JP2003082150A - Polylactic acid expandable resin particle - Google Patents

Polylactic acid expandable resin particle

Info

Publication number
JP2003082150A
JP2003082150A JP2001278015A JP2001278015A JP2003082150A JP 2003082150 A JP2003082150 A JP 2003082150A JP 2001278015 A JP2001278015 A JP 2001278015A JP 2001278015 A JP2001278015 A JP 2001278015A JP 2003082150 A JP2003082150 A JP 2003082150A
Authority
JP
Japan
Prior art keywords
polylactic acid
resin composition
water
foaming
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001278015A
Other languages
Japanese (ja)
Other versions
JP4816853B2 (en
Inventor
Naoki Nakayama
直樹 中山
Keitaro Sugio
圭太郎 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2001278015A priority Critical patent/JP4816853B2/en
Publication of JP2003082150A publication Critical patent/JP2003082150A/en
Application granted granted Critical
Publication of JP4816853B2 publication Critical patent/JP4816853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polylactic acid expandable particle not restricting the kind of a usable foaming agent, and the foaming agent being impregnated to the polylactic acid resin particle in a water suspension system or in a mixed system with water, and capable of obtaining the expanded particle having a proper cell size after the expansion molding without using a foaming core agent. SOLUTION: This polylactic acid expandable resin particle is obtained in the water suspension system or in the mixed system of 100 pts.wt. polylactic acid resin composition and 1-50 pts.wt. water, by impregnating not less than 3 wt.% foaming agent to the polylactic acid resin composition, then by drying, and the polylactic acid expandable resin particle with a residual water content of not greater than 0.5% has 5,000-30,000 minute pores of 1 μm-10 μm diameter per 1 mm<2> of its cross section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ乳酸系発泡性
樹脂粒子に関する。より詳細には、使用される発泡剤の
種類が限定されることなく、ポリ乳酸系樹脂組成物への
発泡剤の含浸が水懸濁系又は水が混和された混合系で行
われ、かつ発泡核剤の添加なしに、発泡後に微細で均一
性の高い適正なセルサイズを持つ発泡成形品を得ること
ができるポリ乳酸系発泡性樹脂粒子に関する。
TECHNICAL FIELD The present invention relates to polylactic acid-based expandable resin particles. More specifically, the type of foaming agent used is not limited, and impregnation of the polylactic acid-based resin composition with the foaming agent is performed in a water suspension system or a mixed system in which water is mixed, and foaming is performed. The present invention relates to a polylactic acid-based expandable resin particle capable of obtaining a foamed molded article having a fine and highly uniform cell size after foaming without adding a nucleating agent.

【0002】[0002]

【従来の技術】軽量性、緩衝性、成形加工性を生かした
プラスチック発泡体が多量に使用されており、その用途
も家電製品用等の梱包材、建築用ボード及び断熱ブロッ
ク、魚箱等の断熱容器、即席食品用のカップ類、或いは
道路等の土木工事における埋設ブロック等様々である。
しかし、その素材は主としてポリスチレンやポリオレフ
ィン等の石油を原料とする化学製品で、焼却すれば燃焼
カロリーが高く焼却炉を傷め、又埋め立てをしても分解
しない上に容積が大きい為にその置き場の確保が難しい
等使用後の処分が非常に困難であり、大きな社会問題と
なっている。その上、処分されずに投棄された発泡成形
体による河川や海洋等の汚染等、自然態系への影響も目
立ち始めている。そこで、微生物の体内で合成されるポ
リヒドロキシブチレート系樹脂、脂肪族グリコールと脂
肪族カルボン酸からなるポリエステル又はカプロラクト
ンを主成分とするポリエステル系樹脂等、生態系の中で
分解し、環境への悪影響が少ない生分解性樹脂が開発さ
れた。しかしながら、前者は微生物によって作り出され
る為に純度が低い上に極めて生産性が悪く、利用が制限
される。そして後者は原料が石油や天然ガス等安価で多
量に入手できるものであるので生産性は良好であるが、
結晶性樹脂である上にガラス転移点が低い為に生分解性
発泡樹脂としては実用性に乏しい。さらに、石油や天然
ガスを原料としている為に分解後に炭酸ガスを発生し、
環境に与える影響も少なくない。近年、このような観点
から、ポリ乳酸を主体とした発泡性樹脂粒子及びその発
泡体が注目されてきている。このポリ乳酸系の発泡体
は、微生物により殆ど分解され、使用後の処分に際して
も環境への悪影響が非常に少ないだけでなく、かつ安価
で高い生産性と実用性を有し、さらにはポリスチレン系
の発泡体と同様に発泡性粒子の状態で加工業者へ搬送で
き、該業者側で該発泡性粒子を予備発泡し、得られた発
泡粒子を型枠成形することができる等、従来の発泡体の
利点をも有する。
2. Description of the Related Art A large amount of plastic foams, which are lightweight, cushioning and molding processable, are used in many applications such as packing materials for home appliances, construction boards and heat insulation blocks, fish boxes, etc. There are various types such as heat-insulating containers, cups for instant food, and buried blocks in civil engineering works such as roads.
However, the material is a chemical product mainly made of petroleum such as polystyrene and polyolefin, and when burned, it burns a lot of calories and damages the incinerator. Disposal after use is extremely difficult, such as difficulty in securing it, which is a major social problem. In addition, the impact on natural systems such as pollution of rivers and oceans caused by foamed moldings that are not disposed of is beginning to stand out. Therefore, polyhydroxybutyrate-based resins synthesized in the body of microorganisms, polyesters composed of aliphatic glycol and aliphatic carboxylic acids or polyester-based resins containing caprolactone as the main component decompose in the ecosystem and A biodegradable resin has been developed that has few adverse effects. However, the former has a low purity and is extremely poor in productivity because it is produced by microorganisms, and its use is limited. And the latter has good productivity because raw materials such as oil and natural gas are cheap and available in large quantities.
Since it is a crystalline resin and has a low glass transition point, it is not practical as a biodegradable foamed resin. Furthermore, because it uses petroleum and natural gas as raw materials, it generates carbon dioxide gas after decomposition,
It has many environmental impacts. From such a viewpoint, in recent years, expandable resin particles mainly composed of polylactic acid and foams thereof have been attracting attention. This polylactic acid-based foam is mostly decomposed by microorganisms, has very little adverse effect on the environment even after disposal after use, and is inexpensive and has high productivity and practicality. Conventional foams such as the foams can be conveyed to a processor in the form of expandable particles, the expanders can pre-expand the foamed particles, and the resulting expanded particles can be molded into a frame. It also has the advantage of.

【0003】ところで、ポリ乳酸系発泡性粒子、又はポ
リ乳酸系発泡性樹脂組成物に関して、以下の技術が知ら
れている。例えば、特開平2000−17039号公報
には、L体とD体のモル比が95/5〜60/40、又
は40/60〜5/95で溶融粘度がメルトインデック
ス値で1〜10の範囲にある直鎖状ポリ乳酸にイソシア
ネート基≧2.3当量/モルのポリイソシアネート化合
物を該ポリ乳酸に対して0.7〜5重量%配合し、且
つ、反応させた樹脂組成物の溶融温度がメルトインデッ
クス値(MI)で3以下であることを特徴とする生分解
性を有する発泡性樹脂組成物が開示されている。その中
で、L体とD体が90/10〜70/30、又は30/
70〜10/90のモル比を有し、直鎖状ポリ乳酸が1
〜5のMIを示すことが好ましく、また、イソシアネー
ト化合物がイソシアネート基≧2.7当量/モルであ
り、その配合量が1〜3重量%である態様も好ましいと
している。そしてさらなる好ましい態様は、前記生分解
性を有する発泡性樹脂組成物はMIが0.5以下である
ことを記載している。このように該公報に関しては、発
泡性樹脂組成物を形成し得る樹脂組成物の組成に関して
の記述であり、さらに実施例において、発泡剤のポリ乳
酸系樹脂組成物への含浸は非水系で行われている。ま
た、適正なセルを形成する為に発泡核剤の添加が好まし
いこととしている。また、特開平8−253617号公
報には、重量平均分子量2万〜40万の、乳酸成分とジ
カルボン酸成分とジオール成分とを構造単位として含む
乳酸系ポリエステル共重合体に揮発性化合物を吸収させ
た乳酸系ポリエステルの発泡性粒子が開示されている。
その中で、重量平均分子量2万〜40万の、乳酸成分と
ジカルボン酸成分とポリオキシアルキレンエーテルジオ
ール成分とを構造単位として含む乳酸系ポリエステル共
重合体に揮発性化合物を吸収させた態様が好ましく、乳
酸系ポリエステル中の乳酸成分の重量割合が、乳酸系ポ
リエステルの50〜98%であることを特徴とする乳酸
系ポリエステルの発泡性粒子が好ましいとしている。さ
らに、使用される揮発性化合物はペンタン、ブタン、お
よびプロパン、またはこれらの混合物が好ましいとして
いる。乳酸系ポリエステルの発泡性粒子の製造方法とし
ては、有機溶媒中に溶解していた乳酸系ポリエステルを
冷却することによって粒子を得、さらに揮発性化合物を
吸収させること、又は乳酸系ポリエステルを粉砕するこ
とによって粒子を得、さらに揮発性化合物を吸収させる
ことに続いて、その乳酸系ポリエステルと揮発性化合物
とを押出機内において混練後、押出し、次いで切断する
ことを特徴とする。或いは乳酸系ポリエステルと揮発性
化合物とを混練し、次いでこれをダイヘッドの押出孔か
ら加圧液中に押出し、即時切断した後、冷却する方法も
挙げられている。さらに詳細には、乳酸系ポリエステル
と、揮発性化合物と、乳酸系ポリエステル100重量部
に対して1.5重量部以下の無機質粉末とを混練し、次
いでこれをダイヘッドの押出孔から加圧液中に押出し、
即時切断した後、冷却する方法が好ましい態様の一つと
している。乳酸系ポリエステルの発泡性粒子の別の好ま
しい製造方法として、乳酸系ポリエステルと、揮発性化
合物と、および必要に応じ無機質粉末とを混練し、次い
でこれをダイヘッドの押出孔から発泡性乳酸系ポリエス
テルのガラス転移温度−5℃以上の加熱加圧液中に押出
し、切断して得た粒子を加熱加圧液中で徐冷するか、又
は同温度以上に保持した後、冷却する方法が挙げられて
いる。このように該公報に関しては、乳酸系ポリエステ
ルの発泡性粒子の組成とその製造方法に関する記載であ
る。
The following techniques are known for polylactic acid-based expandable particles or polylactic acid-based expandable resin compositions. For example, in Japanese Patent Laid-Open No. 2000-17039, the molar ratio of L-form to D-form is 95/5 to 60/40, or 40/60 to 5/95, and the melt viscosity is in the range of 1 to 10 in melt index value. In the linear polylactic acid in Table 1, 0.7 to 5% by weight of a polyisocyanate compound having an isocyanate group of ≧ 2.3 equivalents / mole is blended with respect to the polylactic acid, and the melting temperature of the reacted resin composition is Disclosed is a biodegradable foamable resin composition having a melt index value (MI) of 3 or less. Among them, L body and D body are 90/10 to 70/30, or 30 /
It has a molar ratio of 70 to 10/90 and a linear polylactic acid of 1
It is preferable that the compound has an MI of from 5 to 5, and that the isocyanate compound has an isocyanate group ≧ 2.7 equivalents / mole, and the compounding amount thereof is 1 to 3% by weight. A further preferred embodiment describes that the biodegradable foamable resin composition has an MI of 0.5 or less. As described above, the publication describes the composition of a resin composition capable of forming a foamable resin composition, and further, in Examples, impregnation of a foaming agent into a polylactic acid resin composition is performed in a non-aqueous system. It is being appreciated. It is also preferable to add a foaming nucleating agent in order to form an appropriate cell. Further, JP-A-8-253617 discloses that a lactic acid-based polyester copolymer having a weight average molecular weight of 20,000 to 400,000 and containing a lactic acid component, a dicarboxylic acid component and a diol component as structural units absorbs a volatile compound. Expandable particles of lactic acid-based polyester are disclosed.
Among them, it is preferable that a lactic acid-based polyester copolymer having a weight average molecular weight of 20,000 to 400,000 and containing a lactic acid component, a dicarboxylic acid component and a polyoxyalkylene ether diol component as a structural unit absorbs a volatile compound. The expandable particles of lactic acid-based polyester are preferable, wherein the weight ratio of the lactic acid component in the lactic acid-based polyester is 50 to 98% of that of the lactic acid-based polyester. Furthermore, the volatile compounds used are preferably pentane, butane and propane, or mixtures thereof. As the method for producing expandable particles of lactic acid-based polyester, particles are obtained by cooling lactic acid-based polyester dissolved in an organic solvent, and further absorbing volatile compounds, or crushing lactic acid-based polyester. The method is characterized in that particles are obtained by the above method, and the volatile compound is further absorbed, the lactic acid-based polyester and the volatile compound are kneaded in an extruder, then extruded, and then cut. Alternatively, a method in which a lactic acid-based polyester and a volatile compound are kneaded and then extruded into a pressurized liquid through an extrusion hole of a die head, immediately cut, and then cooled is also mentioned. More specifically, the lactic acid-based polyester, the volatile compound, and 1.5 parts by weight or less of the inorganic powder with respect to 100 parts by weight of the lactic acid-based polyester are kneaded and then mixed in a pressurized liquid through an extrusion hole of a die head. Extruded into
One of the preferred embodiments is a method of immediately cutting and then cooling. As another preferable method for producing the expandable particles of lactic acid-based polyester, the lactic acid-based polyester, a volatile compound, and optionally an inorganic powder are kneaded, and then the lactic acid-based polyester is extruded through an extrusion hole of a die head to obtain an expandable lactic acid-based polyester. Examples include a method of extruding into a heated and pressurized liquid having a glass transition temperature of −5 ° C. or higher and cutting and gradually cooling particles obtained in the heated and pressurized liquid, or holding the particles at the same temperature or higher and then cooling. There is. As described above, this publication describes the composition of the expandable particles of lactic acid-based polyester and the method for producing the expandable particles.

【0004】ポリ乳酸系樹脂組成物に発泡剤を含浸さ
せ、発泡性樹脂粒子とした後、予備発泡を経て発泡成形
品とする過程は、ポリスチレン系樹脂組成物のそれと次
の点で大きく異なっている。通常、ポリスチレン系の発
泡粒子を形成する場合において、微細で均一性が高い適
正なセルを得る為には、発泡剤をポリスチレン系樹脂組
成物に含浸させて発泡性樹脂粒子とした後、熟成を行う
ことが重要である。ポリスチレン系樹脂組成物に発泡剤
を含浸し、発泡性樹脂粒子とした後、室温又は20℃以
下の温度で数日間以上熟成を行った後に発泡すると、発
泡粒子中に数百μm以下の良好なセルが形成し、また添
加された発泡剤の量に応じた倍率にまで発泡された良好
な発泡粒子となる。これに対し、ポリ乳酸系樹脂組成物
の場合、発泡剤を含浸させた後に熟成を行ってもセルサ
イズは殆ど変化せず、その均一化が図られず、例えば室
温もしくは20℃以下の温度にて10日以上の長期熟成
を行った後で発泡を行った場合であっても微細で均一性
の高い適正なセルを形成させることは困難である。さら
に、ポリ乳酸系樹脂組成物のガラス転移温度は、ポリス
チレン系樹脂組成物のガラス転移温度(100〜110
℃)に比較して40℃以上低く(50〜60℃)、さら
に発泡剤が含浸されると前記温度は室温近くまで低下す
る。このようにガラス転移温度が低いポリ乳酸系発泡性
樹脂粒子を水蒸気で発泡すると、極めて短時間で発泡が
起こるが、該樹脂粒子の内部が空洞になり、発泡粒子は
極めて歪な形状となり、発泡完了後に著しい収縮をも伴
う等の問題を引き起こす。結果として微細で均一性の高
いセルが殆ど形成されず、発泡体製品として全く実用性
に欠ける。また、ポリスチレン系樹脂組成物に発泡剤を
含浸させる系に水が存在していても、得られたポリスチ
レン系発泡性樹脂粒子は、発泡過程に何ら支障はなく、
良好な発泡体が形成される。しかしながらポリ乳酸系樹
脂組成物に発泡剤を含浸させる段階において水が存在し
ている場合、含浸後のポリ乳酸系発泡性樹脂粒子は、発
泡段階での温度や加熱条件を変えても殆ど又は全く発泡
が起こらず、発泡体を得ることが事実上不可能であっ
た。このような問題点を解消する為に、ポリ乳酸系樹脂
組成物を使用する場合には、発泡剤の該樹脂組成物への
含浸方法を非水系とし、さらに均一性の高い適正なセル
形成の為の多量の核剤(セル形成剤)の添加や、高い発
泡倍率の達成や均一性の高いセル形成の為にある特定の
発泡剤・発泡助剤を使用する等の工夫がこれまでなされ
てきた。
The process in which a polylactic acid resin composition is impregnated with a foaming agent to form expandable resin particles and then pre-expanded to form a foamed molded article is greatly different from that of the polystyrene resin composition in the following points. There is. Usually, in the case of forming polystyrene-based expanded particles, in order to obtain fine and highly appropriate cells, a polystyrene resin composition is impregnated with a foaming agent to form expandable resin particles, and then aged. It is important to do. When a polystyrene resin composition is impregnated with a foaming agent to form expandable resin particles, and then foamed after aging at room temperature or at a temperature of 20 ° C. or less for several days or more, good expansion of several hundred μm or less in the expanded particles is achieved. The cells are formed, and it becomes a good expanded particle which is expanded to a ratio according to the amount of the foaming agent added. On the other hand, in the case of a polylactic acid-based resin composition, the cell size is hardly changed even if it is aged after being impregnated with a foaming agent, and its homogenization is not achieved. For example, at room temperature or at a temperature of 20 ° C. or lower. It is difficult to form fine and proper cells with high uniformity even when foaming is performed after long-term aging for 10 days or more. Further, the glass transition temperature of the polylactic acid-based resin composition is the glass transition temperature of the polystyrene-based resin composition (100 to 110).
40 ° C. or more (50 to 60 ° C.) lower than (° C.), and when the foaming agent is further impregnated, the temperature drops to near room temperature. When the polylactic acid-based expandable resin particles having a low glass transition temperature are foamed with water vapor as described above, foaming occurs in an extremely short time, but the inside of the resin particles becomes hollow, and the expanded particles have an extremely distorted shape. It causes problems such as significant shrinkage after completion. As a result, fine and highly uniform cells are hardly formed, and it is completely impractical as a foam product. Further, even if water is present in the system of impregnating the polystyrene resin composition with a foaming agent, the obtained polystyrene expandable resin particles have no hindrance to the foaming process,
A good foam is formed. However, when water is present in the step of impregnating the polylactic acid-based resin composition with the foaming agent, the polylactic acid-based expandable resin particles after the impregnation have little or no change even if the temperature or heating condition in the foaming step is changed. No foaming occurred and it was virtually impossible to obtain a foam. In order to solve such a problem, when a polylactic acid-based resin composition is used, the method of impregnating the resin composition with a foaming agent is a non-aqueous method to further form a highly uniform and proper cell. In order to achieve a high expansion ratio and to form cells with high uniformity, use of a specific foaming agent / foaming auxiliary agent has been devised so far. It was

【0005】こうした技術背景により、上述した特開2
000−17039号公報や特開平8−253617号
公報の他に、特開2000−17038号公報、特開2
000−17039号公報、特開2001−98104
号公報に開示されている技術においても、発泡剤のポリ
乳酸系樹脂組成物への含浸方法はいずれも非水系であ
る。また、特開2001−164027号公報に開示さ
れている、ブタン化合物、例えばn−ブタン、イソブタ
ン等の炭素数3〜4の炭化水素化合物を発泡剤とし、こ
れと共に発泡助剤を必須成分として、生分解性樹脂組成
物に含浸して発泡性粒子を製造する技術は、使用する発
泡剤・発泡助剤の種類を特定している。さらに、上述し
たこれら公報は、適正なセルを形成する為にセル形成剤
(核剤)の添加が必須、もしくは好ましいこととしてい
る。
Due to such a technical background, the above-mentioned Japanese Unexamined Patent Publication No. 2
000-17039 and JP-A-8-253617, as well as JP-A-2000-17038 and JP-A-2
000-17039, JP 2001-98104.
Also in the technique disclosed in the publication, the method of impregnating the foaming agent with the polylactic acid resin composition is non-aqueous. Further, a butane compound, for example, a hydrocarbon compound having 3 to 4 carbon atoms such as n-butane and isobutane disclosed in JP 2001-164027 A is used as a foaming agent, and together with this, a foaming aid is an essential component. The technique for producing expandable particles by impregnating a biodegradable resin composition specifies the type of foaming agent / foaming aid to be used. Further, these publications mentioned above make it essential or preferable to add a cell forming agent (nucleating agent) in order to form a proper cell.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ポリ乳
酸系樹脂組成物への発泡剤の含浸方法が非水系の場合、
下記のような問題がある。発泡剤等をポリ乳酸系の樹脂
組成物に直接に含浸させることになるが、含浸を効率良
く行う為には、ポリ乳酸系樹脂組成物のガラス転移温度
以上に温度を上げて該樹脂組成物を軟化させ、発泡剤が
該樹脂組成物に含浸しやすくする必要がある。ところが
含浸時の温度をガラス転移温度以上に設定した場合にお
いては、ポリ乳酸系樹脂組成物は軟化すると同時に発泡
剤が該樹脂組成物中に混合されて膨潤しやすくなる為
に、逆にポリ乳酸系樹脂組成物同士が再び互いに付着し
合い、いわゆる集塊物となってしまう傾向がある。この
うち一部の集塊物は、発泡から成形までの工程におい
て、送粒中にパイプラインを詰まらせてしまう等のトラ
ブルを引き起こすことがあり、さらにこれら集塊物が多
くなると、発泡剤の含浸中にポリ乳酸系樹脂組成物が全
て固まってしまうことがあり得る。また、発泡過程にお
いて高い発泡効率や発泡後のセルの微細化・均一性を求
めると、使用され得る発泡剤は炭素数3〜4の炭化水
素、例えばブタン等に限定されてしまい、選択の余地が
事実上なくなると共に、発泡助剤の添加が不可欠とな
る。ブタン等の場合、常温で気体であることから、ハン
ドリング上の問題の他、含浸での加熱時に圧力が高くな
る事から、より耐圧性のある含浸槽が必要となる等、総
じて設備費が多くかかり、好ましいとは言えない。さら
に、適正なセルを得る為にタルク等の核剤の多量の添加
が必要となり、これは発泡成形品の表面外観を悪化さ
せ、その上、成形品内部のセル間の融着性を著しく低下
させる。また、製造工程面においても作業が煩雑になる
など、生産性の点においても満足のいくものではない。
このように、非水系においてポリ乳酸系樹脂組成物に発
泡剤を含浸させて発泡体を得る手段は多くの課題を残
し、微細で均一性の高い良好なセルを有する発泡粒子、
及び表面外観の美麗な発泡成形品を効率的に形成するに
は十分とは言い難い。
However, when the method of impregnating the polylactic acid resin composition with the foaming agent is a non-aqueous method,
There are the following problems. The polylactic acid-based resin composition is directly impregnated with a foaming agent or the like. However, in order to carry out the impregnation efficiently, the temperature is raised to the glass transition temperature of the polylactic acid-based resin composition or higher. Needs to be softened so that the foaming agent can easily impregnate the resin composition. However, when the temperature during impregnation is set to be equal to or higher than the glass transition temperature, the polylactic acid-based resin composition is softened and at the same time, the foaming agent is easily mixed with the resin composition and easily swells. The resin compositions tend to adhere to each other again and become so-called agglomerates. Some of these agglomerates may cause troubles such as clogging of the pipeline during granulation in the process from foaming to molding, and when these agglomerates increase, the foaming agent During the impregnation, the polylactic acid resin composition may be completely solidified. Further, if high foaming efficiency and miniaturization / uniformity of cells after foaming are required in the foaming process, usable foaming agents are limited to hydrocarbons having 3 to 4 carbon atoms, such as butane, and there is room for selection. Is virtually eliminated, and the addition of a foaming auxiliary is indispensable. In the case of butane, etc., it is a gas at room temperature, so there is a problem in handling, and since the pressure increases during heating during impregnation, a more pressure-resistant impregnation tank is required. However, it is not preferable. Furthermore, in order to obtain a proper cell, it is necessary to add a large amount of nucleating agent such as talc, which deteriorates the surface appearance of the foamed molded product, and further, the fusion property between cells inside the molded product is significantly reduced. Let In addition, the manufacturing process is also complicated, and the productivity is not satisfactory.
Thus, the means for obtaining a foam by impregnating a polylactic acid-based resin composition with a foaming agent in a non-aqueous system leaves many problems, and is a foamed particle having good cells with fine and high uniformity,
In addition, it is difficult to say that it is sufficient to efficiently form a foam-molded article having a beautiful surface appearance.

【0007】一方、発泡剤を水系で樹脂組成物に含浸せ
しめた例としては、本発明者らによる特開平9−124
831号公報において、発泡性スチレン系樹脂粒子の切
断面において、存在する微孔の数及び大きさが一定の範
囲内にあり、かつ該樹脂粒子が厚さ10mmのガラスセ
ル中に媒体の水とともに充満された試料を使用しそして
透過形積分球を用いて該試料内を透過散乱する光につい
て測定される吸光度と、前記樹脂粒子の平均粒子径との
間に一定の式で表される関係が成立するとき、それより
得られる予備発泡粒子について、特別なセル形成剤の添
加無しに、さらに熟成処理を施さなくとも均一で良好な
セル構造を形成することができることを開示している。
しかしながら、上記公報に開示された技術は、上述した
ようにポリスチレン系樹脂組成物を対象としたものであ
って、開示されている技術がそのままポリ乳酸系樹脂組
成物に適用されるとは限らない。そして、特開2000
−17038号公報や特開2001−98104号公
報、特開2001−164027号公報は、発泡性樹脂
組成物として使用し得る樹脂組成物や発泡粒子、それら
からなる発泡成形体、又はそれらの製造方法に関して記
載があるだけで、さらに、上述した特開平8−2536
17号公報や特開2000−17039号公報において
は、ポリ乳酸系発泡性樹脂組成物もしくはポリ乳酸系発
泡性樹脂粒子における樹脂や発泡剤の組成に関しての記
載はあるが、発泡性樹脂粒子の内部構造に関しては何ら
記載も示唆もしていない。本発明は、以上の事情を背景
としてなされたものであって、その課題とするところ
は、ポリ乳酸系樹脂組成物への発泡剤の含浸が水懸濁系
又は水を混和した混合系で行われ、そして使用される発
泡剤の種類が限定されることなしにその後の発泡が支障
なく行われ、発泡成形後に微細で均一性の高いセルを持
つ実用性の優れた発泡成形品を核剤の添加なしに得るこ
とができるポリ乳酸系発泡性樹脂粒子を提供することに
ある。
On the other hand, as an example of impregnating a resin composition with a foaming agent in an aqueous system, JP-A-9-124 by the present inventors is known.
No. 831, the number and size of the micropores present in the cut surface of the expandable styrenic resin particles are within a certain range, and the resin particles are contained in a glass cell having a thickness of 10 mm together with water as a medium. There is a relationship between the absorbance measured for light that is transmitted and scattered through the sample using a filled sample and a transmission integrating sphere, and the average particle size of the resin particles, expressed by a certain equation. It is disclosed that, when established, the pre-expanded particles obtained therefrom can form a uniform and good cell structure without addition of a special cell-forming agent and without further aging treatment.
However, the technique disclosed in the above publication is intended for the polystyrene resin composition as described above, and the disclosed technique is not always applied to the polylactic acid resin composition as it is. . Then, Japanese Unexamined Patent Publication No. 2000
JP-A-17038, JP 2001-98104 A, JP 2001-164027 A disclose a resin composition or foamed particles that can be used as a foamable resin composition, a foamed molded article formed of them, or a method for producing them. The above-mentioned Japanese Patent Laid-Open No. 8-2536
No. 17, JP-A-2000-17039 discloses the composition of the resin or foaming agent in the polylactic acid-based expandable resin composition or the polylactic acid-based expandable resin particles, but the inside of the expandable resin particles The structure is not described or suggested at all. The present invention has been made in view of the above circumstances, and the subject is to impregnate a polylactic acid resin composition with a foaming agent in an aqueous suspension system or a mixed system in which water is mixed. And the subsequent foaming is performed without any limitation on the type of the foaming agent used, and a highly practical foamed molded product having fine and highly uniform cells after foam molding is used as a nucleating agent. It is to provide polylactic acid-based expandable resin particles that can be obtained without addition.

【0008】[0008]

【課題を解決するための手段】本発明者は鋭意研究し、
種々検討した結果、水懸濁系において又は水を混和させ
た混合系において、発泡剤をポリ乳酸系樹脂組成物に含
浸させ、その後得られるポリ乳酸系発泡性樹脂粒子中に
微量含まれる水分、具体的には樹脂粒子内の微孔に充満
されている水分を適宜除去することにより、上記の問題
点を解決し得る発泡性樹脂粒子を得ることができ、かつ
発泡後においては微細で均一性の高い適正なセルを有す
る発泡粒子となすことを見出した。詳細には、上述のポ
リ乳酸系発泡性樹脂粒子の発泡にあたって、発泡剤の種
類にかかわらず良好な発泡粒子を形成することができ、
さらにはタルクのような核剤を添加しなくても微細で均
一性の高い適正なセルサイズを有する発泡粒子を得るこ
とに成功し、本発明に至った。
[Means for Solving the Problems]
As a result of various studies, in a water suspension system or a mixed system in which water is mixed, a polylactic acid-based resin composition is impregnated with a foaming agent, and water contained in a trace amount in the polylactic acid-based expandable resin particles obtained thereafter, Specifically, by appropriately removing the water filled in the fine pores in the resin particles, it is possible to obtain expandable resin particles that can solve the above problems, and after foaming, it is fine and uniform. It was found that the foamed particles had a proper cell with a high value. Specifically, in foaming the above-mentioned polylactic acid-based expandable resin particles, good expanded particles can be formed regardless of the type of the foaming agent,
Furthermore, they succeeded in obtaining fine and highly expanded foamed particles having an appropriate cell size without adding a nucleating agent such as talc, and reached the present invention.

【0009】すなわち本発明は、発泡剤をポリ乳酸系樹
脂組成物に対して3重量%以上含有するポリ乳酸系発泡
性樹脂粒子の切断面について、微孔が断面積1mm2
たり5000個乃至30000個存在することを特徴と
するポリ乳酸系発泡性樹脂粒子に関する。本発明の好ま
しい態様は、ポリ乳酸系樹脂組成物と水との混合系であ
ってポリ乳酸系樹脂組成物100重量部に対して水を1
重量部以上含む系において、発泡剤を該ポリ乳酸系樹脂
組成物に対し3重量%以上含浸し、次いで乾燥させて得
られるポリ乳酸系発泡性樹脂粒子であって、残存水分量
が0.5%以下である該ポリ乳酸系発泡性樹脂粒子の切
断面において、微孔が断面積1mm2あたり5000個
乃至30000個存在することを特徴とする。さらに前
記微孔は、平均で1μm乃至10μmの直径を有するこ
とを特徴とするものである。本発明の別の好ましい態様
は、前記ポリ乳酸系樹脂組成物は、L体とD体のモル比
が95/5〜60/40、又は40/60〜5/95で
あるポリ乳酸に、イソシアネート基≧2.0当量/モル
のポリイソシアネート化合物を該ポリ乳酸に対して0.
5〜5重量%配合し反応させてなることを特徴とするも
のである。本発明は又、上記ポリ乳酸系発泡性樹脂粒子
を予備発泡させ、次いでそれを発泡成形して得られる発
泡成形品にも関する。
That is, according to the present invention, the cut surface of the polylactic acid-based expandable resin particles containing the foaming agent in an amount of 3% by weight or more based on the polylactic acid-based resin composition has 5,000 to 30,000 fine pores per 1 mm 2 in sectional area. The present invention relates to a polylactic acid-based expandable resin particle characterized by being present individually. A preferred embodiment of the present invention is a mixed system of a polylactic acid resin composition and water, wherein 1 part of water is added to 100 parts by weight of the polylactic acid resin composition.
Polylactic acid-based expandable resin particles obtained by impregnating the polylactic acid-based resin composition with a foaming agent in an amount of 3 parts by weight or more in an amount of 3 parts by weight or more, and then drying, and having a residual water content of 0.5. % Or less, the cut surface of the polylactic acid-based expandable resin particles is characterized by having 5,000 to 30,000 fine pores per 1 mm 2 in cross-sectional area. Furthermore, the micropores are characterized by having an average diameter of 1 μm to 10 μm. Another preferable aspect of the present invention is that the polylactic acid-based resin composition comprises polylactic acid having a molar ratio of L-form and D-form of 95/5 to 60/40, or 40/60 to 5/95, and an isocyanate. A polyisocyanate compound having a group of ≧ 2.0 equivalents / mole is added to the polylactic acid in an amount of 0.
It is characterized in that 5 to 5% by weight is mixed and reacted. The present invention also relates to a foam-molded article obtained by pre-foaming the above polylactic acid-based expandable resin particles and then foam-molding the same.

【0010】本発明において、微細で均一性の高い適正
なセルを有する発泡粒子を形成する為には、水懸濁系又
は水を混和させた混合系においてポリ乳酸系の樹脂組成
物に発泡剤を含浸せしめて形成された発泡性樹脂粒子の
切断面について、微孔が、平均1μm乃至10μmの直
径で、断面積1mm2あたり5000個乃至30000
個存在することが望ましい。これにより、発泡を行った
場合、微孔が発泡の起点となり、セル形成剤(核剤)の
添加がなくとも、微細で均一性の高い適正な発泡粒子が
形成される。微孔が断面積1mm2あたり5000個以
下であると、得られる発泡粒子は粗大なセル構造を有す
るものとなり、発泡成形品を切断したときのその切断面
の性状が粗悪で見た目も悪く、さらに成形品の断熱性能
が低下する。一方、微孔が断面積1mm2あたり300
00個以上であると、発泡成形時に収縮が起きやすくな
り、所望の型に正確に成形することが困難となって実用
性が低下する。
In the present invention, in order to form expanded particles having fine cells with high uniformity and highness, a foaming agent is added to a polylactic acid-based resin composition in an aqueous suspension system or a mixed system in which water is mixed. With respect to the cut surface of the expandable resin particles formed by impregnating with, the micropores have an average diameter of 1 μm to 10 μm, and 5000 to 30,000 per 1 mm 2 in cross-sectional area.
It is desirable to exist individually. As a result, when foaming is performed, the fine pores serve as the starting points for foaming, and fine and highly uniform foamed particles are formed without the addition of a cell-forming agent (nucleating agent). When the number of fine pores is 5000 or less per 1 mm 2 in cross-sectional area, the obtained expanded particles have a coarse cell structure, and when the foamed molded product is cut, the properties of the cut surface are poor and the appearance is bad. The heat insulation performance of the molded product deteriorates. On the other hand, the micropores are 300 per 1 mm 2 in cross section.
If the number is 00 or more, shrinkage is likely to occur during foam molding, and it becomes difficult to accurately mold into a desired mold, and the practicability decreases.

【0011】また、微孔の直径は、1μm以下である
と、得られるセルが微細の構造のものになりすぎる傾向
にあり、又10μmを越えると、得られるセルが粗大な
構造を有するものとなって製品としての実用性が低下す
ることから、平均して1μmないし10μmの範囲にあ
ることが好ましい。さらに好ましい前記微孔の直径は、
平均して2ないし5μmである。
If the diameter of the fine pores is 1 μm or less, the obtained cells tend to have a fine structure, and if it exceeds 10 μm, the obtained cells have a coarse structure. Therefore, it is preferable that the average particle size is in the range of 1 μm to 10 μm because the practicality of the product is deteriorated. More preferable diameter of the micropores is
The average is 2 to 5 μm.

【0012】ポリ乳酸系樹脂組成物に発泡剤を含浸する
過程において、発泡剤は前記ポリ乳酸系樹脂組成物に対
して3重量%以上含有していれば十分である。発泡剤が
ポリ乳酸系樹脂組成物に対して3重量%未満の含有量で
ある場合、その後の発泡が不十分となり、成形品の倍率
も低くなることから、製品としての実用性が低下する。
In the process of impregnating the polylactic acid resin composition with the foaming agent, it is sufficient that the foaming agent is contained in an amount of 3% by weight or more based on the polylactic acid resin composition. When the content of the foaming agent is less than 3% by weight based on the polylactic acid-based resin composition, the subsequent foaming becomes insufficient and the magnification of the molded product becomes low, so that the practicability as a product decreases.

【0013】発泡剤の例としては、プロパン、ブタン、
ペンタン、シクロペンタン、ヘキサン等の脂肪族炭化水
素類、又は塩化メチル、フレオン等のハロゲン化炭化水
素が挙げられる。これら発泡剤は単独で使用しても、又
は2種類以上を組み合わせて使用しても構わない。この
中で、発泡剤が含浸されたポリ乳酸系の樹脂組成物中の
内部に含まれる水分を除去する際に、発泡剤の逸散がよ
り少ないということから、ブタン又はペンタンがさらに
好ましい。樹脂組成物中のこれら発泡剤の含有量は、発
泡倍率との関係にもよるが、3ないし25重量%が好ま
しく、5ないし15重量%がさらに好ましい。
Examples of blowing agents include propane, butane,
Aliphatic hydrocarbons such as pentane, cyclopentane and hexane, or halogenated hydrocarbons such as methyl chloride and freon are included. These foaming agents may be used alone or in combination of two or more kinds. Among them, butane or pentane is more preferable because the foaming agent is less likely to escape when water contained in the polylactic acid-based resin composition impregnated with the foaming agent is removed. The content of these foaming agents in the resin composition is preferably 3 to 25% by weight, more preferably 5 to 15% by weight, depending on the relationship with the expansion ratio.

【0014】本発明において、ポリ乳酸系樹脂組成物に
対し発泡剤を含浸させる過程は、前記ポリ乳酸系樹脂組
成物に水を混和させた混合系において行われる。ここ
で、本発明において言及する水を混和させた混合系と
は、水が存在する系一般を含み、ポリ乳酸系樹脂組成物
に水を添加し均質化した系の他、水中にポリ乳酸系樹脂
組成物を分散させた状態の水懸濁系を含むものとする。
水を混和させた混合系においては、ポリ乳酸系樹脂組成
物100重量部に対し、水を1重量部以上混和させるこ
とが好ましい。水の1重量部以下の混和量では、上述し
たところのポリ乳酸系発泡性樹脂粒子中の微孔の数が所
定の値に達することができない。一方、水の混和量が1
重量部から増加するに従い、形成する微孔の数も増加す
る傾向にあり、該微孔の数を所望の水準に調整すること
も可能である。水の混和量が50重量部を超えたあたり
から、形成する微孔の数が殆ど増加しなくなる。さら
に、水の混和量が300重量部を超えると、形成される
微孔の数及び大きさにはそれ程影響がないが、前記混合
系中においてポリ乳酸系樹脂組成物の濃度がかなり希薄
となり、発泡剤の含浸過程等における作業性が悪くな
り、生産性が低下する。したがって、水の混和量の上限
は、生産性の観点から定められるべきものであり、それ
が極端に低下するような水の混和量でなければ構わな
い。好ましくは、ポリ乳酸系樹脂組成物100重量部に
対し水を3〜200重量部混和させた系である。
In the present invention, the process of impregnating the polylactic acid resin composition with the foaming agent is performed in a mixed system in which water is mixed with the polylactic acid resin composition. Here, the water-mixed mixed system referred to in the present invention includes a system in which water is present in general, and a system in which water is added to a polylactic acid-based resin composition to homogenize it, or a polylactic acid-based system in water. An aqueous suspension system in which the resin composition is dispersed is included.
In the mixed system in which water is mixed, it is preferable to mix 1 part by weight or more of water with 100 parts by weight of the polylactic acid resin composition. When the amount of water mixed is 1 part by weight or less, the number of micropores in the polylactic acid-based expandable resin particles cannot reach a predetermined value as described above. On the other hand, the admixture of water is 1
The number of micropores formed tends to increase as the amount increases from the weight part, and the number of micropores can be adjusted to a desired level. When the amount of water mixed exceeds 50 parts by weight, the number of micropores formed hardly increases. Further, when the amount of water admixed exceeds 300 parts by weight, the number and size of the micropores formed are not so affected, but the concentration of the polylactic acid-based resin composition in the mixed system becomes considerably low, The workability in the impregnation process of the foaming agent is deteriorated and the productivity is reduced. Therefore, the upper limit of the admixture amount of water should be determined from the viewpoint of productivity, and may be any admixture amount of water that causes an extreme decrease. Preferred is a system in which 3 to 200 parts by weight of water is mixed with 100 parts by weight of the polylactic acid resin composition.

【0015】図1は、ポリ乳酸系樹脂組成物100重量
部に対し水を50重量部混和させた混合系において、発
泡剤を含浸させて得られたポリ乳酸系発泡性樹脂粒子の
切断面であるが、多数の微孔が形成されていることがわ
かる。さらに、ポリ乳酸系樹脂組成物100重量部に対
し水を5重量部混和させた混合系において、発泡剤を含
浸させて得られたポリ乳酸系発泡性樹脂粒子の切断面で
は、図1に示す、水を50重量部混和させた混合系の場
合よりも、微孔の数は若干減少してはいたものの、その
大きさは良好であった。一方、発泡剤の含浸において、
非水系とした場合に得られたポリ乳酸系発泡性樹脂粒子
の切断面には、微孔は殆ど観察されなかった。これらの
事実から、本発明において注目しているところの微孔の
形成には、ポリ乳酸系樹脂組成物に発泡剤を含浸させる
に際し、水の存在が不可欠であり、特にその添加量の大
小が重要な点となっていることがわかる。
FIG. 1 is a cut surface of polylactic acid-based expandable resin particles obtained by impregnating a foaming agent in a mixed system in which 50 parts by weight of water is mixed with 100 parts by weight of the polylactic acid-based resin composition. However, it can be seen that many micropores are formed. Further, a cut surface of polylactic acid-based expandable resin particles obtained by impregnating a foaming agent in a mixed system in which 5 parts by weight of water is mixed with 100 parts by weight of the polylactic acid-based resin composition is shown in FIG. Although the number of micropores was slightly reduced as compared with the case of the mixed system in which 50 parts by weight of water was mixed, the size was good. On the other hand, in the impregnation of the foaming agent,
Micropores were hardly observed on the cut surface of the polylactic acid-based expandable resin particles obtained when the non-aqueous system was used. From these facts, the presence of water is indispensable for impregnating the polylactic acid-based resin composition with the foaming agent for the formation of the micropores, which is the focus of the present invention. You can see that it is an important point.

【0016】水懸濁系において又は水を混和させた混合
系において発泡剤をポリ乳酸系樹脂組成物に含浸させた
場合、ポリ乳酸系発泡性樹脂粒子中には、上述したよう
に多数の微孔が形成されるが、この時点においては、前
記微孔中には水分が充満されている状態である。そし
て、直接この微孔が水で充満されている状態の前記樹脂
組成物を水蒸気等により発泡せしめようとしても、全く
或いは殆ど発泡されない。これは、発泡させるに必要な
加熱に対し、大きな潜熱を持つ微孔中の水が一種の吸熱
作用を示す為にその発泡を阻害するものと考えられる。
発泡を可能にし、そして発泡後に微細で均一性の高い適
正なセルを有する発泡粒子を得る為には、発泡の前に、
微孔中の水を適宜除去し、ポリ乳酸系発泡性樹脂粒子中
の残存水分量として0.5%以下の状態にしておくこと
が必要である。したがって、水分が充満されている状態
の微孔もまた、その後の水分が除去された微孔と同様
に、当然、発泡性樹脂粒子の切断面について、断面積1
mm2あたり5000個乃至30000個存在すること
が望ましい。
When a polylactic acid-based resin composition is impregnated with a foaming agent in a water suspension system or in a mixed system in which water is mixed, the polylactic acid-based expandable resin particles contain a large number of fine particles as described above. The pores are formed, but at this point, the micropores are filled with water. When the resin composition in which the fine pores are filled with water is directly foamed with steam or the like, it is not foamed or hardly foamed. It is considered that this is because the water in the micropores having a large latent heat has a kind of endothermic action against the heating required for foaming, and thus inhibits the foaming.
Before foaming, in order to allow foaming and to obtain expanded particles with fine cells with high uniformity after foaming,
It is necessary to appropriately remove water in the micropores so that the residual water content in the polylactic acid-based expandable resin particles is 0.5% or less. Therefore, the micropores filled with water also have a cross-sectional area of 1 with respect to the cut surface of the expandable resin particles, like the micropores after the water removal.
It is desirable that there are 5000 to 30,000 pieces per mm 2 .

【0017】かかる発泡剤が含浸されたポリ乳酸系発泡
性樹脂粒子中の微孔の数は、前記ポリ乳酸系発泡性樹脂
粒子を予備発泡させて形成された発泡粒子のセルの大き
さと密接な関係がある。すなわち、微孔の数が多いほど
発泡粒子のセルは微細となり、微孔の数が少ないほど発
泡粒子のセルは粗大となる傾向を示す。このポリ乳酸系
発泡性樹脂粒子中の微孔の数は、水の存在下においての
発泡剤の含浸工程における各種条件(添加した水分量、
発泡剤の添加量、分散剤の種類及び添加量、含浸温度、
含浸時間、昇温及び冷却速度)等によって左右される
が、本発明では特に、発泡剤の含浸後においてポリ乳酸
系発泡性樹脂粒子の内部水分を逸散させる工程での温度
が極めて重要であることを見出した。
The number of micropores in the polylactic acid-based expandable resin particles impregnated with the foaming agent is closely related to the cell size of the expanded particles formed by pre-expanding the polylactic acid-based expandable resin particles. I have a relationship. That is, the larger the number of fine pores, the finer the cells of the expanded particles, and the smaller the number of fine pores, the larger the cells of the expanded particles. The number of micropores in the polylactic acid-based expandable resin particles depends on various conditions in the impregnation step of the foaming agent in the presence of water (amount of added water,
Addition amount of foaming agent, type and amount of dispersant, impregnation temperature,
It depends on the impregnation time, temperature rising rate and cooling rate, etc., but in the present invention, the temperature in the step of dissipating the internal moisture of the polylactic acid-based expandable resin particles after the impregnation of the foaming agent is extremely important. I found that.

【0018】本発明においては、発泡剤含浸後のポリ乳
酸系発泡性樹脂粒子の内部水分を逸散させる為、乾燥工
程が必要となる。この時、ポリ乳酸系樹脂組成物のガラ
ス転移温度(50〜60℃)よりもかなり高い温度で乾
燥を行うと、発泡が一部始まってしまうので好ましくな
い。該ガラス転移温度より少し高い温度で乾燥を行う
と、それまで存在していたポリ乳酸系発泡性樹脂粒子中
の微孔の数が大幅に減少し、乾燥工程終了後の予備発泡
により形成される発泡粒子のセル径が極めて粗大となる
他、発泡剤の逸散も多くなってその後の発泡が不十分と
なる等の問題を生じる。かかる問題を回避する為には、
乾燥温度は、ポリ乳酸系樹脂組成物のガラス転移温度以
下、好ましくは40℃以下である必要がある。また、前
記乾燥温度が5℃以下であると、ポリ乳酸系発泡性樹脂
粒子の内部水分の逸散が極めて遅く、非常に効率が悪
い。すなわち、発泡剤含浸後のポリ乳酸系発泡性樹脂粒
子の内部水分を逸散させる為の乾燥は、5℃以上で、且
つポリ乳酸系樹脂組成物のガラス転移温度以下、好まし
くは40℃以下で行われる。さらに好ましくは5℃ない
し35℃である。5℃ないし35℃以下の範囲で、ポリ
乳酸系発泡性樹脂粒子中の水分を逸散させ、発泡を行う
と、大きさ、数ともに特に良好なセルを得ることができ
る。
In the present invention, a drying step is required in order to dissipate the internal water content of the polylactic acid-based expandable resin particles after the impregnation with the foaming agent. At this time, if the drying is carried out at a temperature considerably higher than the glass transition temperature (50 to 60 ° C.) of the polylactic acid resin composition, foaming will partially start, which is not preferable. When drying is performed at a temperature slightly higher than the glass transition temperature, the number of micropores in the polylactic acid-based expandable resin particles that have been present up to that point is greatly reduced, and it is formed by prefoaming after the completion of the drying step. In addition to the extremely large cell diameter of the foamed particles, the amount of the foaming agent also increases, resulting in insufficient foaming thereafter. To avoid this problem,
The drying temperature needs to be not higher than the glass transition temperature of the polylactic acid resin composition, preferably not higher than 40 ° C. Further, when the drying temperature is 5 ° C. or lower, the dissipation of the internal water content of the polylactic acid-based expandable resin particles is extremely slow and the efficiency is very poor. That is, the drying of the polylactic acid-based expandable resin particles after the impregnation with the blowing agent to dissipate the internal water is performed at 5 ° C. or higher and at the glass transition temperature of the polylactic acid-based resin composition or lower, preferably 40 ° C. or lower. Done. More preferably, it is 5 ° C to 35 ° C. When the water content in the polylactic acid-based expandable resin particles is allowed to escape in the range of 5 ° C. to 35 ° C. or less and foaming is performed, a cell having a particularly good size and number can be obtained.

【0019】発泡粒子のセルの大きさは、乾燥温度と密
接に関係している為、この乾燥温度を変化させることで
所望する大きさのセルを得ることができる。乾燥温度が
高いと、乾燥工程前に存在していたポリ乳酸系発泡性樹
脂粒子中の微孔数が減少するので、前記発泡性樹脂粒子
を発泡させると、形成する発泡体のセルは大きくなる。
一方、乾燥温度が低ければ、ポリ乳酸系発泡性樹脂粒子
中の微孔数は減少することがないので、形成する発泡体
のセルは小さくなる。このポリ乳酸系発泡性樹脂粒子中
の微孔数の変化は乾燥温度の影響を受けるが、詳細に
は、前記ポリ乳酸系発泡性樹脂粒子中の水分の逸散速度
及びポリ乳酸系樹脂組成物の柔らかさが直接関与してい
るものと推定される。すなわち、乾燥温度が比較的高
く、ポリ乳酸系発泡性樹脂粒子が柔らかい状態となって
乾燥が行われると、微孔中の水分が急激に除去されやす
くなり、該微孔内が減圧された状態となって該微孔はそ
の形状を保持することができずに押しつぶされてしまう
事から、微孔の数が減少するものと考えられる。反対
に、乾燥温度が比較的低く、ポリ乳酸系発泡性樹脂粒子
がやや硬めの状態で乾燥が行われると、前記ポリ乳酸系
発泡性樹脂粒子中の微孔内の水分は急激に除去されるこ
とがないので、前記微孔内が減圧されて押しつぶされる
ことがないことから、微孔の数は減少することはないと
考えられる。
Since the cell size of the expanded particles is closely related to the drying temperature, it is possible to obtain a cell having a desired size by changing the drying temperature. When the drying temperature is high, the number of micropores in the polylactic acid-based expandable resin particles existing before the drying step decreases, so when the expandable resin particles are expanded, the cells of the foam to be formed become large. .
On the other hand, if the drying temperature is low, the number of fine pores in the polylactic acid-based expandable resin particles does not decrease, so that the cells of the foam to be formed become small. The change in the number of micropores in the polylactic acid-based expandable resin particles is affected by the drying temperature, and specifically, the rate of water escape in the polylactic acid-based expandable resin particles and the polylactic acid-based resin composition are described. It is presumed that the softness of is directly involved. That is, when the drying temperature is relatively high and the polylactic acid-based expandable resin particles are dried in a soft state, the water in the micropores is likely to be rapidly removed, and the inside of the micropores is depressurized. Therefore, it is considered that the number of the micropores decreases because the micropores cannot retain their shape and are crushed. On the contrary, when the drying temperature is relatively low and the polylactic acid-based expandable resin particles are dried in a slightly hard state, the water in the micropores in the polylactic acid-based expandable resin particles is rapidly removed. Since it does not occur, the inside of the micropores is not decompressed and crushed, so it is considered that the number of micropores does not decrease.

【0020】水分が充満されている微孔からその水分を
除去し、ポリ乳酸系発泡性樹脂粒子中の残存水分量とし
て0.5%以下の微孔となす為の方法としては特に決ま
ってはいないが、微孔を破壊したり、その数を極端に増
減させる等の好ましくない影響を与えるものでなければ
構わない。例えば、表面水分を遠心分離工程等で脱水し
たポリ乳酸系発泡性粒子を5℃ないし40℃の乾燥され
た空気に5ないし48時間の通風状態に晒して乾燥させ
る等の方法の他、真空乾燥、デシケーター中でシリカゲ
ル等の脱水剤を使用した乾燥等によっても可能である。
A method for removing the water from the micropores filled with water to form micropores having a residual water content of 0.5% or less in the polylactic acid-based expandable resin particles is not particularly determined. However, it does not matter as long as it does not have an unfavorable effect such as breaking the micropores or increasing or decreasing the number thereof. For example, the polylactic acid-based expandable particles whose surface water content has been dehydrated in a centrifugation step or the like are dried by exposing them to a dry air at 5 ° C to 40 ° C for 5 to 48 hours in a ventilated state, or by vacuum drying. It is also possible to dry by using a dehydrating agent such as silica gel in a desiccator.

【0021】上述したように、ポリ乳酸系発泡性樹脂粒
子中の微孔から乾燥等により水分が除去される過程にお
いて、最終的には、ポリ乳酸系発泡性樹脂粒子中に残存
する水分量は、0.5%以下が好ましく、0.1%以下
がさらに好ましい。前記発泡性樹脂粒子中に水分が0.
5%以上残存していると、発泡の際に水蒸気の温度や加
熱条件等をどのように変化させても発泡が殆ど又は全く
起こらない。
As described above, in the process of removing water from the fine pores in the polylactic acid-based expandable resin particles by drying or the like, finally, the amount of water remaining in the polylactic acid-based expandable resin particles is , 0.5% or less is preferable, and 0.1% or less is more preferable. Water content in the expandable resin particles is 0.
When 5% or more remains, the foaming hardly occurs at all even if the temperature of steam, the heating condition, etc. are changed at the time of foaming.

【0022】ポリ乳酸系発泡性樹脂粒子中の水分の除去
操作後に前記発泡性樹脂粒子中に残存する水分量は、そ
の除去の際の条件はもちろん、発泡剤の含浸時における
水の量や、発泡剤の含浸時での粒子同士の凝集・融着を
阻止するに必要な分散安定剤として添加される界面活性
剤、難水溶性の無機分散剤、ポリビニルアルコール等に
代表される水溶性高分子系安定剤の種類、量によっても
調節され得る。
The amount of water remaining in the expandable resin particles after the operation of removing the water in the polylactic acid-based expandable resin particles depends not only on the conditions for the removal, but also on the amount of water at the time of impregnation of the foaming agent, Water-soluble polymers represented by surfactants, sparingly water-soluble inorganic dispersants, polyvinyl alcohol, etc., which are added as dispersion stabilizers necessary to prevent aggregation and fusion of particles during impregnation with a foaming agent. It can also be adjusted by the type and amount of the system stabilizer.

【0023】本発明におけるさらに好ましい態様は、L
体とD体のモル比が95/5〜60/40、又は40/
60〜5/95であるポリ乳酸に、イソシアネート基≧
2.0当量/モルのポリイソシアネート化合物を該ポリ
乳酸に対して0.5〜5重量%配合し反応させてなるポ
リ乳酸系樹脂組成物の使用である。該樹脂組成物に発泡
剤を含浸させることにより、優れた発泡性を有する発泡
性樹脂粒子となり得る。L体とD体のモル比が95/5
を越えるもの、或いは5/95未満のものは結晶性が高
く、発泡倍率が上がらなかったり、発泡が不均一になる
為使用できない。また、該樹脂組成物を使用する場合に
おいて発泡性の良否を決定するメルトインデックス値
(MI)に影響を与えるイソシアネート化合物の添加量
は、前記ポリ乳酸に対して0.5重量%未満であると、
ポリ乳酸樹脂組成物のMIがあまり上昇せず、5重量%
を越えると発泡性を低下させる。
A further preferred embodiment of the present invention is L
The molar ratio of the body to the D body is 95/5 to 60/40, or 40 /
Polylactic acid of 60 to 5/95 has an isocyanate group ≧
It is the use of a polylactic acid-based resin composition obtained by mixing 2.0 equivalents / mole of a polyisocyanate compound with respect to the polylactic acid in an amount of 0.5 to 5% by weight and reacting the polylactic acid. By impregnating the resin composition with a foaming agent, expandable resin particles having excellent foamability can be obtained. The molar ratio of L-form to D-form is 95/5
Those exceeding 5 or less than 5/95 cannot be used because the crystallinity is high and the expansion ratio does not increase, or the foaming becomes uneven. Further, when the resin composition is used, the addition amount of the isocyanate compound that affects the melt index value (MI) that determines the quality of foamability is less than 0.5% by weight based on the polylactic acid. ,
The MI of the polylactic acid resin composition does not increase so much and is 5% by weight.
If it exceeds, the foaming property is deteriorated.

【0024】上述したように、ポリ乳酸系発泡性樹脂粒
子の切断面において、微孔が直径1ないし10μm、1
mm2あたり5000個乃至30000個存在する条件
下では、発泡剤の種類が限定されることなく、微細で均
一性の高い適正な発泡粒子が得られる。
As described above, in the cut surface of the polylactic acid-based expandable resin particles, the fine pores have a diameter of 1 to 10 μm, 1
Under the condition that there are 5,000 to 30,000 particles per mm 2 , the type of the foaming agent is not limited, and fine and highly uniform foamed particles can be obtained.

【0025】本発明のポリ乳酸系発泡性樹脂粒子には、
必要に応じてトルエン、キシレン、メタノール、アセト
ン等の発泡助剤、DOP、DOA、DBP、ヤシ油、パ
ーム油等の可塑剤、ヘキサブロモシクロドデカン、テト
ラブロモビスフェノールA等の難燃剤等を含有すること
ができる。
The polylactic acid-based expandable resin particles of the present invention include
If necessary, it contains a foaming aid such as toluene, xylene, methanol or acetone, a plasticizer such as DOP, DOA, DBP, coconut oil or palm oil, a flame retardant such as hexabromocyclododecane or tetrabromobisphenol A, etc. be able to.

【0026】これら発泡剤、発泡助剤等の樹脂組成物へ
の含浸は、水系又は水懸濁系において、高圧下、加熱し
て行うことができる。すなわち、樹脂のガラス転移温度
以上の含浸温度が選ばれるので、通常、70ないし11
0℃において、0.5ないし3時間の条件にて含浸され
得る。
The resin composition can be impregnated with these foaming agent, foaming auxiliary agent and the like in an aqueous system or a water suspension system by heating under high pressure. That is, since an impregnation temperature higher than the glass transition temperature of the resin is selected, it is usually 70 to 11
It can be impregnated at 0 ° C. for 0.5 to 3 hours.

【0027】本発明は、従来より慣用されているセル形
成剤(核剤)の添加が不要になるという利点を有するも
のであるが、もっとも、そのようなセル形成剤を添加す
ることは何ら差し支えないが、表面外観を悪化させた
り、成形品内部のセル間の融着性を著しく低下させない
程度の量で添加されることが望ましい。適するセル形成
剤としては、例えば、タルク、クエン酸ナトリウム、エ
チレンビスステアリン酸アマイド等が挙げられる。
The present invention has an advantage that the addition of a cell-forming agent (nucleating agent) which has been conventionally used is not necessary, but it is safe to add such a cell-forming agent. Although not present, it is desirable to add in an amount such that the surface appearance is not deteriorated and the fusion between the cells inside the molded product is not significantly reduced. Suitable cell forming agents include, for example, talc, sodium citrate, ethylene bisstearic acid amide, and the like.

【0028】しかして得られた本発明の発泡性樹脂粒子
から成形体を得るまでの工程は、通常行われている方法
でよく、特に限定されるものではないが、例えばあらか
じめ水蒸気を当てて加熱発泡するか、60〜120℃の
温風によって予備発泡性粒子とし、次いでこの予備発泡
性粒子を小さな孔やスリットが設けられている閉鎖型金
型の型内に充填し、さらに水蒸気又は温風によって加熱
再発泡することにより、個々の粒子を融着一体化した成
形体とする方法等が挙げられる。
The steps from the thus-obtained expandable resin particles of the present invention to a molded article may be carried out by a conventional method and are not particularly limited. It is foamed or made into pre-expandable particles by hot air of 60 to 120 ° C., and then these pre-expandable particles are filled in a mold of a closed mold having small holes and slits, and steam or hot air is further added. A method of forming a molded body in which individual particles are fusion-bonded and integrated by heating and re-foaming by using

【0029】なお、本発明における「微孔」とは、ポリ
乳酸系発泡性樹脂粒子の内部に存在する平均で直径1な
いし10μm程度の小孔を指す。微孔の中には、ポリ乳
酸系樹脂以外の物質、すなわち水、発泡剤、溶剤、可塑
剤等の添加剤等が含まれていてもよい。
The "micropores" in the present invention refer to the small pores having an average diameter of about 1 to 10 μm existing inside the polylactic acid-based expandable resin particles. The micropores may contain substances other than polylactic acid-based resin, that is, additives such as water, a foaming agent, a solvent, and a plasticizer.

【0030】[0030]

【実施例】以下に実施例及び比較例により、本発明をさ
らに具体的に説明する。尚、評価は下記の方法で行っ
た。
EXAMPLES The present invention will be described in more detail with reference to the following examples and comparative examples. The evaluation was carried out by the following method.

【0031】1.ポリ乳酸系組成物のメルトインデック
ス(MI)値 JISK7210に準拠した方法で測定した(測定温度
190℃、オリフィス径2mm、荷重2.16Kg)。
1. Melt index (MI) value of polylactic acid-based composition was measured by a method according to JIS K7210 (measurement temperature 190 ° C., orifice diameter 2 mm, load 2.16 Kg).

【0032】2.ポリ乳酸系発泡性樹脂粒子中の微孔の
観察及び数の計量 試料のポリ乳酸系発泡性粒子を液体窒素中に浸漬して凍
結させ、次いで鋭利な刃を使用して凍結状態のポリ乳酸
系発泡性粒子を切断し、その切断面を電子顕微鏡で観察
すると共に写真を撮影し、得られた電子顕微鏡写真よ
り、断面積1mm 2あたりの、直径1ないし10μmの
微孔の個数を算出した。
2. Of micropores in polylactic acid-based expandable resin particles
Observation and counting Sample polylactic acid-based expandable particles are immersed in liquid nitrogen and frozen.
Tie and then use a sharp blade to freeze polylactic acid
Cut the expandable particles and observe the cut surface with an electron microscope.
I took a picture with it and the obtained electron micrograph
Cross section 1 mm 2Per diameter of 1 to 10 μm
The number of micropores was calculated.

【0033】3.ポリ乳酸系発泡性樹脂粒子の水分測定 試料約1グラムを精秤した後、水分気化装置において、
試料を190℃にて15分間加熱し、その間に発生する
水分量をカールフィッシャー水分計(MKC−210
京都電子工業株式会社製)を使用して測定した。
3. After precisely weighing about 1 gram of a water content measurement sample of polylactic acid-based expandable resin particles, in a water vaporizer,
The sample is heated at 190 ° C. for 15 minutes, and the amount of water generated during that time is measured by the Karl Fischer moisture meter (MKC-210
It was measured using Kyoto Electronics Manufacturing Co., Ltd.).

【0034】4.ポリ乳酸系発泡性樹脂粒子の発泡剤測
定 試料約1グラムを精秤した後、トルエンに溶解し、ガス
クロマトグラフを使用して定量した。
4. About 1 gram of a sample for measuring a foaming agent of polylactic acid-based expandable resin particles was precisely weighed, dissolved in toluene, and quantified using a gas chromatograph.

【0035】5.予備発泡及び発泡倍率 ポリ乳酸系発泡性樹脂粒子は、85℃ないし95℃の水
蒸気により、30秒加熱して予備発泡粒子とした。ま
た、発泡ポリスチレンの場合は、100℃の水蒸気にて
2分間加熱して予備発泡粒子とした。得られた予備発泡
粒子は、メスシリンダーを使用して体積を測り、嵩倍率
を求めた。
5. Pre-expansion and Expansion Ratio Polylactic acid-based expandable resin particles were heated for 30 seconds with steam at 85 ° C. to 95 ° C. to give pre-expanded particles. Further, in the case of expanded polystyrene, it was heated with steam at 100 ° C. for 2 minutes to obtain pre-expanded particles. The volume of the obtained pre-expanded particles was measured using a measuring cylinder, and the bulk magnification was determined.

【0036】ポリ乳酸系樹脂組成物の製造ポリ乳酸系樹脂組成物(1)の製造: 市販のL−ラクチ
ド、D−ラクチドをそれぞれ酢酸エチルを使用して再結
晶して精製した。精製したL−ラクチド、D−ラクチド
及び触媒としてオクチル酸スズをスズとして10ppm
添加し、D体比率が10モル%になるように攪拌機付き
オートクレーブに仕込み、減圧脱気した後、N2雰囲気
下で開環重合した。反応終了後、オートクレーブよりポ
リマーを取り出した。次いで、該ポリマーを水分100
0ppm以下になるまで乾燥させた後、粘度増加剤とし
て官能基2.8当量のジフェニルメタンポリイソシアネ
ートを該ポリマーに対して1重量%をブレンドした後、
2軸混練機に供給し、回転数100rpm、溶融温度1
80℃、滞留時間3ないし5分、吐出量10kg/時の
条件下で反応混練した後、ダイスより押出しカットし
て、直径約1mmの粒子を得た。なお、得られたポリ乳
酸系樹脂組成物は、MI値0.2を有していた。
Production of Polylactic Acid Resin Composition Polylactic acid resin composition (1) Production: Commercially available L-lactide and D-lactide were recrystallized using ethyl acetate for purification. Purified L-lactide, D-lactide and tin octylate as a catalyst of 10 ppm as tin
The mixture was added, charged into an autoclave equipped with a stirrer so that the D-form ratio was 10 mol%, deaerated under reduced pressure, and then subjected to ring-opening polymerization in an N 2 atmosphere. After completion of the reaction, the polymer was taken out from the autoclave. The polymer is then treated with 100% water.
After drying to 0 ppm or less, after blending 1% by weight of the polymer with 2.8 equivalents of diphenylmethane polyisocyanate having a functional group as a viscosity increasing agent,
Supply to a twin-screw kneader, rotation speed 100 rpm, melting temperature 1
After reaction kneading under conditions of 80 ° C., residence time of 3 to 5 minutes, and discharge rate of 10 kg / hour, the mixture was extruded and cut from a die to obtain particles having a diameter of about 1 mm. The obtained polylactic acid resin composition had an MI value of 0.2.

【0037】ポリ乳酸系樹脂組成物(2)の製造:市販
のL−ラクチド、D−ラクチドをそれぞれ酢酸エチルを
使用して再結晶して精製した。精製したL−ラクチド、
D−ラクチド及び触媒としてオクチル酸スズをスズとし
て10ppm添加し、D体比率が10モル%になるよう
に攪拌機付きオートクレーブに仕込み、減圧脱気した
後、N2雰囲気下で開環重合した。反応終了後、オート
クレーブよりポリマーを取り出した。次いで、該ポリマ
ーを水分1000ppm以下になるまで乾燥させた後、
粒径約2.5ないし3μmのタルクを3重量%添加し、
粘度増加剤として官能基2.8当量のジフェニルメタン
ポリイソシアネートを該ポリマーに対して1重量%をブ
レンドした後、2軸混練機に供給し、回転数100rp
m、溶融温度180℃、滞留時間3ないし5分、吐出量
10kg/時の条件下で反応混練した後、ダイスより押
出しカットして、直径約1mmの粒子を得た。なお、得
られたポリ乳酸系樹脂組成物は、MI値0.2を有して
いた。
Production of polylactic acid resin composition (2): Commercially available L-lactide and D-lactide were recrystallized from ethyl acetate for purification. Purified L-lactide,
D-lactide and tin octylate as a catalyst (10 ppm as tin) were added, charged in an autoclave with a stirrer so that the D-form ratio was 10 mol%, deaerated under reduced pressure, and then subjected to ring-opening polymerization in an N 2 atmosphere. After completion of the reaction, the polymer was taken out from the autoclave. Then, after drying the polymer until the water content is 1000 ppm or less,
Add 3% by weight of talc with a particle size of about 2.5 to 3 μm,
As a viscosity increasing agent, diphenylmethane polyisocyanate having a functional group of 2.8 equivalents was blended in an amount of 1% by weight with respect to the polymer, and then the mixture was fed to a twin-screw kneader at a rotation speed of 100 rp.
m, melting temperature 180 ° C., residence time 3 to 5 minutes, discharge rate 10 kg / hour, reaction kneading was performed, and extrusion cutting was performed from a die to obtain particles having a diameter of about 1 mm. The obtained polylactic acid resin composition had an MI value of 0.2.

【0038】ポリ乳酸系発泡性樹脂粒子の製造 上記で得られたポリ乳酸系樹脂組成物(1)、(2)そ
れぞれ100部に対して、表−1に示す添加量の水が含
まれるポリ乳酸系樹脂組成物と水の混合系において、ポ
リ乳酸系樹脂組成物(1)、(2)それぞれ100部に
ついて、表−1に示す配合にて発泡剤の含浸を行った。
含浸は、攪拌機付きオートクレーブにて90℃で約1時
間保持することによって行った。
Production of Polylactic Acid-based Expandable Resin Particles 100 parts of each of the polylactic acid-based resin compositions (1) and (2) obtained above are added with water in the addition amount shown in Table-1. In a mixed system of a lactic acid resin composition and water, 100 parts of each of the polylactic acid resin compositions (1) and (2) was impregnated with a foaming agent according to the formulation shown in Table-1.
The impregnation was carried out by holding in an autoclave equipped with a stirrer at 90 ° C. for about 1 hour.

【表1】 注意)参考−1のスチレンビーズは、スチレンの懸濁重
合によって得られたビーズに、水懸濁系において発泡剤
(n−ペンタン)を含浸したもので、分散安定剤として
ポリビニルアルコールを加えて110℃にて4時間含浸
している。
[Table 1] Note) The styrene beads of Reference-1 are beads obtained by suspension polymerization of styrene and impregnated with a foaming agent (n-pentane) in an aqueous suspension system. It is impregnated for 4 hours at ℃.

【0039】表1の配合で発泡剤が含浸されたポリ乳酸
系発泡性樹脂粒子は、各々下記の条件下で乾燥された。 乾燥条件(1):ポリエチレン袋に密封し、15℃の温
度下において10日間保管した。 乾燥条件(2):25℃の乾燥空気を、ポリ乳酸系発泡
性樹脂粒子1kg当り、2L/分の量で通風して12時
間乾燥を行った。 乾燥条件(3):30℃の乾燥空気を、ポリ乳酸系発泡
性樹脂粒子1kg当り、2L/分の量で通風して12時
間乾燥を行った。 乾燥条件(4):35℃の乾燥空気を、ポリ乳酸系発泡
性樹脂粒子1kg当り、2L/分の量で通風して12時
間乾燥を行った。 乾燥条件(5):40℃の乾燥空気を、ポリ乳酸系発泡
性樹脂粒子1kg当り、2L/分の量で通風して12時
間乾燥を行った。 乾燥条件(6):45℃の乾燥空気を、ポリ乳酸系発泡
性樹脂粒子1kg当り、2L/分の量で通風して12時
間乾燥を行った。 そして、上記の各々の条件で乾燥した後、ポリ乳酸系発
泡性樹脂粒子を水蒸気により予備発泡した。このときの
微孔の数、発泡倍率、及びセルの大きさ等については表
2に記載した。
The polylactic acid-based expandable resin particles impregnated with the foaming agent in the formulation shown in Table 1 were dried under the following conditions. Drying condition (1): The bag was sealed in a polyethylene bag and stored at a temperature of 15 ° C for 10 days. Drying condition (2): Dry air at 25 ° C. was blown at a rate of 2 L / min for 1 kg of the polylactic acid-based expandable resin particles to perform drying for 12 hours. Drying condition (3): Dry air at 30 ° C. was blown at a rate of 2 L / min per 1 kg of the polylactic acid-based expandable resin particles to perform drying for 12 hours. Drying condition (4): Dry air at 35 ° C. was blown at a rate of 2 L / min per 1 kg of the polylactic acid-based expandable resin particles to perform drying for 12 hours. Drying condition (5): Dry air at 40 ° C. was blown at a rate of 2 L / min per 1 kg of the polylactic acid-based expandable resin particles to perform drying for 12 hours. Drying condition (6): Dry air at 45 ° C. was blown at a rate of 2 L / min per 1 kg of polylactic acid-based expandable resin particles to perform drying for 12 hours. Then, after drying under each of the above conditions, the polylactic acid-based expandable resin particles were pre-expanded with steam. The number of micropores at this time, the expansion ratio, and the cell size are shown in Table 2.

【表2】 [Table 2]

【0040】結 果 例番号−1:タルクを添加しないポリ乳酸組成物に、水
を50重量部添加しイソペンタンを発泡剤として含浸し
た系であるが、例番号1−1では、微孔の数は1900
0個/mm2であった。これを乾燥した粒子は、内部水
分量は0.08%と0.1%以下にまで低下したが、こ
れを予備発泡すると、発泡倍率35倍でセルの大きさが
70μmの良好な発泡粒子となった。さらに、例番号1
−2、1−3、1−4、1−5と、乾燥空気の温度が3
0℃、35℃、40℃、45℃と上昇するにつれ、形成
された微孔の数は15000個、11000個、600
0個、1000個と減少し、例番号1−5では、予備発
泡後の発泡粒子中のセルの大きさは、直径600μmと
やや粗大となり、前記発泡粒子の形状もやや歪となっ
た。 例番号−2、3、4:水の量を100、200、300
重量部とし、例番号−1に準じて含浸した例であるが、
例番号−1の結果と比較して、微孔の数が若干増加して
いる程度で、セルの大きさ、発泡粒子の形状に大きな変
化はなかった。 例番号−5:水の量を30部にして、例番号−1に準じ
て含浸した例であるが、乾燥を密封状態で行った5−1
では、内部水分が0.5%を超えており、セルは極めて
粗大で発泡後に収縮して歪な形となり、発泡倍率は9倍
と低いものであった。一方、乾燥を開放状態で行った5
−2においては、内部水分が0.06%と低い値となっ
た粒子は、良好に発泡した。 例番号−6:タルクを所定量添加して行った例である
が、6−1のように密封状態で乾燥したものは、内部水
分が2.4%と極めて多く、全く発泡しない状態であっ
た。一方、開放状態で乾燥した6−2では、内部水分が
0.28%と減少した為発泡はできたが、中心部と外部
においてセルの大きさが異なり、不均一な状態であっ
た。 例番号−7、8:イソペンタンに代えてn−ペンタン、
イソブタンを発泡剤とした例である。いずれも微孔の数
は5000〜30000個/mm2の範囲であり、開放
状態での乾燥を行うことで水分の量が減少し、良好なセ
ル、そして発泡状態であった。 例番号−9、10:水の添加量を5部、2部とした例で
あるが、含浸直後の水分量が減少し、微孔の数も減少し
てきている。それに従い、セルの大きさも増大してきて
いる。 例番号−11:さらに水の量を減少した例であるが、微
孔の数が減少しており、セルは1000μm以上の大き
さとなり、発泡後の粒子は歪に収縮し、適正な倍率を得
ることが出来なかった。 例番号−12、13:含浸中に水を添加しなかった系で
あるが、水が存在しないと、ポリ乳酸系発泡性樹脂粒子
中に微孔は全く形成されない。このことは、乾燥の条
件、発泡剤の種類によっても変わらず、適正な発泡は行
われなかった。 例番号−14:核剤が添加された例であるが、セル径が
大きく、適正な発泡は出来なかった。
[0040] Results Example No. -1: polylactic acid composition without the addition of talc, but the water was added 50 parts by weight isopentane is impregnated system as a blowing agent, in Example No. 1-1, the number of microporous Is 1900
The number was 0 / mm 2 . The dried particles had an internal water content of 0.08%, which was reduced to 0.1% or less. However, when pre-expanded, good expanded particles having an expansion ratio of 35 and a cell size of 70 μm were obtained. became. Furthermore, example number 1
-2, 1-3, 1-4, 1-5 and the temperature of dry air is 3
As the temperature increased to 0 ° C, 35 ° C, 40 ° C, and 45 ° C, the number of micropores formed was 15,000, 11,000, and 600.
In Example No. 1-5, the number of cells in the expanded beads after pre-expansion became slightly coarse with a diameter of 600 μm, and the shape of the expanded beads also became slightly distorted. Example number-2, 3, 4: The amount of water is 100, 200, 300
It is an example of impregnating according to Example No. -1 in parts by weight,
Compared with the results of Example No.-1, the number of micropores was slightly increased, and the cell size and the shape of the foamed particles were not significantly changed. Example No. -5: This is an example in which the amount of water was 30 parts and impregnation was carried out according to Example No. 1, but the drying was performed in a sealed state 5-1.
, The internal water content exceeded 0.5%, the cells were extremely coarse, and the cells contracted after foaming into a distorted shape, and the expansion ratio was as low as 9 times. On the other hand, drying was performed in an open state 5
In -2, the particles having a low internal water content of 0.06% foamed well. Example No. -6: This is an example in which a predetermined amount of talc was added. The product dried in a sealed state as in 6-1 had an extremely large internal water content of 2.4% and was in a state of not foaming at all. It was On the other hand, in 6-2 dried in the open state, the internal water content was reduced to 0.28%, so that foaming was possible, but the cell size was different between the central part and the outside, and it was in a non-uniform state. Example Nos. -7 and 8: n-pentane instead of isopentane,
This is an example of using isobutane as a foaming agent. In all cases, the number of micropores was in the range of 5000 to 30,000 / mm 2 , and the amount of water was reduced by performing drying in an open state, resulting in good cells and in a foamed state. Example Nos. -9 and 10: In this example, the amount of water added is 5 parts and 2 parts, but the amount of water immediately after impregnation decreases and the number of micropores also decreases. Along with that, the size of the cell is also increasing. Example No. 11: This is an example in which the amount of water was further reduced, but the number of micropores was reduced, the cell became 1000 μm or more in size, and the particles after foaming contracted to strain, and an appropriate magnification was obtained. I couldn't get it. Example Nos. 12 and 13: A system in which water was not added during impregnation, but in the absence of water, no micropores were formed in the polylactic acid-based expandable resin particles. This did not change depending on the drying conditions and the type of foaming agent, and proper foaming was not performed. Example number -14: This is an example in which a nucleating agent was added, but the cell diameter was large and proper foaming could not be performed.

【発明の効果】以上に説明した本発明のポリ乳酸系発泡
性樹脂粒子は、発泡剤をポリ乳酸系樹脂組成物に対して
3重量%以上含有するポリ乳酸系発泡性樹脂粒子の切断
面について、残存水分量が0.5%以下である微孔が断
面積1mm2あたり5000個乃至30000個存在す
ることを特徴とするものである。このポリ乳酸系発泡性
樹脂粒子の使用により、ポリ乳酸系樹脂組成物への発泡
剤の含浸が、上述した問題点のある非水系でなく、水系
又は水懸濁系で行うことが可能となった。さらにタルク
等の核剤を添加する必要がなくなり、同時に発泡剤がそ
の種類が制限されることなく使用でき、発泡後には微細
で均一性の高い適正なセルを有する発泡体を形成するこ
とが可能となる。
The polylactic acid-based expandable resin particles of the present invention described above are the cut surfaces of the polylactic acid-based expandable resin particles containing the foaming agent in an amount of 3% by weight or more based on the polylactic acid-based resin composition. The present invention is characterized in that there are 5,000 to 30,000 micropores having a residual water content of 0.5% or less per 1 mm 2 of cross-sectional area. By using the polylactic acid-based expandable resin particles, it becomes possible to impregnate the polylactic acid-based resin composition with the foaming agent in an aqueous or water-suspended system instead of the non-aqueous system having the above-mentioned problems. It was Furthermore, it is not necessary to add a nucleating agent such as talc, and at the same time, the foaming agent can be used without limitation in its type, and it is possible to form a foam having fine cells with high uniformity after foaming. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】水50部を添加したときのポリ乳酸系発泡性樹
脂粒子の内部の外表面近くを倍率500倍で撮影した電
子顕微鏡写真を示す。
FIG. 1 shows an electron micrograph taken at a magnification of 500 times near the outer surface of the inside of polylactic acid-based expandable resin particles when 50 parts of water was added.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】発泡剤をポリ乳酸系樹脂組成物に対して3
重量%以上含有するポリ乳酸系発泡性樹脂粒子の切断面
について、微孔が断面積1mm2あたり5000個乃至
30000個存在することを特徴とするポリ乳酸系発泡
性樹脂粒子。
1. A foaming agent is added to a polylactic acid resin composition in an amount of 3
Polylactic acid-based expandable resin particles, characterized in that the cut surface of the polylactic acid-based expandable resin particles contained in an amount of not less than 5% by weight has 5,000 to 30,000 micropores per 1 mm 2 in cross-sectional area.
【請求項2】ポリ乳酸系樹脂組成物と水との混合系であ
ってポリ乳酸系樹脂組成物100重量部に対して水を1
重量部以上含む系において、発泡剤を該ポリ乳酸系樹脂
組成物に対し3重量%以上含浸し、次いで乾燥させて得
られるポリ乳酸系発泡性樹脂粒子であって、残存水分量
が0.5%以下である該ポリ乳酸系発泡性樹脂粒子の切
断面において、微孔が断面積1mm2あたり5000個
乃至30000個存在することを特徴とするポリ乳酸系
発泡性樹脂粒子。
2. A mixed system of a polylactic acid resin composition and water, wherein 1 part of water is added to 100 parts by weight of the polylactic acid resin composition.
Polylactic acid-based expandable resin particles obtained by impregnating the polylactic acid-based resin composition with a foaming agent in an amount of 3 parts by weight or more in an amount of 3 parts by weight or more, and then drying, and having a residual water content of 0.5. % Or less, the cut surface of the polylactic acid-based expandable resin particle has 5000 to 30,000 micropores per 1 mm 2 in cross-sectional area.
【請求項3】前記微孔は、平均で1μm乃至10μmの
直径を有することを特徴とする、請求項1又は2記載の
ポリ乳酸系発泡性樹脂粒子。
3. The polylactic acid-based expandable resin particle according to claim 1, wherein the micropores have an average diameter of 1 μm to 10 μm.
【請求項4】前記ポリ乳酸系樹脂組成物は、L体とD体
のモル比が95/5〜60/40、又は40/60〜5
/95であるポリ乳酸に、イソシアネート基≧2.0当
量/モルのポリイソシアネート化合物を該ポリ乳酸に対
して0.5〜5重量%配合し反応させてなる樹脂組成物
であることを特徴とする、請求項1又は2記載のポリ乳
酸系発泡性樹脂粒子。
4. The polylactic acid-based resin composition has a molar ratio of L-form to D-form of 95/5 to 60/40, or 40 / 60-5.
A resin composition obtained by mixing polylactic acid of 95/95 with a polyisocyanate compound having an isocyanate group ≧ 2.0 equivalents / mol based on 0.5 to 5% by weight of the polylactic acid. The polylactic acid-based expandable resin particles according to claim 1 or 2.
【請求項5】請求項1乃至請求項4のいずれかに記載の
ポリ乳酸系発泡性樹脂粒子を予備発泡させ、次いでそれ
を発泡成形して得られる発泡成形品。
5. A foam-molded article obtained by pre-foaming the polylactic acid-based expandable resin particles according to any one of claims 1 to 4 and then foam-molding them.
JP2001278015A 2001-09-13 2001-09-13 Polylactic acid-based expandable resin particles Expired - Fee Related JP4816853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278015A JP4816853B2 (en) 2001-09-13 2001-09-13 Polylactic acid-based expandable resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001278015A JP4816853B2 (en) 2001-09-13 2001-09-13 Polylactic acid-based expandable resin particles

Publications (2)

Publication Number Publication Date
JP2003082150A true JP2003082150A (en) 2003-03-19
JP4816853B2 JP4816853B2 (en) 2011-11-16

Family

ID=19102455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278015A Expired - Fee Related JP4816853B2 (en) 2001-09-13 2001-09-13 Polylactic acid-based expandable resin particles

Country Status (1)

Country Link
JP (1) JP4816853B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068306A (en) * 2003-08-26 2005-03-17 Kanebo Ltd Expandable polylactic acid-based resin composition and method for producing the same resin composition
WO2006103971A1 (en) * 2005-03-25 2006-10-05 Kaneka Corporation Foamed thermoplastic resin particles and method of producing the foamed particles
JP2007056080A (en) * 2005-08-22 2007-03-08 Mitsubishi Chemicals Corp Biodegradable resin foamable particle, method for producing the biodegradable resin foamable particle, and foamed-in-place molded product
WO2007049694A1 (en) * 2005-10-26 2007-05-03 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136261A (en) * 1998-08-28 2000-05-16 Mitsui Chemicals Inc Foaming particle and production of the same
JP2000319438A (en) * 1999-05-11 2000-11-21 Kanegafuchi Chem Ind Co Ltd Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP2001164027A (en) * 1999-09-30 2001-06-19 Kanebo Ltd Polylactic acid foaming particle and formed product thereof and method for producing the same particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136261A (en) * 1998-08-28 2000-05-16 Mitsui Chemicals Inc Foaming particle and production of the same
JP2000319438A (en) * 1999-05-11 2000-11-21 Kanegafuchi Chem Ind Co Ltd Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP2001164027A (en) * 1999-09-30 2001-06-19 Kanebo Ltd Polylactic acid foaming particle and formed product thereof and method for producing the same particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068306A (en) * 2003-08-26 2005-03-17 Kanebo Ltd Expandable polylactic acid-based resin composition and method for producing the same resin composition
WO2006103971A1 (en) * 2005-03-25 2006-10-05 Kaneka Corporation Foamed thermoplastic resin particles and method of producing the foamed particles
US8148439B2 (en) 2005-03-25 2012-04-03 Meredian, Inc. Foamed thermoplastic resin particles and method of producing the foamed particles
JP5121447B2 (en) * 2005-03-25 2013-01-16 株式会社カネカ Thermoplastic resin expanded particles and molded articles thereof
JP2007056080A (en) * 2005-08-22 2007-03-08 Mitsubishi Chemicals Corp Biodegradable resin foamable particle, method for producing the biodegradable resin foamable particle, and foamed-in-place molded product
WO2007049694A1 (en) * 2005-10-26 2007-05-03 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead

Also Published As

Publication number Publication date
JP4816853B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
TWI398471B (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
CA2803214C (en) Expanded and extruded thermoplastic foams made with methyl formate-based blowing agents
JP4213200B2 (en) Polylactic acid resin foamed particles for in-mold foam molding, production method thereof, and production method of polylactic acid resin foam molding
US5348984A (en) Expandable composition and process for extruded thermoplastic foams
CA2783862C (en) Extrusion expansion of low molecular weight polyalkylene terephthalate for production of expanded beads
JP4761916B2 (en) Polylactic acid resin foam molding
JP5873098B2 (en) Method for producing foamable thermoplastic beads with improved foamability
JP2004263184A (en) Open-cell foamed body composed of high melting point plastic
US6030696A (en) Extruded polyolefin foam in thicker grades and plank and process therefor
US6872757B2 (en) Expandable composition, blowing agent, and process for extruded thermoplastic foams
JP2002523587A (en) Foams made from blends of syndiotactic polypropylene and thermoplastic polymers
JP4816853B2 (en) Polylactic acid-based expandable resin particles
JPS60252636A (en) Preparation of preexpanded particle
JP4038673B2 (en) Polylactic acid-based expandable resin particles and foamed molded products
JP2002302567A (en) Method for continuous production of pre-expanded bead of biodegradable polyester-based resin
US4923654A (en) Blowing agent for expandable polymeric foams
JP2001164027A (en) Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JP2000017037A (en) Expandable resin composition having biodegadability
JP3507699B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2011213906A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
JP2004143269A (en) Thermoplastic resin foamed particle, its molding and method for producing the foamed particle
JP2004292489A (en) Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product
JP4236516B2 (en) Method for producing polylactic acid-based expandable resin particles
JP2003301066A (en) Lightweight structural material and thermal insulation with good degradability when scrapped and manufacturing method thereof
JP2011213905A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees