JP2011213906A - Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding - Google Patents

Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding Download PDF

Info

Publication number
JP2011213906A
JP2011213906A JP2010084176A JP2010084176A JP2011213906A JP 2011213906 A JP2011213906 A JP 2011213906A JP 2010084176 A JP2010084176 A JP 2010084176A JP 2010084176 A JP2010084176 A JP 2010084176A JP 2011213906 A JP2011213906 A JP 2011213906A
Authority
JP
Japan
Prior art keywords
polylactic acid
based resin
expanded particles
particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010084176A
Other languages
Japanese (ja)
Inventor
Tetsuya Ochiai
哲也 落合
Katsunori Nishijima
克典 西嶋
Satomi Harada
里美 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2010084176A priority Critical patent/JP2011213906A/en
Publication of JP2011213906A publication Critical patent/JP2011213906A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide resin foaming particles that provide a foamed molding having high porosity, water absorbability and biodegradability, and also have excellent moldability, a method for producing the same, and the foamed molding obtained from the resin foaming particles.SOLUTION: Polylactic acid-based resin foaming particles are provided, which have an open cell ratio of 25-50% and are spherical or generally spherical. The foamed molding obtained by performing in-mold molding of the polylactic acid-based resin foaming particles has a water absorption coefficient of 10-35%.

Description

本発明は、ポリ乳酸系樹脂発泡粒子、その製造方法および発泡成形体に関する。さらに詳しくは、本発明は、高い空隙率、吸水性および生分解性を有する発泡成形体を与え、さらに成形性に優れた樹脂発泡粒子、その製造方法および前記樹脂発泡粒子から得られる発泡成形体に関する。   The present invention relates to polylactic acid-based resin expanded particles, a method for producing the same, and an expanded molded body. More specifically, the present invention provides a foamed molded product having high porosity, water absorption and biodegradability, and further has resin moldable particles excellent in moldability, a method for producing the same, and a foamed molded product obtained from the resin foamed particles. About.

従来、土木、建築、園芸等の分野での排水性を向上させる土壌改良材や自動車の吸音部材として粒子間空隙を有するような発泡性ポリスチレン系樹脂発泡成形体やポリオレフィン系樹脂発泡成形体が多く用いられてきた。   Conventionally, there are many foamable polystyrene resin foam moldings and polyolefin resin foam moldings having inter-particle voids as soil improvement materials that improve drainage in the fields of civil engineering, architecture, horticulture, etc. and sound absorbing members of automobiles Has been used.

しかしながら、前記発泡成形体はその樹脂組成のために高い吸水性を示さず、その結果保水性等も備えていなかった。このため、前記発泡成形体はその優れた断熱性、軽量性、耐水性等を有するにも拘わらず、その使用用途には限界があった。   However, the foamed molded article did not exhibit high water absorption due to its resin composition, and as a result, it did not have water retention. For this reason, although the said foaming molding has the outstanding heat insulation, lightweight property, water resistance, etc., the use application had a limit.

そこで、前記問題点に鑑みて、貫通孔を有し、その内部に保水性素材が保持された樹脂発泡粒子、および前記樹脂発泡粒子を発泡成形した、高い空隙率および吸水性を有する発泡成形体が特許文献1に記載されている。   Accordingly, in view of the above-mentioned problems, resin foam particles having a through hole and a water-retaining material held therein, and a foam-molded article having a high porosity and water absorption, obtained by foam-molding the resin foam particles. Is described in Patent Document 1.

特開平9−118770号公報JP-A-9-118770

特許文献1に記載の樹脂発泡粒子は、その製造方法のために貫通孔を備えた筒状の形体を有している。このため、樹脂発泡粒子を型内成型する際、樹脂発泡粒子をバッチ毎に発泡成型機へ十分に充填できない場合があり、その結果、所望の嵩倍数を有する発泡成形体を得ることができないという成形性についての問題があった。また、所望の金型内に樹脂発泡粒子を充填することができず、複雑な形状を有する発泡成形体を得ることができないという問題もあった。さらに、貫通孔を有する樹脂発泡粒子に保水性素材を充填するためのそれ専用の製造装置を要するだけでなく、保水性素材の樹脂発泡粒子からの脱離も考えられ、前記樹脂発泡粒子は安定した吸水性等の性能を期待できるものではない。他方、特許文献1に記載の発泡成形体に含まれる樹脂組成は、生分解性を示さず現在大きな注目を集めている環境面からも好ましいものではない。   The resin foam particles described in Patent Document 1 have a cylindrical shape provided with a through hole for the manufacturing method. For this reason, when molding resin foam particles in a mold, the resin foam particles may not be sufficiently filled into a foam molding machine for each batch, and as a result, a foam molded article having a desired bulk factor cannot be obtained. There was a problem with formability. In addition, there is also a problem that it is impossible to fill the foamed resin particles in a desired mold and it is impossible to obtain a foamed molded product having a complicated shape. Furthermore, not only does it require a dedicated manufacturing device for filling the water-retaining material into the resin foam particles having through-holes, but also the detachment of the water-retaining material from the resin foam particles is possible, and the resin foam particles are stable. Performance such as water absorption is not expected. On the other hand, the resin composition contained in the foamed molded article described in Patent Document 1 is not preferable from the viewpoint of the environment that does not exhibit biodegradability and is currently attracting much attention.

これらの問題点に鑑みて、高い空隙率、吸水性および生分解性を有する発泡成形体を与え、さらに成形性に優れた樹脂発泡粒子等の提供が望まれている。   In view of these problems, it is desired to provide a foamed molded article having high porosity, water absorption and biodegradability, and to provide resin foam particles having excellent moldability.

かくして本発明によれば、25〜50%の連続気泡率を有する球状ないし略球状のポリ乳酸系樹脂発泡粒子であり、前記ポリ乳酸系樹脂発泡粒子を型内成形して得られる発泡成形体が10〜35%の吸水率を有することを特徴とするポリ乳酸系樹脂発泡粒子が提供される。   Thus, according to the present invention, there are spherical or substantially spherical polylactic acid-based resin foamed particles having an open cell ratio of 25 to 50%, and a foamed molded product obtained by molding the polylactic acid-based resin foamed particles in a mold. A polylactic acid resin expanded particle having a water absorption of 10 to 35% is provided.

また、本発明によれば、ポリ乳酸系樹脂発泡粒子の製造方法であって、
前記ポリ乳酸系樹脂を押出機に供給して発泡剤下にて溶融混練する工程と、
前記押出機の前端に取り付けたノズル金型からポリ乳酸系樹脂押出物を押出し、前記ポリ乳酸系樹脂押出物を発泡させながら、210〜235℃のノズル金型の温度で、前記ノズル金型の前端面に接触させながら2000〜10000rpmの回転数で回転する回転刃によって切断して前記ポリ乳酸系樹脂発泡粒子を製造し、前記ポリ乳酸系樹脂発泡粒子を切断応力によって飛散させる工程と、
前記ポリ乳酸系樹脂発泡粒子を前記ノズル金型の前方に配設した冷却部材を衝突させて冷却する工程と
を含むポリ乳酸系樹脂発泡粒子の製造方法が提供される。
Moreover, according to the present invention, there is provided a method for producing polylactic acid-based resin expanded particles,
Supplying the polylactic acid resin to an extruder and melt-kneading under a foaming agent;
While extruding a polylactic acid resin extrudate from a nozzle mold attached to the front end of the extruder and foaming the polylactic acid resin extrudate, the temperature of the nozzle mold is 210 to 235 ° C. Cutting with a rotary blade rotating at a rotational speed of 2000 to 10000 rpm while contacting the front end surface to produce the polylactic acid resin foamed particles, and scattering the polylactic acid resin foamed particles by cutting stress;
And a step of cooling the polylactic acid-based resin expanded particles by colliding with a cooling member disposed in front of the nozzle mold.

本発明によれば、前記ポリ乳酸系樹脂発泡粒子を型内成形した発泡成形体が提供される。   According to the present invention, there is provided a foamed molded article obtained by molding the polylactic acid resin foamed particles in a mold.

本発明によれば、高い空隙率、吸水性および生分解性を有する発泡成形体を与え、さらに成形性に優れたポリ乳酸系樹脂発泡粒子を得ることができる。   According to the present invention, it is possible to give a foamed molded article having high porosity, water absorption and biodegradability, and to obtain polylactic acid resin foamed particles having excellent moldability.

本発明によれば、ポリ乳酸系樹脂発泡粒子が、ポリ乳酸系樹脂発泡粒子の最も長い直径Lと最も短い直径Sとの間に1.0〜1.3の比(L/S)を有する場合、さらに、より成形性に優れた発泡成形体を得ることができる。   According to the present invention, the polylactic acid-based resin expanded particles have a ratio (L / S) of 1.0 to 1.3 between the longest diameter L and the shortest diameter S of the polylactic acid-based resin expanded particles. In this case, it is possible to obtain a foamed molded article having further excellent moldability.

本発明によれば、ポリ乳酸系樹脂発泡粒子が、構成単量体成分としてD体およびL体の双方の光学異性体を含有しかつD体またはL体のうち少ない方の光学異性体の含有量が5モル%未満であるか、または、構成単量体成分としてD体またはL体のうちの何れか一方の光学異性体のみを含有するポリ乳酸系樹脂を含む場合、さらに、より高い耐熱性を発泡成形体に導入することができる。   According to the present invention, the polylactic acid-based resin expanded particles contain both D-form and L-form optical isomers as constituent monomer components, and contain the smaller of the D-form and L-form optical isomers. When the amount is less than 5 mol% or a polylactic acid resin containing only one of the optical isomers of D-form or L-form as a constituent monomer component is included, higher heat resistance Can be introduced into the foamed molded product.

本発明によれば、ポリ乳酸系樹脂発泡粒子が、ポリ乳酸系樹脂発泡粒子100重量部に対して1.5〜3.8重量部の発泡剤を含む場合、ポリ乳酸系樹脂発泡粒子に所望の発泡性能を付与することができる。   According to the present invention, when the polylactic acid-based resin expanded particles include 1.5 to 3.8 parts by weight of a foaming agent with respect to 100 parts by weight of the polylactic acid-based resin expanded particles, the polylactic acid-based resin expanded particles are desired. The foaming performance can be imparted.

本発明によれば、ポリ乳酸系樹脂発泡粒子が、0.06〜0.15g/cm3の嵩密度を有する場合、所望の空隙率を有する発泡成形体をより容易に得ることができる。 According to the present invention, when the polylactic acid-based resin foamed particles have a bulk density of 0.06 to 0.15 g / cm 3 , a foamed molded product having a desired porosity can be obtained more easily.

本発明によれば、ポリ乳酸系樹脂発泡粒子が、10〜35%の吸水率を有する場合、所望の吸水率を有する発泡成形体をより容易に得ることができる。   According to the present invention, when the polylactic acid-based resin expanded particles have a water absorption rate of 10 to 35%, a foamed molded product having a desired water absorption rate can be obtained more easily.

本発明によれば、本発明の製造方法を用いることにより、球状ないし略球状のポリ乳酸系樹脂発泡粒子をより容易に製造することができる。   According to the present invention, spherical or substantially spherical polylactic acid-based resin expanded particles can be more easily manufactured by using the manufacturing method of the present invention.

本発明によれば、生分解性を有する発泡成形体を得ることができる。   According to the present invention, a foamed molded article having biodegradability can be obtained.

本発明によれば、より高い空隙率を有する発泡成形体を得ることができる。   According to the present invention, a foamed molded product having a higher porosity can be obtained.

型内発泡成形用ポリ乳酸系樹脂発泡粒子の製造装置の一例を示した模式断面図である。It is the schematic cross section which showed an example of the manufacturing apparatus of the polylactic acid-type resin expanded particle for in-mold foam molding. ノズル金型を正面から見た模式図である。It is the schematic diagram which looked at the nozzle metal mold from the front. 実施例1で得られたポリ乳酸系樹脂発泡粒子を撮影した写真である。2 is a photograph of the polylactic acid resin expanded particles obtained in Example 1.

本発明によれば、25〜50%の連続気泡率を有する球状ないし略球状のポリ乳酸系樹脂発泡粒子であり、前記ポリ乳酸系樹脂発泡粒子を型内成形して得られる発泡成形体が10〜35%の吸水率を有することを特徴とするポリ乳酸系樹脂発泡粒子が提供される。   According to the present invention, spherical or substantially spherical polylactic acid resin foamed particles having an open cell ratio of 25 to 50%, and 10 foam-molded articles obtained by in-mold molding of the polylactic acid resin foamed particles are 10 Polylactic acid-based resin expanded particles having a water absorption of ˜35% are provided.

具体的には、25〜50%の連続気泡率を有するポリ乳酸系樹脂発泡粒子を型内成形することにより、10〜35%の吸水率を有する発泡成形体、即ち、高い吸水性および生分解性を有する発泡成形体を得ることができる。また、前記ポリ乳酸系樹脂発泡粒子は球状ないし略球状であるため、従来の柱状、円筒状等の発泡粒子と比べて流動性等に優れ、成形性にも優れたものである。ここで、連続気泡率とは、ポリ乳酸系樹脂発泡粒子中に含まれる独立気泡以外の連続気泡の比率を意味する。他方、空隙率とは、発泡成形体の発泡粒子で占められていない粒子間空隙部の比率を意味する。なお、これらの測定方法等については実施例において詳説する。   Specifically, a foamed molded article having a water absorption rate of 10 to 35%, that is, high water absorption and biodegradation, is obtained by in-mold molding polylactic acid resin foamed particles having an open cell ratio of 25 to 50%. A foamed molded product having properties can be obtained. In addition, since the polylactic acid-based resin foamed particles are spherical or substantially spherical, they have excellent fluidity and moldability compared to conventional foamed particles such as columns and cylinders. Here, the open cell ratio means a ratio of open cells other than closed cells contained in the polylactic acid resin expanded particles. On the other hand, the porosity means the ratio of the interparticle voids not occupied by the expanded particles of the foam molded article. In addition, about these measuring methods etc., it explains in full detail in an Example.

以下に本発明で得られるポリ乳酸系樹脂発泡粒子、発泡成形体等について説明する。
(ポリ乳酸系樹脂発泡粒子)
(1)ポリ乳酸系樹脂
本発明においては、ポリ乳酸系樹脂として乳酸がエステル結合により重合した樹脂を用いることができ、商業的な入手容易性およびポリ乳酸系樹脂発泡粒子への発泡性付与の観点から、D−乳酸およびL−乳酸の共重合体、D−乳酸(D体)またはL−乳酸(L体)のいずれか一方の単独重合体、D−ラクチド、L−ラクチドおよびDL−ラクチドからなる群から選択される1または2以上のラクチドの開環重合体が好ましい。
The polylactic acid resin foamed particles, foamed molded product and the like obtained in the present invention will be described below.
(Polylactic acid resin foamed particles)
(1) Polylactic acid-based resin In the present invention, a resin in which lactic acid is polymerized by an ester bond can be used as the polylactic acid-based resin. From the viewpoint, a copolymer of D-lactic acid and L-lactic acid, a homopolymer of either D-lactic acid (D-form) or L-lactic acid (L-form), D-lactide, L-lactide and DL-lactide A ring-opening polymer of one or more lactides selected from the group consisting of

ポリ乳酸系樹脂は、発泡成形工程や所望の物性等に影響を与えない限り、乳酸以外の単量体として、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等の脂肪族ヒドロキシカルボン酸;
コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジカルボン酸、無水コハク酸、無水アジピン酸、トリメシン酸、プロパントリカルボン酸、ピロメリット酸、無水ピロメリット酸等の脂肪族多価カルボン酸;
エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、デカメチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリトリット等の脂肪族多価アルコール等を任意に含んでいてもよい。
Polylactic acid-based resins are aliphatic monomers such as glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxyheptanoic acid, etc., as long as they do not affect the foam molding process or desired physical properties. Hydroxycarboxylic acid;
Aliphatic polycarboxylic acids such as succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedicarboxylic acid, succinic anhydride, adipic anhydride, trimesic acid, propanetricarboxylic acid, pyromellitic acid, pyromellitic anhydride;
Aliphatic polyhydric alcohols such as ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, decamethylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc. May optionally be included.

また、本発明で使用するポリ乳酸系樹脂は、同様に発泡成形工程や所望の物性等に影響を与えない限り、アルキル基、ビニル基、カルボニル基、芳香族基、エステル基、エーテル基、アルデヒド基、アミノ基、ニトリル基、ニトロ基等のその他の官能基を含んでいてもよい。また、イソシアネート系架橋剤等により架橋されていてもよく、エステル結合以外の結合手により結合していてもよい。さらに、ポリ乳酸系樹脂を単独で使用してもよく、2種以上を併用してもよい。   In addition, the polylactic acid resin used in the present invention may be an alkyl group, a vinyl group, a carbonyl group, an aromatic group, an ester group, an ether group, an aldehyde, as long as it does not affect the foam molding process and desired physical properties. Other functional groups such as a group, an amino group, a nitrile group, and a nitro group may be included. Moreover, it may be bridge | crosslinked with the isocyanate type crosslinking agent etc., and may couple | bond together with bonds other than an ester bond. Furthermore, a polylactic acid-type resin may be used independently and 2 or more types may be used together.

ポリ乳酸系樹脂を製造する場合、ポリ乳酸系樹脂の製造方法としては、特に限定されず公知の方法をいずれも使用することができる。具体的には、オクタン酸スズ(II)等の触媒存在下、ラクチドを重合させるラクチド法;ジフェニルエーテル等の溶媒中で乳酸系化合物を減圧下加熱し、水を取り除きながら重合を行う直接重合法;乳酸系化合物を溶融させつつ重合を行う溶融法等の重合方法が挙げられる。   When manufacturing a polylactic acid-type resin, it does not specifically limit as a manufacturing method of a polylactic acid-type resin, All can use a well-known method. Specifically, a lactide method in which lactide is polymerized in the presence of a catalyst such as tin (II) octoate; a direct polymerization method in which a lactic acid compound is heated under reduced pressure in a solvent such as diphenyl ether to perform polymerization while removing water; Examples of the polymerization method include a melting method in which polymerization is performed while melting a lactic acid compound.

本発明で使用するポリ乳酸系樹脂は、環境中に含まれる水分によって、エステル結合が加水分解されることにより低分子化され、最終的には微生物によって二酸化炭素と水にまで分解され得る。具体的には、堆肥中においては約1週間で分解されることもある。このため、本発明で得られるポリ乳酸系樹脂発泡粒子およびその発泡成形体は生分解性を有し、現在大きな問題となっている環境面等からも好ましい。   The polylactic acid-based resin used in the present invention can be reduced in molecular weight by hydrolysis of ester bonds with moisture contained in the environment, and finally decomposed into carbon dioxide and water by microorganisms. Specifically, it may be decomposed in about 1 week in compost. For this reason, the polylactic acid-based resin foamed particles obtained by the present invention and the foamed molded product thereof are biodegradable, which is preferable from the viewpoint of the environment that is currently a major problem.

また、ポリ乳酸系樹脂に所望の量の発泡剤を容易に含浸させることができる。また、ポリ乳酸系樹脂は発泡剤に対する高いガスバリア性も有する。このため、本発明においては、高い連続気泡率を有するポリ乳酸系樹脂発泡粒子を得ることができ、その結果、高い空隙率を有する発泡成形体を容易に得ることもできる。   In addition, the polylactic acid resin can be easily impregnated with a desired amount of foaming agent. The polylactic acid resin also has a high gas barrier property against the foaming agent. For this reason, in this invention, the polylactic acid-type resin expanded particle which has a high open cell ratio can be obtained, As a result, the foaming molding which has a high porosity can also be obtained easily.

ここで、D体またはL体のうちの少ない方の光学異性体の割合が5モル%未満であるD体とL体との共重合体、およびD体またはL体のいずれか一方の単独重合体は、少ない方の光学異性体が減少するに従って、結晶性が高くなり融点が高くなる傾向がある。一方、D体またはL体のうちの少ない方の光学異性体の割合が5モル%以上であるD体とL体との共重合体は、少ない方の光学異性体が増加するに従って、結晶性が低くなり、やがて非結晶となる傾向がある。よって、例えば、高い耐熱性が望まれる用途では、前者のポリ乳酸系樹脂を、複雑な空間への充填性の向上が望まれる用途では、後者のポリ乳酸系樹脂を使用できる。   Here, a copolymer of D-form and L-form in which the proportion of the lesser optical isomer of D-form or L-form is less than 5 mol%, and the single weight of either D-form or L-form The coalescence tends to increase in crystallinity and melting point as the smaller optical isomer decreases. On the other hand, a copolymer of D-form and L-form in which the ratio of the smaller optical isomer of D-form or L-form is 5 mol% or more increases the crystallinity as the smaller optical isomer increases. Tends to be low and eventually become amorphous. Thus, for example, the former polylactic acid-based resin can be used in applications where high heat resistance is desired, and the latter polylactic acid-based resin can be used in applications where improvement in filling properties in complicated spaces is desired.

また、後者のポリ乳酸系樹脂は、ポリ乳酸系樹脂発泡粒子を金型内に充填して発泡させて得られる発泡成形体の耐熱性を向上させることができ、発泡成形体は高い温度であってもその形態を維持できることがある。従って、発泡成形体を金型から高い温度のまま取り出すことが可能となって発泡成形体の金型内における冷却時間が短縮され、発泡成形体の生産効率を向上させることがある。   Further, the latter polylactic acid resin can improve the heat resistance of a foamed molded product obtained by filling a foamed product with polylactic acid resin foamed particles in a mold, and the foamed molded product has a high temperature. However, the form may be maintained. Accordingly, the foam molded body can be taken out from the mold at a high temperature, the cooling time in the mold of the foam molded body is shortened, and the production efficiency of the foam molded body may be improved.

このため、前記の観点から、D体とL体との共重合体は、D体またはL体のうちのいずれか少ない方の光学異性体の割合が5モル%未満であることが好ましく、4モル%未満であることがより好ましい。   For this reason, from the above viewpoint, the copolymer of D-form and L-form preferably has a ratio of the lesser of optical isomers of D-form or L-form of less than 5 mol%. More preferably, it is less than mol%.

ここで、ポリ乳酸系樹脂発泡粒子を押出発泡法で得る場合、ポリ乳酸系樹脂は、その融点(mp)と、動的粘弾性測定により得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tとが下記式1を満たすように調整されることが好ましい。
(ポリ乳酸系樹脂の融点(mp)−40℃)
≦(交点における温度T)≦ポリ乳酸系樹脂の融点(mp)・・・式1
Here, when polylactic acid-based resin expanded particles are obtained by extrusion foaming, the polylactic acid-based resin has a melting point (mp), a storage elastic modulus curve and a loss elastic modulus curve obtained by dynamic viscoelasticity measurement. It is preferable to adjust so that the temperature T at the intersection of
(Melting point of polylactic acid resin (mp) -40 ° C)
≦ (temperature T at the intersection) ≦ melting point of polylactic acid resin (mp) Formula 1

動的粘弾性測定にて得られた貯蔵弾性率は、粘弾性において弾性的な性質を示す指標であって、発泡過程における気泡膜の弾性の大小を示す指標であり、発泡過程において、気泡膜の収縮力に抗して気泡を膨張させるのに必要な発泡圧の大小を示す指標である。   The storage elastic modulus obtained by dynamic viscoelasticity measurement is an index indicating elastic properties in viscoelasticity, and is an index indicating the elasticity of the bubble film in the foaming process. It is an index indicating the magnitude of the foaming pressure required to expand the bubbles against the contraction force of the.

即ち、ポリ乳酸系樹脂の動的粘弾性測定にて得られた貯蔵弾性率が低いと、気泡膜が伸長された場合、気泡膜が伸長力に抗して収縮しようとする力が小さい。そのため、ポリ乳酸系樹脂発泡粒子の製造に必要とする発泡圧によって発泡膜が容易に伸長してしまう結果、気泡膜が過度に伸長してしまい破泡を生じることがある。一方、ポリ乳酸系樹脂の動的粘弾性測定にて得られた貯蔵弾性率が高いと、気泡膜に伸長力が加わった場合、伸長に抗する気泡膜の収縮力が大きくなる。そのため、ポリ乳酸系樹脂発泡粒子の製造に必要とする発泡圧で一旦、気泡が膨張したとしても、温度低下等に起因する経時的な発泡圧の低下に伴って気泡が収縮してしまうことがある。   That is, when the storage elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid-based resin is low, when the cell membrane is stretched, the force that the cell membrane attempts to contract against the stretching force is small. Therefore, as a result of the foaming film easily extending due to the foaming pressure required for the production of the polylactic acid-based resin foamed particles, the bubble film may be excessively stretched to cause bubble breakage. On the other hand, when the storage elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid-based resin is high, when the expansion force is applied to the cell membrane, the contraction force of the cell membrane resists the expansion. Therefore, even if the bubbles expand once at the foaming pressure required for the production of the polylactic acid-based resin expanded particles, the bubbles may shrink as the foaming pressure decreases over time due to a temperature drop or the like. is there.

また、動的粘弾性測定にて得られた損失弾性率は、粘弾性において粘性的な性質を示す指標である。具体的には、発泡過程における気泡膜の粘性を示す指標である。特に、発泡過程において、気泡膜をどの程度まで破れることなく伸長できるかの許容範囲を示す指標であると同時に、発泡圧によって所望大きさに気泡を膨張させた後、この膨張した気泡をその大きさに維持する能力を示す指標でもある。   Moreover, the loss elastic modulus obtained by the dynamic viscoelasticity measurement is an index indicating a viscous property in viscoelasticity. Specifically, it is an index indicating the viscosity of the bubble film in the foaming process. In particular, in the foaming process, it is an index indicating an allowable range of how much the bubble membrane can be stretched without being broken. At the same time, after the bubbles are expanded to a desired size by the foaming pressure, the expanded bubbles are expanded in size. It is also an indicator that shows the ability to maintain the same.

即ち、ポリ乳酸系樹脂の動的粘弾性測定にて得られた損失弾性率が低いと、ポリ乳酸系樹脂発泡粒子の製造に必要とする発泡圧によって気泡膜が伸長された場合、気泡膜が容易に破れてしまうことがある。一方、ポリ乳酸系樹脂の動的粘弾性測定により得られた損失弾性率が高いと、発泡力が気泡膜によって熱エネルギーに変換されてしまい、ポリ乳酸系樹脂発泡粒子の製造時に気泡膜を円滑に伸長させることが難しくなり、気泡を膨張させることが困難になることがある。   That is, if the loss elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid-based resin is low, when the cell membrane is expanded by the foaming pressure required for the production of the polylactic acid-based resin expanded particles, It can easily be torn. On the other hand, if the loss elastic modulus obtained by dynamic viscoelasticity measurement of polylactic acid resin is high, the foaming force is converted into thermal energy by the foam film, and the foam film is smoothed during the production of polylactic acid resin foam particles. It may be difficult to expand the air bubbles, and it may be difficult to expand the bubbles.

このように、ポリ乳酸系樹脂を発泡させてポリ乳酸系樹脂発泡粒子を製造するにあたっては、発泡過程において、発泡圧によって気泡膜が破れることなく適度に伸長するための弾性力、即ち、貯蔵弾性率を有していることが好ましい。加えて、発泡圧によって気泡膜が破れることなく円滑に伸長し、所望大きさに膨張した気泡をその大きさに発泡圧の経時的な減少にかかわらず維持しておくための粘性力、即ち、損失弾性率を有していることが好ましい。   Thus, in producing polylactic acid resin foamed particles by foaming polylactic acid resin, in the foaming process, the elastic force to stretch appropriately without breaking the cell membrane due to foaming pressure, that is, storage elasticity It is preferable to have a rate. In addition, the foam force smoothly expands without breaking the bubble film, and the viscous force to maintain the expanded bubble to the desired size regardless of the decrease in the foam pressure over time, that is, It preferably has a loss elastic modulus.

つまり、押出発泡工程において、ポリ乳酸系樹脂の貯蔵弾性率および損失弾性率の双方が押出発泡に適した値を有していることが好ましく、このような押出発泡に適した貯蔵弾性率および損失弾性率を押出発泡工程においてポリ乳酸系樹脂に付与するために、ポリ乳酸系樹脂における動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T(以下「温度T」という)と、ポリ乳酸系樹脂の融点(mp)とが、好ましくは下記式1を満たすように、より好ましくは式2を満たすように調整される。この調整により、貯蔵弾性率および損失弾性率をそれらのバランスをとりながら押出発泡性を良好なものとし、ポリ乳酸系樹脂発泡粒子を安定的に製造できる。
〔ポリ乳酸系樹脂の融点(mp)−40℃〕
≦交点における温度T≦ポリ乳酸系樹脂の融点(mp)・・・式1
〔ポリ乳酸系樹脂の融点(mp)−35℃〕
≦交点における温度T≦〔ポリ乳酸系樹脂の融点(mp)−10℃〕・・・式2
That is, in the extrusion foaming process, it is preferable that both the storage elastic modulus and loss elastic modulus of the polylactic acid-based resin have values suitable for extrusion foaming, and the storage elastic modulus and loss suitable for such extrusion foaming. In order to impart an elastic modulus to the polylactic acid resin in the extrusion foaming process, the temperature T (below) at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement in the polylactic acid resin. (Referred to as “temperature T”) and the melting point (mp) of the polylactic acid-based resin are preferably adjusted so as to satisfy the following formula 1, more preferably satisfy the formula 2. This adjustment makes it possible to improve the extrusion foamability while balancing the storage elastic modulus and loss elastic modulus, and stably produce the polylactic acid-based resin expanded particles.
[Melting point of polylactic acid resin (mp) −40 ° C.]
≦ Temperature at the intersection T ≦ Melting point of polylactic acid resin (mp) Formula 1
[Melting point of polylactic acid resin (mp) -35 ° C.]
≦ Temperature at the intersection T ≦ [Melting point of polylactic acid resin (mp) −10 ° C.] Formula 2

さらに、温度Tと、ポリ乳酸系樹脂の融点(mp)とが前記式1を満たすように調整するのが好ましい理由を下記に詳述する。   Furthermore, the reason why it is preferable to adjust the temperature T and the melting point (mp) of the polylactic acid resin so as to satisfy the formula 1 will be described in detail below.

まず、温度Tが、ポリ乳酸系樹脂の融点(mp)よりも40℃を越えて低い場合には、押出発泡時におけるポリ乳酸系樹脂の損失弾性率が貯蔵弾性率に比して大き過ぎるために、損失弾性率と貯蔵弾性率とのバランスが崩れてしまう。   First, when the temperature T is lower than the melting point (mp) of the polylactic acid resin by more than 40 ° C., the loss elastic modulus of the polylactic acid resin at the time of extrusion foaming is too large compared to the storage elastic modulus. In addition, the balance between the loss elastic modulus and the storage elastic modulus is lost.

そこで、ポリ乳酸系樹脂の損失弾性率に適した発泡力、即ち、粘性に合わせた発泡力とすると、弾性力に対する発泡力が大き過ぎ、気泡膜が破れて破泡を生じて良好なポリ乳酸系樹脂発泡粒子を得られないことがある。逆に、ポリ乳酸系樹脂の貯蔵弾性率に適した発泡力、即ち、弾性に合わせた発泡力とすると、粘性力に対する発泡力が小さく、ポリ乳酸系樹脂が発泡しにくくなり、良好なポリ乳酸系樹脂発泡粒子を得られないことがある。   Therefore, if the foaming force suitable for the loss elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the viscosity, the foaming force with respect to the elastic force is too large, and the bubble film is broken to cause bubble breakage and good polylactic acid -Based resin expanded particles may not be obtained. Conversely, if the foaming force suitable for the storage elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the elasticity, the foaming force with respect to the viscous force is small, and the polylactic acid-based resin is difficult to foam, and good polylactic acid -Based resin expanded particles may not be obtained.

また、温度Tが、ポリ乳酸系樹脂の融点(mp)よりも高いと、押出発泡時におけるポリ乳酸系樹脂の貯蔵弾性率が損失弾性率に比して大き過ぎることになる。そのため、上述と同様に損失弾性率と貯蔵弾性率とのバランスが崩れてしまうことがある。   If the temperature T is higher than the melting point (mp) of the polylactic acid resin, the storage elastic modulus of the polylactic acid resin at the time of extrusion foaming is too large compared to the loss elastic modulus. Therefore, the balance between the loss elastic modulus and the storage elastic modulus may be lost as described above.

そこで、ポリ乳酸系樹脂の貯蔵弾性率に適した発泡力、即ち、弾性に合わせた発泡力とすると、粘性力に対する発泡力が大き過ぎ、気泡膜が破れて破泡を生じ良好なポリ乳酸系樹脂発泡粒子を得られないことがある。逆に、ポリ乳酸系樹脂の損失弾性率に適した発泡力、即ち、粘性に合わせた発泡力とすると、弾性力に対する発泡力が小さく、ポリ乳酸系樹脂が一旦発泡したとしても、経時的な発泡力の低下に伴って気泡が収縮してしまって、やはり良好なポリ乳酸系樹脂発泡粒子を得られないことがある。   Therefore, if the foaming force suitable for the storage elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the elasticity, the foaming force with respect to the viscous force is too large, and the bubble film is broken to cause bubble breakage and good polylactic acid-based Resin foam particles may not be obtained. On the contrary, if the foaming force suitable for the loss elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the viscosity, the foaming force with respect to the elastic force is small. As the foaming power decreases, the air bubbles contract, and good polylactic acid resin expanded particles may not be obtained.

ポリ乳酸系樹脂の重量平均分子量が高くなるに従って、温度Tが高くなる。よって、温度Tと、ポリ乳酸系樹脂の融点(mp)とが前記式1を満たすように調整するには、ポリ乳酸系樹脂の重合時に反応時間あるいは反応温度を調整することによって、得られるポリ乳酸系樹脂の重量平均分子量を調整する方法、押出発泡前にあるいは押出発泡時にポリ乳酸系樹脂の重量平均分子量を増粘剤や架橋剤を用いて調整する方法が挙げられる。   As the weight average molecular weight of the polylactic acid resin increases, the temperature T increases. Therefore, in order to adjust the temperature T and the melting point (mp) of the polylactic acid resin so as to satisfy the above-mentioned formula 1, the reaction time or the reaction temperature is adjusted during the polymerization of the polylactic acid resin. Examples thereof include a method of adjusting the weight average molecular weight of the lactic acid-based resin and a method of adjusting the weight average molecular weight of the polylactic acid-based resin before or during extrusion foaming using a thickener or a crosslinking agent.

本発明においては、ポリ乳酸系樹脂粒子は、所望の物性や成形工程等に影響を与えない限り、ポリスチレン系樹脂、ポリオレフィン系樹脂等の樹脂成分を含んでいてもよい。また、ポリ乳酸系樹脂粒子は、他に、タルク、珪酸カルシウム、ステアリン酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の気泡調整剤;トリアリルイソシアヌレート6臭素化物等の難燃剤;カーボンブラック、酸化鉄、グラファイト等の着色剤等を含んでいてもよい。   In the present invention, the polylactic acid-based resin particles may contain a resin component such as a polystyrene-based resin or a polyolefin-based resin, as long as the desired physical properties and molding process are not affected. In addition, the polylactic acid-based resin particles include, other than the above, an air conditioner such as talc, calcium silicate, calcium stearate, synthetically or naturally produced silicon dioxide, ethylene bis-stearic acid amide, methacrylate ester-based copolymer; Flame retardants such as allyl isocyanurate hexabromide; colorants such as carbon black, iron oxide and graphite may be included.

(2)ポリ乳酸系樹脂発泡粒子の製造
本発明においては、得られるポリ乳酸系樹脂発泡粒子の形状が球状、略球状(楕円球状または卵状)である限り、ポリ乳酸系樹脂発泡粒子を公知の方法によって製造することができる。具体的には、市販の押出機を使用して、発泡剤の存在下、ポリ乳酸系樹脂を溶融押出しつつ、水中カット、ストランドカット等により造粒することで、ポリ乳酸系樹脂発泡粒子を製造できる。
(2) Production of polylactic acid-based resin expanded particles In the present invention, polylactic acid-based resin expanded particles are known as long as the shape of the obtained polylactic acid-based resin expanded particles is spherical or substantially spherical (elliptical spherical or oval). It can manufacture by the method of. Specifically, using a commercially available extruder, polylactic acid resin foamed particles are produced by granulation by underwater cutting, strand cutting, etc. while melt extruding polylactic acid resin in the presence of a foaming agent. it can.

本発明によれば、球状ないし略球状でかつ連続気泡率の高いポリ乳酸系樹脂発泡粒子をより容易に製造することができるため、
ポリ乳酸系樹脂を押出機に供給して発泡剤下にて溶融混練する工程と、
押出機の前端に取り付けたノズル金型からポリ乳酸系樹脂押出物を押出し、このポリ乳酸系樹脂押出物を発泡させながら、210〜235℃のノズル金型の温度で、ノズル金型の前端面に接触しながら2000〜10000rpmの回転数で回転する回転刃によって切断してポリ乳酸系樹脂発泡粒子を製造し、ポリ乳酸系樹脂発泡粒子を切断応力によって飛散させる工程と、
ポリ乳酸系樹脂発泡粒子をノズル金型の前方に配設した冷却部材を衝突させて冷却する工程と
を含むポリ乳酸系樹脂発泡粒子の製造方法が好ましい。
According to the present invention, it is possible to more easily produce spherical or substantially spherical polylactic acid resin expanded particles having a high open cell ratio,
Supplying a polylactic acid resin to an extruder and melt-kneading under a foaming agent;
Extruding a polylactic acid resin extrudate from a nozzle mold attached to the front end of the extruder, and foaming the polylactic acid resin extrudate at a nozzle mold temperature of 210 to 235 ° C., the front end surface of the nozzle mold Cutting with a rotating blade rotating at a rotational speed of 2000 to 10000 rpm while in contact with the resin to produce polylactic acid resin foamed particles, and scattering the polylactic acid resin foamed particles by cutting stress;
A method for producing the polylactic acid-based resin expanded particles, which includes the step of colliding and cooling the cooling member in which the polylactic acid-based resin expanded particles are disposed in front of the nozzle mold.

以下、本発明で用い得る製造方法を例示するが、本発明は以下の製造方法に限定されるものではない。
まず、ポリ乳酸系樹脂を押出機に供給して発泡剤の存在下にて溶融混練する。この後、押出機の前端に取り付けた図1および2に示すノズル金型からポリ乳酸系樹脂押出物を押出し、このポリ乳酸系樹脂押出物を発泡させながら、210〜235℃のノズル金型の温度で、ノズル金型の前端面に接触しながら2000〜10000rpmの回転数で回転する回転刃によって切断してポリ乳酸系樹脂発泡粒子を製造し、ポリ乳酸系樹脂発泡粒子を切断応力によって飛散させる。なお、前記押出機としては、従来から汎用されている押出機であれば、特に限定されない。例えば、単軸押出機、二軸押出機、複数の押出機を連結させたタンデム型の押出機が挙げられる。
Hereinafter, although the manufacturing method which can be used by this invention is illustrated, this invention is not limited to the following manufacturing methods.
First, a polylactic acid resin is supplied to an extruder and melt kneaded in the presence of a foaming agent. Thereafter, a polylactic acid resin extrudate is extruded from the nozzle mold shown in FIGS. 1 and 2 attached to the front end of the extruder, and while the polylactic acid resin extrudate is foamed, the nozzle mold of 210 to 235 ° C. Polylactic acid resin foam particles are produced by cutting with a rotating blade rotating at a rotational speed of 2000 to 10,000 rpm while contacting the front end surface of the nozzle mold at a temperature, and the polylactic acid resin foam particles are scattered by cutting stress. . The extruder is not particularly limited as long as it is a conventionally used extruder. Examples thereof include a single-screw extruder, a twin-screw extruder, and a tandem type extruder in which a plurality of extruders are connected.

発泡剤としては、従来から汎用されているものが用いられる。例えば、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ヒドラゾイルジカルボンアミド、重炭酸ナトリウム等の化学発泡剤;プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテル等のエーテル類、塩化メチル、1,1,1,2−テトラフルオロエタン、1,1−ジフルオロエタン、モノクロロジフルオロメタン等のフロン、二酸化炭素、窒素等の物理発泡剤等が挙げられる。この内、ポリ乳酸系樹脂発泡粒子への高い発泡性付与の観点から、物理発泡剤が好ましく、ノルマルブタン、イソブタンがより好ましい。発泡成形工程や所望の物性等に影響を与えない限り、発泡剤を単独で使用してもよく、2種以上を併用してもよい。   As the foaming agent, those conventionally used are used. For example, chemical blowing agents such as azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoyl dicarbonamide, sodium bicarbonate; saturated aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, hexane, dimethyl ether, etc. Examples include ethers, chlorofluorocarbons such as methyl chloride, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, monochlorodifluoromethane, and physical foaming agents such as carbon dioxide and nitrogen. Among these, from the viewpoint of imparting high foamability to the polylactic acid-based resin expanded particles, a physical foaming agent is preferable, and normal butane and isobutane are more preferable. A foaming agent may be used alone or two or more kinds may be used in combination as long as the foam molding process and desired physical properties are not affected.

ここで、製造後、ポリ乳酸系樹脂発泡粒子に含有される発泡剤量が少ないと、ポリ乳酸系樹脂発泡粒子を所望発泡倍率まで発泡できないことがある。一方、多いと、発泡剤が可塑剤として作用することから溶融状態のポリ乳酸系樹脂の粘弾性が低下し過ぎて発泡性が低下し良好なポリ乳酸系樹脂発泡粒子を得ることができないことがある。加えてポリ乳酸系樹脂発泡粒子の発泡倍率が高過ぎて結晶化度を制御できなくなることがある。よって、前記発泡剤量は、ポリ乳酸系樹脂発泡粒子100重量部に対して、1.5〜3.8重量部が好ましく、1.6〜3.0重量部がより好ましい。   Here, if the amount of the foaming agent contained in the polylactic acid resin expanded particles is small after production, the polylactic acid resin expanded particles may not be expanded to a desired expansion ratio. On the other hand, if the amount is too large, the foaming agent acts as a plasticizer, so that the viscoelasticity of the molten polylactic acid-based resin is too low, and the foamability is lowered, making it impossible to obtain good polylactic acid-based resin expanded particles. is there. In addition, the expansion ratio of the polylactic acid-based resin expanded particles may be too high to control the crystallinity. Therefore, the amount of the foaming agent is preferably 1.5 to 3.8 parts by weight and more preferably 1.6 to 3.0 parts by weight with respect to 100 parts by weight of the polylactic acid resin foamed particles.

なお、押出機には気泡調整剤が添加されることが好ましいが、気泡調整剤の多くは、ポリ乳酸系樹脂発泡粒子の結晶核剤として作用するため、ポリ乳酸系樹脂の結晶化を促進しない気泡調整剤を用いることが好ましく、このような気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末が好ましい。   In addition, it is preferable that a bubble regulator is added to the extruder, but since many of the bubble regulators act as crystal nucleating agents for the polylactic acid resin foamed particles, crystallization of the polylactic acid resin is not promoted. It is preferable to use a bubble regulator, and as such a bubble regulator, polytetrafluoroethylene powder or polytetrafluoroethylene powder modified with an acrylic resin is preferred.

また、押出機に供給される気泡調整剤の量は、少ないと、ポリ乳酸系樹脂発泡粒子の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。一方、多いと、ポリ乳酸系樹脂を押出発泡させる際に破泡を生じてポリ乳酸系樹脂発泡粒子の独立気泡率が低下することがある。よって、気泡調整剤の量は、ポリ乳酸系樹脂100重量部に対して、0.01〜3重量部が好ましく、0.05〜2重量部がより好ましく、0.1〜1重量部が特に好ましい。   On the other hand, when the amount of the air conditioner supplied to the extruder is small, the air bubbles of the polylactic acid-based resin expanded particles become coarse, and the appearance of the obtained foamed molded product may be deteriorated. On the other hand, when the polylactic acid-based resin is extruded and foamed, foam breakage may occur, and the closed cell ratio of the polylactic acid-based resin expanded particles may decrease. Therefore, the amount of the air conditioner is preferably 0.01 to 3 parts by weight, more preferably 0.05 to 2 parts by weight, and particularly preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the polylactic acid resin. preferable.

そして、ノズル金型1から押出されたポリ乳酸系樹脂押出物は引き続き切断工程に入る。ポリ乳酸系樹脂押出物の切断は、回転軸2をモータ3により回転させ、ノズル金型1の前端面1aに配設された回転刃5を2000〜10000rpmの一定の回転数で回転させて行うことが好ましい。   And the polylactic acid-type resin extrudate extruded from the nozzle metal mold | die 1 continues to a cutting process. The polylactic acid resin extrudate is cut by rotating the rotary shaft 2 with a motor 3 and rotating the rotary blade 5 disposed on the front end surface 1a of the nozzle mold 1 at a constant rotational speed of 2000 to 10000 rpm. It is preferable.

全ての回転刃5はノズル金型1の前端面1aに常時、接触しながら回転している。ノズル金型1から押出発泡されたポリ乳酸系樹脂押出物は、回転刃5と、ノズル金型1におけるノズルの出口部11端縁との間に生じる剪断応力によって、一定の時間毎に大気中において切断されてポリ乳酸系樹脂発泡粒子とされる。この時、ポリ乳酸系樹脂押出物の冷却が過度とならない範囲内において、ポリ乳酸系樹脂押出物に水を霧状に吹き付けてもよい。   All the rotary blades 5 are always rotating in contact with the front end face 1a of the nozzle mold 1. The polylactic acid-based resin extrudate extruded and foamed from the nozzle mold 1 is in the atmosphere at regular intervals due to shear stress generated between the rotary blade 5 and the edge of the nozzle outlet 11 in the nozzle mold 1. Is cut into polylactic acid-based resin expanded particles. At this time, water may be sprayed onto the polylactic acid resin extrudate in a range where the cooling of the polylactic acid resin extrudate does not become excessive.

ノズル金型1のノズル内においてポリ乳酸系樹脂が発泡しないことが好ましい。そのため、ポリ乳酸系樹脂は、ノズル金型1のノズルの出口部11から吐出された直後は、未だに発泡しておらず、吐出されてから僅かな時間が経過した後に発泡を始める。従って、ポリ乳酸系樹脂押出物は、ノズル金型1のノズルの出口部11から吐出された直後の未発泡部と、この未発泡部に連続する、未発泡部に先んじて押出された発泡途上の発泡部とからなる。   It is preferable that the polylactic acid resin does not foam in the nozzle of the nozzle mold 1. Therefore, immediately after the polylactic acid-based resin is discharged from the nozzle outlet portion 11 of the nozzle mold 1, the polylactic acid-based resin has not yet been foamed, and starts to foam after a short time has elapsed since being discharged. Therefore, the polylactic acid-based resin extrudate is in the process of foaming extruded before the unfoamed portion, which continues from the unfoamed portion immediately after being discharged from the nozzle outlet portion 11 of the nozzle mold 1 and the unfoamed portion. The foamed part.

ノズル金型1のノズルの出口部11から突出されてから発泡を開始するまでの間、未発泡部はその状態を維持する。この未発泡部が維持される時間は、ノズル金型1のノズルの出口部11における樹脂圧力や、発泡剤量等によって調整できる。ノズル金型1のノズルの出口部11における樹脂圧力が高いと、ポリ乳酸系樹脂押出物はノズル金型1から押出されてから直ぐに発泡することはなく未発泡の状態を維持する。ノズル金型1のノズルの出口部11における樹脂圧力の調整は、ノズルの口径、押出量、ポリ乳酸系樹脂の溶融粘度および溶融張力によって調整できる。発泡剤量を適正な量に調整することによって金型内部においてポリ乳酸系樹脂が発泡することを防止し、未発泡部を確実に形成できる。   The non-foamed portion maintains its state from when it is projected from the outlet 11 of the nozzle of the nozzle mold 1 until foaming is started. The time for which the unfoamed part is maintained can be adjusted by the resin pressure at the nozzle outlet 11 of the nozzle mold 1, the amount of foaming agent, and the like. When the resin pressure at the nozzle outlet 11 of the nozzle mold 1 is high, the polylactic acid resin extrudate does not foam immediately after being extruded from the nozzle mold 1 and maintains an unfoamed state. The adjustment of the resin pressure at the nozzle outlet 11 of the nozzle mold 1 can be adjusted by the nozzle diameter, the extrusion amount, the melt viscosity and the melt tension of the polylactic acid resin. By adjusting the amount of the foaming agent to an appropriate amount, the polylactic acid resin can be prevented from foaming inside the mold, and the unfoamed portion can be reliably formed.

本発明においては、好ましくは210〜235℃の、より好ましくは215〜230℃のノズル金型の温度下でポリ乳酸系樹脂発泡粒子の発泡を行う。210〜235℃の範囲にノズル金型の温度が含まれない場合、所望の球状ないし略球状でかつ連続気泡率の高いポリ乳酸系樹脂発泡粒子を製造することができないことがある。即ち、ポリ乳酸系樹脂発泡粒子が柱状等の異形状となることがある。ここで、ノズル金型の温度とは、金型直近の流路から7mmの位置の温度を意味する。   In the present invention, the polylactic acid-based resin foamed particles are foamed at a nozzle mold temperature of preferably 210 to 235 ° C, more preferably 215 to 230 ° C. When the temperature of the nozzle mold is not included in the range of 210 to 235 ° C., it may be impossible to produce the desired spherical or substantially spherical polylactic acid resin expanded particles having a high open cell ratio. That is, the polylactic acid-based resin expanded particles may have an irregular shape such as a columnar shape. Here, the temperature of the nozzle mold means a temperature at a position of 7 mm from the flow path closest to the mold.

全ての回転刃5はノズル金型1の前端面1aに常時、接触した状態でポリ乳酸系樹脂押出物を切断していることから、ポリ乳酸系樹脂押出物は、ノズル金型1のノズルの出口部11から吐出された直後の未発泡部において切断されてポリ乳酸系樹脂発泡粒子が製造される。   Since all the rotary blades 5 cut the polylactic acid-based resin extrudate while being always in contact with the front end surface 1 a of the nozzle mold 1, the polylactic acid-based resin extrudate is used as the nozzle of the nozzle mold 1. Polylactic acid-based resin expanded particles are produced by cutting at the unfoamed portion immediately after being discharged from the outlet portion 11.

得られたポリ乳酸系樹脂発泡粒子は、ポリ乳酸系樹脂押出物をその未発泡部で切断していることから、切断部の表面には気泡断面は存在しない。そして、ポリ乳酸系樹脂発泡粒子の表面全面は、気泡断面の存在しない表皮層で被覆されている。   Since the obtained polylactic acid-based resin expanded particles cut the polylactic acid-based resin extrudate at the unfoamed portion, there is no cell cross section on the surface of the cut portion. The entire surface of the polylactic acid-based resin expanded particles is covered with a skin layer having no cell cross section.

また、回転刃5は一定の回転数で回転していることが好ましい。回転刃5の回転数は、2000〜10000rpmが好ましく、3000〜9000rpmがより好ましく、4000〜8000rpmがさらに好ましい。   Moreover, it is preferable that the rotary blade 5 is rotating at a constant rotational speed. The rotational speed of the rotary blade 5 is preferably 2000 to 10000 rpm, more preferably 3000 to 9000 rpm, and further preferably 4000 to 8000 rpm.

これは、2000rpmを下回ると、ポリ乳酸系樹脂押出物を回転刃5によって確実に切断しがたくなる。そのため、ポリ乳酸系樹脂発泡粒子同士が合体することがあり、ポリ乳酸系樹脂発泡粒子の形状が不均一となることもある。   If this is less than 2000 rpm, it will be difficult to reliably cut the polylactic acid resin extrudate with the rotary blade 5. Therefore, the polylactic acid-based resin expanded particles may be united with each other, and the shape of the polylactic acid-based resin expanded particles may be nonuniform.

一方、10000rpmを上回ると下記の問題点を生じることがある。第一の問題点は、回転刃による切断応力が大きくなって、ポリ乳酸系樹脂発泡粒子がノズルの出口部から冷却部材に向かって飛散される際に、ポリ乳酸系樹脂発泡粒子の初速が速くなる。その結果、ポリ乳酸系樹脂押出物を切断してから、ポリ乳酸系樹脂発泡粒子が冷却部材に衝突するまでの時間が短くなり、ポリ乳酸系樹脂発泡粒子の発泡が不充分となることである。第二の問題点は、回転刃および回転軸の摩耗が大きくなって回転刃および回転軸の寿命が短くなることである。   On the other hand, if it exceeds 10,000 rpm, the following problems may occur. The first problem is that when the cutting stress due to the rotary blade is increased and the polylactic acid resin foam particles are scattered from the nozzle outlet toward the cooling member, the initial speed of the polylactic acid resin foam particles is high. Become. As a result, the time from when the polylactic acid resin extrudate is cut until the polylactic acid resin expanded particles collide with the cooling member is shortened, and the foaming of the polylactic acid resin expanded particles becomes insufficient. . The second problem is that the wear of the rotary blade and the rotary shaft is increased and the life of the rotary blade and the rotary shaft is shortened.

さらに、押出機の吐出量と回転数とは式3:

Figure 2011213906
(式中、
Dn:金型のノズル径(cm)
Q:一穴あたりの吐出量(g/hr)
R:カッター刃回転数(rpm)
N:カッター刃枚数(枚)
X:得られる発泡粒の倍数(g/cm3))
を満たすことが好ましい。式3の関係を満たさない場合、同様に、所望の球状ないし略球状のポリ乳酸系樹脂発泡粒子を製造することができず、成形性等に影響を与えることがある。 Furthermore, the amount of discharge and the number of rotations of the extruder are expressed by Equation 3:
Figure 2011213906
(Where
Dn: Mold nozzle diameter (cm)
Q: Discharge amount per hole (g / hr)
R: Cutter blade rotation speed (rpm)
N: Number of cutter blades (sheets)
X: Multiple of the obtained foamed particles (g / cm 3 ))
It is preferable to satisfy. If the relationship of Formula 3 is not satisfied, the desired spherical or substantially spherical polylactic acid resin expanded particles cannot be produced in the same manner, which may affect moldability and the like.

ポリ乳酸系樹脂発泡粒子は、回転刃5による切断応力によって切断と同時に外方あるいは前方に向かって飛散され、冷却ドラム41の周壁部41bの内周面に直ちに衝突する。ポリ乳酸系樹脂発泡粒子は、冷却ドラム41に衝突するまでの間も発泡をし続けており、発泡によって球状ないし略球状に成長している。   The polylactic acid-based resin foam particles are scattered outward or forward simultaneously with the cutting by the cutting stress of the rotary blade 5 and immediately collide with the inner peripheral surface of the peripheral wall portion 41 b of the cooling drum 41. The polylactic acid-based resin foamed particles continue to foam until they collide with the cooling drum 41, and grow into a spherical or substantially spherical shape by foaming.

次いで、得られたポリ乳酸系樹脂発泡粒子をノズル金型の前方に配設した冷却部材を衝突させて冷却する。具体的には、冷却ドラム41の周壁部41bの内周面は全面的に冷却液42で被覆されており、冷却ドラム41の周壁部41bの内周面に衝突したポリ乳酸系樹脂発泡粒子は直ちに冷却されて、発泡が停止する。このように、ポリ乳酸系樹脂押出物を回転刃5によって切断した後に、ポリ乳酸系樹脂発泡粒子を直ちに冷却液42によって冷却していることで、ポリ乳酸系樹脂発泡粒子を構成しているポリ乳酸系樹脂の結晶化度が上昇するのを防止できると共に、ポリ乳酸系樹脂発泡粒子が過度に発泡するのを防止できる。   Next, the obtained polylactic acid resin foamed particles are cooled by colliding with a cooling member disposed in front of the nozzle mold. Specifically, the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 is entirely covered with the cooling liquid 42, and the polylactic acid-based resin foam particles that collide with the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 are It cools immediately and the foaming stops. In this way, after the polylactic acid resin extrudate is cut by the rotary blade 5, the polylactic acid resin foam particles are immediately cooled by the cooling liquid 42, thereby forming the polylactic acid resin foam particles. The crystallinity of the lactic acid resin can be prevented from increasing, and the polylactic acid resin foamed particles can be prevented from excessively foaming.

従って、ポリ乳酸系樹脂発泡粒子は、型内発泡成形時に優れた発泡性および熱融着性を発揮する。型内発泡成形時にポリ乳酸系樹脂発泡粒子の結晶化度を上昇させて、ポリ乳酸系樹脂の耐熱性を向上でき、得られる発泡成形体は優れた耐熱性を有している。   Accordingly, the polylactic acid-based resin expanded particles exhibit excellent foamability and heat-fusibility during in-mold foam molding. The crystallinity of the polylactic acid-based resin expanded particles can be increased during in-mold foam molding to improve the heat resistance of the polylactic acid-based resin, and the resulting foam-molded product has excellent heat resistance.

なお、冷却液42の温度は、低いと、冷却ドラム41の近傍に位置するノズル金型が過度に冷却されて、ポリ乳酸系樹脂の押出発泡に悪影響が生じることがある。一方、高いと、ポリ乳酸系樹脂発泡粒子を構成しているポリ乳酸系樹脂の結晶化度が高くなり、ポリ乳酸系樹脂発泡粒子の熱融着性が低下することがある。よって、温度は、0〜45℃が好ましく、5〜40℃がより好ましく、10〜35℃が特に好ましい。   If the temperature of the cooling liquid 42 is low, the nozzle mold located in the vicinity of the cooling drum 41 is excessively cooled, which may adversely affect the extrusion foaming of the polylactic acid resin. On the other hand, if it is high, the degree of crystallinity of the polylactic acid-based resin constituting the polylactic acid-based resin expanded particles becomes high, and the heat-fusibility of the polylactic acid-based resin expanded particles may be lowered. Therefore, the temperature is preferably 0 to 45 ° C, more preferably 5 to 40 ° C, and particularly preferably 10 to 35 ° C.

前記製造方法を用いるため、本発明のポリ乳酸系樹脂発泡粒子は球状ないし略球状である(図3参照)。本発明のポリ乳酸系樹脂発泡粒子は前記形状を有するため、例えば、柱状、円筒状、針状、燐片状のような形状のポリ乳酸系樹脂発泡粒子と比べて、流動性に優れ、発泡成型機への充填性等に優れ、その結果、成形性にも優れる。さらに、所望の複雑な形状の発泡成形体も容易に製造することができる。球状ないし略球状とは、ポリ乳酸系樹脂発泡粒子の投射図が真球形の粒子から楕円形の粒子までを含むことを意味する。   In order to use the said manufacturing method, the polylactic acid-type resin expanded particle of this invention is spherical shape or substantially spherical shape (refer FIG. 3). Since the polylactic acid-based resin expanded particles of the present invention have the above-mentioned shape, for example, the polylactic acid-based resin expanded particles are excellent in fluidity and expanded as compared with polylactic acid-based resin expanded particles having a columnar shape, a cylindrical shape, a needle shape, or a flake shape. It is excellent in filling properties to a molding machine, and as a result, it is excellent in moldability. Furthermore, a foamed molded article having a desired complicated shape can be easily produced. Spherical or substantially spherical means that the projected view of the polylactic acid-based resin expanded particles includes from spherical particles to elliptical particles.

また、ノギスを用いた測定により、ポリ乳酸系樹脂発泡粒子の最も長い直径(長径)と最も短い直径(短径)との比(短径/長径)は、好ましくは1.0〜1.3の範囲、より好ましくは1.0〜1.2の範囲である。短径/長径が1.0〜1.3の範囲に含まれない場合、発泡成型機への充填性の点で問題となる場合があり、その結果、発泡成形体間でのばらつきを生じ、所望の成形性を得ることができないことがある。なお、短径/長径=1は真球を意味する。   Further, the ratio (minor axis / major axis) of the longest diameter (major axis) to the shortest diameter (minor axis) of the polylactic acid resin expanded particles is preferably 1.0 to 1.3 by measurement using calipers. More preferably, it is the range of 1.0-1.2. When the minor axis / major axis is not included in the range of 1.0 to 1.3, there may be a problem in terms of filling into the foam molding machine, resulting in variations among the foam molded articles, The desired formability may not be obtained. The minor axis / major axis = 1 means a true sphere.

ポリ乳酸系樹脂発泡粒子は25〜50%、好ましくは25〜45%、より好ましくは25〜40%の連続気泡率を有する。連続気泡率が25〜50%に含まれない場合、所望の空隙率を有する発泡成形体を得ることができないことがある。連続気泡率が50%より大きいと、ポリ乳酸系樹脂発泡粒子同士の融着性が低くなり、得られる発泡成形体の機械的強度が低下することがある。ポリ乳酸系樹脂発泡粒子の連続気泡率の調整は、押出機からのポリ乳酸系樹脂の押出発泡温度、押出機への発泡剤の供給量等を調整することによって行うこともできる。また、連続気泡の分布も優れたものである。   The polylactic acid-based resin expanded particles have an open cell ratio of 25 to 50%, preferably 25 to 45%, more preferably 25 to 40%. When the open cell ratio is not included in 25 to 50%, a foamed molded article having a desired porosity may not be obtained. When the open cell ratio is larger than 50%, the fusion property between the polylactic acid-based resin expanded particles is lowered, and the mechanical strength of the obtained foamed molded product may be lowered. The open cell ratio of the polylactic acid-based resin expanded particles can be adjusted by adjusting the extrusion foaming temperature of the polylactic acid-based resin from the extruder, the supply amount of the foaming agent to the extruder, and the like. Also, the distribution of open cells is excellent.

ポリ乳酸系樹脂発泡粒子は、好ましくは嵩密度0.06〜0.15g/cm3(嵩倍数8〜20倍)、より好ましくは嵩密度0.08〜0.15g/cm3(嵩倍数8〜16倍)を有する。嵩密度が0.15g/cm3より大きいと得られる発泡成形体の重量が高くなり、実用性に乏しい場合がある。一方、嵩密度が0.06g/cm3より小さいと得られる発泡成形体の強度が低くなり、構造部材等への使用が困難となる場合がある。 Polylactic acid-based resin foamed particles are preferably bulk density 0.06~0.15g / cm 3 (bulk multiples 8-20 fold), more preferably a bulk density 0.08~0.15g / cm 3 (bulk multiples 8 ~ 16 times). When the bulk density is greater than 0.15 g / cm 3 , the weight of the obtained foamed molded product is increased, which may be impractical. On the other hand, when the bulk density is less than 0.06 g / cm 3 , the strength of the obtained foamed molded product is lowered, and it may be difficult to use it for a structural member or the like.

また、本発明のポリ乳酸系樹脂発泡粒子はポリ乳酸系樹脂を樹脂成分として含むため、得られるポリ乳酸系樹脂発泡粒子は、好ましくは10〜35%、より好ましくは15〜35%の吸水率を有する。これらの高い吸水率は本発明の発泡成形体は優れた保水性を備えることも示している。   Moreover, since the polylactic acid-based resin expanded particles of the present invention contain a polylactic acid-based resin as a resin component, the obtained polylactic acid-based resin expanded particles preferably have a water absorption rate of 10 to 35%, more preferably 15 to 35%. Have These high water absorption rates also indicate that the foamed molded article of the present invention has excellent water retention.

ポリ乳酸系樹脂発泡粒子の平均粒子径は1.0〜5.0mmが好ましく、1.5〜4.0mmがより好ましい。平均粒子径が5.0mmより大きい場合、発泡成形機へのポリ乳酸系樹脂発泡粒子の充填性が低下することがあり、得られる発泡成形体の強度が低下することがある。また、1.0mmより小さい場合、発泡成形体の嵩比重に影響を与えることがある。   The average particle diameter of the polylactic acid-based resin expanded particles is preferably 1.0 to 5.0 mm, and more preferably 1.5 to 4.0 mm. When the average particle diameter is larger than 5.0 mm, the filling property of the polylactic acid-based resin foam particles into the foam molding machine may be lowered, and the strength of the obtained foam molded body may be lowered. Moreover, when smaller than 1.0 mm, the bulk specific gravity of a foaming molding may be affected.

ポリ乳酸系樹脂発泡粒子の結晶化度は、15〜30%が好ましく、15〜25%がより好ましい。結晶化度が前記範囲に含まれない場合、発泡性に影響を与えることがある。ポリ乳酸系樹脂発泡粒子の結晶化度は、ノズル金型1からポリ乳酸系樹脂押出物が押出されてからポリ乳酸系樹脂発泡粒子が冷却液42に衝突するまでの時間や、冷却液42の温度によって調整することもできる。   The degree of crystallinity of the polylactic acid-based resin expanded particles is preferably 15 to 30%, and more preferably 15 to 25%. When the crystallinity is not included in the above range, foamability may be affected. The degree of crystallinity of the polylactic acid-based resin expanded particles depends on the time from when the polylactic acid-based resin extrudate is extruded from the nozzle mold 1 until the polylactic acid-based resin expanded particles collide with the cooling liquid 42, It can also be adjusted by temperature.

(3)発泡成形体の製造方法
次いで、得られたポリ乳酸系樹脂発泡粒子を、公知の発泡成形機を用いて加熱処理することによって、ポリ乳酸系樹脂発泡粒子同士を熱融着させ、所望の発泡成形体に型内成形することができる。
(3) Method for Producing Foam Molded Body Next, the obtained polylactic acid resin foamed particles are heat-treated using a known foam molding machine to heat-fuse the polylactic acid resin foamed particles with each other. In-mold molding can be performed on the foamed molded article.

本発明においては、高い連続気泡率を有するポリ乳酸系樹脂発泡粒子を型内成形するため、得られる発泡成形体は、好ましくは10〜45体積%、より好ましくは15〜40体積%の空隙率を有する。空隙率が45体積%より高いと、発泡成形体の強度が低下することがある。他方、空隙率が10体積%より低いと、発泡成形体に所望の通水性や吸音性を付与できないことがある。ここで、空隙率とは、発泡成形体の発泡粒子で占められていない粒子間空隙部の比率を意味する。   In the present invention, in order to mold polylactic acid resin foamed particles having a high open cell ratio in a mold, the obtained foamed molded article preferably has a porosity of 10 to 45% by volume, more preferably 15 to 40% by volume. Have When the porosity is higher than 45% by volume, the strength of the foamed molded product may be lowered. On the other hand, if the porosity is lower than 10% by volume, it may not be possible to impart desired water permeability and sound absorption to the foamed molded article. Here, the porosity means the ratio of the inter-particle void portion that is not occupied by the expanded particles of the foam molded article.

また、本発明のポリ乳酸系樹脂発泡粒子はポリ乳酸系樹脂を樹脂成分として含むため、得られる発泡成形体は、10〜35%、好ましくは15〜35%、より好ましくは15〜33%の吸水率を有する。これらの高い吸水率は本発明の発泡成形体は優れた保水性を備えることも示している。   Moreover, since the polylactic acid-based resin expanded particles of the present invention contain a polylactic acid-based resin as a resin component, the obtained foamed molded article is 10 to 35%, preferably 15 to 35%, more preferably 15 to 33%. Has water absorption. These high water absorption rates also indicate that the foamed molded article of the present invention has excellent water retention.

本発明の発泡成形体は、高い空隙率、吸水性および生分解性を有するため、建材用断熱材、包装用緩衝材、車両用内装材等として使用することができる。また、土壌改良剤および調湿材としても使用することもできる。   Since the foamed molded article of the present invention has a high porosity, water absorption and biodegradability, it can be used as a heat insulating material for building materials, a cushioning material for packaging, an interior material for vehicles, and the like. Moreover, it can also be used as a soil conditioner and a humidity control material.

以下実施例を挙げてさらに説明するが、本発明はこれら実施例によって限定されるものではない。
<ポリ乳酸系樹脂発泡粒子のD体またはL体の含有量>
ポリ乳酸系樹脂中におけるD体またはL体の含有量は以下の方法によって測定することができる。
ポリ乳酸系樹脂を凍結粉砕し、ポリ乳酸系樹脂の粉末200mgを三角フラスコ内に供給した後、三角フラスコ内に1Nの水酸化ナトリウム水溶液30mlを加える。そして、三角フラスコを振りながら65℃に加熱してポリ乳酸系樹脂を完全に溶解させる。しかる後に、1N塩酸を三角フラスコ内に供給して中和し、pHが4〜7の分解溶液を作製し、メスフラスコを用いて所定の体積とする。次に、分解溶液を0.45μmのメンブレンフィルタで濾過した後、液体クロマトグラフィを用いて分析し、得られたチャートに基づいてD体およびL体由来のピーク面積から面積比を存在比としてD体量およびL体量を算出する。そして、前記と同様の要領を5回繰り返して行い、得られたD体量およびL体量をそれぞれ相加平均して、ポリ乳酸系樹脂のD体量およびL体量とする。
EXAMPLES Hereinafter, although an Example is given and further demonstrated, this invention is not limited by these Examples.
<Content of D-form or L-form of polylactic acid-based resin expanded particles>
The content of D-form or L-form in the polylactic acid resin can be measured by the following method.
The polylactic acid resin is freeze-pulverized and 200 mg of the polylactic acid resin powder is supplied into the Erlenmeyer flask, and then 30 ml of 1N sodium hydroxide aqueous solution is added to the Erlenmeyer flask. Then, the polylactic acid resin is completely dissolved by heating to 65 ° C. while shaking the Erlenmeyer flask. Thereafter, 1N hydrochloric acid is supplied into the Erlenmeyer flask to neutralize it, a decomposition solution having a pH of 4 to 7 is prepared, and a predetermined volume is obtained using a volumetric flask. Next, the decomposition solution is filtered through a 0.45 μm membrane filter and then analyzed using liquid chromatography. Based on the obtained chart, the area ratio is determined from the peak area derived from the D-form and the L-form as the abundance ratio. The amount and L body mass are calculated. Then, the same procedure as described above is repeated 5 times, and the obtained D-form amount and L-form amount are arithmetically averaged to obtain the D-form amount and L-form amount of the polylactic acid resin.

液体クロマトグラフィの測定条件
HPLC装置(液体クロマトグラフィ):日本分光社製 製品名PU−2085 Plus型システム
カラム:住友分析センター社製 製品名SUMICHIRAL OA5000(4.6mmφ×250mm)
カラム温度:25℃
移動相:2mM CuSO4水溶液と2−プロパノールとの混合液(CuSO4水溶液:2−プロパノール(体積比)=95:5)
移動相流量:1.0ml/分
検出器:UV 254nm
注入量:20μl
Measurement conditions for liquid chromatography HPLC apparatus (liquid chromatography): manufactured by JASCO Corporation, product name PU-2085 Plus system column: manufactured by Sumitomo Analysis Center, Inc., product name SUMICHILAR OA5000 (4.6 mmφ × 250 mm)
Column temperature: 25 ° C
Mobile phase: Mixed solution of 2 mM CuSO 4 aqueous solution and 2-propanol (CuSO 4 aqueous solution: 2-propanol (volume ratio) = 95: 5)
Mobile phase flow rate: 1.0 ml / min Detector: UV 254 nm
Injection volume: 20 μl

<ポリ乳酸系樹脂発泡粒子の嵩密度>
ポリ乳酸系樹脂発泡粒子の嵩密度は、JIS K6911:1995年「熱硬化性プラ
スチック一般試験方法」に準拠して測定されたものをいう。即ち、JIS K6911に
準拠した見掛け密度測定器を用いて測定し、下記式に基づいてポリ乳酸系樹脂発泡粒子の
嵩密度を測定する。
ポリ乳酸系樹脂発泡粒子の嵩密度(g/cm3
=〔試料を入れたメスシリンダーの質量(g)−メスシリンダーの質量(g)〕
/〔メスシリンダーの容量(cm3)〕
<Bulk density of polylactic acid resin foamed particles>
The bulk density of the polylactic acid-based resin expanded particles refers to that measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. That is, it measures using the apparent density measuring device based on JISK6911, and measures the bulk density of a polylactic acid-type resin expanded particle based on a following formula.
Bulk density (g / cm 3 ) of foamed polylactic acid resin
= [Mass of measuring cylinder with sample (g) -Mass of measuring cylinder (g)]
/ [Capacity of measuring cylinder (cm 3 )]

<ポリ乳酸系樹脂発泡粒子の嵩倍数>
ポリ乳酸系樹脂発泡粒子の嵩倍数は、上記の測定で得られた嵩密度で、ポリ乳酸樹脂の密度である1.25g/cm3を除した値である。
<Bulk multiple of polylactic acid resin expanded particles>
The bulk multiple of the polylactic acid-based resin expanded particles is a value obtained by dividing the polylactic acid resin density of 1.25 g / cm 3 by the bulk density obtained by the above measurement.

<ポリ乳酸系樹脂発泡粒子の連続気泡率>
体積測定空気比較式比重計の試料カップを用意し、この試料カップの80%程度を満たす量のポリ乳酸系樹脂発泡粒子の全重量A(g)を測定する。次に、前記ポリ乳酸系樹脂発泡粒子全体の体積B(cm3)を、比重計を用いて1−1/2−1気圧法により測定する。なお、体積測定空気比較式比重計は、例えば、東京サイエンス社から商品名「1000型」にて市販されている。
続いて、金網製の容器を用意し、この金網製の容器を水中に浸漬し、この水中に浸漬した状態における金網製の容器の重量C(g)を測定する。次に、この金網製の容器内に前記ポリ乳酸系樹脂発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器とこの金網製容器に入れたポリ乳酸系樹脂発泡粒子の全量とを併せた重量D(g)を測定する。
そして、下記式に基づいてポリ乳酸系樹脂発泡粒子の見掛け体積E(cm3)を算出し、この見掛け体積Eと前記ポリ乳酸系樹脂発泡粒子全体の体積B(cm3)に基づいて下記式によりポリ乳酸系樹脂発泡粒子の連続気泡率を算出することができる。なお、水1gの体積を1cm3とする。
E=A+(C−D)
連続気泡率(%)=100×(E−B)/E
<Open cell ratio of polylactic acid-based resin expanded particles>
A sample cup of a volumetric air comparison type hydrometer is prepared, and the total weight A (g) of polylactic acid resin expanded particles in an amount satisfying about 80% of the sample cup is measured. Next, the volume B (cm 3 ) of the entire polylactic acid-based resin expanded particles is measured by a 1-1 / 2-1 atmospheric pressure method using a hydrometer. The volumetric air comparison type hydrometer is commercially available, for example, from Tokyo Science Co. under the trade name “1000 type”.
Subsequently, a wire mesh container is prepared, the wire mesh container is immersed in water, and the weight C (g) of the wire mesh container in the state immersed in the water is measured. Next, after all the polylactic acid-based resin expanded particles are put in the wire mesh container, the wire mesh container is immersed in water, and the wire mesh container and the wire mesh container are immersed in water. The weight D (g) of the total amount of the polylactic acid-based resin expanded particles put in the container is measured.
Then, the apparent volume E (cm 3 ) of the polylactic acid-based resin expanded particles is calculated based on the following formula, and the following formula is calculated based on the apparent volume E and the volume B (cm 3 ) of the entire polylactic acid-based resin expanded particles. Thus, the open cell ratio of the polylactic acid-based resin expanded particles can be calculated. The volume of 1 g of water is 1 cm 3 .
E = A + (CD)
Open cell ratio (%) = 100 × (EB) / E

<ポリ乳酸系樹脂発泡粒子の連続気泡分布評価>
ポリ乳酸系樹脂発泡粒子の連続気泡分布評価は、任意のポリ乳酸系樹脂発泡粒子10個を長直径に対して半分の位置を垂直にカットし、カットした面を走査型電子顕微鏡にて100倍の倍率で観察し、以下の基準で評価を行った。
ポリ乳酸系樹脂発泡粒子全体に気泡膜の破れが見られる :○
ポリ乳酸系樹脂発泡粒子全体に気泡膜の破れが見られない:×
<Evaluation of Open Cell Distribution of Polylactic Acid Resin Expanded Particles>
The evaluation of the open cell distribution of polylactic acid resin foamed particles is that 10 arbitrary polylactic acid resin foamed particles are cut vertically at half the position with respect to the long diameter, and the cut surface is 100 times with a scanning electron microscope. Were evaluated at the following magnifications and evaluated according to the following criteria.
Cell membrane tears are observed throughout the polylactic acid resin foamed particles: ○
No tearing of the cell membrane is observed in the entire polylactic acid resin expanded particles: ×

<ポリ乳酸系樹脂発泡粒子の発泡剤含有量>
ポリ乳酸系樹脂発泡粒子を5〜20mg精秤し、測定試料とする。この測定試料を180〜200℃に保持された熱分解炉(島津製作所社製:PYR−1A)にセットし、測定試料を密閉後、120秒間に亘って加熱して発泡剤成分を放出させる。この放出された発泡剤成分をガスクロマトラフィ(島津製作所社製:GC−14B、検出器:FID)を用いて下記条件にて発泡剤成分のチャートを得る。予め測定しておいた発泡剤成分の検量線に基づいて、得られたチャートからポリ乳酸系樹脂発泡粒子の発泡剤含有量を算出する。
<Foaming agent content of polylactic acid-based resin expanded particles>
5-20 mg of polylactic acid resin expanded particles are precisely weighed and used as a measurement sample. This measurement sample is set in a pyrolysis furnace (manufactured by Shimadzu Corporation: PYR-1A) maintained at 180 to 200 ° C., and the measurement sample is sealed and heated for 120 seconds to release the foaming agent component. Using this released foaming agent component, a chart of the blowing agent component is obtained under the following conditions using a gas chromatograph (manufactured by Shimadzu Corporation: GC-14B, detector: FID). Based on the calibration curve of the foaming agent component measured in advance, the foaming agent content of the polylactic acid resin foamed particles is calculated from the obtained chart.

ガスクロマトグラフィの測定条件
カラム:信和化工社製「Shimalite 60/80 NAW」(φ3mm×3m)カラム温度:70℃
検出器温度:110℃
注入口温度:110℃
キャリアーガス:窒素
キャリアーガス流量:60ml/min
Measurement condition column for gas chromatography: “Shimalite 60/80 NAW” (φ3 mm × 3 m) manufactured by Shinwa Kako Co., Ltd. Column temperature: 70 ° C.
Detector temperature: 110 ° C
Inlet temperature: 110 ° C
Carrier gas: Nitrogen carrier gas Flow rate: 60 ml / min

<ポリ乳酸系樹脂発泡粒子の粒子径測定>
ポリ乳酸系樹脂発泡粒子の粒子径は、各ポリ乳酸系樹脂発泡粒子の切断面における最も長い直径(長径)をおよび最も短い直径(短径)をノギスを用いて測定すると共に、各ポリ乳酸系樹脂発泡粒子における切断面に直交する方向の長さを測定し、ポリ乳酸系樹脂発泡粒子の長径、短径および長さの相加平均値をポリ乳酸系樹脂発泡粒子の粒子径とする。
<Measurement of particle size of polylactic acid resin expanded particles>
The particle diameter of the polylactic acid-based resin expanded particles is determined by measuring the longest diameter (major axis) and the shortest diameter (minor axis) of each polylactic acid-based resin expanded particle with a vernier caliper. The length of the resin foam particles in the direction perpendicular to the cut surface is measured, and the arithmetic average value of the major axis, minor axis and length of the polylactic acid resin foam particles is taken as the particle diameter of the polylactic acid resin foam particles.

<ポリ乳酸系樹脂発泡粒子のL/S測定>
ポリ乳酸系樹脂発泡粒子のL/Sは、ノギスを用いて各ポリ乳酸系樹脂発泡粒子における最も長い直径(長径)をLおよび最も短い直径(短径)をSとし、相加平均値として算出する。
<L / S measurement of polylactic acid resin expanded particles>
The L / S of the polylactic acid-based resin expanded particles is calculated as an arithmetic average value using a caliper, where L is the longest diameter (major axis) and S is the shortest diameter (minor axis) of each polylactic acid-based resin expanded particle. To do.

<ポリ乳酸系樹脂発泡粒子の吸水率>
ポリ乳酸系樹脂発泡粒子の吸水率は、ポリ乳酸系樹脂発泡粒子150cm3を、100℃−1時間オーブンにて乾燥させた後、直ちに重量W1を測定し、測定後、発泡成形体を水中に30分間浸漬したのち、発泡粒子表面についた水分を取り除いた後の発泡成形体の重量W2を測定し、以下の式から吸水率を測定する。
吸水率(%)=(W2−W1)/W1×100
<Water absorption rate of polylactic acid-based resin expanded particles>
The water absorption of the polylactic acid-based resin expanded particles was determined by measuring the weight W1 immediately after drying 150 cm 3 of the polylactic acid-based resin expanded particles in an oven at 100 ° C. for 1 hour. After dipping for 30 minutes, the weight W2 of the foamed molded product after removing moisture on the surface of the foamed particles is measured, and the water absorption is measured from the following equation.
Water absorption (%) = (W2−W1) / W1 × 100

<発泡成形体の吸水率>
発泡成形体の吸水率は、発泡成形体から採取した100mm×100mm×40mmの試験片を、100℃−1時間オーブンにて乾燥させた後、直ちに重量W1を測定し、測定後、発泡成形体を水中に30分間浸漬したのち、発泡粒子表面についた水分を取り除いた後の発泡成形体の重量W2を測定し、以下の式から吸水率を測定する。
吸水率(%)=(W2−W1)/W1×100
発泡成形体の吸水率は以下の基準で評価する。
発泡成形体の吸水率が10〜35%の場合 :○(合格)
発泡成形体の吸水率が10〜35%に含まれない場合 :×(不合格)
<Water absorption rate of foam molded article>
The water absorption of the foamed molded product was measured by measuring the weight W1 immediately after drying a 100 mm × 100 mm × 40 mm test piece collected from the foamed molded product in an oven at 100 ° C. for 1 hour, and measuring the foam molded product. After being immersed in water for 30 minutes, the weight W2 of the foamed molded product after removing moisture on the surface of the foamed particles is measured, and the water absorption is measured from the following equation.
Water absorption (%) = (W2−W1) / W1 × 100
The water absorption rate of the foamed molded product is evaluated according to the following criteria.
When the water absorption of the foamed molded product is 10 to 35%: ○ (pass)
When the water absorption of the foamed molded product is not included in 10 to 35%: × (failed)

<発泡成形体の空隙率>
ポリ乳酸系樹脂発泡成形体の空隙率は、下記(1)式により求めることができる。
空隙率:V(体積%)=〔(B−C)÷B〕×100 ・・・・(1)
B:発泡成形体の見掛け体積(cm3
C:発泡成形体の真の体積(cm3
発泡成形体の見掛け体積:B(cm3)は、発泡成形体の外形寸法より算出する。また、発泡成形体の真の体積:C(cm3)は、発泡成形体の見掛け体積:Bから空隙部の容積を除いた実質体積で、発泡成形体を水中に沈めた時の増加した体積をCとする。
発泡成形体の空隙率は以下の基準で評価する。
1.発泡成形体の空隙率が10〜45体積%の場合 :○(合格)
2.発泡成形体の空隙率が10〜45体積%に含まれないの場合 :×(不合格)
<Porosity of foam molded article>
The porosity of the polylactic acid resin foamed molded product can be determined by the following equation (1).
Porosity: V (volume%) = [(B−C) ÷ B] × 100 (1)
B: Apparent volume of foamed molded product (cm 3 )
C: True volume of the foamed molded product (cm 3 )
The apparent volume: B (cm 3 ) of the foam molded article is calculated from the outer dimensions of the foam molded article. In addition, the true volume of the foamed molded product: C (cm 3 ) is the actual volume of the foamed molded product obtained by subtracting the volume of the void from the apparent volume B: the increased volume when the foamed molded product is submerged in water. Is C.
The porosity of the foam molded product is evaluated according to the following criteria.
1. When the porosity of the foamed molded product is 10 to 45% by volume: ○ (pass)
2. When the porosity of the foamed molded product is not included in 10 to 45% by volume: × (failed)

<発泡成形体の外観>
ポリ乳酸系樹脂発泡成形体の外観は、目視にて以下の基準で評価を行う。
発泡成形体の外観に粒子間空隙が見られる場合 :○(合格)
発泡成形体の外観に粒子間空隙が見られない場合 :×(不合格)
<Appearance of foam molding>
The appearance of the polylactic acid-based resin foam molded article is evaluated visually according to the following criteria.
When inter-particle voids are seen in the appearance of the foamed molded product: ○ (pass)
When there are no interparticle voids on the appearance of the foamed molded article: × (Fail)

実施例1
結晶性のポリ乳酸系樹脂(ユニチカ社製、商品名「TERRAMAC HV−6250H」、融点(mp):169.1℃、D体比率:1.2モル%、L体比率:98.8モル%、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T:138.8℃)100重量部および気泡調整剤としてポリテトラフルオロエチレン粉末(旭硝子社製、商品名「フルオンL169J」)0.1重量部を口径が65mmの単軸押出機に供給して溶融混練した。なお、単軸押出機内において、ポリ乳酸系樹脂を始めは190℃にて溶融混練した後に220℃まで昇温させながら溶融混練した。
続いて、単軸押出機の途中から、イソブタン35重量%およびノルマルブタン65重量%からなるブタンをポリ乳酸系樹脂100重量部に対して1.7重量部となるように溶融状態のポリ乳酸系樹脂に圧入して、ポリ乳酸系樹脂中に均一に分散させた。
しかる後、溶融状態のポリ乳酸系樹脂を冷却した後、単軸押出機の前端に取り付けた出口部の直径が1.0mmのノズルを20個有しているマルチノズル金型の各ノズルから剪断速度7639sec-1でポリ乳酸系樹脂を押出発泡させた。また、単軸押出機の前端に取り付けたマルチノズル金型は225℃に設定していた。押し出されたポリ乳酸系樹脂発泡体は、いわゆるホットカット法により切断し、ポリ乳酸系樹脂発泡粒子を得た。切断工程においては、ポリ乳酸系樹脂押出物の切断は、回転軸を回転させ、ノズル金型の前端面に配設された回転刃を4000rpmの一定の回転数で回転させて行う。
Example 1
Crystalline polylactic acid resin (trade name “TERRAMAC HV-6250H” manufactured by Unitika Ltd., melting point (mp): 169.1 ° C., D-form ratio: 1.2 mol%, L-form ratio: 98.8 mol% 100 parts by weight of a temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement, and polytetrafluoroethylene powder (manufactured by Asahi Glass Co., Ltd.) as a bubble adjusting agent , Trade name "Fullon L169J") 0.1 parts by weight was supplied to a single screw extruder having a diameter of 65 mm and melt-kneaded. In the single screw extruder, the polylactic acid resin was first melt-kneaded at 190 ° C. and then melt-kneaded while raising the temperature to 220 ° C.
Subsequently, in the middle of the single-screw extruder, a polylactic acid system in a molten state so that butane composed of 35% by weight of isobutane and 65% by weight of normal butane becomes 1.7 parts by weight with respect to 100 parts by weight of the polylactic acid resin. It was press-fitted into the resin and uniformly dispersed in the polylactic acid resin.
Thereafter, after cooling the molten polylactic acid resin, shearing is performed from each nozzle of the multi-nozzle mold having 20 nozzles having a diameter of 1.0 mm at the outlet portion attached to the front end of the single screw extruder. Polylactic acid-based resin was extruded and foamed at a speed of 7639 sec −1 . The multi-nozzle mold attached to the front end of the single screw extruder was set at 225 ° C. The extruded polylactic acid resin foam was cut by a so-called hot cut method to obtain polylactic acid resin foam particles. In the cutting step, the polylactic acid resin extrudate is cut by rotating the rotating shaft and rotating the rotary blade disposed on the front end surface of the nozzle mold at a constant rotation speed of 4000 rpm.

得られたポリ乳酸系樹脂発泡粒子は、
平均粒子径が2.60mmであり、
嵩密度が0.10g/cm3であり、
L/Sが1.1であり、
連続気泡率が28.4%であり、
吸水率が22.5%であり、
ポリ乳酸系樹脂発泡粒子100重量部に対して1.7重量部の発泡剤を含んでいた。
The resulting polylactic acid-based resin expanded particles are
The average particle size is 2.60 mm,
The bulk density is 0.10 g / cm 3 ;
L / S is 1.1,
The open cell rate is 28.4%,
The water absorption is 22.5%,
It contained 1.7 parts by weight of a foaming agent with respect to 100 parts by weight of the expanded polylactic acid resin particles.

次に、上記ポリ乳酸系樹脂発泡粒子を密閉容器内に入れ、この密閉容器内に二酸化炭素を0.30MPaの圧力にて圧入して常温にて3時間に亘って放置してポリ乳酸系樹脂発泡粒子に二酸化炭素を含浸させた。   Next, the polylactic acid-based resin expanded particles are placed in a sealed container, and carbon dioxide is pressed into the sealed container at a pressure of 0.30 MPa and left at room temperature for 3 hours to leave the polylactic acid-based resin. The expanded particles were impregnated with carbon dioxide.

続いて、ポリ乳酸系樹脂発泡粒子をアルミニウム製の金型のキャビティ内に充填した。なお、金型のキャビティの内寸は、縦200mm×横200mm×高さ30mmの直方体形状であった。又、金型に、この金型のキャビティ内と金型外部とを連通させるために、直径が8mmの円形状の供給口を20mm間隔毎に合計252個、形成した。なお、各供給口には、開口幅が1mmの格子部を設けてあり、金型内に充填したポリ乳酸系樹脂発泡粒子がこの供給口を通じて金型外に流出しないように形成されている一方、金型の供給口を通じて金型外からキャビティ内に水を円滑に供給することができるように構成されていた。   Subsequently, the polylactic acid-based resin expanded particles were filled in a cavity of an aluminum mold. In addition, the internal dimension of the cavity of a metal mold | die was a rectangular parallelepiped shape of length 200mm x width 200mm x height 30mm. In addition, a total of 252 circular supply ports having a diameter of 8 mm were formed at intervals of 20 mm in order to allow the inside of the mold cavity to communicate with the outside of the mold. Each supply port is provided with a grid portion having an opening width of 1 mm, and the polylactic acid resin foam particles filled in the mold are formed so as not to flow out of the mold through the supply port. The water can be smoothly supplied from the outside of the mold into the cavity through the mold supply port.

そして、加熱水槽内に95℃に維持された水を溜め、この加熱水槽内の水中にポリ乳酸系樹脂発泡粒子を充填した金型を完全に5分間に亘って浸漬して、金型の供給口を通じて金型のキャビティ内のポリ乳酸系樹脂発泡粒子に水を供給し、ポリ乳酸系樹脂発泡粒子を加熱、発泡させてポリ乳酸系樹脂発泡粒子同士を熱融着させた。   Then, water maintained at 95 ° C. is stored in the heated water tank, and the mold filled with the polylactic acid resin foam particles is completely immersed in the water in the heated water tank for 5 minutes to supply the mold. Water was supplied to the polylactic acid resin foamed particles in the mold cavity through the mouth, and the polylactic acid resin foamed particles were heated and foamed to heat-seal the polylactic acid resin foamed particles together.

次に、加熱水槽内から金型を取り出した。そして、別の冷却水槽に20℃に維持された水を溜め、この冷却水槽内に金型を完全に5分間に亘って浸漬して、金型内のポリ乳酸系樹脂発泡成形体を冷却した。   Next, the mold was taken out from the heated water tank. And the water maintained at 20 degreeC was stored in another cooling water tank, and the metal mold | die was completely immersed in this cooling water tank over 5 minutes, and the polylactic acid-type resin foaming molding in a metal mold | die was cooled. .

金型を冷却水槽から取り出して金型を開放して空隙を有する直方体形状のポリ乳酸系樹脂発泡成形体を得た。   The mold was taken out from the cooling water tank, and the mold was opened to obtain a rectangular parallelepiped polylactic acid resin foam molded article having a void.

実施例2
発泡剤であるイソブタン35重量%およびノルマルブタン65重量%からなるブタンをポリ乳酸系樹脂100重量部に対して2.5重量部となるように溶融状態のポリ乳酸系樹脂に圧入して、ポリ乳酸系樹脂中に均一に分散させたこと以外は、実施例1と同様にしてポリ乳酸系樹脂発泡粒子および発泡成形体を得た。
Example 2
A butane composed of 35% by weight of isobutane and 65% by weight of normal butane as a foaming agent was pressed into a polylactic acid resin in a molten state so as to be 2.5 parts by weight with respect to 100 parts by weight of the polylactic acid resin. Polylactic acid resin foamed particles and a foamed molded article were obtained in the same manner as in Example 1 except that they were uniformly dispersed in the lactic acid resin.

得られたポリ乳酸系樹脂発泡粒子は、
平均粒子径が2.71mmであり、
嵩密度が0.09g/cm3であり、
L/Sが1.1であり、
連続気泡率が47.3%であり、
吸水率が32.1%であり、
ポリ乳酸系樹脂発泡粒子100重量部に対して2.5重量部の発泡剤を含んでいた。
The resulting polylactic acid-based resin expanded particles are
The average particle size is 2.71 mm,
The bulk density is 0.09 g / cm 3 ;
L / S is 1.1,
The open cell rate is 47.3%,
The water absorption rate is 32.1%,
It contained 2.5 parts by weight of a foaming agent with respect to 100 parts by weight of the expanded polylactic acid resin particles.

比較例1
発泡剤であるイソブタン35重量%及びノルマルブタン65重量%からなるブタンをポリ乳酸系樹脂100重量部に対して1.0重量部となるように溶融状態のポリ乳酸系樹脂に圧入して、ポリ乳酸系樹脂中に均一に分散させたこと及びノズル金型温度を210℃にしたこと以外は、実施例1と同様にしてポリ乳酸系樹脂発泡粒子を得た。
Comparative Example 1
A butane comprising 35% by weight of isobutane and 65% by weight of normal butane as a foaming agent is pressed into a polylactic acid resin in a molten state so as to be 1.0 part by weight with respect to 100 parts by weight of the polylactic acid resin. Polylactic acid-based resin expanded particles were obtained in the same manner as in Example 1 except that the lactic acid-based resin was uniformly dispersed and the nozzle mold temperature was 210 ° C.

得られたポリ乳酸系樹脂発泡粒子は、
平均粒子径が2.25mmであり、
嵩密度が0.20g/cm3であり、
L/Sが1.1であり、
連続気泡率が5.3%であり、
吸水率が6%であり、
ポリ乳酸系樹脂発泡粒子100重量部に対して1.0重量部の発泡剤を含んでいた。
The resulting polylactic acid-based resin expanded particles are
The average particle size is 2.25 mm,
The bulk density is 0.20 g / cm 3 ;
L / S is 1.1,
The open cell rate is 5.3%,
The water absorption is 6%,
1.0 part by weight of a foaming agent was contained with respect to 100 parts by weight of the expanded polylactic acid resin particles.

得られたポリ乳酸系樹脂発泡粒子を実施例1と同様にして、ポリ乳酸系樹脂発泡成形体を得た。得られたポリ乳酸系樹脂発泡成形体は、空隙を有しておらず、吸水性・空隙率がない成形体であった。
比較例2
結晶性のポリ乳酸系樹脂(ユニチカ社製 商品名「TERRAMAC HV−6250H」、融点:169.1℃、D体比率:1.2モル%、L体比率:98.8モル%、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T:138.8℃)100重量部及び気泡調整剤としてポリテトラフルオロエチレン粉末(旭硝子社製 商品名「フルオンL169J」)0.1重量部を口径が65mmの単軸押出機に供給して溶融混練した。なお、単軸押出機内において、ポリ乳酸系樹脂を始めは190℃にて溶融混練した後に220℃まで昇温させながら溶融混練した。
The obtained polylactic acid-based resin expanded particles were treated in the same manner as in Example 1 to obtain a polylactic acid-based resin expanded molded body. The obtained polylactic acid resin foamed molded article was a molded article having no voids and having no water absorption and void ratio.
Comparative Example 2
Crystalline polylactic acid resin (trade name “TERRAMAC HV-6250H” manufactured by Unitika Ltd.), melting point: 169.1 ° C., D-form ratio: 1.2 mol%, L-form ratio: 98.8 mol%, dynamic viscosity 100 parts by weight of a temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by elastic measurement, and polytetrafluoroethylene powder (manufactured by Asahi Glass Co., Ltd., trade name “Fluon”) L169J ") 0.1 parts by weight was supplied to a single screw extruder having a diameter of 65 mm and melt kneaded. In the single screw extruder, the polylactic acid resin was first melt-kneaded at 190 ° C. and then melt-kneaded while raising the temperature to 220 ° C.

続いて、単軸押出機の途中から、イソブタン35重量%及びノルマルブタン65重量%からなるブタンをポリ乳酸系樹脂100重量部に対して0.7重量部となるように溶融状態のポリ乳酸系樹脂に圧入して、ポリ乳酸系樹脂中に均一に分散させた。   Subsequently, in the middle of the single-screw extruder, the polylactic acid-based polylactic acid in a melted state so that butane comprising 35% by weight isobutane and 65% by weight normal butane is 0.7 parts by weight with respect to 100 parts by weight of the polylactic acid-based resin It was press-fitted into the resin and uniformly dispersed in the polylactic acid resin.

しかる後、溶融状態のポリ乳酸系樹脂を冷却した後、単軸押出機の先端に取り付けたマルチノズル金型の各ノズルから剪断速度5659sec-1にて押出発泡させてストランド状のポリ乳酸系樹脂押出発泡体を製造した。なお、マルチノズル金型の温度は220℃に保持されていた。 Thereafter, after the molten polylactic acid resin is cooled, it is extruded and foamed from each nozzle of a multi-nozzle mold attached to the tip of a single screw extruder at a shear rate of 5659 sec −1 to form a strand-shaped polylactic acid resin. Extruded foam was produced. The temperature of the multi-nozzle mold was maintained at 220 ° C.

続いて、ストランド状のポリ乳酸系樹脂押出発泡体を、マルチノズル金型の各ノズル先端から60cmの距離に亘って空冷により冷却し、続いて、ストランド状のポリ乳酸系樹脂押出発泡体を2mの距離に亘って冷却水槽内の水面上に浮かせて冷却した。なお、冷却水槽内の水温は、30℃であった。   Subsequently, the strand-shaped polylactic acid-based resin extruded foam is cooled by air cooling over a distance of 60 cm from the tip of each nozzle of the multi-nozzle mold, and then the strand-shaped polylactic acid-based resin extruded foam is 2 m. Over the water surface in the cooling water tank and cooled. In addition, the water temperature in a cooling water tank was 30 degreeC.

なお、マルチノズル金型は、出口部の直径が1.0mmのノズルが15個、配設されており、ランド部の長さは7mmであった。又、マルチノズル金型のノズルから押出発泡させた際の樹脂温度を、単軸押出機の先端部と金型との間にブレーカープレートを挿入し、このブレーカープレートの中心部に熱電対を挿入することによって測定したところ、204℃であった。   The multi-nozzle mold was provided with 15 nozzles having a diameter of 1.0 mm at the outlet portion, and the land portion had a length of 7 mm. The resin temperature when extrusion foaming from the nozzle of the multi-nozzle mold is inserted between the tip of the single screw extruder and the mold, and a thermocouple is inserted in the center of the breaker plate. It was 204 degreeC when measured by doing.

そして、ストランド状のポリ乳酸系樹脂押出発泡体を充分に水切りした後、このポリ乳酸系樹脂押出発泡体をファンカッタ式のペレタイザーを用いて2.3mm毎に円柱状に切断してポリ乳酸系樹脂発泡粒子を得た。
得られたポリ乳酸系樹脂発泡粒子は、
平均粒子径が2.4mmであり、
嵩密度が0.15g/cm3であり、
L/Sが1.1であり、
連続気泡率が22.4%であり、
吸水率が3.9%であり、
ポリ乳酸系樹脂発泡粒子100重量部に対して0.7重量部の発泡剤を含んでいた。
得られたポリ乳酸系樹脂発泡粒子を実施例1と同様にして、ポリ乳酸系樹脂発泡成形体を得た。得られたポリ乳酸系樹脂発泡成形体は、大きな空隙を有しておらず、吸水性・空隙率の低い成形体であった。
The strand-shaped polylactic acid-based resin extruded foam is sufficiently drained, and the polylactic acid-based resin extruded foam is cut into a cylindrical shape every 2.3 mm using a fan cutter type pelletizer. Resin foam particles were obtained.
The resulting polylactic acid-based resin expanded particles are
The average particle size is 2.4 mm,
The bulk density is 0.15 g / cm 3 ;
L / S is 1.1,
The open cell rate is 22.4%,
The water absorption is 3.9%,
It contained 0.7 parts by weight of a foaming agent with respect to 100 parts by weight of the polylactic acid resin expanded particles.
The obtained polylactic acid-based resin expanded particles were treated in the same manner as in Example 1 to obtain a polylactic acid-based resin expanded molded body. The obtained polylactic acid-based resin foamed molded article did not have large voids, and was a molded article having low water absorption and low porosity.

表1に、実施例および比較例の原料種、発泡成形体の評価結果等を示す。   In Table 1, the raw material seed | species of an Example and a comparative example, the evaluation result of a foaming molding, etc. are shown.

Figure 2011213906
Figure 2011213906

表1より、本発明のポリ乳酸系樹脂発泡粒子を用いることにより高い空隙率を有する発泡成形体を得ることができることを示し、このことは本発明の発泡成形体は優れた通水性を有することも示している。
また、同様に美麗な外観、即ち優れた成形性を有する発泡成形体を得ることができることも示している。
さらに、高い吸水性、即ち保水性に優れた発泡成形体を得ることもできることも示している。
Table 1 shows that a foamed molded article having a high porosity can be obtained by using the polylactic acid-based resin foamed particles of the present invention. This indicates that the foamed molded article of the present invention has excellent water permeability. It also shows.
It also shows that a foamed molded article having a beautiful appearance, that is, excellent moldability can be obtained.
Furthermore, it also shows that a foamed molded article having high water absorption, that is, excellent water retention can be obtained.

従って、本発明のポリ乳酸系樹脂発泡粒子は、高い空隙率、吸水性および生分解性を有する発泡成形体を与え、さらに成形性に優れるため、本発明の発泡成形体は、土壌改良剤および調湿材として使用することもできる。   Therefore, since the polylactic acid-based resin foamed particles of the present invention give a foamed molded product having high porosity, water absorption and biodegradability, and further excellent moldability, the foamed molded product of the present invention comprises a soil improver and It can also be used as a humidity control material.

1a ノズル金型1の前端面
2 回転軸
3 駆動部材
4 冷却部材
5 回転刃
11 ノズルの出口部
41 冷却ドラム
41a 冷却ドラムの前部
41b 冷却ドラムの周壁部
41c 冷却ドラムの供給口
41d 冷却ドラムの供給管
41e 冷却ドラムの排出口
41f 冷却ドラムの排出管
42 冷却ドラムの冷却液
A 回転刃フォルダー
1a Front end surface 2 of nozzle mold 1 Rotating shaft 3 Driving member 4 Cooling member 5 Rotating blade 11 Nozzle outlet 41 Cooling drum 41a Cooling drum front 41b Cooling drum peripheral wall 41c Cooling drum supply port 41d Cooling drum supply port 41d Supply pipe 41e Cooling drum discharge port 41f Cooling drum discharge pipe 42 Cooling drum coolant A Rotary blade folder

Claims (9)

25〜50%の連続気泡率を有する球状ないし略球状のポリ乳酸系樹脂発泡粒子であり、前記ポリ乳酸系樹脂発泡粒子を型内成形して得られる発泡成形体が10〜35%の吸水率を有することを特徴とするポリ乳酸系樹脂発泡粒子。   It is a spherical or substantially spherical polylactic acid resin foamed particle having an open cell ratio of 25 to 50%, and the foamed product obtained by molding the polylactic acid resin foamed particle in a mold has a water absorption of 10 to 35%. Polylactic acid resin foamed particles characterized by having 前記ポリ乳酸系樹脂発泡粒子が、前記ポリ乳酸系樹脂発泡粒子の最も長い直径Lと最も短い直径Sとの間に1.0〜1.3の比(L/S)を有する請求項1に記載のポリ乳酸系樹脂発泡粒子。   The polylactic acid-based resin expanded particles have a ratio (L / S) of 1.0 to 1.3 between the longest diameter L and the shortest diameter S of the polylactic acid-based resin expanded particles. The polylactic acid-based resin expanded particles described. 前記ポリ乳酸系樹脂発泡粒子が、構成単量体成分としてD体およびL体の双方の光学異性体を含有しかつD体またはL体のうち少ない方の光学異性体の含有量が5モル%未満であるか、または、構成単量体成分としてD体またはL体のうちの何れか一方の光学異性体のみを含有するポリ乳酸系樹脂を含む請求項1または2に記載のポリ乳酸系樹脂発泡粒子。   The polylactic acid-based resin expanded particles contain both D-form and L-form optical isomers as constituent monomer components, and the content of the smaller of the D-form and L-form is 5 mol%. The polylactic acid-based resin according to claim 1 or 2, comprising a polylactic acid-based resin that is less than or contains only one optical isomer of either D-form or L-form as a constituent monomer component Expanded particles. 前記ポリ乳酸系樹脂発泡粒子が、前記ポリ乳酸系樹脂発泡粒子100重量部に対して
1.5〜3.8重量部の発泡剤を含む請求項1〜3のいずれか1つに記載のポリ乳酸系樹脂発泡粒子。
4. The poly according to claim 1, wherein the polylactic acid-based resin expanded particles contain 1.5 to 3.8 parts by weight of a foaming agent with respect to 100 parts by weight of the polylactic acid-based resin expanded particles. Lactic acid resin foam particles.
前記ポリ乳酸系樹脂発泡粒子が、0.06〜0.15g/cm3の嵩密度を有する請求項1〜4のいずれか1つに記載のポリ乳酸系樹脂発泡粒子。 The polylactic acid-based resin expanded particles according to any one of claims 1 to 4, wherein the polylactic acid-based resin expanded particles have a bulk density of 0.06 to 0.15 g / cm 3 . 前記ポリ乳酸系樹脂発泡粒子が、10〜35%の吸水率を有する請求項1〜5のいずれか1つに記載のポリ乳酸系樹脂発泡粒子。   The polylactic acid-based resin expanded particles according to any one of claims 1 to 5, wherein the polylactic acid-based resin expanded particles have a water absorption rate of 10 to 35%. 請求項1〜6のいずれか1つに記載のポリ乳酸系樹脂発泡粒子の製造方法であって、
前記ポリ乳酸系樹脂を押出機に供給して発泡剤下にて溶融混練する工程と、
前記押出機の前端に取り付けたノズル金型からポリ乳酸系樹脂押出物を押出し、前記ポリ乳酸系樹脂押出物を発泡させながら、210〜235℃のノズル金型の温度で、前記ノズル金型の前端面に接触させながら2000〜10000rpmの回転数で回転する回転刃によって切断して前記ポリ乳酸系樹脂発泡粒子を製造し、前記ポリ乳酸系樹脂発泡粒子を切断応力によって飛散させる工程と、
前記ポリ乳酸系樹脂発泡粒子を前記ノズル金型の前方に配設した冷却部材を衝突させて冷却する工程と
を含むポリ乳酸系樹脂発泡粒子の製造方法。
It is a manufacturing method of the polylactic acid-based resin expanded particles according to any one of claims 1 to 6,
Supplying the polylactic acid resin to an extruder and melt-kneading under a foaming agent;
While extruding a polylactic acid resin extrudate from a nozzle mold attached to the front end of the extruder and foaming the polylactic acid resin extrudate, the temperature of the nozzle mold is 210 to 235 ° C. Cutting with a rotary blade rotating at a rotational speed of 2000 to 10000 rpm while contacting the front end surface to produce the polylactic acid resin foamed particles, and scattering the polylactic acid resin foamed particles by cutting stress;
And a step of cooling the polylactic acid-based resin expanded particles by colliding with a cooling member disposed in front of the nozzle mold.
請求項1〜6のいずれか1つに記載のポリ乳酸系樹脂発泡粒子を型内成形した発泡成形体。   The foaming molding which molded the polylactic acid-type resin expanded particle as described in any one of Claims 1-6 in-mold. 前記発泡成形体が、10〜45体積%の空隙率を有する請求項8に記載の発泡成形体。   The foamed molded product according to claim 8, wherein the foamed molded product has a porosity of 10 to 45% by volume.
JP2010084176A 2010-03-31 2010-03-31 Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding Pending JP2011213906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010084176A JP2011213906A (en) 2010-03-31 2010-03-31 Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084176A JP2011213906A (en) 2010-03-31 2010-03-31 Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding

Publications (1)

Publication Number Publication Date
JP2011213906A true JP2011213906A (en) 2011-10-27

Family

ID=44943984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084176A Pending JP2011213906A (en) 2010-03-31 2010-03-31 Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding

Country Status (1)

Country Link
JP (1) JP2011213906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675842A (en) * 2012-05-23 2012-09-19 北京化工大学 Polylactic acid foamed material and preparation method thereof
EP2940070A1 (en) 2014-05-01 2015-11-04 Jsp Corporation Molded article of polylactic acid-based resin expanded beads

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675842A (en) * 2012-05-23 2012-09-19 北京化工大学 Polylactic acid foamed material and preparation method thereof
CN102675842B (en) * 2012-05-23 2013-12-11 北京化工大学 Polylactic acid foamed material and preparation method thereof
EP2940070A1 (en) 2014-05-01 2015-11-04 Jsp Corporation Molded article of polylactic acid-based resin expanded beads
JP2015212323A (en) * 2014-05-01 2015-11-26 株式会社ジェイエスピー Foamed particle molded product
US9637606B2 (en) 2014-05-01 2017-05-02 Jsp Corporation Molded article of polylactic acid-based resin expanded beads

Similar Documents

Publication Publication Date Title
JP4213200B2 (en) Polylactic acid resin foamed particles for in-mold foam molding, production method thereof, and production method of polylactic acid resin foam molding
JP4761916B2 (en) Polylactic acid resin foam molding
JP4820641B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP4773870B2 (en) Process for producing polylactic acid-based resin foam molding
JP3619154B2 (en) Crystalline aromatic polyester resin pre-foamed particles, in-mold foam molded article and foam laminate using the same
JP2009235170A (en) Method for producing polylactic acid resin foamed particle for in-mold expansion molding
JP5216619B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP4761917B2 (en) Process for producing pre-expanded particles of polylactic acid resin
JP2004307662A (en) Method for producing crystalline polylactic acid-based resin foam
JP4960122B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP2011213906A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
JP2011213905A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
KR101438032B1 (en) Polylactic acid based-biodegradable polymer blends with excellent compatibility, manufacturing method of heat resistant foamed sheet thereof and foam-molding product thereby
JP4816853B2 (en) Polylactic acid-based expandable resin particles
JP5636310B2 (en) Method for producing polylactic acid resin foam, polylactic acid resin foam, and polylactic acid resin foam molded article
JP5502778B2 (en) Polylactic acid resin foam and method for producing the same
JP2012077179A (en) Heat insulating material for floor heating
JP2012077178A (en) Structural member for vehicle
JP2012077180A (en) Cushioning material for packaging
JP2012201818A (en) Lactic acid-acryl-styrene-based resin foam and lactic acud-acryl-styrene-based resin foam molding
JP2011111615A (en) Polylactic acid-based resin foamed particle for foam molding in mold, secondary foamed particle, and polylactic acid-based resin foamed molded article
JP2003301066A (en) Lightweight structural material and thermal insulation with good degradability when scrapped and manufacturing method thereof
JP3892745B2 (en) Method for producing polylactic acid resin foam
JP4928920B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP2010023333A (en) Container forming poly-lactic acid resin foaming particle and its production process, also production process of poly-lactic acid resin foam container using container forming poly-lactic acid resin foaming particle