JP2000319438A - Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads - Google Patents

Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads

Info

Publication number
JP2000319438A
JP2000319438A JP11129970A JP12997099A JP2000319438A JP 2000319438 A JP2000319438 A JP 2000319438A JP 11129970 A JP11129970 A JP 11129970A JP 12997099 A JP12997099 A JP 12997099A JP 2000319438 A JP2000319438 A JP 2000319438A
Authority
JP
Japan
Prior art keywords
polyester resin
aliphatic polyester
particles
expanded particles
beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11129970A
Other languages
Japanese (ja)
Other versions
JP3730805B2 (en
Inventor
Kyoichi Nakamura
京一 中村
Tomonori Iwamoto
友典 岩本
Osamu Odawara
修 小田原
Takenaga Shiotani
武修 塩谷
Kenichi Senda
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP12997099A priority Critical patent/JP3730805B2/en
Publication of JP2000319438A publication Critical patent/JP2000319438A/en
Application granted granted Critical
Publication of JP3730805B2 publication Critical patent/JP3730805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide aliphatic polyester resin prefoaming beads having biodegradability, good moldability and physical properties, and a molded product thereof and a method for manufacturing the prefoaming beads. SOLUTION: The beads using, as a base resin, an aliphatic polyester copolymer of 3-hydroxybutylate and 3-hydroxyhexanoate are expanded to provide aliphatic polyester prefoaming beads that have a crystal structure exhibiting two melting points in a DSC curve when determined according to the differential scanning calorimetric method, and subsequently charging the prefoaming beads into a mold to provide a foamed molded product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性を有する
脂肪族ポリエステル樹脂予備発泡粒子、及びその成形体
と該予備発泡粒子の製造方法に関する。
The present invention relates to biodegradable aliphatic polyester resin pre-expanded particles, a molded article thereof, and a method for producing the pre-expanded particles.

【0002】[0002]

【従来の技術】最近の環境問題の高まりから、生分解性
を有するプラスチック発泡体の開発が広く行われるよう
になり、これまで脂肪族ポリエステル系樹脂やデンプン
とプラスチックの混合樹脂等の押出発泡体が開発され一
部実用化され始めている。また、いったん予備発泡粒子
を製造し、次いで金型に充填して加熱し発泡成形体を得
る、いわゆるビーズ発泡成形分野においても、次のよう
な技術が開発されている。ウレタン結合を有し特定の溶
融粘度を持った特殊な脂肪族ポリエステル樹脂粒子に揮
発性発泡剤を含有させ発泡性粒子とした後、水蒸気加熱
発泡により予備発泡粒子を得、次いでこれを金型に充填
し加熱発泡し成形体を得る方法が特開平6−24810
6号公報に記載されているが、この技術では成形体を得
るまでに、揮発性発泡剤を粒子に含浸させる工程、水蒸
気の加熱によって発泡倍率5倍以上に発泡させる加熱発
泡工程、該予備発泡粒子を乾燥熟成後、金型に充填して
発泡成形体にする工程の煩雑な3工程を必要とし経済的
な方法ではなかった。また、特開平10−324766
号公報には架橋構造を有する脂肪族ポリエステル系樹脂
発泡粒子とその成形体についての記載があり、特開平6
−248106号公報記載の技術よりは成形性に優れた
脂肪族ポリエステル系樹脂の生分解性発泡体が得られて
いるが、予備発泡粒子を得るための製造工程として架橋
工程と発泡工程の2工程、成形体を得るための工程の計
3工程が必要で生産コストが高く、経済性に問題があっ
た。さらに、本発明と類似のポリ(3HB−CO−3H
H)を基材樹脂とする脂肪族ポリエステル樹脂発泡体の
例が米国特許5,536,564号に記載されている。
しかしながら、従来公知の発泡体製法が羅列されている
他は、実施例12,13に無架橋のポリ(3HB−CO
−3HH)系脂肪族ポリエステル樹脂と熱分解型発泡剤
を該発泡剤の分解温度以下で混練した後、該発泡剤の分
解温度以上で加熱発泡させる技術が公開になっているだ
けで、本発明の示差走査熱量測定法によるDSC曲線に
おいて2つの融点を示す結晶構造を有するポリ(3HB
−CO−3HH)系脂肪族ポリエステル樹脂予備発泡粒
子とその成形体の製造方法を示唆するものはない。
2. Description of the Related Art With the recent rise in environmental problems, development of plastic foams having biodegradability has been widely carried out. Until now, extruded foams such as aliphatic polyester resins and mixed resins of starch and plastic have been developed. Has been developed and is being put into practical use. In the field of so-called bead foam molding, in which pre-expanded particles are produced once, then filled in a mold and heated to obtain a foam molded product, the following techniques have been developed. After adding a volatile foaming agent to special aliphatic polyester resin particles having a urethane bond and a specific melt viscosity to form expandable particles, pre-expanded particles are obtained by steam heating foaming, and then this is molded into a mold. A method of filling and heating and foaming to obtain a molded article is disclosed in JP-A-6-24810.
In this technique, a step of impregnating particles with a volatile foaming agent, a step of heating and foaming to a foaming ratio of 5 times or more by heating steam, and a step of pre-foaming are performed by this technique until a molded article is obtained. After the particles were dried and aged, the process required three complicated steps of filling in a mold to form a foamed molded article, which was not an economical method. Further, Japanese Patent Application Laid-Open No. 10-324766
Japanese Patent Application Laid-Open Publication No. Hei 6 (1994) describes a foamed aliphatic polyester resin particle having a crosslinked structure and a molded product thereof.
Although a biodegradable foam of an aliphatic polyester resin having better moldability has been obtained than the technique described in Japanese Patent Application Laid-Open No. -248106, two steps of a crosslinking step and a foaming step are used as production steps for obtaining pre-expanded particles. In addition, a total of three processes for obtaining a molded body are required, and the production cost is high, and there is a problem in economy. Furthermore, a poly (3HB-CO-3H) similar to the present invention
An example of an aliphatic polyester resin foam using H) as a base resin is described in US Pat. No. 5,536,564.
However, in Examples 12 and 13, non-crosslinked poly (3HB-CO
-3HH) aliphatic polyester resin and a thermal decomposition type foaming agent are kneaded at a temperature below the decomposition temperature of the foaming agent, and then heated and foamed at a temperature above the decomposition temperature of the foaming agent. Poly (3HB) having a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry
There is no suggestion of a method for producing the pre-expanded particles of the —CO-3HH) -based aliphatic polyester resin and the molded article thereof.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明の課題
は、生分解性を有し、かつ成形性、物性が良好な脂肪族
ポリエステル樹脂予備発泡粒子、及びその成形体と該予
備発泡粒子の経済的な製造方法を提供することである。
Accordingly, an object of the present invention is to provide an aliphatic polyester resin pre-expanded particle having biodegradability and good moldability and physical properties, and a molded article of the aliphatic polyester resin and the pre-expanded particle. It is to provide an economical manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するべく鋭意研究を重ねた結果、本発明を完成す
るに至った。本発明は脂肪族ポリエステル系樹脂の内、
基材樹脂として特定の脂肪族ポリエステル樹脂を使用す
れば、成形性、物性が良好な予備発泡粒子とその成形体
が得られることが分かった。すなわち、本発明は、3−
ヒドロキシブチレートと3−ヒドロキシヘキサノエート
からなる脂肪族ポリエステル共重合体(以下、ポリ(3
HB−CO−3HH)系脂肪族ポリエステル樹脂とい
う)を基材樹脂とし、示差走査熱量測定法によるDSC
曲線において2つの融点を示す結晶構造を有する生分解
性の脂肪族ポリエステル樹脂予備発泡粒子(請求項
1)、無架橋である請求項1記載の脂肪族ポリエステル
樹脂予備発泡粒子(請求項2)、ポリ(3HB−CO−
3HH)系脂肪族ポリエステル樹脂を基材樹脂とし示差
走査熱量測定法によるDSC曲線において2つの融点を
示す結晶構造を有する生分解性の脂肪族ポリエステル樹
脂予備発泡粒子を金型に充填し、加熱成形してなる成形
体(請求項3)、脂肪族ポリエステル樹脂予備発泡粒子
が無架橋であることを特徴とする請求項3記載の成形体
(請求項4)、ポリ(3HB−CO−3HH)系脂肪族
ポリエステル樹脂を基材樹脂とする脂肪族ポリエステル
樹脂粒子を、分散剤とともに密閉容器内で水系分散媒に
分散後、発泡剤を密閉容器内に導入し、該ポリエステル
樹脂粒子の軟化温度以上に加熱した後、密閉容器の一端
を解放し、該ポリエステル樹脂粒子と水系分散媒とを密
閉容器の圧力よりも低圧の雰囲気下に放出して、該ポリ
エステル樹脂粒子を発泡させることを特徴とする請求項
1記載の生分解性の脂肪族ポリエステル樹脂予備発泡粒
子の製造方法(請求項5)及び、脂肪族ポリエステル樹
脂予備発泡粒子が無架橋であることを特徴とする請求項
5記載の製造方法(請求項6)に関する。本発明の脂肪
族ポリエステル樹脂予備発泡粒子は無架橋でしかも1工
程で得ることもできるので、前期した公知技術の様な、
揮発性発泡剤の含浸工程と水蒸気発泡工程(特開平6−
248106号公報)、架橋工程と発泡工程がかならず
しも不要であり(特開平10−324766号公報)、
生産コストが低く極めて経済的な方法とできる。示差走
査熱量測定法によるDSC曲線において2つの融点を示
す結晶構造を有するような予備発泡粒子は基材樹脂が結
晶性のポリオレフィン系樹脂の場合に公知であり、この
ような発泡粒子はいわゆる放出発泡法(ドカン法ともい
われている)によって得られることが分かっている(特
開昭59−176336号公報、特開昭60−4904
0号公報など)。また、DSC曲線において2つの融点
を示す結晶構造を有するような予備発泡粒子は金型に充
填して成形すると、成形性が幅広く、物性の良好な成形
体が得られることも分かっている。そこで、本発明者ら
は、この原理が結晶性の脂肪族ポリエステル系樹脂にも
適用できるのではないかと考え、前記放出発泡法、すな
わち分散剤とともに密閉容器内で水系分散媒に分散後、
発泡剤を密閉容器内に導入し、使用した樹脂粒子の軟化
温度以上に加熱し、要すれば一定時間保持した後、密閉
容器の一端を解放する方法において、各種脂肪族ポリエ
ステル樹脂粒子と水系分散媒とを密閉容器の圧力よりも
低圧の雰囲気下に放出する発泡実験を行った。その結
果、ポリ(3HB−CO−3HH)系脂肪族ポリエステ
ル樹脂のみが、示差走査熱量測定法によるDSC曲線に
おいて2つの融点を示す結晶構造を有するような予備発
泡粒子が特に得られやすいことを見出し本発明をなすに
至った。ポリ(3HB−CO−3HH)系脂肪族ポリエ
ステル樹脂以外の脂肪族ポリエステル樹脂、例えば、ポ
リカプロラクトン系樹脂(ダイセル化学工業(株)のセ
ルグリーンP−H)、微生物生産法によるポリブチレン
サクシネート系樹脂(日本モンサント(株)のバイオポ
ールなど)、化学合成法によるポリブチレンサクシネー
ト系樹脂(昭和高分子(株)のビオノーレなど)、ポリ
乳酸系樹脂(三井化学工業(株)のレイシア)等も上記
放出発泡の条件を変更しながら試みたが、いずれの樹脂
も本発明の示差走査熱量測定法によるDSC曲線におい
て2つの融点を明確に示す結晶構造を有するような予備
発泡粒子は得られなかった。しかし、本発明のポリ(3
HB−CO−3HH)系脂肪族ポリエステル樹脂を原料
樹脂として放出発泡を行えば、従来の技術と異なり、示
差走査熱量測定法によるDSC曲線において2つの融点
を示す結晶構造を有する予備発泡粒子が容易に得られ、
しかも無架橋である場合でも、該予備粒子を金型に充填
して成形を行う場合の成形性が優れ、こうして得られた
成形体の特性も良好なものになることが分かった。本発
明の予備発泡粒子の示差走査熱量測定法とは、たとえ
ば、特開昭59−176336号公報、特開昭60−4
9040号公報などに開示された方法と同様にして行
い、示差走査熱量計によって10℃/分の昇温速度で2
00℃まで昇温することにより得られるDSC曲線から
予備発泡粒子の結晶構造特性が判る。本発明の実施例1
に示したポリ(3HB−CO−3HH)系脂肪族ポリエ
ステル樹脂予備発泡粒子のDSC曲線を図1に示した
が、結晶化に伴う2つの融点(低温と高温の2つの吸熱
ピーク)が明確に現れていることがわかる。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. The present invention is an aliphatic polyester resin,
It was found that when a specific aliphatic polyester resin was used as the base resin, pre-expanded particles having good moldability and physical properties and a molded article thereof were obtained. That is, the present invention
Aliphatic polyester copolymer consisting of hydroxybutyrate and 3-hydroxyhexanoate (hereinafter referred to as poly (3
HB-CO-3HH) aliphatic polyester resin) as a base resin, and a differential scanning calorimetry (DSC)
Biodegradable aliphatic polyester resin pre-expanded particles having a crystal structure showing two melting points in a curve (claim 1), non-crosslinked aliphatic polyester resin pre-expanded particles according to claim 1, (claim 2), Poly (3HB-CO-
Using a 3HH) aliphatic polyester resin as a base resin, a mold is filled with biodegradable aliphatic polyester resin pre-expanded particles having a crystal structure exhibiting two melting points in a DSC curve by differential scanning calorimetry, and heat-molded. The molded product (Claim 3), wherein the aliphatic polyester resin pre-expanded particles are non-crosslinked, wherein the molded product (Claim 4) according to claim 3, a poly (3HB-CO-3HH) system Aliphatic polyester resin particles having an aliphatic polyester resin as a base resin are dispersed in an aqueous dispersion medium in a closed container together with a dispersant, and then a foaming agent is introduced into the closed container. After heating, one end of the closed container is released, and the polyester resin particles and the aqueous dispersion medium are released under an atmosphere having a pressure lower than the pressure of the closed container, and the polyester resin particles are released. The method for producing biodegradable aliphatic polyester resin pre-expanded particles according to claim 1, wherein the aliphatic polyester resin pre-expanded particles are non-crosslinked. A manufacturing method according to claim 5 (claim 6). Since the aliphatic polyester resin pre-expanded particles of the present invention are non-crosslinked and can be obtained in one step, as in the prior art described above,
Impregnation step of volatile foaming agent and steam foaming step
248106), and a crosslinking step and a foaming step are not necessarily required (Japanese Patent Application Laid-Open No. 10-324766).
It is a very economical method with low production cost. Pre-expanded particles having a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry are known when the base resin is a crystalline polyolefin-based resin, and such expanded particles are so-called release foaming. It is known that it can be obtained by the method (also called Docan method) (JP-A-59-176336, JP-A-60-4904).
No. 0). It has also been found that when pre-expanded particles having a crystal structure showing two melting points in a DSC curve are filled in a mold and molded, a molded article having a wide range of moldability and good physical properties can be obtained. Therefore, the present inventors consider that this principle can be applied to a crystalline aliphatic polyester-based resin, and the above-mentioned release foaming method, that is, after dispersing in an aqueous dispersion medium in a closed container together with a dispersant,
Introducing a blowing agent into a closed container, heating it to a temperature equal to or higher than the softening temperature of the used resin particles, holding it for a certain period of time if necessary, and releasing one end of the closed container. A foaming experiment was conducted in which the medium was discharged into an atmosphere at a pressure lower than the pressure of the closed vessel. As a result, it has been found that pre-expanded particles in which only a poly (3HB-CO-3HH) -based aliphatic polyester resin has a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry are particularly easily obtained. The present invention has been made. Aliphatic polyester resins other than poly (3HB-CO-3HH) -based aliphatic polyester resins, for example, polycaprolactone-based resin (Cell Green PH of Daicel Chemical Industries, Ltd.), polybutylene succinate-based by a microorganism production method Resins (such as Biopol from Monsanto Japan Co., Ltd.), polybutylene succinate resins (such as Bionole from Showa Polymer Co., Ltd.) by chemical synthesis, and polylactic acid resins (Laissia from Mitsui Chemicals, Inc.) Also, while attempting to change the conditions of the release foaming, pre-expanded particles were not obtained in which any resin had a crystal structure clearly showing two melting points in a DSC curve by the differential scanning calorimetry of the present invention. Was. However, the poly (3) of the present invention
When release foaming is performed using an HB-CO-3HH) -based aliphatic polyester resin as a raw material resin, unlike the related art, pre-expanded particles having a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry can be easily obtained. Obtained in
In addition, it was found that even in the case of non-crosslinking, the moldability was excellent when the preliminary particles were filled in a mold and molding was performed, and the properties of the molded article thus obtained were also good. The differential scanning calorimetry of the pre-expanded particles of the present invention is described in, for example, JP-A-59-176336 and JP-A-60-4.
The method is performed in the same manner as disclosed in Japanese Patent Application Laid-open No. 9040 and the like.
From the DSC curve obtained by raising the temperature to 00 ° C., the crystal structure characteristics of the pre-expanded particles can be found. Embodiment 1 of the present invention
The DSC curve of the poly (3HB-CO-3HH) -based aliphatic polyester resin pre-expanded particles shown in FIG. 1 is shown in FIG. 1, and two melting points (two endothermic peaks at low and high temperatures) accompanying crystallization are clearly shown. You can see that it is appearing.

【0005】[0005]

【発明の実施の形態】本発明のポリ(3HB−CO−3
HH)系脂肪族ポリエステル樹脂のポリ(3HB−CO
−3HH)とは3−ヒドロキシブチレートと3−ヒドロ
キシヘキサノエートのランダム共重合体で、化学合成又
は微生物合成法によって得られるが、微生物合成法によ
るものが好ましい。尚、微生物合成法によるポリ(3H
B−CO−3HH)系脂肪族ポリエステル樹脂は特開平
5−93049公報に記載の技術によって製造すること
が出来る。ポリ(3HB−CO−3HH)系脂肪族ポリ
エステル樹脂の3−ヒドロキシヘキサノエートの含有量
は通常3〜20モル%である。ポリ(3HB−CO−3
HH)系脂肪族ポリエステル樹脂の3−ヒドロキシヘキ
サノエート含有量が3mol%未満では予備発泡粒子の
DSC曲線における2つの融点の発現が明確でなくなっ
てくる。一方、ポリ(3HB−CO−3HH)系脂肪族
ポリエステル樹脂の3−ヒドロキシヘキサノエート含有
量が20mol%を超えると樹脂の融点が低下し、機械
的強度も低下してくるため、物性の劣った予備発泡粒子
しか得られない。なお、3−ヒドロキシブチレートの含
有量は、通常80〜97モル%である。本発明のポリ
(3HB−CO−3HH)系脂肪族ポリエステル樹脂に
対しては、通常の配合剤、たとえば、酸化防止剤、紫外
線吸収剤、染料、顔料などの着色剤、可塑剤、滑剤、結
晶化核剤、タルク、炭カル等の無機充填剤等目的に応じ
て使用できる。また、予備発泡粒子の気泡径を調節する
必要がある場合はポリ(3HB−CO−3HH)系脂肪
族ポリエステル樹脂に気泡調整剤を添加することがあ
る。気泡調整剤としては無機造核剤には、タルク、シリ
カ、ケイ酸カルシウム、炭酸カルシウム、酸化アルミニ
ウム、酸化チタン、珪藻土、クレー、重曹、アルミナ、
硫酸バリウム、酸化アルミニウム、ベントナイト等があ
り、その使用量は通常0.005〜2重量部を添加す
る。本発明のポリ(3HB−CO−3HH)系脂肪族ポ
リエステル樹脂予備発泡粒子は、まず基材樹脂であるポ
リ(3HB−CO−3HH)系脂肪族ポリエステル樹脂
を押出機、ニーダ−、バンバリーミキサー、ロールなど
を用いて加熱溶融混錬し、次いで円柱状、楕円柱状、球
状、立方体状、直方体状などの本発明の発泡に利用しや
すい粒子形状に成形することにより得られる。粒子1個
当たりの粒重量は0.1〜20mg、好ましくは0.5
〜8mgが好ましい。こうして得られたポリ(3HB−
CO−3HH)系脂肪族ポリエステル樹脂粒子を分散剤
とともに密閉容器内で水系分散媒に分散後、発泡剤を密
閉容器内に導入し、該ポリ(3HB−CO−3HH)系
脂肪族ポリエステル樹脂粒子の軟化温度以上に加熱し、
要すれば一定時間保持した後、密閉容器の一端を解放
し、該ポリ(3HB−CO−3HH)系脂肪族ポリエス
テル樹脂粒子と水系分散媒とを密閉容器の圧力よりも低
圧の雰囲気下に放出して、示差走査熱量測定法によるD
SC曲線において2つの融点を示す結晶構造を有するポ
リ(3HB−CO−3HH)系脂肪族ポリエステル樹脂
予備発泡粒子が製造される。
DETAILED DESCRIPTION OF THE INVENTION The poly (3HB-CO-3) of the present invention
Poly (3HB-CO) of HH) aliphatic polyester resin
-3HH) is a random copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate, which can be obtained by chemical synthesis or microbial synthesis, but is preferably obtained by microbial synthesis. In addition, poly (3H
The (B-CO-3HH) -based aliphatic polyester resin can be produced by the technique described in JP-A-5-93049. The content of 3-hydroxyhexanoate in the poly (3HB-CO-3HH) aliphatic polyester resin is usually 3 to 20 mol%. Poly (3HB-CO-3
When the content of 3-hydroxyhexanoate in the HH-based aliphatic polyester resin is less than 3 mol%, the expression of two melting points on the DSC curve of the pre-expanded particles becomes less clear. On the other hand, when the content of 3-hydroxyhexanoate in the poly (3HB-CO-3HH) -based aliphatic polyester resin exceeds 20 mol%, the melting point of the resin decreases, and the mechanical strength also decreases. Only pre-expanded particles are obtained. In addition, the content of 3-hydroxybutyrate is usually 80 to 97 mol%. For the poly (3HB-CO-3HH) aliphatic polyester resin of the present invention, usual compounding agents, for example, coloring agents such as antioxidants, ultraviolet absorbers, dyes, pigments, plasticizers, lubricants, crystals Nucleating agents, inorganic fillers such as talc and charcoal can be used according to the purpose. When it is necessary to adjust the cell diameter of the pre-expanded particles, a cell adjuster may be added to the poly (3HB-CO-3HH) -based aliphatic polyester resin. As a foam adjusting agent, inorganic nucleating agents include talc, silica, calcium silicate, calcium carbonate, aluminum oxide, titanium oxide, diatomaceous earth, clay, baking soda, alumina,
There are barium sulfate, aluminum oxide, bentonite and the like, and the amount of use is usually 0.005 to 2 parts by weight. The poly (3HB-CO-3HH) -based aliphatic polyester resin pre-expanded particles of the present invention are obtained by first extruding a poly (3HB-CO-3HH) -based aliphatic polyester resin as a base resin with an extruder, a kneader, a Banbury mixer, It is obtained by heat-melting and kneading using a roll or the like, and then forming into a particle shape such as a columnar shape, an elliptical columnar shape, a spherical shape, a cubic shape, and a rectangular parallelepiped which can be easily used for foaming of the present invention. The particle weight per particle is 0.1 to 20 mg, preferably 0.5
~ 8 mg is preferred. The poly (3HB-
After dispersing the CO-3HH) aliphatic polyester resin particles together with a dispersant in an aqueous dispersion medium in a closed container, a blowing agent is introduced into the closed container, and the poly (3HB-CO-3HH) aliphatic polyester resin particles are introduced. Heating above the softening temperature of
If necessary, after holding for a certain period of time, one end of the closed container is released, and the poly (3HB-CO-3HH) -based aliphatic polyester resin particles and the aqueous dispersion medium are released under an atmosphere at a pressure lower than the pressure of the closed container. And D by differential scanning calorimetry
Poly (3HB-CO-3HH) -based aliphatic polyester resin pre-expanded particles having a crystal structure showing two melting points in the SC curve are produced.

【0006】上記分散剤としては、第3リン酸カルシウ
ム、ピロリン酸カルシウム、カオリン、塩基性炭酸マグ
ネシウム、酸化アルミニウム、塩基性炭酸亜鉛等の無機
物と、アニオン界面活性剤たとえば、ドデシルベンゼン
スルホン酸ソーダ、α−オレフィンスルホン酸ソーダ、
ノルマルパラフィンスルフォン酸ソーダ等を組み合わせ
て使用される。無機物の量は樹脂100重量部に対して
0、1〜3、0重量部、アニオン界面活性剤量は0、0
01〜0、2重量部が通常である。また、水系分散媒と
しては水、エチレングリコール、メタノール、エタノー
ル、ブタノールなどが使用できるが、経済性、取り扱い
性の点から通常は水が好ましい。水系分散媒量は樹脂1
00重量部に対して100〜300重量部が通常であ
る。前記の発泡剤としては、プロパン、ブタン、イソブ
タン、ペンタン、イソペンタン等脂肪族炭化水素、モノ
クロルメタン、ジクロロメタン、ジクロロジフルオロエ
タン等のハロゲン化炭化水素、二酸化炭素、窒素、空気
などの無機ガス等が挙げられるが、これらの2種以上を
併用してもよい。発泡剤の添加量は目的の予備発泡粒子
の発泡倍率、発泡剤の種類、ポリ(3HB−CO−3H
H)系脂肪族ポリエステル樹脂の種類、樹脂粒子と水系
分散媒の比率、含浸または発泡温度などによって異なる
が樹脂粒子100重量部に対し、通常5〜50重量部の
範囲である。
The dispersants include inorganic substances such as tertiary calcium phosphate, calcium pyrophosphate, kaolin, basic magnesium carbonate, aluminum oxide and basic zinc carbonate, and anionic surfactants such as sodium dodecylbenzenesulfonate and α-olefin. Sodium sulfonate,
It is used in combination with normal paraffin sodium sulfonate and the like. The amount of the inorganic substance is 0, 1 to 3, 0 parts by weight, and the amount of the anionic surfactant is 0, 0 to 100 parts by weight of the resin.
The amount is usually from 0 to 0 and 2 parts by weight. As the aqueous dispersion medium, water, ethylene glycol, methanol, ethanol, butanol and the like can be used, but water is usually preferred from the viewpoint of economy and handling. The amount of aqueous dispersion medium is resin 1.
The amount is usually 100 to 300 parts by weight based on 00 parts by weight. Examples of the foaming agent include aliphatic hydrocarbons such as propane, butane, isobutane, pentane and isopentane, halogenated hydrocarbons such as monochloromethane, dichloromethane and dichlorodifluoroethane, carbon dioxide, nitrogen, and inorganic gases such as air. However, two or more of these may be used in combination. The amount of the foaming agent to be added depends on the expansion ratio of the desired pre-expanded particles, the type of the foaming agent, and poly (3HB-CO-3H).
H) The amount is usually in the range of 5 to 50 parts by weight with respect to 100 parts by weight of the resin particles, depending on the type of the aliphatic polyester resin, the ratio of the resin particles to the aqueous dispersion medium, the impregnation or foaming temperature, and the like.

【0007】前記方法で得られたポリ(3HB−CO−
3HH)系脂肪族ポリエステル樹脂予備発泡粒子は、要
すれば加圧空気で加圧熟成し予備発泡粒子に発泡能を付
与し閉鎖しうるが密閉できない金型に充填し、次いで、
金型内に水蒸気を導入することにより予備発泡粒子同士
を加熱融着させポリ(3HB−CO−3HH)系脂肪族
ポリエステル樹脂粒子の発泡成形体が製造される。
[0007] The poly (3HB-CO-
The 3HH) aliphatic polyester resin pre-expanded particles are optionally aged with pressurized air to impart pressure to the pre-expanded particles, filling the pre-expanded particles in a mold that can be closed but cannot be sealed,
By introducing steam into the mold, the pre-expanded particles are fused together by heating to produce a foamed molded article of poly (3HB-CO-3HH) -based aliphatic polyester resin particles.

【0008】以下、本発明を実施例に基づき更に詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0009】[0009]

【実施例】(実施例1)微生物合成法で製造された3−
ヒドロキシヘキサノエートの含有量が10モル%、3−
ヒドロキシブチレートの含有量が90モル%、MI3.
8(190℃、2.16kg)であるポリ(3HB−C
O−3HH)系脂肪族ポリエステル樹脂を押出機で溶融
混錬し、押出機先端に取り付けられた小孔ダイより粒重
量2.5mgの粒子を作成した。該脂肪族ポリエステル
粒子100重量部、水300重量部、分散剤として第3
リン酸カルシウム1.5重量部およびノルマルパラフィ
ンスルフォン酸ソーダ0.05重量部を10L耐圧容器
に仕込んだ後,発泡剤としてイソブタン15重量部を添
加し、攪拌下、140℃にまで昇温し、容器内圧をイソ
ブタン追加調整し30分保持後、耐圧容器下部に設けた
小孔ノズルを通して水分散物を大気圧下に放出発泡し、
見かけ発泡倍率が約40倍で、図1に示すように示差走
査熱量測定法によるDSC曲線において2つの融点を示
す結晶構造を有する無架橋ポリ(3HB−CO−3H
H)系脂肪族ポリエステル樹脂の予備発泡粒子を得た。
示差走査熱量測定は予備発泡粒子約5mgを精秤し、示
差走査熱量計(セイコー電子工業(株)製、SSC52
00)にての昇温速度で室温から200℃まで昇温して
DSC曲線を得た。
EXAMPLES (Example 1) 3- produced by a microorganism synthesis method
The content of hydroxyhexanoate is 10 mol%,
The content of hydroxybutyrate is 90 mol%, MI3.
8 (190 ° C, 2.16 kg) poly (3HB-C
The O-3HH) aliphatic polyester resin was melt-kneaded with an extruder, and particles having a particle weight of 2.5 mg were prepared from a small-hole die attached to the tip of the extruder. 100 parts by weight of the aliphatic polyester particles, 300 parts by weight of water, and a third dispersant
After charging 1.5 parts by weight of calcium phosphate and 0.05 parts by weight of normal paraffin sodium sulfonate into a 10 L pressure vessel, 15 parts by weight of isobutane is added as a foaming agent, and the temperature is increased to 140 ° C. with stirring, and the internal pressure of the vessel is increased. After additional adjustment of isobutane and holding for 30 minutes, the aqueous dispersion was released and foamed under atmospheric pressure through a small hole nozzle provided at the lower part of the pressure vessel,
Unexpanded poly (3HB-CO-3H) having an apparent expansion ratio of about 40 times and having a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry as shown in FIG.
H) Pre-expanded particles of the aliphatic polyester resin were obtained.
In the differential scanning calorimetry, about 5 mg of the pre-expanded particles were precisely weighed, and a differential scanning calorimeter (manufactured by Seiko Instruments Inc., SSC52)
The DSC curve was obtained by raising the temperature from room temperature to 200 ° C. at the temperature raising rate of (00).

【0010】得られた予備発泡粒子は加圧空気で処理し
発泡能を付与後、300×300×60mmの金型に充
填し、2〜3kg/cm2(ゲージ)の水蒸気を金型に
導入し予備発泡粒子同士を加熱、融着させ型内発泡成形
体を得た。成形時の加熱幅は下記基準で評価したが成形
性は良好であった。成形体は75℃の乾燥室で24時間
乾燥,養生した後、成形体の特性(発泡倍率、表面性、
寸法性)、及び生分解性を下記方法により測定し、予備
発泡粒子特性、成形加熱幅などとともに結果を表1に示
した。 (成形加熱幅) ○:成形可能な水蒸気圧力範囲が0.3kg/cm2
(ゲージ)以上 △:成形可能な水蒸気圧力範囲が0.1kg/cm
2(ゲージ)以上0.3kg/cm2(ゲージ)未満 ×:成形可能な水蒸気圧力範囲が0.1kg/cm2
(ゲージ)未満 (成形体発泡倍率)成形体の重量と成形体の体積を求め
下式より求めた。 成形体発泡倍率=樹脂密度(g/cc)×成形体の体積
(cc)/成形体の重量(g) (成形体物性) 1)表面性 成形体表面を目視で観察し下記基準によって評価した。
The obtained pre-expanded particles are treated with pressurized air to impart foaming ability, and then filled in a 300 × 300 × 60 mm mold, and steam of 2 to 3 kg / cm 2 (gauge) is introduced into the mold. The pre-expanded particles were heated and fused to obtain an in-mold foam molded article. The heating width during molding was evaluated according to the following criteria, but the moldability was good. After the molded body is dried and cured in a drying chamber at 75 ° C. for 24 hours, the characteristics of the molded body (expansion ratio, surface property,
(Dimensionality) and biodegradability were measured by the following methods. (Molding heating width) :: The steam pressure range in which molding is possible is 0.3 kg / cm2.
(Gauge) or more △: The range of water vapor pressure that can be molded is 0.1 kg / cm
2 (gauge) or more and less than 0.3 kg / cm2 (gauge) x: The formable steam pressure range is 0.1 kg / cm2.
Less than (gauge) (Expansion ratio of molded article) The weight of the molded article and the volume of the molded article were determined by the following formula. Expansion ratio of molded article = Resin density (g / cc) x Volume of molded article
(cc) / weight of molded article (g) (Physical properties of molded article) 1) Surface properties The surface of the molded article was visually observed and evaluated according to the following criteria.

【0011】 ○:表面粒子間の凸凹が少なく、表面が平滑である △:表面粒子間の凸凹がやや多く、表面平滑性にやや欠
ける ×:表面粒子間の凸凹が多く、表面平滑性に欠ける 2)寸法性 成形体寸法の対金型寸法に対する収縮率を下記基準によ
って評価した。
:: There are few irregularities between surface particles and the surface is smooth. :: There are some irregularities between surface particles and the surface smoothness is slightly poor. X: There are many irregularities between surface particles and the surface smoothness is poor. 2) Dimensionality The shrinkage ratio of the size of the compact to the size of the mold was evaluated according to the following criteria.

【0012】 ○:収縮率が1〜4% △:収縮率が4〜8% ×:収縮率が8%以上 3)生分解性評価 発泡成形体を10cm×10cm×1cmの形状に加工
し深さ15cmの土中に埋めて6ヶ月後、形状変化を観
察し分解性を以下の基準で評価した。
:: Shrinkage rate of 1 to 4% Δ: Shrinkage rate of 4 to 8% ×: Shrinkage rate of 8% or more 3) Evaluation of biodegradability The foamed molded product was processed into a shape of 10 cm × 10 cm × 1 cm and deepened. Six months after burying in a soil of 15 cm in height, a change in shape was observed, and the degradability was evaluated based on the following criteria.

【0013】 ○:形状が確認できないほど分解。:: Decomposed so that the shape cannot be confirmed.

【0014】 △:かなりの部分分解されているが形状は何とか確認で
きる ×:ほとんど形状に変化なく分解していない (実施例2)微生物合成法で得られた、3−ヒドロキシ
ヘキサノエートの含有量が5モル%、3−ヒドロキシブ
チレートの含有量95モル%、MI5.8(190℃、
2.16kg)であるポリ(3HB−CO−3HH)系
脂肪族ポリエステル樹脂に変更した他は、実施例1と同
様に実施し、見かけ発泡倍率が約45倍で、示差走査熱
量測定法によるDSC曲線において2つの融点を示す結
晶構造を有する無架橋ポリ(3HB−CO−3HH)系
脂肪族ポリエステル樹脂の予備発泡粒子と型内発泡成形
体を得た。成形体の特性を表1に示す。
Δ: Despite considerable partial decomposition, but somehow confirm the shape ×: Almost no change in shape without decomposition (Example 2) Content of 3-hydroxyhexanoate obtained by microbial synthesis 5 mol%, 3-hydroxybutyrate content 95 mol%, MI 5.8 (190 ° C.,
2.16 kg), except that the poly (3HB-CO-3HH) -based aliphatic polyester resin was used, and the apparent expansion ratio was about 45 times. Pre-expanded particles of an uncrosslinked poly (3HB-CO-3HH) -based aliphatic polyester resin having a crystal structure showing two melting points in a curve and an in-mold foam molded article were obtained. Table 1 shows the properties of the molded product.

【0015】(比較例1)実施例1で使用したポリ(3
HB−CO−3HH)系脂肪族ポリエステル樹脂粒子1
00重量部、水300重量部、分散剤として第3リン酸
カルシウム1.5重量部およびノルマルパラフィンスル
フォン酸ソーダ0.05重量部を10L耐圧容器に仕込
んだ後,発泡剤としてイソブタン20重量部を添加し、
攪拌下、100℃にまで昇温し2時間発泡剤含浸処理を
行った後、25℃まで冷却しブタンが含浸された発泡性
粒子を作成した。次いでこの発泡性粒子を水蒸気加熱し
見かけ発泡倍率30倍の予備発泡粒子を得た。該予備発
泡粒子は示差走査熱量測定法によるDSC曲線において
2つの融点を示す結晶構造を有していなかった。次い
で、該予備発泡粒子を乾燥熟成し、加圧空気で処理し発
泡能を付与後、300×300×60mmの金型に充填
し、2〜3kg/cm2(ゲージ)の水蒸気を金型に導
入し予備発泡粒子同士を加熱、融着させ型内発泡成形体
を得た。成形体は75℃の乾燥室で24時間乾燥,養生
した後、成形体の物性(発泡倍率、表面性、寸法性)を
下記方法により測定し、結果を表1に示した。本比較例
の予備発泡粒子の成形加熱幅は極めて狭く、得られた成
形体の生分解性は良好であったが、表面性、寸法性が劣
るもので商品的価値の乏しいものであった。
Comparative Example 1 Poly (3) used in Example 1
HB-CO-3HH) aliphatic polyester resin particles 1
After 100 parts by weight of water, 300 parts by weight of water, 1.5 parts by weight of tribasic calcium phosphate and 0.05 part by weight of normal paraffin sodium sulfonate as a dispersant were charged in a 10 L pressure vessel, 20 parts by weight of isobutane was added as a foaming agent. ,
After stirring, the temperature was raised to 100 ° C., and the foaming agent was impregnated with the foaming agent for 2 hours, and then cooled to 25 ° C. to form foamable particles impregnated with butane. Next, the expandable particles were heated with steam to obtain pre-expanded particles having an apparent expansion ratio of 30 times. The pre-expanded particles did not have a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry. Next, the pre-expanded particles are dried and aged, treated with pressurized air to impart foaming capability, filled in a 300 × 300 × 60 mm mold, and introduced with 2-3 kg / cm 2 (gauge) steam into the mold. Then, the pre-expanded particles were heated and fused to obtain an in-mold foam molded article. After the molded body was dried and cured in a drying chamber at 75 ° C. for 24 hours, the physical properties (expansion ratio, surface properties, and dimensional properties) of the molded body were measured by the following methods. The results are shown in Table 1. The pre-expanded particles of this comparative example had a very narrow molding heating width, and the obtained molded product had good biodegradability, but had poor surface properties and dimensional properties and poor commercial value.

【0016】(比較例2)脂肪族ポリエステル樹脂とし
て1,4−ブタンジオールとコハク酸を主成分とするビ
オノーレ#1901(昭和高分子(株)製)の樹脂粒子
100重量部、水300重量部、分散剤として第3リン
酸カルシウム1.5重量部およびノルマルパラフィンス
ルフォン酸ソーダ0.05重量部を10L耐圧容器に仕
込んだ後,発泡剤としてイソブタン20重量部を添加
し、攪拌下、100℃にまで昇温し2時間発泡剤含浸処
理を行った後、25℃まで冷却しブタンが含浸された発
泡性粒子を作成した。次いでこの発泡性粒子を水蒸気加
熱し見かけ発泡倍率20倍の予備発泡粒子を得た。該予
備発泡粒子は示差走査熱量測定法によるDSC曲線にお
いて2つの融点を示す結晶構造を有していなかった。次
いで、該予備発泡粒子を乾燥熟成し、加圧空気で処理し
発泡能を付与後、300×300×60mmの金型に充
填し、0.1〜0.3kg/cm2(ゲージ)の水蒸気
を金型に導入し予備発泡粒子同士を加熱、融着させ型内
発泡成形体を得た。成形体は60℃の乾燥室で24時間
乾燥,養生した後、成形体の物性(発泡倍率、表面性、
寸法性)を下記方法により測定し、結果を表1に示し
た。本比較例の予備発泡粒子の成形加熱幅は極めて狭
く、得られた成形体の生分解性は良好であったが表面
性、寸法性が劣るもので商品的価値の乏しいものであっ
た。
(Comparative Example 2) As an aliphatic polyester resin, 100 parts by weight of resin particles of Vionore # 1901 (manufactured by Showa Polymer Co., Ltd.) containing 1,4-butanediol and succinic acid as main components, and 300 parts by weight of water After charging 1.5 parts by weight of tribasic calcium phosphate and 0.05 parts by weight of normal paraffin sodium sulfonate as a dispersant into a 10 L pressure vessel, 20 parts by weight of isobutane is added as a foaming agent, and the mixture is heated to 100 ° C. with stirring. After raising the temperature and performing a foaming agent impregnation treatment for 2 hours, the mixture was cooled to 25 ° C. to prepare foamable particles impregnated with butane. Then, the expandable particles were heated with steam to obtain pre-expanded particles having an apparent expansion ratio of 20 times. The pre-expanded particles did not have a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry. Next, the pre-expanded particles are dried and aged, treated with pressurized air to impart foaming capability, and then filled in a 300 × 300 × 60 mm mold, and steam of 0.1 to 0.3 kg / cm 2 (gauge) is added. The pre-expanded particles were introduced into a mold and heated and fused together to obtain an in-mold foam molded article. The molded body was dried and cured in a drying chamber at 60 ° C. for 24 hours, and then the physical properties of the molded body (expansion ratio, surface property,
(Dimensionality) was measured by the following method, and the results are shown in Table 1. The pre-expanded particles of this comparative example had a very narrow molding heating width, and the obtained molded product had good biodegradability, but had poor surface properties and dimensional properties and poor commercial value.

【0017】(比較例3)脂肪族ポリエステル樹脂を
1,4−ブタンジオールとコハク酸を主成分とするポリ
ブチレンサクシネート系樹脂のビオノーレ#1901
(昭和高分子(株)製)に変更し、発泡温度を103℃
に変更した他は、実施例1と同様にして見かけ発泡倍率
25倍の予備発泡粒子を得た。該予備発泡粒子は示差走
査熱量測定法によるDSC曲線を図2に示すが、90℃
付近にショルダー様の疑似ピークがあるものの明確に2
つの融点を示す結晶構造を有していない。次いで、該予
備発泡粒子を乾燥熟成し、加圧空気で処理し発泡能を付
与後、300×300×60mmの金型に充填し、0.
1〜0.3kg/cm2(ゲージ)の水蒸気を金型に導
入し予備発泡粒子同士を加熱、融着させ型内発泡成形体
を得た。成形体は60℃の乾燥室で24時間乾燥,養生
した後、成形体の物性(発泡倍率、表面性、寸法性)を
下記方法により測定し、結果を表1に示した。本比較例
で得られた予備発泡粒子の成形加熱幅は狭く、成形体の
表面性、寸法性が劣るもので商品的価値の乏しいもので
あった。
Comparative Example 3 The aliphatic polyester resin is a polybutylene succinate resin, Bionole # 1901, containing 1,4-butanediol and succinic acid as main components.
(Manufactured by Showa Polymer Co., Ltd.) and the foaming temperature was 103 ° C.
Except for changing to, pre-expanded particles having an apparent expansion ratio of 25 were obtained in the same manner as in Example 1. The pre-expanded particles have a DSC curve by differential scanning calorimetry shown in FIG.
There is a shoulder-like pseudo peak in the vicinity, but clearly 2
It does not have a crystal structure showing two melting points. Next, the pre-expanded particles are dried and aged, treated with pressurized air to impart foaming capability, and then filled in a 300 × 300 × 60 mm mold.
Water vapor of 1 to 0.3 kg / cm2 (gauge) was introduced into the mold, and the pre-expanded particles were heated and fused to obtain an in-mold foam molded article. After the molded body was dried and cured in a drying chamber at 60 ° C. for 24 hours, the physical properties (expansion ratio, surface properties, and dimensional properties) of the molded body were measured by the following methods. The results are shown in Table 1. The pre-expanded particles obtained in this comparative example had a narrow molding heating width, were poor in the surface properties and dimensional properties of the molded product, and were poor in commercial value.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上説明した通り、本発明のポリ(3H
B−CO−3HH)系脂肪族ポリエステル樹脂からなる
予備発泡粒子は、示差走査熱量測定法によるDSC曲線
において2つの融点を示す結晶構造を有し、無架橋であ
るので、従来の発泡剤含浸工程や架橋工程が不要で生産
工程が少なく生産コストが低く経済的利益な方法で、成
形性、物性に優れた生分解性の発泡成形体が得られ、本
発明の予備発泡粒子とその成形体はワンウエイの緩衝包
装材等に好適に使用することが出来る。
As described above, the poly (3H) of the present invention
The pre-expanded particles made of the (B-CO-3HH) -based aliphatic polyester resin have a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry and are non-crosslinked. A biodegradable foamed molded article excellent in moldability and physical properties is obtained by a method with low production cost, low production cost and economical profit without the need for a crosslinking step or a production step, and the pre-expanded particles of the present invention and the molded article are It can be suitably used as a one-way buffer packaging material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1で得られたポリ(3HB−
CO−3HH)系脂肪族ポリエステル樹脂予備発泡粒子
の示差走査熱量測定におけるDSC曲線で、2つの融点
が明確に示されている。
FIG. 1 shows the poly (3HB-) obtained in Example 1 of the present invention.
The two melting points are clearly shown in the DSC curve of the CO-3HH) -based aliphatic polyester resin pre-expanded particles by differential scanning calorimetry.

【図2】 比較例3で得られたポリブチレンサクシネー
ト系脂肪族ポリエステル樹脂の予備発泡粒子の示差走査
熱量測定におけるDSC曲線で明確な2つの融点がな
い。
FIG. 2 does not have two distinct melting points in a DSC curve in differential scanning calorimetry of pre-expanded particles of the polybutylene succinate-based aliphatic polyester resin obtained in Comparative Example 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:04 C08L 67:00 (72)発明者 塩谷 武修 兵庫県神戸市兵庫区吉田町1−2−80鐘淵 化学工業株式会社内 (72)発明者 千田 健一 大阪府大阪市北区中之島3−2−4鐘淵化 学工業株式会社内 Fターム(参考) 4F074 AA68 AB03 BA32 BA33 BA35 BA36 BA37 BA38 BA39 BA44 BA45 BA53 CA38 CA39 CA49 4F212 AA24 AB02 AE10 AG20 UA02 UB01 UF01 4J029 AA02 AB07 AC02 AD06 AE01 EA02 HA01 HB01 KE17 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B29K 105: 04 C08L 67:00 (72) Inventor Takeshi Shioya 1-2, Yoshidacho, Hyogo-ku, Kobe-shi, Hyogo −80 Kanebuchi Chemical Industry Co., Ltd. (72) Inventor Kenichi Senda 3-2-4 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kanebuchi Chemical Industry Co., Ltd. F-term (reference) BA39 BA44 BA45 BA53 CA38 CA39 CA49 4F212 AA24 AB02 AE10 AG20 UA02 UB01 UF01 4J029 AA02 AB07 AC02 AD06 AE01 EA02 HA01 HB01 KE17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 3−ヒドロキシブチレートと3−ヒドロ
キシヘキサノエートからなる脂肪族ポリエステル共重合
体(以下、ポリ(3HB−CO−3HH)系脂肪族ポリ
エステル樹脂という)を基材樹脂とし、示差走査熱量測
定法によるDSC曲線において2つの融点を示す結晶構
造を有することを特徴とする生分解性の脂肪族ポリエス
テル樹脂予備発泡粒子。
1. An aliphatic polyester copolymer comprising 3-hydroxybutyrate and 3-hydroxyhexanoate (hereinafter referred to as poly (3HB-CO-3HH) -based aliphatic polyester resin) as a base resin, Biodegradable aliphatic polyester resin pre-expanded particles having a crystal structure exhibiting two melting points in a DSC curve by scanning calorimetry.
【請求項2】 無架橋であることを特徴とする請求項1
記載の脂肪族ポリエステル樹脂予備発泡粒子。
2. The method according to claim 1, which is non-crosslinked.
The pre-expanded particles of the aliphatic polyester resin described in the above.
【請求項3】 ポリ(3HB−CO−3HH)系脂肪族
ポリエステル樹脂を基材樹脂とし示差走査熱量測定法に
よるDSC曲線において2つの融点を示す結晶構造を有
する生分解性の脂肪族ポリエステル樹脂予備発泡粒子を
金型に充填し、加熱成形してなることを特徴とする成形
体。
3. A biodegradable aliphatic polyester resin having a poly (3HB-CO-3HH) -based aliphatic polyester resin as a base resin and having a crystal structure showing two melting points in a DSC curve by differential scanning calorimetry. A molded article obtained by filling a mold with foamed particles and heat molding.
【請求項4】 脂肪族ポリエステル樹脂予備発泡粒子が
無架橋であることを特徴とする請求項3記載の成形体。
4. The molded article according to claim 3, wherein the aliphatic polyester resin pre-expanded particles are non-crosslinked.
【請求項5】 ポリ(3HB−CO−3HH)系脂肪族
ポリエステル樹脂を基材樹脂とする脂肪族ポリエステル
樹脂粒子を、分散剤とともに密閉容器内で水系分散媒に
分散後、発泡剤を密閉容器内に導入し、該ポリエステル
樹脂粒子の軟化温度以上に加熱した後、密閉容器の一端
を解放し、該ポリエステル樹脂粒子と水系分散媒とを密
閉容器の圧力よりも低圧の雰囲気下に放出して、該ポリ
エステル樹脂粒子を発泡させることを特徴とする請求項
1記載の生分解性の脂肪族ポリエステル樹脂予備発泡粒
子の製造方法。
5. After dispersing an aliphatic polyester resin particle having a poly (3HB-CO-3HH) -based aliphatic polyester resin as a base resin in an aqueous dispersion medium in a closed vessel together with a dispersant, a foaming agent is placed in a closed vessel. After heating to above the softening temperature of the polyester resin particles, one end of the closed container is released, and the polyester resin particles and the aqueous dispersion medium are discharged into an atmosphere at a pressure lower than the pressure of the closed container. The method for producing biodegradable aliphatic polyester resin pre-expanded particles according to claim 1, wherein the polyester resin particles are expanded.
【請求項6】 脂肪族ポリエステル樹脂予備発泡粒子が
無架橋であることを特徴とする請求項5記載の製造方
法。
6. The method according to claim 5, wherein the aliphatic polyester resin pre-expanded particles are non-crosslinked.
JP12997099A 1999-05-11 1999-05-11 Aliphatic polyester resin pre-expanded particles having biodegradability, molded product thereof and method for producing the pre-expanded particles Expired - Lifetime JP3730805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12997099A JP3730805B2 (en) 1999-05-11 1999-05-11 Aliphatic polyester resin pre-expanded particles having biodegradability, molded product thereof and method for producing the pre-expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12997099A JP3730805B2 (en) 1999-05-11 1999-05-11 Aliphatic polyester resin pre-expanded particles having biodegradability, molded product thereof and method for producing the pre-expanded particles

Publications (2)

Publication Number Publication Date
JP2000319438A true JP2000319438A (en) 2000-11-21
JP3730805B2 JP3730805B2 (en) 2006-01-05

Family

ID=15022946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12997099A Expired - Lifetime JP3730805B2 (en) 1999-05-11 1999-05-11 Aliphatic polyester resin pre-expanded particles having biodegradability, molded product thereof and method for producing the pre-expanded particles

Country Status (1)

Country Link
JP (1) JP3730805B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020525A (en) * 2000-07-07 2002-01-23 Asahi Kasei Corp Noncrosslinked expandable resin beads
JP2003082150A (en) * 2001-09-13 2003-03-19 Achilles Corp Polylactic acid expandable resin particle
JPWO2004041936A1 (en) * 2002-11-08 2006-03-09 株式会社カネカ Biodegradable polyester aqueous dispersion and method for producing the same
WO2006103970A1 (en) * 2005-03-25 2006-10-05 Kaneka Corporation Foamed polyhydroxyalkanoate resin particles and method of producing the foamed particles
WO2006103971A1 (en) * 2005-03-25 2006-10-05 Kaneka Corporation Foamed thermoplastic resin particles and method of producing the foamed particles
WO2006103972A1 (en) * 2005-03-25 2006-10-05 Kaneka Corporation Foamed polyhydroxyalkanoate resin particles
WO2006112287A1 (en) * 2005-04-14 2006-10-26 Kaneka Corporation Polyhydroxyalkanoate-based resin foam particle, molded article comprising the same and process for producing the same
WO2007049694A1 (en) 2005-10-26 2007-05-03 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead
JP2007291159A (en) * 2006-04-21 2007-11-08 Kaneka Corp Poly(3-hydroxyalkanoate) resin-based foam molding and method for producing the same
JP2007314670A (en) * 2006-05-26 2007-12-06 Kaneka Corp Foamed polylactic acid-resin particle molding and method for producing the same
JP2009084581A (en) * 2002-07-01 2009-04-23 Jsp Corp Polylactic acid foamed particle molding
JP2009263483A (en) * 2008-04-24 2009-11-12 Kaneka Corp New biodegradable aliphatic polyester-based resin foamed particle molded article
WO2014158014A1 (en) * 2013-03-28 2014-10-02 Synbra Technology B.V. A method for the preparation of pla bead foams
WO2019146555A1 (en) 2018-01-26 2019-08-01 株式会社カネカ Poly(3-hydroxyalkanoate) foam particles and poly(3-hydroxyalkanoate) foam molded body

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020525A (en) * 2000-07-07 2002-01-23 Asahi Kasei Corp Noncrosslinked expandable resin beads
JP4582871B2 (en) * 2000-07-07 2010-11-17 旭化成ケミカルズ株式会社 Non-crosslinked resin foamable particles
JP2003082150A (en) * 2001-09-13 2003-03-19 Achilles Corp Polylactic acid expandable resin particle
JP2009084581A (en) * 2002-07-01 2009-04-23 Jsp Corp Polylactic acid foamed particle molding
JPWO2004041936A1 (en) * 2002-11-08 2006-03-09 株式会社カネカ Biodegradable polyester aqueous dispersion and method for producing the same
JP4553733B2 (en) * 2002-11-08 2010-09-29 株式会社カネカ Biodegradable polyester aqueous dispersion and method for producing the same
JP5121447B2 (en) * 2005-03-25 2013-01-16 株式会社カネカ Thermoplastic resin expanded particles and molded articles thereof
JP5121446B2 (en) * 2005-03-25 2013-01-16 株式会社カネカ Process for producing expanded particles of polyhydroxyalkanoate resin
WO2006103970A1 (en) * 2005-03-25 2006-10-05 Kaneka Corporation Foamed polyhydroxyalkanoate resin particles and method of producing the foamed particles
CN101146854B (en) * 2005-03-25 2012-04-18 株式会社钟化 Foamed polyhydroxyalkanoate resin particles and method of producing the foamed particles
US8148439B2 (en) 2005-03-25 2012-04-03 Meredian, Inc. Foamed thermoplastic resin particles and method of producing the foamed particles
WO2006103971A1 (en) * 2005-03-25 2006-10-05 Kaneka Corporation Foamed thermoplastic resin particles and method of producing the foamed particles
WO2006103972A1 (en) * 2005-03-25 2006-10-05 Kaneka Corporation Foamed polyhydroxyalkanoate resin particles
US8076381B2 (en) 2005-04-14 2011-12-13 Kaneka Corporation Polyhydroxyalkanoate-based resin foamed particle, molded article comprising the same and process for producing the same
WO2006112287A1 (en) * 2005-04-14 2006-10-26 Kaneka Corporation Polyhydroxyalkanoate-based resin foam particle, molded article comprising the same and process for producing the same
JP5014127B2 (en) * 2005-04-14 2012-08-29 株式会社カネカ Polyhydroxyalkanoate resin expanded particles, molded product thereof, and method for producing the expanded resin particles
WO2007049694A1 (en) 2005-10-26 2007-05-03 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead
JP2007291159A (en) * 2006-04-21 2007-11-08 Kaneka Corp Poly(3-hydroxyalkanoate) resin-based foam molding and method for producing the same
JP2007314670A (en) * 2006-05-26 2007-12-06 Kaneka Corp Foamed polylactic acid-resin particle molding and method for producing the same
JP2009263483A (en) * 2008-04-24 2009-11-12 Kaneka Corp New biodegradable aliphatic polyester-based resin foamed particle molded article
WO2014158014A1 (en) * 2013-03-28 2014-10-02 Synbra Technology B.V. A method for the preparation of pla bead foams
US10087300B2 (en) 2013-03-28 2018-10-02 Synbra Technology B.V. Method for the preparation of PLA bead foams
WO2019146555A1 (en) 2018-01-26 2019-08-01 株式会社カネカ Poly(3-hydroxyalkanoate) foam particles and poly(3-hydroxyalkanoate) foam molded body
US11459436B2 (en) 2018-01-26 2022-10-04 Kaneka Corporation Poly(3-hydroxyalkanoate) foam particles and poly(3-hydroxyalkanoate) foam molded article

Also Published As

Publication number Publication date
JP3730805B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
TWI398471B (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
JP3782454B2 (en) Polypropylene homopolymer expanded particles and expanded molded articles
JP2000319438A (en) Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP5873098B2 (en) Method for producing foamable thermoplastic beads with improved foamability
JP2002523587A (en) Foams made from blends of syndiotactic polypropylene and thermoplastic polymers
US4812484A (en) Process for producing expanded particles of styrene-acrylonitrile-butadiene copolymer
JPS6343935A (en) Production of pre-expanded particle of thermo-plastic resin
JP5044337B2 (en) Polylactic acid-based resin expanded particles and the expanded particles molded body
WO2006103972A1 (en) Foamed polyhydroxyalkanoate resin particles
JPS61268737A (en) Polyamide prefoamed beads and foam therefrom and its production
NZ520495A (en) Extruded foam product with reduced surface defects
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JP2007186692A (en) Method for producing polylactic acid-based resin expandable beads
JP3777338B2 (en) Non-crosslinked biodegradable polyester resin pre-expanded particles, molded product thereof and method for producing the pre-expanded particles
KR20190015758A (en) Process for producing polylactic acid-containing effervescent pellets
JP2002302567A (en) Method for continuous production of pre-expanded bead of biodegradable polyester-based resin
JPH0711041A (en) Preliminarily foamed granule of thermoplastic resin and its production
JP2003064213A (en) Method for manufacturing molding from poly(lactic acid) foam particle
JP2004155870A (en) Expandable styrenic resin particle for building material and its expanded molded product
US5430069A (en) Pre-expanded particles of polyethylene resin
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
US7456227B2 (en) Polymer particles and related articles
JP4816853B2 (en) Polylactic acid-based expandable resin particles
JPH05262909A (en) Production of heat-resistant foamed material
JP2001198940A (en) Method for manufacturing thermoplastic resin in-mold foamed molded object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term