更に、これらイソシアネート化合物を2種類以上組み合わせたものも使用可能であるが、汎用性、取扱い性、耐候性等からトリレン、ジフェニルメタン、特にジフェニルメタンのポリイソシアネートが好ましく使用される。   Moreover, in order to improve foamability, it is also possible to perform resin modification using a modifier or the like. The modifier is not particularly limited as long as it improves foaming properties. For example, an isocyanate compound can be preferably used from the viewpoint of reactivity. The isocyanate compound has two or more isocyanate groups in one molecule, and types include aromatic, alicyclic, and aliphatic isocyanates. For example, aromatic isocyanates include tolylene, diphenylmethane, naphthylene, tolidine, xylene, isocyanate compounds having triphenylmethane as a skeleton, alicyclic isocyanates as isophorone, isocyanate compounds having hydrogenated diphenylmethane as a skeleton, and aliphatic isocyanates. Examples include isocyanate compounds having hexamethylene and lysine as a skeleton. Furthermore, a combination of two or more of these isocyanate compounds can also be used, but tolylene, diphenylmethane, especially polyisocyanate of diphenylmethane is preferably used in view of versatility, handleability, weather resistance and the like.

こうして得られたP3HA樹脂粒子を、分散剤とともに密閉容器内で水系分散媒に分散後、発泡剤を密閉容器内に導入し、該P3HA樹脂粒子の軟化温度以上に加熱し、必要で有れば発泡させる温度付近で一定の時間保持した後、密閉容器の一端を解放し、該P3HA樹脂粒子と水系分散媒とを密閉容器の圧力よりも低圧の雰囲気下に放出して、P3HA樹脂発泡粒子が製造される。   After the P3HA resin particles thus obtained are dispersed in an aqueous dispersion medium in a closed container together with a dispersant, a foaming agent is introduced into the closed container and heated to a temperature equal to or higher than the softening temperature of the P3HA resin particles. After holding for a certain period of time near the foaming temperature, one end of the sealed container is released, and the P3HA resin particles and the aqueous dispersion medium are released into an atmosphere at a pressure lower than the pressure of the sealed container. Manufactured.

前記分散剤としては、第3リン酸カルシウム、ピロリン酸カルシウム、カオリン、塩基性炭酸マグネシウム、酸化アルミニウム、塩基性炭酸亜鉛等の無機物と、アニオン界面活性剤たとえば、ドデシルベンゼンスルフォン酸ソーダ、α−オレフィンスルホン酸ソーダ、ノルマルパラフィンスルフォン酸ソーダ等を組み合わせて使用される。無機物の量はP3HA樹脂100重量部に対して0.1〜3.0重量部、アニオン界面活性剤量はP3HA樹脂100重量部に対し0.001〜0.2重量部が通常である。また、分散媒としては経済性、取り扱い性の点から通常は水が好ましいが、これに限られたものではない。   Examples of the dispersant include inorganic substances such as tricalcium phosphate, calcium pyrophosphate, kaolin, basic magnesium carbonate, aluminum oxide, basic zinc carbonate, and anionic surfactants such as sodium dodecylbenzene sulfonate and sodium α-olefin sulfonate. In addition, normal paraffin sulfonic acid soda is used in combination. The amount of the inorganic substance is usually 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the P3HA resin, and the amount of the anionic surfactant is usually 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the P3HA resin. The dispersion medium is usually water from the viewpoints of economy and handleability, but is not limited thereto.

前記の発泡剤としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン等の炭素数3〜5の飽和炭化水素、ジメチルエーテル、ジエチルエーテル、及びメチルエチルエーテル等のエーテル、モノクロルメタン、ジクロロメタン、ジクロロジフルオロエタン等のハロゲン化炭化水素、二酸化炭素、窒素、空気などの無機ガス、水等が挙げられるが、これらを少なくとも1種使用してもよい。環境適合性を考えるとハロゲン化炭化水素以外の発泡剤が好ましい。発泡剤の添加量は目的の予備発泡粒子の発泡倍率、発泡剤の種類、ポリエステル系樹脂の種類、樹脂粒子と分散媒の比率、容器の空間容積、含浸または発泡温度などによって異なるがP3HA樹脂粒子100重量部に対し、通常2〜10000重量部の範囲である。   Examples of the blowing agent include saturated hydrocarbons having 3 to 5 carbon atoms such as propane, normal butane, isobutane, normal pentane, isopentane, and neopentane, ethers such as dimethyl ether, diethyl ether, and methyl ethyl ether, monochloromethane, dichloromethane, Halogenated hydrocarbons such as dichlorodifluoroethane, inorganic gases such as carbon dioxide, nitrogen and air, water and the like can be mentioned, but at least one of these may be used. In view of environmental compatibility, foaming agents other than halogenated hydrocarbons are preferred. The amount of foaming agent added depends on the expansion ratio of the desired pre-expanded particles, the type of foaming agent, the type of polyester resin, the ratio of resin particles to the dispersion medium, the space volume of the container, the impregnation or foaming temperature, etc., but the P3HA resin particles Usually, it is in the range of 2 to 10,000 parts by weight with respect to 100 parts by weight.

本発明に使用する樹脂発泡粒子には、その要求性能を阻害しない範囲において、各種添加剤を加えても良い。ここで添加剤とは、たとえば、酸化防止剤、紫外線吸収剤、染料、顔料などの着色剤、可塑剤、滑剤、結晶化核剤、無機充填剤等目的に応じて使用できるが、中でも生分解性を有する配合剤が好ましい。添加剤としては、シリカ、タルク、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、酸化チタン、酸化珪素等の無機化合物や、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウムやステアリン酸バリウム等の脂肪酸金属塩、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物などが挙げられるが、これらに限定された物ではない。また、発泡粒子の気泡径を調節する必要がある場合は気泡調整剤を添加する。気泡調整剤としては無機造核剤には、タルク、シリカ、ケイ酸カルシウム、炭酸カルシウム、酸化アルミニウム、酸化チタン、珪藻土、クレイ、重曹、アルミナ、硫酸バリウム、酸化アルミニウム、ベントナイト等があり、その使用量は通常0.005〜2重量部を添加する。   Various additives may be added to the resin expanded particles used in the present invention as long as the required performance is not impaired. Here, additives can be used according to purposes such as antioxidants, UV absorbers, dyes, pigments and other colorants, plasticizers, lubricants, crystallization nucleating agents, inorganic fillers, etc. The compounding agent which has property is preferable. Additives include inorganic compounds such as silica, talc, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, silicon oxide, sodium stearate, magnesium stearate, calcium stearate and stearic acid Fatty acid metal salts such as barium, liquid paraffin, olefin wax, stearyl amide compound, and the like are exemplified, but the invention is not limited to these. In addition, when it is necessary to adjust the bubble diameter of the expanded particles, a bubble adjusting agent is added. Inorganic nucleating agents include talc, silica, calcium silicate, calcium carbonate, aluminum oxide, titanium oxide, diatomaceous earth, clay, baking soda, alumina, barium sulfate, aluminum oxide, bentonite, etc. The amount is usually 0.005 to 2 parts by weight.

以上のようにして得られた、ポリ乳酸系樹脂からなる樹脂発泡粒子と、ポリ乳酸系樹脂とは異なる樹脂からなる樹脂発泡粒子は、必要であれば加圧空気で加圧熟成して発泡粒子に発泡能を付与し、略均一に混合して、金型に、充填し、次いで、金型内に水蒸気を導入することにより、樹脂発泡粒子同士を加熱融着させ、ポリ乳酸系樹脂発泡粒子成形体が製造される。成形加熱条件等は、用いる樹脂発泡粒子の種類、混合比等によって適宜選択することができる。   The resin foam particles made of the polylactic acid resin and the resin foam particles made of a resin different from the polylactic acid resin obtained as described above are subjected to pressure aging with pressurized air, if necessary. The foamed resin particles are heated and fused to each other by introducing water vapor into the mold, and the foamed polylactic acid resin particles. A shaped body is produced. The molding heating conditions and the like can be appropriately selected depending on the type of resin foam particles used, the mixing ratio, and the like.

このようにして得られたポリ乳酸系樹脂発泡粒子成形体は、耐熱性が改善され、かつ、発泡粒子の混合割合により、発泡性を阻害することなく、所望の発泡倍率とすることができる。   The polylactic acid-based resin expanded particle molded body thus obtained has improved heat resistance, and can have a desired expansion ratio without impairing expandability due to the mixing ratio of the expanded particles.

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。また、実施例において「部」は重量基準である。本発明で使用した物質は以下の様に略した。
PLA:ポリ乳酸系樹脂
P3HA:ポリ(3−ヒドロキシアルカノエート)
PHBH:ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)
HH率:PHBH中のヒドロキシヘキサノエートのモル分率(mol%)
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, “parts” are based on weight. Substances used in the present invention were abbreviated as follows.
PLA: Polylactic acid resin P3HA: Poly (3-hydroxyalkanoate)
PHBH: poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)
HH ratio: mole fraction of hydroxyhexanoate in PHBH (mol%)

<PLA発泡粒子及び成形体の発泡倍率測定法>
23℃のエタノールの入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて7日間放置した500個以上のPLA発泡粒子、PHBH発泡粒子、(発泡粒子群の重量W(g))及び、適当な大きさに切り出した樹脂発泡粒子成形体を金網などを使用して沈め、エタノール水位上昇分より読みとられる発泡粒子群及び、成形体の容積V(cm3)としたときに、樹脂密度ρ(g/cm3)から次式で与えられる。
発泡倍率=V/(W/ρ)
<Method for measuring expansion ratio of PLA expanded particles and molded body>
A graduated cylinder containing ethanol at 23 ° C. was prepared, and 500 or more PLA expanded particles, PHBH expanded particles (foamed particle group) left in the graduated cylinder for 7 days under the conditions of 50% relative humidity, 23 ° C. and 1 atm. ) And a foamed resin group that has been cut out to an appropriate size using a wire mesh and the like, and a volume V (cm 3 ), it is given by the following equation from the resin density ρ (g / cm 3 ).
Foaming ratio = V / (W / ρ)

<PLA発泡粒子及び成形体の独立気泡率測定法>
マルチピクノメーター(ベックマン・ジャパン(株)社製)を用い、ASTM D−2856に準じて測定した。
<Method for measuring the closed cell ratio of PLA expanded particles and molded products>
It measured according to ASTM D-2856 using a multi-pynometer (manufactured by Beckman Japan Co., Ltd.).

<PLA発泡粒子成形体の耐熱性>
PLA発泡粒子成形体より、100×100×30mmの試験片を切り出し、恒温恒湿槽(60℃、相対湿度80%)中に24時間処理し、処理前後の縦、横、厚みの測定値からの体積変化率を算出した。
<Heat resistance of PLA expanded particle molding>
A test piece of 100 × 100 × 30 mm was cut out from the PLA expanded particle molded body, treated in a constant temperature and humidity chamber (60 ° C., relative humidity 80%) for 24 hours, and measured from longitudinal, lateral and thickness measurements before and after treatment. The volume change rate of was calculated.

<PLA発泡粒子の製造>
D体比率10%、数平均分子量10万、重量平均分子量21万のPLA(比重1.2g/ml)100重量部と、上記同様のポリイソシアネート化合物2重量部とを溶融混練し、水中カッターを用いて約1mm径のビーズ状樹脂組成物を作製した。次いで、ビーズ状樹脂組成物を各々42℃の温水中で15時間熟成・二次架橋した後、脱水、乾燥し、発泡剤含浸を行った。発泡剤含浸は、各熟成ビーズを各々10L回転ドラム型密閉容器に4.3kg仕込み、メタノール215g、イソブタン1720gを添加して、85℃にて3時間含浸を行い、常温で通気風乾して、発泡剤含浸したビーズ状樹脂組成物を得た。それを発泡スチロール用予備発泡機(ダイセン工業(株)製DYHL−300)にて発泡し、発泡倍率が35倍、独立気泡率98%のPLA発泡粒子を得た。
<Manufacture of PLA foam particles>
100 parts by weight of PLA (specific gravity 1.2 g / ml) having a D-form ratio of 10%, a number average molecular weight of 100,000 and a weight average molecular weight of 210,000 and 2 parts by weight of the same polyisocyanate compound are melt-kneaded, and an underwater cutter is used. A bead-shaped resin composition having a diameter of about 1 mm was used. Next, each bead-shaped resin composition was aged and secondary crosslinked in warm water at 42 ° C. for 15 hours, then dehydrated and dried, and impregnated with a blowing agent. For the impregnation of the foaming agent, 4.3 kg of each aged bead is charged into a 10 L rotating drum type sealed container, 215 g of methanol and 1720 g of isobutane are added, impregnation is performed at 85 ° C. for 3 hours, and air-drying is performed at room temperature, and foaming is performed. A bead-shaped resin composition impregnated with an agent was obtained. It was foamed with a pre-foaming machine for expanded polystyrene (Dysen Kogyo Co., Ltd. DYHL-300) to obtain PLA expanded particles having an expansion ratio of 35 times and an closed cell ratio of 98%.

<PHBH発泡粒子の製造>
微生物として、Alcaligenes eutrophusにAeromonas caviae由来のPHA合成酵素遺伝子を導入したAlcaligenes eutrophus AC32(J.Bacteriol.,179,4821(1997))を用いて原料、培養条件を適宜調整して生産されたPHBH、HH率12mol%のPHBH(比重1.2g/ml)100重量部とポリイソシアネート化合物2重量部(日本ポリウレタン製、ミリオネートMR-200(イソシアネート基2.7〜2.8当量/モル))とをハンドブレンドした後、ニーダー付きφ35mm単軸押出成形機(笠松加工製ラボ万能押出機)でシリンダー温度145℃にて溶融混練し、押出機先端に取り付けられた3mmφの小孔ダイより押し出されたストランドを、ペレタイザーでカットして粒重量5mg、融点135℃のPHBH樹脂組成物を作製した。
<Manufacture of PHBH expanded particles>
PHBH produced using Alcaligenes eutrophus AC32 (J. Bacteriol., 179,4821 (1997)) in which a PHA synthase gene derived from Aeromonas caviae was introduced into Alcaligenes eutrophus as a microorganism, with appropriate adjustment of raw materials and culture conditions, 100 parts by weight of PHBH (specific gravity 1.2 g / ml) having an HH ratio of 12 mol% and 2 parts by weight of a polyisocyanate compound (manufactured by Nippon Polyurethane, Millionate MR-200 (2.7 to 2.8 equivalents / mol of isocyanate groups)) After hand blending, strands extruded through a 3mmφ small hole die attached to the tip of the extruder, melt kneaded at a cylinder temperature of 145 ° C using a φ35mm single screw extruder with a kneader (Kasamatsu Lab's laboratory universal extruder) Was cut with a pelletizer to prepare a PHBH resin composition having a particle weight of 5 mg and a melting point of 135 ° C.

該樹脂組成物100重量部を、4.5L耐圧容器に仕込んだ後、発泡剤としてイソブタン25重量部を添加、攪拌し、容器内温度が119℃となるまで昇温(発泡温度とする)後、容器内圧が1.8MPaの状態で1時間保持したのち、耐圧容器下部に設けた小孔ノズルを通して大気圧下に放出発泡し、発泡倍率が18倍、独立気泡率98%のPHBH発泡粒子を得た。   After charging 100 parts by weight of the resin composition into a 4.5 L pressure vessel, adding 25 parts by weight of isobutane as a foaming agent, stirring, and raising the temperature until the temperature in the container reaches 119 ° C. (foaming temperature) After holding for 1 hour in a state where the internal pressure of the container is 1.8 MPa, the foam is discharged and foamed under atmospheric pressure through a small nozzle provided at the bottom of the pressure-resistant container, and PHBH expanded particles having an expansion ratio of 18 times and a closed cell ratio of 98% are obtained. Obtained.

(実施例1)
該PLA発泡粒子60体積%と該PHBH発泡粒子40体積%とを予め混合し、混合した樹脂発泡粒子を300×400×30mmの金型に充填し、0.10〜0.32MPa(ゲージ)の水蒸気を金型に導入し、両者の樹脂発泡粒子を加熱、融着させ、発泡倍率30倍、独気率93%のPLA発泡粒子成形体を得た。又、樹脂発泡粒子成形体の熱膨張率は10%であった。比較例1と比べると、熱膨張率が抑制され、耐熱性が改善された樹脂発泡粒子成形体を得ることができた。結果を表1に示す。
Example 1
60% by volume of the PLA foamed particles and 40% by volume of the PHBH foamed particles were mixed in advance, and the mixed resin foamed particles were filled in a 300 × 400 × 30 mm mold, and 0.10 to 0.32 MPa (gauge). Water vapor was introduced into the mold, and both of the resin foam particles were heated and fused to obtain a PLA foam particle molded body having an expansion ratio of 30 times and a single air rate of 93%. The coefficient of thermal expansion of the resin foam particle molded body was 10%. Compared with Comparative Example 1, it was possible to obtain a resin expanded particle molded body in which the coefficient of thermal expansion was suppressed and the heat resistance was improved. The results are shown in Table 1.

(実施例2)
該PLA発泡粒子75体積%と該PHBH発泡粒子25体積%と、混合割合が異なる以外は、実施例1と同様に行った。水蒸気導入後、発泡倍率33倍、独気率93%のPLA発泡粒子成形体を得た。又、樹脂発泡粒子成形体の熱膨張率は15%であった。比較例1と比べると、熱膨張率が抑制され、耐熱性が改善された樹脂発泡粒子成形体を得ることができた。結果を表1に示す。
(Example 2)
The same procedure as in Example 1 was performed except that 75% by volume of the PLA expanded particles and 25% by volume of the PHBH expanded particles were different in mixing ratio. After the introduction of water vapor, a PLA expanded particle molded body having an expansion ratio of 33 times and an air-blowing ratio of 93% was obtained. Moreover, the thermal expansion coefficient of the resin foam particle molded body was 15%. Compared with Comparative Example 1, it was possible to obtain a resin expanded particle molded body in which the coefficient of thermal expansion was suppressed and the heat resistance was improved. The results are shown in Table 1.

(比較例1)
該PLA発泡粒子のみを用いた以外は、実施例1と同様に行った。水蒸気導入後、発泡倍率35倍、独気率98%のPLA発泡粒子成形体を得た。又、樹脂発泡粒子成形体の熱膨張率は40%であった。結果を表1に示す。
(Comparative Example 1)
The same operation as in Example 1 was performed except that only the PLA expanded particles were used. After the introduction of water vapor, a PLA expanded particle molded body having an expansion ratio of 35 times and a self-efficiency rate of 98% was obtained. Moreover, the thermal expansion coefficient of the resin foam particle molded body was 40%. The results are shown in Table 1.

Figure 2007314670
Figure 2007314670

Claims (5)

L体とD体のモル比が5/95〜95/5であるポリ乳酸系樹脂からなる樹脂発泡粒子を50体積%を超えて99体積%以下と、ポリ乳酸系樹脂と異なる樹脂からなる樹脂発泡粒子1体積%以上50体積%未満とを略均一に混合し、互いに融着してなるポリ乳酸系樹脂発泡粒子成形体。   Resin made of a resin different from the polylactic acid resin, with a foamed resin particle made of a polylactic acid resin having a molar ratio of L-form to D-form of 5/95 to 95/5 exceeding 99 vol% A molded product of polylactic acid resin foamed particles obtained by mixing 1% by volume to less than 50% by volume of foamed particles substantially uniformly and fusing them together. ポリ乳酸系樹脂と異なる樹脂が、式(1)
[−O−CHR−CH2−CO−] (1)
(ここでRはCn2n+1で表されるアルキル基で、nは1以上15以下の整数である。)
で示される一種以上の単位からなる共重合体(以下、ポリ(3−ヒドロキシアルカノエート):略称はP3HA)である、請求項1に記載のポリ乳酸系樹脂発泡粒子成形体。
Resin different from polylactic acid resin is represented by the formula (1)
[—O—CHR—CH 2 —CO—] (1)
(Here, R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1-15)
2. The polylactic acid-based resin expanded particle molded body according to claim 1, which is a copolymer composed of one or more units represented by the following (hereinafter referred to as poly (3-hydroxyalkanoate): abbreviated as P3HA).
P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(以下、略称はPHBH)である、請求項1または2に記載のポリ乳酸系樹脂発泡粒子成形体。   The polylactic acid-based resin expanded particle molded article according to claim 1 or 2, wherein P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter abbreviated as PHBH). PHBHの共重合成分の組成中、ポリ(3−ヒドロキシヘキサノエート)が1mol%以上20mol%以下である、請求項3に記載のポリ乳酸系樹脂発泡粒子成形体。   The polylactic acid-based resin expanded particle molded article according to claim 3, wherein the poly (3-hydroxyhexanoate) content is 1 mol% or more and 20 mol% or less in the composition of the copolymerization component of PHBH. ポリ乳酸系樹脂からなる樹脂発泡粒子と、ポリ乳酸と異なる樹脂からなる樹脂発泡粒子とを略均一に混合して、金型に充填し、次いで加熱成形してなる、請求項1〜4何れか1項に記載のポリ乳酸系樹脂発泡粒子成形体の製造方法。   The resin foam particles made of a polylactic acid resin and the resin foam particles made of a resin different from polylactic acid are mixed almost uniformly, filled in a mold, and then heat-molded. The manufacturing method of the polylactic acid-type resin expanded particle molded object of 1 item | term.
JP2006146188A 2006-05-26 2006-05-26 Foamed polylactic acid-resin particle molding and method for producing the same Pending JP2007314670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146188A JP2007314670A (en) 2006-05-26 2006-05-26 Foamed polylactic acid-resin particle molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146188A JP2007314670A (en) 2006-05-26 2006-05-26 Foamed polylactic acid-resin particle molding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007314670A true JP2007314670A (en) 2007-12-06

Family

ID=38848825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146188A Pending JP2007314670A (en) 2006-05-26 2006-05-26 Foamed polylactic acid-resin particle molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007314670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233370B1 (en) 2008-11-17 2013-02-15 제일모직주식회사 Clay-reinforced polylactic acid stereocomplex resin composition
JP2018525114A (en) * 2015-08-17 2018-09-06 エシコン エルエルシーEthicon LLC Implantable layer for surgical instruments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319438A (en) * 1999-05-11 2000-11-21 Kanegafuchi Chem Ind Co Ltd Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP2004202915A (en) * 2002-12-26 2004-07-22 Daisen Kogyo:Kk Porous molded article and its expansion molding method
JP2006111704A (en) * 2004-10-14 2006-04-27 Kanebo Ltd Polylactic acid resin foam and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319438A (en) * 1999-05-11 2000-11-21 Kanegafuchi Chem Ind Co Ltd Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP2004202915A (en) * 2002-12-26 2004-07-22 Daisen Kogyo:Kk Porous molded article and its expansion molding method
JP2006111704A (en) * 2004-10-14 2006-04-27 Kanebo Ltd Polylactic acid resin foam and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233370B1 (en) 2008-11-17 2013-02-15 제일모직주식회사 Clay-reinforced polylactic acid stereocomplex resin composition
JP2018525114A (en) * 2015-08-17 2018-09-06 エシコン エルエルシーEthicon LLC Implantable layer for surgical instruments

Similar Documents

Publication Publication Date Title
JP5014127B2 (en) Polyhydroxyalkanoate resin expanded particles, molded product thereof, and method for producing the expanded resin particles
JP5383489B2 (en) Biodegradable aliphatic polyester-based expanded particles and molded articles thereof
JP7123980B2 (en) Poly(3-hydroxyalkanoate) foamed particles and poly(3-hydroxyalkanoate) foamed molded product
JP5121446B2 (en) Process for producing expanded particles of polyhydroxyalkanoate resin
JP5121447B2 (en) Thermoplastic resin expanded particles and molded articles thereof
JP3802680B2 (en) Expandable resin composition having biodegradability
US6310171B1 (en) Resin composition with biodegradability and foamability
JP5408877B2 (en) POLYHYDROXYALKANOATE RESIN FOAM PARTICLE, FORMED ITS THEREOF AND METHOD FOR PRODUCING THE RESIN FOAM PARTICLE
JPWO2006103972A1 (en) Polyhydroxyalkanoate resin expanded particles
JP2005264166A (en) Foamed particle and molded product
JP2012241166A (en) Poly(3-hydroxyalkanoate)-based preliminarily foamed particle and in-mold expansion-molded body
JP3871822B2 (en) Expandable resin composition having biodegradability
JP2007314670A (en) Foamed polylactic acid-resin particle molding and method for producing the same
JP4989099B2 (en) POLY (3-HYDROXYALKANOATE) RESIN FOAM MOLDED BODY AND PROCESS FOR PRODUCING THE SAME
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP3811747B2 (en) Expandable resin composition having biodegradability
JP3907047B2 (en) Method for producing foamed molding
JP2002179832A (en) Foamed particle and molded product
JP3802681B2 (en) Expandable resin composition having biodegradability
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
JP3787447B2 (en) Expandable resin composition having biodegradability
JP2001098044A (en) Polylactic acid resin composition having biodegradability and expandability
WO2023188942A1 (en) Poly(3-hydroxyalkanoate)-based resin foam particles
JP2023148083A (en) Poly(3-hydroxyalkanoate)-based resin foam particle and method for producing the same
JP2005105097A (en) Foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228