JP4761917B2 - Process for producing pre-expanded particles of polylactic acid resin - Google Patents

Process for producing pre-expanded particles of polylactic acid resin Download PDF

Info

Publication number
JP4761917B2
JP4761917B2 JP2005294919A JP2005294919A JP4761917B2 JP 4761917 B2 JP4761917 B2 JP 4761917B2 JP 2005294919 A JP2005294919 A JP 2005294919A JP 2005294919 A JP2005294919 A JP 2005294919A JP 4761917 B2 JP4761917 B2 JP 4761917B2
Authority
JP
Japan
Prior art keywords
polylactic acid
acid resin
resin
elastic modulus
expanded particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005294919A
Other languages
Japanese (ja)
Other versions
JP2007100026A (en
Inventor
孝明 平井
克典 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2005294919A priority Critical patent/JP4761917B2/en
Publication of JP2007100026A publication Critical patent/JP2007100026A/en
Application granted granted Critical
Publication of JP4761917B2 publication Critical patent/JP4761917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、型内発泡成形によって耐熱性及び機械的強度に優れたポリ乳酸系樹脂発泡成形体を得ることができるポリ乳酸系樹脂予備発泡粒子の製造方法に関する。   The present invention relates to a method for producing polylactic acid resin pre-expanded particles that can obtain a polylactic acid resin foam molded article having excellent heat resistance and mechanical strength by in-mold foam molding.

ポリ乳酸系樹脂は、天然に存在する乳酸を重合されて得られた樹脂であり、自然界に存在する微生物によって分解可能な生分解性樹脂であると共に、常温での機械的特性についても優れていることから注目を集めている。   Polylactic acid resin is a resin obtained by polymerizing naturally occurring lactic acid, is a biodegradable resin that can be decomposed by microorganisms existing in nature, and has excellent mechanical properties at room temperature. It attracts attention.

ポリ乳酸系樹脂は、一般に、D−乳酸及び/又はL−乳酸を重合させるか、或いは、L−ラクチド、D−ラクチド及びDL−ラクチドからなる群から選ばれた一又は二以上のラクチドを開環重合させることによって製造されている。   The polylactic acid resin generally polymerizes D-lactic acid and / or L-lactic acid, or opens one or more lactides selected from the group consisting of L-lactide, D-lactide and DL-lactide. Manufactured by ring polymerization.

そして、得られるポリ乳酸系樹脂は、該ポリ乳酸系樹脂中に含有されるD体成分或いはL体成分の含有比率によって物性、特に結晶性が変化し、具体的には、D体成分或いはL体成分のうちの少ない方の光学異性体の割合が多くなるにしたがってポリ乳酸系樹脂の結晶性が低下し、やがて非結晶性となる。   The obtained polylactic acid-based resin changes in physical properties, particularly crystallinity, depending on the content ratio of the D-form component or L-form component contained in the polylactic acid-based resin. As the proportion of the smaller optical isomer of the body components increases, the crystallinity of the polylactic acid resin decreases and eventually becomes amorphous.

又、ポリ乳酸系樹脂予備発泡粒子を金型内に充填し、水蒸気などの熱媒体によってポリ乳酸系樹脂予備発泡粒子を加熱して軟化させると共に発泡させ、予備発泡粒子の発泡圧によって予備発泡粒子同士を融着一体化させて所望形状を有するポリ乳酸系樹脂発泡成形体を製造する方法、所謂、型内発泡成形が提案されている。   In addition, the polylactic acid resin pre-expanded particles are filled in a mold, and the polylactic acid resin pre-expanded particles are heated and softened by a heat medium such as water vapor to be softened and expanded. A method for producing a polylactic acid-based resin foam molded body having a desired shape by fusing them together, so-called in-mold foam molding, has been proposed.

具体的には、特許文献1には、L体とD体のモル比が95/5〜60/40、又は40/60〜5/95であるポリ乳酸にイソシアネート基≧2.0当量/モルのポリイソシアネート化合物を該ポリ乳酸に対して0.5〜5重量%配合し反応させた樹脂組成物を所定条件で熟成させてなる樹脂組成物が提案され、そして、上記樹脂組成物から粒子を製造し、この粒子に発泡剤及び発泡助剤を含浸させ、得られた発泡性粒子を予備発泡させて予備発泡粒子を製造し、この予備発泡粒子を金型に充填して発泡させて所望形状を有する成形体を成形することが開示されている。   Specifically, Patent Document 1 discloses that an isocyanate group ≧ 2.0 equivalents / mol in polylactic acid having a molar ratio of L-form to D-form of 95/5 to 60/40, or 40/60 to 5/95. A resin composition obtained by aging under a predetermined condition a resin composition obtained by mixing 0.5 to 5% by weight of the polyisocyanate compound with respect to the polylactic acid and reacting the same is proposed, and particles are formed from the resin composition. The particles are impregnated with a foaming agent and a foaming auxiliary agent, and the resulting foamable particles are pre-foamed to produce pre-foamed particles. The pre-foamed particles are filled into a mold and foamed to obtain a desired shape. It is disclosed to form a molded body having the following.

しかしながら、上記ポリ乳酸系樹脂は、そのL体成分又はD体成分のうちの少ない方の光学異性体成分のモル比が5モル%以上であり、ポリ乳酸系樹脂は結晶性が低いか或いは非結晶性であって耐熱性に劣り、得られる成形体の耐熱性はせいぜい50℃程度であって、実用上の使用には問題点があった。   However, the polylactic acid-based resin has a molar ratio of the smaller optical isomer component of the L-form component or the D-form component of 5 mol% or more, and the polylactic acid-based resin has low crystallinity or is not non-crystalline. It is crystalline and inferior in heat resistance, and the resulting molded article has a heat resistance of about 50 ° C. at most, which is problematic for practical use.

そこで、L体又はD体のうちの少ない方の光学異性体のモル比が5モル未満である結晶性の高いポリ乳酸系樹脂を用いることが考えられるが、粒子に発泡剤を含浸させて発泡性粒子とし、この発泡性粒子を加熱して予備発泡させていることから、この発泡過程で加えられる熱によってポリ乳酸系樹脂の結晶化が進行してしまい、結晶化度の高い予備発泡粒子となり、その結果、得られる予備発泡粒子の融着性が低下してしまい、このような予備発泡粒子を用いて得られる成形体は、融着性が悪くて機械的強度が低いといった問題点があった。   Therefore, it is conceivable to use a polylactic acid-based resin with high crystallinity in which the molar ratio of the smaller optical isomer of L-form or D-form is less than 5 moles. Since the foamable particles are heated and pre-foamed, the polylactic acid resin is crystallized by the heat applied during the foaming process, resulting in pre-foamed particles with high crystallinity. As a result, the fusing property of the pre-expanded particles obtained is lowered, and the molded product obtained using such pre-expanded particles has a problem that the fusing property is poor and the mechanical strength is low. It was.

特開2000−17037号公報JP 2000-17037 A

本発明は、型内発泡成形によって耐熱性及び機械的強度に優れたポリ乳酸系樹脂発泡成形体を得ることができるポリ乳酸系樹脂予備発泡粒子の製造方法を提供する。   The present invention provides a method for producing pre-expanded polylactic acid-based resin particles capable of obtaining a polylactic acid-based resin expanded molded article having excellent heat resistance and mechanical strength by in-mold foam molding.

本発明の型内発泡成形用ポリ乳酸系樹脂予備発泡粒子の製造方法は、ポリ乳酸系樹脂を押出機に供給して発泡剤の存在下にて溶融混練し押出発泡して押出発泡体を製造し、この押出発泡体を粒子状に切断して予備発泡粒子を製造するポリ乳酸系樹脂予備発泡粒子の製造方法において、上記ポリ乳酸系樹脂が、その構成モノマー成分としてD体及びL体の双方の光学異性体を含有し且つD体又はL体のうちの少ない方の光学異性体の含有量が5モル%未満であるか、或いは、構成モノマー成分としてD体又はL体のうちの何れか一方の光学異性体のみを含有していると共に、上記ポリ乳酸系樹脂における融点(mp)と動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tとが下記式1を満たし、更に、ポリ乳酸系樹脂予備発泡粒子の結晶化度が30%未満となるように調整することを特徴とする。
(ポリ乳酸系樹脂の融点(mp)−40℃)
≦(交点における温度T)≦ポリ乳酸系樹脂の融点(mp)・・・式1
The method for producing pre-expanded polylactic acid resin particles for in-mold foam molding according to the present invention is to supply polylactic acid resin to an extruder, melt knead in the presence of a foaming agent, and extrusion foam to produce an extruded foam. In the process for producing pre-expanded particles by cutting the extruded foam into particles, the polylactic acid-based resin has both D-form and L-form as its constituent monomer components. And the content of the lesser of the D isomer and the L isomer is less than 5 mol%, or any of the D isomer and L isomer as a constituent monomer component While containing only one optical isomer, the temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by the melting point (mp) in the polylactic acid resin and the dynamic viscoelasticity measurement. Satisfies the following formula 1 and Crystallinity of the acid-based resin pre-expanded particles and adjusting to be less than 30%.
(Melting point of polylactic acid resin (mp) -40 ° C)
≦ (temperature T at the intersection) ≦ melting point of polylactic acid resin (mp) Formula 1

上記ポリ乳酸系樹脂は下記化1で示され、D−乳酸及びL−乳酸をモノマーとして共重合させるか、D−乳酸又はL−乳酸の何れか一方をモノマーとして重合させるか、或いは、D−ラクチド、L−ラクチド及びDL−ラクチドからなる群より選ばれた一又は二以上のラクチドを開環重合させることによって得ることができ、何れのポリ乳酸系樹脂であってもよい。   The polylactic acid-based resin is represented by the following chemical formula 1, and is obtained by copolymerizing D-lactic acid and L-lactic acid as monomers, polymerizing either D-lactic acid or L-lactic acid as monomers, or D- It can be obtained by ring-opening polymerization of one or more lactides selected from the group consisting of lactide, L-lactide and DL-lactide, and any polylactic acid resin may be used.

Figure 0004761917
Figure 0004761917

そして、ポリ乳酸系樹脂を製造するに際して、モノマーとしてD体とL体とを併用した場合においてD体若しくはL体のうちの少ない方の光学異性体の割合が5モル%未満である場合、又は、モノマーとしてD体若しくはL体のうちの何れか一方の光学異性体のみを用いた場合、即ち、上記ポリ乳酸系樹脂が、その構成モノマー成分としてD体及びL体の双方の光学異性体を含有し且つD体又はL体のうちの少ない方の光学異性体の含有量が5モル%未満であるか、或いは、構成モノマー成分としてD体又はL体のうちの何れか一方の光学異性体のみを含有している場合は、得られるポリ乳酸系樹脂は、その結晶性が高くなる一方、モノマーとしてD体とL体とを併用した場合においてD体又はL体のうちの少ない方の割合が5モル%以上である時は、少ない方の光学異性体が増加するにしたがって、得られるポリ乳酸系樹脂は、その結晶性が低くなり、やがて非結晶となる。   And when producing a polylactic acid-based resin, when the D isomer and L isomer are used in combination as a monomer, the proportion of the lesser optical isomer of the D isomer or L isomer is less than 5 mol%, or In the case where only one of the optical isomers of D-form or L-form is used as a monomer, that is, the polylactic acid-based resin has both D-form and L-form optical isomers as its constituent monomer components. And the content of the smaller optical isomer of D-form or L-form is less than 5 mol%, or any one of the D-form or L-form optical isomer as a constituent monomer component In the case where only the D-form and the L-form are used together, the polylactic acid-based resin obtained has a higher crystallinity, while the D-form and the L-form are used in combination as a monomer. Is more than 5 mol% When that is, according to the optical isomer is increased the smaller the resulting polylactic acid-based resin, its crystallinity decreases, the eventually amorphous.

従って、本発明では、構成モノマー成分としてD体及びL体の双方の光学異性体を含有し且つD体又はL体のうちの少ない方の光学異性体の含有量が5モル%未満であるポリ乳酸系樹脂か、或いは、構成モノマー成分としてD体又はL体のうちの何れか一方の光学異性体のみを含有しているポリ乳酸系樹脂を用いることによって、得られるポリ乳酸系樹脂予備発泡粒子の耐熱性を高いものとしている。   Therefore, in the present invention, a polymorphism containing both D-form and L-form optical isomers as a constituent monomer component and the content of the smaller of the D-form and L-form is less than 5 mol%. Polylactic acid-based resin pre-expanded particles obtained by using a lactic acid-based resin or a polylactic acid-based resin containing only one optical isomer of D-form or L-form as a constituent monomer component High heat resistance.

更に、D体とL体をモノマーとして併用して重合させて得られたポリ乳酸系樹脂としては、D体又はL体のうちの何れか少ない方の光学異性体の割合が4モル%未満であるモノマーを重合させて得られたポリ乳酸系樹脂が好ましく、D体又はL体のうちの何れか少ない方の光学異性体の割合が3モル%未満であるモノマーを重合させて得られたポリ乳酸系樹脂がより好ましく、D体又はL体のうちの何れか少ない方の光学異性体の割合が2モル%未満であるモノマーを重合させて得られたポリ乳酸系樹脂が特に好ましい。   Furthermore, the polylactic acid-based resin obtained by polymerizing the D-form and the L-form in combination as a monomer has a ratio of the smaller optical isomer of the D-form or the L-form of less than 4 mol%. A polylactic acid resin obtained by polymerizing a certain monomer is preferred, and a polylactic acid resin obtained by polymerizing a monomer in which the proportion of the optical isomer, whichever is smaller, of D-form or L-form is less than 3 mol% A lactic acid-based resin is more preferable, and a polylactic acid-based resin obtained by polymerizing a monomer in which the ratio of the optical isomer, which is the smaller of either the D-form or the L-form, is less than 2 mol% is particularly preferred.

即ち、構成モノマー成分としてD体及びL体の双方の光学異性体を含有し且つD体又はL体のうちの少ない方の光学異性体の含有量が4モル%未満であるポリ乳酸系樹脂が好ましく、構成モノマー成分としてD体及びL体の双方の光学異性体を含有し且つD体又はL体のうちの少ない方の光学異性体の含有量が3モル%未満であるポリ乳酸系樹脂がより好ましく、構成モノマー成分としてD体及びL体の双方の光学異性体を含有し且つD体又はL体のうちの少ない方の光学異性体の含有量が2モル%未満であるポリ乳酸系樹脂が更に好ましい。   That is, a polylactic acid-based resin containing both optical isomers of D-form and L-form as a constituent monomer component, and the content of the smaller optical isomer of D-form or L-form is less than 4 mol%. Preferably, a polylactic acid-based resin that contains both D-form and L-form optical isomers as a constituent monomer component, and the content of the smaller of the D-form and L-form is less than 3 mol%. More preferably, a polylactic acid resin containing both D isomer and L isomer as constituent monomer components, and the content of the lesser of the D isomer and L isomer being less than 2 mol% Is more preferable.

そして、構成モノマー成分としてD体及びL体を含有するポリ乳酸系樹脂は、D体又はL体のうちの何れか少ない方の光学異性体の割合が少なくなればなる程、ポリ乳酸系樹脂は、その結晶性のみならず融点も上昇する。よって、予備発泡粒子を金型内に充填して発泡させて得られる発泡成形体の耐熱性も向上し、発泡成形体は高い温度であってもその形態を維持することができ、発泡成形体を金型から高い温度のまま取り出すことが可能となって発泡成形体の金型内における冷却時間が短縮され、発泡成形体の生産効率を向上させることもできる。   And as for the polylactic acid-type resin which contains D body and L body as a constituent monomer component, the ratio of the optical isomer of the smaller one of D body or L body decreases, and the polylactic acid resin becomes In addition to its crystallinity, the melting point increases. Therefore, the heat resistance of the foam molded product obtained by filling the foamed pre-expanded particles in the mold is improved, and the foam molded product can maintain its form even at a high temperature. Can be taken out from the mold at a high temperature, the cooling time in the mold of the foam molded product can be shortened, and the production efficiency of the foam molded product can be improved.

ここで、ポリ乳酸系樹脂中におけるD体又はL体の含有量は以下の方法によって測定することができる。先ず、ポリ乳酸系樹脂をクロロホルムに溶解させて、ポリ乳酸系樹脂の濃度が10mg/ミリリットルのクロロホルム溶液を作製する。次に、旋光計を用いて25℃にて波長589nmの偏光をクロロホルム溶液に照射して、クロロホルム溶液の比旋光度を測定する。   Here, the content of D-form or L-form in the polylactic acid-based resin can be measured by the following method. First, a polylactic acid resin is dissolved in chloroform to prepare a chloroform solution having a polylactic acid resin concentration of 10 mg / ml. Next, the chloroform solution is irradiated with polarized light having a wavelength of 589 nm at 25 ° C. using a polarimeter, and the specific rotation of the chloroform solution is measured.

一方、モノマーとしてD体のみを用いて重合して得られたポリ乳酸系樹脂、或いは、モノマーとしてL体のみを用いて重合して得られたポリ乳酸系樹脂について、上述と同様の要領で比旋光度を測定してもよいが、この比旋光度は、通常、既に測定されており、D体のみを用いて重合して得られたポリ乳酸系樹脂は+156°、モノマーとしてL体のみを用いて重合して得られたポリ乳酸系樹脂は−156°とされている。   On the other hand, the polylactic acid resin obtained by polymerization using only the D isomer as the monomer, or the polylactic acid resin obtained by polymerizing using only the L isomer as the monomer, was compared in the same manner as described above. Although the optical rotation may be measured, this specific optical rotation is usually already measured. The polylactic acid resin obtained by polymerization using only D-form is + 156 °, and only L-form is used as a monomer. The polylactic acid-based resin obtained by polymerization using it is set to −156 °.

そして、下記式に基づいてポリ乳酸系樹脂中におけるD体成分又はL体成分の量を算出することができる。
D体成分量(モル%)=100×{クロロホルム溶液の比旋光度−(−156)}
/{156−(−156)}
L体成分量(モル%)=100−(D体成分量)
And the quantity of D body component or L body component in polylactic acid-type resin is computable based on a following formula.
D-form component amount (mol%) = 100 × {specific rotation of chloroform solution − (− 156)}
/ {156-(-156)}
L-form component amount (mol%) = 100- (D-form component amount)

ところが、本発明で用いられるポリ乳酸系樹脂は、その結晶化速度が速いことから、その中から押出発泡に適したものを選択する必要があり、本発明では、ポリ乳酸系樹脂として、融点(mp)と、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tとが下記式1を満たすポリ乳酸系樹脂を用いている。
(ポリ乳酸系樹脂の融点(mp)−40℃)
≦(交点における温度T)≦ポリ乳酸系樹脂の融点(mp)・・・式1
However, since the polylactic acid resin used in the present invention has a high crystallization rate, it is necessary to select a resin suitable for extrusion foaming. In the present invention, the polylactic acid resin has a melting point ( mp) and a polylactic acid resin satisfying the following formula 1 using the temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement.
(Melting point of polylactic acid resin (mp) -40 ° C)
≦ (temperature T at the intersection) ≦ melting point of polylactic acid resin (mp) Formula 1

ここで、動的粘弾性測定にて得られた貯蔵弾性率は、粘弾性において弾性的な性質を示す指標であって、発泡過程における気泡膜の弾性の大小を示す指標であり、発泡過程において、気泡膜の収縮力に抗して気泡を膨張させるのに必要な発泡圧の大小を示す指標である。   Here, the storage elastic modulus obtained by the dynamic viscoelasticity measurement is an index indicating elastic properties in the viscoelasticity, and is an index indicating the elasticity of the bubble film in the foaming process. This is an index indicating the magnitude of the foaming pressure required to expand the bubbles against the contraction force of the bubble film.

即ち、ポリ乳酸系樹脂の動的粘弾性測定にて得られた貯蔵弾性率が低いと、気泡膜が伸長された場合、気泡膜が伸長力に抗して収縮しようとする力が小さく、ポリ乳酸系樹脂予備発泡粒子の製造に必要とする発泡圧によって発泡膜が容易に伸長してしまう結果、気泡膜が過度に伸長してしまい破泡を生じる一方、ポリ乳酸系樹脂の動的粘弾性測定にて得られた貯蔵弾性率が高いと、気泡膜に伸長力が加わった場合、伸長に抗する気泡膜の収縮力が大きく、ポリ乳酸系樹脂予備発泡粒子の製造に必要とする発泡圧で一旦、気泡が膨張したとしても、温度低下などに起因する経時的な発泡圧の低下に伴って気泡が収縮してしまう。   That is, if the storage elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid-based resin is low, when the cell membrane is stretched, the force that the cell membrane attempts to contract against the stretching force is small. The foamed film easily stretches due to the foaming pressure required for the production of pre-foamed particles of lactic acid resin. As a result, the bubble film stretches excessively, resulting in bubble breakage. On the other hand, the dynamic viscoelasticity of polylactic acid resin When the storage elastic modulus obtained by the measurement is high, when the expansion force is applied to the cell membrane, the cell membrane has a large contraction force against the expansion, and the foaming pressure required for the production of the pre-expanded particles of polylactic acid resin Even if the bubbles expand once, the bubbles contract as the foaming pressure decreases with time due to a temperature drop or the like.

又、動的粘弾性測定にて得られた損失弾性率は、粘弾性において粘性的な性質を示す指標であって、発泡過程における気泡膜の粘性を示す指標であり、発泡過程において、気泡膜をどの程度まで破れることなく伸長させることができるかの許容範囲を示す指標であると同時に、発泡圧によって所望大きさに気泡を膨張させた後、この膨張した気泡をその大きさに維持する能力を示す指標でもある。   The loss elastic modulus obtained by dynamic viscoelasticity measurement is an index indicating the viscous property in viscoelasticity, and is an index indicating the viscosity of the bubble film in the foaming process. This is an index indicating the allowable range of how much can be expanded without breaking, and at the same time, the ability to expand the bubbles to the desired size by the foaming pressure and then maintain the expanded bubbles at that size It is also an indicator that indicates.

即ち、ポリ乳酸系樹脂の動的粘弾性測定にて得られた損失弾性率が低いと、ポリ乳酸系樹脂予備発泡粒子の製造に必要とする発泡圧によって気泡膜が伸長された場合、気泡膜が容易に破れてしまう一方、ポリ乳酸系樹脂の動的粘弾性測定にて得られた損失弾性率が高いと、発泡力が気泡膜によって熱エネルギーに変換されてしまい、ポリ乳酸系樹脂予備発泡粒子の製造時に気泡膜を円滑に伸長させることができず、気泡を膨張させることができない。   That is, if the loss elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid resin is low, the foam film is expanded when the foam film is stretched by the foaming pressure required for producing the pre-expanded particles of the polylactic acid resin. However, if the loss elastic modulus obtained by the dynamic viscoelasticity measurement of polylactic acid resin is high, the foaming force is converted into thermal energy by the bubble film, and polylactic acid resin pre-foaming During the production of the particles, the bubble film cannot be extended smoothly, and the bubbles cannot be expanded.

このように、ポリ乳酸系樹脂を発泡させてポリ乳酸系樹脂予備発泡粒子を製造するにあたっては、発泡過程において、ポリ乳酸系樹脂は、ポリ乳酸系樹脂予備発泡粒子を得るために必要とされる発泡圧によって気泡膜が破れることなく適度に伸長するための弾性力、即ち、貯蔵弾性率を有している必要があると共に、上記発泡圧によって気泡膜が破れることなく円滑に伸長し、所望大きさに膨張した気泡をその大きさに発泡圧の経時的な減少にかかわらず維持しておくための粘性力、即ち、損失弾性率を有している必要がある。   Thus, in producing polylactic acid resin pre-expanded particles by foaming polylactic acid-based resin, in the foaming process, polylactic acid-based resin is required to obtain polylactic acid-based resin pre-expanded particles. It is necessary to have an elastic force for expanding the bubble film appropriately without being broken by the foaming pressure, that is, a storage elastic modulus, and the bubble film is smoothly stretched without being broken by the foaming pressure to have a desired size. In addition, it is necessary to have a viscous force, that is, a loss elastic modulus, for maintaining the expanded bubble in its size regardless of the decrease in the foaming pressure over time.

つまり、押出発泡工程において、ポリ乳酸系樹脂の貯蔵弾性率及び損失弾性率の双方が押出発泡に適した値を有している必要があり、このような押出発泡に適した貯蔵弾性率及び損失弾性率を押出発泡工程においてポリ乳酸系樹脂に付与するために、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T(以下「貯蔵弾性率曲線と損失弾性率曲線との交点における温度T」ということがある)とポリ乳酸系樹脂の融点(mp)とが下記式1を満たすことが要求され、好ましくは式2を満たすように、より好ましくは式3を満たすように調整することによって、ポリ乳酸系樹脂の貯蔵弾性率及び損失弾性率をそれらのバランスをとりながら押出発泡に適したものとしてポリ乳酸系樹脂の押出発泡性を良好なものとし、ポリ乳酸系樹脂予備発泡粒子を安定的に製造することができる。   That is, in the extrusion foaming process, both the storage elastic modulus and loss elastic modulus of the polylactic acid-based resin need to have values suitable for extrusion foaming, and the storage elastic modulus and loss suitable for such extrusion foaming. In order to impart elastic modulus to the polylactic acid resin in the extrusion foaming process, the temperature T (hereinafter referred to as “storage elastic modulus curve”) at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement. And the melting point (mp) of the polylactic acid resin are required to satisfy the following formula 1, and more preferably so as to satisfy the formula 2. By adjusting so as to satisfy the formula 3, the storage elastic modulus and loss elastic modulus of the polylactic acid resin are suitable for extrusion foaming while balancing them, and the extrusion foamability of the polylactic acid resin is improved. And then, the polylactic acid-based resin pre-expanded particles can be produced stably.

〔ポリ乳酸系樹脂の融点(mp)−40℃〕
≦交点における温度T≦ポリ乳酸系樹脂の融点(mp)・・・式1
[Melting point of polylactic acid resin (mp) −40 ° C.]
≦ Temperature at the intersection T ≦ Melting point of polylactic acid resin (mp) Formula 1

〔ポリ乳酸系樹脂の融点(mp)−35℃〕
≦交点における温度T≦〔ポリ乳酸系樹脂の融点(mp)−10℃〕・・・式2
[Melting point of polylactic acid resin (mp) -35 ° C.]
≦ Temperature at the intersection T ≦ [Melting point of polylactic acid resin (mp) −10 ° C.] Formula 2

〔ポリ乳酸系樹脂の融点(mp)−30℃〕
≦交点における温度T≦〔ポリ乳酸系樹脂の融点(mp)−20℃〕・・・式3
[Melting point of polylactic acid resin (mp) -30 ° C.]
≦ Temperature at the intersection T ≦ [Melting point of polylactic acid resin (mp) −20 ° C.] Formula 3

更に、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tとポリ乳酸系樹脂の融点(mp)とが上記式1を満たすように調整する理由を下記に詳述する。   Furthermore, the temperature T and the melting point (mp) of the polylactic acid resin obtained at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement of the polylactic acid resin satisfy the above formula 1. The reason for the adjustment will be described in detail below.

先ず、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tが、ポリ乳酸系樹脂の融点(mp)よりも40℃を越えて低い場合には、押出発泡時におけるポリ乳酸系樹脂の損失弾性率が貯蔵弾性率に比して大き過ぎるために、損失弾性率と貯蔵弾性率とのバランスが崩れてしまう。   First, the temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement of the polylactic acid resin exceeds 40 ° C. than the melting point (mp) of the polylactic acid resin. If it is low, the loss elastic modulus of the polylactic acid resin at the time of extrusion foaming is too large compared with the storage elastic modulus, so that the balance between the loss elastic modulus and the storage elastic modulus is lost.

そこで、ポリ乳酸系樹脂の損失弾性率に適した発泡力、即ち、ポリ乳酸系樹脂の粘性に合わせた発泡力とすると、ポリ乳酸系樹脂の弾性力にとっては発泡力が大き過ぎてしまい、気泡膜が破れて破泡を生じて良好なポリ乳酸系樹脂予備発泡粒子を得ることができず、逆に、ポリ乳酸系樹脂の貯蔵弾性率に適した発泡力、即ち、ポリ乳酸系樹脂の弾性に合わせた発泡力とすると、ポリ乳酸系樹脂の粘性力にとっては発泡力が小さく、ポリ乳酸系樹脂が発泡しにくくなり、やはり良好なポリ乳酸系樹脂予備発泡粒子を得ることができない。   Therefore, if the foaming force suitable for the loss elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the viscosity of the polylactic acid-based resin, the foaming force is too large for the elastic force of the polylactic acid-based resin. The film is torn and bubbles are generated, and good polylactic acid resin pre-expanded particles cannot be obtained. Conversely, the foaming force suitable for the storage elastic modulus of the polylactic acid resin, that is, the elasticity of the polylactic acid resin If the foaming force is adjusted to the above, the foaming force is small for the viscosity force of the polylactic acid resin, and the polylactic acid resin is difficult to foam, and it is impossible to obtain pre-expanded particles of polylactic acid resin.

又、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tが、ポリ乳酸系樹脂の融点(mp)よりも高いと、押出発泡時におけるポリ乳酸系樹脂の貯蔵弾性率が損失弾性率に比して大き過ぎるために、上述と同様に損失弾性率と貯蔵弾性率とのバランスが崩れてしまう。   Further, when the temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by the dynamic viscoelasticity measurement of the polylactic acid resin is higher than the melting point (mp) of the polylactic acid resin, Since the storage elastic modulus of the polylactic acid resin at the time of foaming is too large compared to the loss elastic modulus, the balance between the loss elastic modulus and the storage elastic modulus is lost as described above.

そこで、ポリ乳酸系樹脂の貯蔵弾性率に適した発泡力、即ち、ポリ乳酸系樹脂の弾性に合わせた発泡力とすると、ポリ乳酸系樹脂の粘性力にとっては発泡力が大き過ぎてしまい、気泡膜が破れて破泡を生じ良好なポリ乳酸系樹脂予備発泡粒子を得ることができず、逆に、ポリ乳酸系樹脂の損失弾性率に適した発泡力、即ち、ポリ乳酸系樹脂の粘性に合わせた発泡力とすると、ポリ乳酸系樹脂の弾性力にとっては発泡力が小さく、ポリ乳酸系樹脂が発泡力で一旦、発泡したとしても、経時的な発泡力の低下に伴って気泡が収縮してしまって、やはり良好なポリ乳酸系樹脂予備発泡粒子を得ることができない。   Therefore, if the foaming force suitable for the storage elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the elasticity of the polylactic acid-based resin, the foaming force is too large for the viscosity force of the polylactic acid-based resin, The film is torn and bubbles are broken, and good polylactic acid resin pre-expanded particles cannot be obtained. Conversely, the foaming force suitable for the loss elastic modulus of the polylactic acid resin, that is, the viscosity of the polylactic acid resin is reduced. If the combined foaming force is used, the foaming force is small for the elastic force of the polylactic acid-based resin. Even if the polylactic acid-based resin foams once due to the foaming force, the bubbles shrink as the foaming force decreases over time. As a result, good polylactic acid resin pre-expanded particles cannot be obtained.

そして、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tと、ポリ乳酸系樹脂の融点(mp)とが上記式1を満たすように調整する方法としては、ポリ乳酸系樹脂の重量平均分子量が高くなるにしたがって、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tが高くなることから、ポリ乳酸系樹脂の重合時に反応時間或いは反応温度を調整することによって、得られるポリ乳酸系樹脂の重量平均分子量を調整する方法、押出発泡前に或いは押出発泡時にポリ乳酸系樹脂の重量平均分子量を増粘剤や架橋剤を用いて調整する方法が挙げられる。   Then, the temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by the dynamic viscoelasticity measurement of the polylactic acid resin and the melting point (mp) of the polylactic acid resin are expressed by the above equation 1. As a method of adjusting so as to satisfy, as the weight average molecular weight of the polylactic acid resin increases, the storage elastic modulus curve and the loss elastic modulus curve obtained by the dynamic viscoelasticity measurement of the polylactic acid resin Since the temperature T at the intersection becomes high, a method for adjusting the weight average molecular weight of the obtained polylactic acid resin by adjusting the reaction time or reaction temperature during polymerization of the polylactic acid resin, before extrusion foaming or extrusion foaming A method of adjusting the weight average molecular weight of the polylactic acid resin sometimes using a thickener or a crosslinking agent is mentioned.

このような観点から、ポリ乳酸系樹脂の重量平均分子量は、140,000〜300,000が好ましく、150,000〜270,000がより好ましく、160,000〜250,000が特に好ましい。更に、ポリ乳酸系樹脂の分子量分布(重量平均分子量Mw/数平均分子量Mn)は、3.2〜10が好ましく、3.4〜9がより好ましく、3.6〜8が特に好ましい。   From such a viewpoint, the weight average molecular weight of the polylactic acid-based resin is preferably 140,000 to 300,000, more preferably 150,000 to 270,000, and particularly preferably 160,000 to 250,000. Furthermore, the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the polylactic acid-based resin is preferably 3.2 to 10, more preferably 3.4 to 9, and particularly preferably 3.6 to 8.

この他に、L体の比率がD体の比率に比して大きいモノマーから得られたポリ乳酸系樹脂の場合、D体の比率が増加するにつれてポリ乳酸系樹脂の融点(mp)が低下することから、モノマー中のD体の比率を調整することによってポリ乳酸系樹脂の融点(mp)を調整し、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tと、ポリ乳酸系樹脂の融点(mp)とが上記式1を満たすように調整する方法が挙げられる。   In addition, in the case of a polylactic acid resin obtained from a monomer in which the ratio of the L isomer is larger than that of the D isomer, the melting point (mp) of the polylactic acid resin decreases as the D isomer ratio increases. From the above, the storage modulus curve and loss obtained by adjusting the melting point (mp) of the polylactic acid resin by adjusting the ratio of D-form in the monomer and by measuring the dynamic viscoelasticity of the polylactic acid resin There is a method in which the temperature T at the intersection with the elastic modulus curve and the melting point (mp) of the polylactic acid resin are adjusted so as to satisfy the above formula 1.

ここで、ポリ乳酸系樹脂の融点(mp)は下記の要領で測定されたものをいう。即ち、JIS K7121:1987に準拠してポリ乳酸系樹脂の示差走査熱量分析を行い、得られたDSC曲線における融解ピークの温度をポリ乳酸系樹脂の融点(mp)とする。なお、融解ピークの温度が複数個ある場合には、最も高い温度とする。   Here, the melting point (mp) of the polylactic acid resin is measured in the following manner. That is, the differential scanning calorimetry of the polylactic acid resin is performed in accordance with JIS K7121: 1987, and the melting peak temperature in the obtained DSC curve is defined as the melting point (mp) of the polylactic acid resin. When there are a plurality of melting peak temperatures, the highest temperature is set.

又、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tは下記の要領で測定されたものをいう。即ち、ポリ乳酸系樹脂を9.33×104 Paの減圧下にて80℃で3時間に亘って乾燥する。このポリ乳酸系樹脂を該ポリ乳酸系樹脂の融点よりも40〜50℃だけ高い温度に加熱した測定プレート上に載置して窒素雰囲気下にて5分間に亘って放置し溶融させる。 Further, the temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by the dynamic viscoelasticity measurement of the polylactic acid-based resin is the one measured in the following manner. That is, the polylactic acid resin is dried at 80 ° C. for 3 hours under a reduced pressure of 9.33 × 10 4 Pa. This polylactic acid-based resin is placed on a measurement plate heated to a temperature higher by 40 to 50 ° C. than the melting point of the polylactic acid-based resin, and allowed to stand for 5 minutes in a nitrogen atmosphere to melt.

次に、直径が25mmの平面円形状の押圧板を用意し、この押圧板を用いて測定プレート上のポリ乳酸系樹脂を押圧板と測定プレートとの対向面間の間隔が1mmとなるまで上下方向に押圧する。そして、押圧板の外周縁からはみ出したポリ乳酸系樹脂を除去した後、5分間に亘って放置する。   Next, a flat circular pressure plate having a diameter of 25 mm is prepared, and the polylactic acid resin on the measurement plate is moved up and down until the distance between the opposing surfaces of the pressure plate and the measurement plate becomes 1 mm. Press in the direction. And after removing the polylactic acid-type resin which protruded from the outer periphery of a press plate, it is left to stand for 5 minutes.

しかる後、歪み5%、周波数1rad/秒、降温速度2℃/分、測定間隔30秒の条件下にて、ポリ乳酸系樹脂の動的粘弾性測定を行って貯蔵弾性率及び損失弾性率を測定する。次に、横軸を温度とし、縦軸を貯蔵弾性率及び損失弾性率として、貯蔵弾性率曲線及び損失弾性率曲線を描く。なお、貯蔵弾性率曲線及び損失弾性率曲線を描くにあたっては、測定温度を基準として互いに隣接する測定値同士を直線で結ぶ。   Thereafter, the dynamic viscoelasticity measurement of the polylactic acid resin is performed under the conditions of 5% strain, frequency 1 rad / sec, temperature drop rate 2 ° C./min, and measurement interval 30 sec to determine the storage elastic modulus and loss elastic modulus. taking measurement. Next, a storage elastic modulus curve and a loss elastic modulus curve are drawn with the horizontal axis as temperature and the vertical axis as storage elastic modulus and loss elastic modulus. In drawing the storage elastic modulus curve and the loss elastic modulus curve, the measurement values adjacent to each other are connected with a straight line based on the measurement temperature.

そして、得られた貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tを上記グラフから読み取ることによって得ることができる。なお、貯蔵弾性率曲線と損失弾性率曲線とが複数箇所において互いに交差する場合は、貯蔵弾性率曲線と損失弾性率曲線との複数の交点における温度のうち最も高い温度を、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tとする。   And it can obtain by reading the temperature T in the intersection of the obtained storage elastic modulus curve and loss elastic modulus curve from the said graph. When the storage modulus curve and the loss modulus curve intersect each other at a plurality of locations, the highest temperature among the temperatures at the plurality of intersections of the storage modulus curve and the loss modulus curve is defined as the storage modulus curve. It is set as the temperature T in the intersection with a loss elastic modulus curve.

又、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tは、Reologica Instruments A.B 社から商品名「DynAlyser DAR-100」 にて市販されている動的粘弾性測定装置を用いて測定することができる。   The temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement is a dynamic value commercially available from Reologica Instruments AB under the trade name “DynAlyser DAR-100”. It can be measured using a mechanical viscoelasticity measuring device.

ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tでの弾性率、即ち、貯蔵弾性率又は損失弾性率は、低いと、発泡中のポリ乳酸系樹脂の粘弾性が低くなり、気泡膜が発泡圧によって破れて破泡を生じることがある一方、高いと、発泡圧によって気泡膜を伸長させて気泡を所望大きさに膨張させることができず、発泡が不安定になることがあるので、1.0×103 〜1.0×105 Paが好ましく、5.0×103 〜9.0×104 Paがより好ましく、1.0×104 〜8.0×104 Paが特に好ましい。 The elastic modulus at the temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by the dynamic viscoelasticity measurement of the polylactic acid resin, that is, the storage elastic modulus or the loss elastic modulus is low. While the foamed polylactic acid resin has low viscoelasticity, the foam film may be broken by foaming pressure to cause foam breakage. On the other hand, when the foam is high, the foam film is expanded by the foaming pressure to expand the foam to the desired size. 1.0 × 10 3 to 1.0 × 10 5 Pa is preferable, and 5.0 × 10 3 to 9.0 × 10 4 Pa is more preferable. 1.0 × 10 4 to 8.0 × 10 4 Pa is particularly preferable.

なお、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tでの弾性率(貯蔵弾性率又は損失弾性率)は、ポリ乳酸系樹脂の重合時に反応時間或いは反応温度を調整することによって、ポリ乳酸系樹脂の重量平均分子量を調整する方法、押出発泡前に或いは押出発泡時にポリ乳酸系樹脂の重量平均分子量を増粘剤や架橋剤を用いて調整する方法が挙げられる。   The elastic modulus (storage elastic modulus or loss elastic modulus) at temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement of the polylactic acid resin is polylactic acid. A method of adjusting the weight average molecular weight of the polylactic acid resin by adjusting the reaction time or reaction temperature during polymerization of the resin, the viscosity average molecular weight of the polylactic acid resin before or during extrusion foaming, The method of adjusting using a crosslinking agent is mentioned.

上記ポリ乳酸系樹脂を押出機に供給して発泡剤の存在下にて溶融混練した後、押出機の先端に取り付けた金型から押出発泡させる。この押出発泡させて得られた押出発泡体の形態は、特に限定されず、ストランド状、シート状などが挙げられるが、ストランド状が好ましい。   The polylactic acid-based resin is supplied to an extruder, melted and kneaded in the presence of a foaming agent, and then extruded and foamed from a mold attached to the tip of the extruder. The form of the extruded foam obtained by extrusion foaming is not particularly limited, and examples thereof include a strand shape and a sheet shape, and a strand shape is preferable.

なお、上記押出機としては、従来から汎用されている押出機であれば、特に限定されず、例えば、単軸押出機、二軸押出機、複数の押出機を連結させたタンデム型の押出機が挙げられ、タンデム型の押出機が好ましい。   The extruder is not particularly limited as long as it is a conventionally used extruder. For example, a single-screw extruder, a twin-screw extruder, and a tandem extruder in which a plurality of extruders are connected. A tandem type extruder is preferable.

又、上記発泡剤としては、従来から汎用されているものが用いられ、例えば、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ヒドラゾイルジカルボンアミド、重炭酸ナトリウムなどの化学発泡剤;プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサンなどの飽和脂肪族炭化水素、ジメチルエーテルなどのエーテル類、塩化メチル、1,1,1,2−テトラフルオロエタン、1,1−ジフルオロエタン、モノクロロジフルオロメタンなどのフロン、二酸化炭素、窒素などの物理発泡剤などが挙げられ、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタンがより好ましく、ノルマルブタン、イソブタンが特に好ましい。   Further, as the foaming agent, those conventionally used are used, for example, chemical foaming agents such as azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoyldicarbonamide, sodium bicarbonate; propane, normal butane, Saturated aliphatic hydrocarbons such as isobutane, normal pentane, isopentane, hexane, ethers such as dimethyl ether, chlorofluorocarbons such as methyl chloride, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, monochlorodifluoromethane, Examples thereof include physical blowing agents such as carbon dioxide and nitrogen, dimethyl ether, propane, normal butane, isobutane and carbon dioxide are preferred, propane, normal butane and isobutane are more preferred, and normal butane and isobutane are particularly preferred.

そして、押出機に供給される発泡剤量としては、少ないと、ポリ乳酸系樹脂予備発泡粒子を所望発泡倍率まで発泡させることができないことがある一方、多いと、発泡剤が可塑剤として作用することから溶融状態のポリ乳酸系樹脂の粘弾性が低下し過ぎて発泡性が低下し良好なポリ乳酸系樹脂予備発泡粒子を得ることができなかったり或いはポリ乳酸系樹脂予備発泡粒子の発泡倍率が高過ぎる場合があるので、ポリ乳酸系樹脂100重量部に対して0.1〜5重量部が好ましく、0.2〜4重量部がより好ましく、0.3〜3重量部が特に好ましい。   When the amount of the foaming agent supplied to the extruder is small, the polylactic acid resin pre-foamed particles may not be foamed to the desired foaming ratio. On the other hand, when the amount is large, the foaming agent acts as a plasticizer. Therefore, the viscoelasticity of the melted polylactic acid resin is too low and the foaming property is lowered, and it is not possible to obtain good polylactic acid resin pre-expanded particles, or the expansion ratio of the polylactic acid resin pre-expanded particles is Since it may be too high, 0.1-5 weight part is preferable with respect to 100 weight part of polylactic acid-type resin, 0.2-4 weight part is more preferable, 0.3-3 weight part is especially preferable.

なお、押出機には気泡調整剤が添加されることが好ましいが、気泡調整剤の多くは、ポリ乳酸系樹脂予備発泡粒子の結晶核剤として作用するため、ポリ乳酸系樹脂の結晶化を促進しない気泡調整剤を用いることが好ましく、このような気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末が好ましい。   In addition, it is preferable that a bubble regulator is added to the extruder, but since most of the bubble regulators act as crystal nucleating agents for the pre-expanded particles of polylactic acid resin, crystallization of the polylactic acid resin is promoted. It is preferable to use a non-foaming agent, such as a polytetrafluoroethylene powder or a polytetrafluoroethylene powder modified with an acrylic resin.

又、押出機に供給される気泡調整剤の量としては、少ないと、ポリ乳酸系樹脂予備発泡粒子の気泡が粗大となり、得られるポリ乳酸系樹脂発泡成形体の外観が低下することがある一方、多いと、ポリ乳酸系樹脂を押出発泡させる際に破泡を生じてポリ乳酸系樹脂予備発泡粒子の独立気泡率が低下することがあるので、ポリ乳酸ポリ乳酸系樹脂100重量部に対して0.01〜3重量部が好ましく、0.05〜2重量部がより好ましく、0.1〜1重量部が特に好ましい。   On the other hand, if the amount of the air conditioner supplied to the extruder is small, the bubbles of the polylactic acid resin pre-expanded particles become coarse, and the appearance of the resulting polylactic acid resin foamed molded product may deteriorate. In many cases, foaming occurs when the polylactic acid resin is extruded and foamed, and the closed cell ratio of the pre-expanded particles of the polylactic acid resin may be lowered. Therefore, with respect to 100 parts by weight of the polylactic acid polylactic acid resin 0.01-3 weight part is preferable, 0.05-2 weight part is more preferable, 0.1-1 weight part is especially preferable.

押出機に取り付ける金型としては、特に限定されないが、ポリ乳酸系樹脂を押出発泡させて均一微細な気泡を形成できる金型が好ましく、このような金型としては、ノズル金型が好ましく、ノズルを複数有するマルチノズル金型がより好ましい。   The mold attached to the extruder is not particularly limited, but a mold capable of forming uniform fine bubbles by extrusion foaming a polylactic acid-based resin is preferable. As such a mold, a nozzle mold is preferable, and a nozzle A multi-nozzle mold having a plurality of is more preferable.

マルチノズル金型のノズルの出口直径は、小さいと、押出圧力が高くなりすぎて押出発泡が困難となることがある一方、大きいと、ポリ乳酸径樹脂予備発泡粒子の径が大きくなって金型への充填性が低下するので、0.2〜2mmが好ましく、0.3〜1.6mmがより好ましく、0.4〜1.2mmが特に好ましい。   If the outlet diameter of the nozzle of the multi-nozzle mold is small, the extrusion pressure may become too high and extrusion foaming may be difficult. Therefore, 0.2 to 2 mm is preferable, 0.3 to 1.6 mm is more preferable, and 0.4 to 1.2 mm is particularly preferable.

そして、ノズル金型のノズルの口金出口部分におけるポリ乳酸系樹脂の剪断速度は、小さいと、ポリ乳酸系樹脂予備発泡粒子の発泡倍率が低下し或いはポリ乳酸系樹脂予備発泡粒子の気泡が粗大となることがある一方、大きいと、フラクチャーが発生して安定的に押出発泡することができないことがあるので、1000〜30000sec-1が好ましく、2000〜25000sec-1がより好ましく、3000〜20000sec-1が特に好ましい。 If the shear rate of the polylactic acid-based resin at the nozzle outlet portion of the nozzle of the nozzle mold is small, the expansion ratio of the polylactic acid-based resin pre-expanded particles decreases or the bubbles of the polylactic acid-based resin pre-expanded particles are coarse. while it is made, the large, because it may not be able fracture is stable extrusion foaming occurs, preferably 1000~30000Sec -1, more preferably 2000~25000sec -1, 3000~20000sec -1 Is particularly preferred.

なお、ノズル金型のノズルの口金出口部分における剪断速度は、下記式に基づいて算出されたものをいう。
剪断速度(sec-1)=4×Q/(πr3
但し、Qは、ポリ乳酸系樹脂の体積押出量(cm3 /sec)であり(Qを質量押出量(g/sec)から算出する場合は、ポリ乳酸系樹脂の密度は1.0g/cm3 とする)、rは、ノズルの半径(cm)である。
In addition, the shear rate in the nozzle | cap | die exit part of the nozzle of a nozzle metal mold | die says what was computed based on the following formula.
Shear rate (sec −1 ) = 4 × Q / (πr 3 )
However, Q is the volume extrusion rate (cm 3 / sec) of the polylactic acid resin (when Q is calculated from the mass extrusion rate (g / sec), the density of the polylactic acid resin is 1.0 g / cm 3 ), r is the radius (cm) of the nozzle.

又、フラクチャーを低減させるために、ノズル金型のランド部の長さは、ノズル金型のノズルの出口直径の4〜30倍が好ましく、ノズル金型のノズルの出口直径の5〜20倍がより好ましい。これは、ノズル金型のランド部の長さがノズル金型のノズルの出口直径に比較して小さいと、フラクチャーが発生して安定的に押出発泡することができないことがある一方、ノズル金型のランド部の長さがノズル金型のノズルの出口直径に比較して大きいと、ノズル金型に大きな圧力が加わり過ぎて押出発泡ができない場合があるからである。   In order to reduce fracture, the length of the land portion of the nozzle mold is preferably 4 to 30 times the nozzle outlet diameter of the nozzle mold, and 5 to 20 times the nozzle outlet diameter of the nozzle mold. More preferred. This is because when the length of the land portion of the nozzle mold is smaller than the nozzle outlet diameter of the nozzle mold, fracturing occurs and the foam cannot be stably extruded. This is because if the length of the land portion is larger than the outlet diameter of the nozzle of the nozzle mold, excessive pressure may be applied to the nozzle mold to prevent extrusion foaming.

更に、押出機の先端に取り付けた金型から押出発泡させる際のポリ乳酸系樹脂の樹脂温度は、下記式4を満たすことが好ましく、下記式5を満たすことがより好ましい。
(貯蔵弾性率曲線と損失弾性率曲線との交点における温度T+40℃)≦樹脂温度
≦(貯蔵弾性率曲線と損失弾性率曲線との交点における温度T+90℃)・・・式4
(貯蔵弾性率曲線と損失弾性率曲線との交点における温度T+50℃)≦樹脂温度
≦(貯蔵弾性率曲線と損失弾性率曲線との交点における温度T+80℃)・・・式5
Furthermore, the resin temperature of the polylactic acid-based resin when extrusion foaming from a die attached to the tip of the extruder preferably satisfies the following formula 4, and more preferably satisfies the following formula 5.
(Temperature T + 40 ° C. at intersection of storage modulus curve and loss modulus curve) ≦ Resin temperature ≦ (Temperature T + 90 ° C. at intersection of storage modulus curve and loss modulus curve) Equation 4
(Temperature T + 50 ° C. at the intersection of the storage modulus curve and the loss modulus curve) ≦ Resin temperature ≦ (Temperature T + 80 ° C. at the intersection of the storage modulus curve and the loss modulus curve) Equation 5

これは、ポリ乳酸系樹脂の樹脂温度が低いと、フラクチャーが発生してポリ乳酸系樹脂予備発泡粒子の外観性が低下し或いは押出負荷が大きくなり過ぎて押出機から押出発泡させることが困難となることがある一方、高いと、ポリ乳酸系樹脂の溶融粘度が低くなり過ぎて良好なポリ乳酸系樹脂予備発泡粒子を得ることができないことがあるからである。   This is because when the resin temperature of the polylactic acid resin is low, fracture occurs and the appearance of the polylactic acid resin pre-foamed particles decreases or the extrusion load becomes too large to be extruded and foamed from the extruder. On the other hand, if it is high, the melt viscosity of the polylactic acid resin becomes too low, and it may be impossible to obtain good pre-expanded particles of the polylactic acid resin.

そして、押出機から押出発泡されたポリ乳酸系樹脂押出発泡体を冷却して、ポリ乳酸系樹脂押出発泡体の結晶化が進行するのを抑制し、このポリ乳酸系樹脂押出発泡体を粒子状に切断して得られるポリ乳酸系樹脂予備発泡粒子の結晶化度が30%未満となるように、好ましくは3〜28%となるように、より好ましくは5〜26%となるように調整する。   Then, the polylactic acid resin extruded foam extruded from the extruder is cooled to suppress the crystallization of the polylactic acid resin extruded foam, and the polylactic acid resin extruded foam is formed into particles. The polylactic acid-based resin pre-expanded particles obtained by cutting into particles are adjusted to have a crystallinity of less than 30%, preferably 3 to 28%, more preferably 5 to 26%. .

ここで、ポリ乳酸系樹脂予備発泡粒子の結晶化度は、示差走査熱量計(DSC)を用いてJIS K7121に記載の測定方法に準拠して10℃/分の昇温速度にて昇温しながら測定された1mg当たりの冷結晶化熱量及び1mg当たりの融解熱量に基づいて下記式により算出することができる。   Here, the degree of crystallinity of the polylactic acid-based resin pre-expanded particles is increased by using a differential scanning calorimeter (DSC) at a temperature increase rate of 10 ° C./min in accordance with the measurement method described in JIS K7121. On the basis of the measured amount of cold crystallization per 1 mg and heat of fusion per 1 mg, the following formula can be used.

Figure 0004761917
Figure 0004761917

このように、得られるポリ乳酸系樹脂予備発泡粒子の結晶化度を30%未満に調整することによって、ポリ乳酸系樹脂予備発泡粒子の融着性を確保し、型内発泡成形時におけるポリ乳酸系樹脂予備発泡粒子を発泡させて得られる発泡粒子同士の融着性を良好なものとすることができる。又、型内発泡成形途上において、ポリ乳酸系樹脂予備発泡粒子の結晶化度を上昇させて、ポリ乳酸系樹脂の耐熱性を向上させることができ、得られるポリ乳酸系樹脂発泡成形体は、優れた融着性及び耐熱性を有している。   Thus, by adjusting the crystallinity of the obtained polylactic acid resin pre-expanded particles to less than 30%, the fusion property of the polylactic acid resin pre-expanded particles is ensured, and the polylactic acid during in-mold foam molding is ensured. It is possible to improve the fusion property between the expanded particles obtained by expanding the resin-based pre-expanded particles. In addition, during the in-mold foam molding process, the polylactic acid resin pre-expanded particles can be increased in crystallinity to improve the heat resistance of the polylactic acid resin. Excellent fusion and heat resistance.

そして、ポリ乳酸系樹脂押出発泡体の冷却方法としては、押出発泡されたポリ乳酸系樹脂押出発泡体の結晶化度の上昇を速やかに停止できる方法が好ましく、具体的には、押出機から押出発泡されたポリ乳酸系樹脂押出発泡体を水面に浮かせて冷却する方法、押出機から押出発泡されたポリ乳酸系樹脂押出発泡体に水などを霧状に吹き付ける方法、低温に温度調節された冷却板上に、押出機から押出発泡されたポリ乳酸系樹脂押出発泡体を接触させることによって冷却させる方法、押出機から押出発泡された押出発泡体に冷風などの冷却された気体を吹き付ける方法などが挙げられる。なお、ポリ乳酸系樹脂押出発泡体を水面に浮かせて冷却する場合は、水温は0〜45℃に調整することが好ましい。   The cooling method for the extruded polylactic acid resin foam is preferably a method capable of quickly stopping the increase in the degree of crystallinity of the extruded foam of the polylactic acid resin foam. A method of cooling the foamed polylactic acid resin foam by floating it on the water surface, a method of spraying water or the like on the extruded polylactic acid resin foam foamed from the extruder, and cooling with temperature controlled to a low temperature A method of cooling a polylactic acid resin extruded foam that has been extruded and foamed from an extruder on a plate, a method of blowing a cooled gas such as cold air onto an extruded foam that has been extruded and foamed from an extruder, etc. Can be mentioned. In addition, when making a polylactic acid-type resin extrusion foaming body float on the water surface and cooling, it is preferable to adjust water temperature to 0-45 degreeC.

次に、上述のようにして冷却されたポリ乳酸系樹脂押出発泡体を粒子状に切断することによってポリ乳酸系樹脂予備発泡粒子を得ることができる。ポリ乳酸系樹脂押出発泡体を粒子状に切断する切断機としては、ペレタイザーやホットカット機などが挙げられ、又、切断機の切断方法としては、ドラムカッタ式やファンカッタ式があるが、ポリ乳酸系樹脂押出発泡体の切断時にポリ乳酸系樹脂押出発泡体に割れや欠けが発生しにくいことから、ファンカッタ式の切断方法を用いることが好ましい。なお、上記では、ポリ乳酸系樹脂押出発泡体の冷却後に、ポリ乳酸系樹脂押出発泡体を切断する場合を説明したが、押出機から押出発泡させると同時にポリ乳酸系樹脂押出発泡体を切断して粒子状とした後に、ポリ乳酸系樹脂発泡粒子を冷却するようにしてもよい。   Next, polylactic acid resin pre-expanded particles can be obtained by cutting the extruded polylactic acid resin foam as described above into particles. Examples of the cutting machine that cuts the extruded polylactic acid resin into particles include a pelletizer and a hot-cut machine. The cutting methods of the cutting machine include a drum cutter type and a fan cutter type. It is preferable to use a fan-cutter-type cutting method because cracking and chipping are less likely to occur in the extruded polylactic acid resin foam when cutting the extruded lactic acid resin foam. In the above description, the case where the polylactic acid resin extruded foam is cut after cooling the polylactic acid resin extruded foam has been described. However, the polylactic acid resin extruded foam is cut simultaneously with the extrusion foaming from the extruder. Then, the polylactic acid resin foamed particles may be cooled after being made into particles.

このようにして得られたポリ乳酸系樹脂予備発泡粒子の嵩密度は、小さいと、ポリ乳酸系樹脂予備発泡粒子の連続気泡率が上昇して、型内発泡成形における発泡時にポリ乳酸系樹脂予備発泡粒子に必要な発泡力を付与することができない虞れがある一方、大きいと、得られるポリ乳酸系樹脂予備発泡粒子の気泡が不均一となって、型内発泡成形時におけるポリ乳酸系樹脂予備発泡粒子の発泡性が不充分となることがあるので、0.03〜0.5g/cm3 が好ましく、0.05〜0.4g/cm3 がより好ましく、0.07〜0.3g/cm3 が特に好ましい。 When the bulk density of the polylactic acid resin pre-expanded particles obtained in this way is small, the open cell ratio of the polylactic acid resin pre-expanded particles increases, and the polylactic acid resin pre-expanded particles are expanded during foaming in in-mold foam molding. On the other hand, there is a possibility that the foaming force necessary for the foamed particles cannot be imparted. On the other hand, if the foamed particles are large, the bubbles of the resulting polylactic acid resin pre-foamed particles become non-uniform, and the polylactic acid resin during in-mold foam molding 0.03 to 0.5 g / cm 3 is preferable, 0.05 to 0.4 g / cm 3 is more preferable, and 0.07 to 0.3 g because the foamability of the pre-expanded particles may be insufficient. / Cm 3 is particularly preferred.

そして、ポリ乳酸系樹脂予備発泡粒子の連続気泡率は、高いと、型内発泡成形時にポリ乳酸系樹脂予備発泡粒子が殆ど発泡せず、ポリ乳酸系樹脂予備発泡粒子同士の融着性が低くなって、得られるポリ乳酸系樹脂発泡成形体の機械的強度が低下することがあるので、40%以下が好ましく、35%以下がより好ましく、30%以下が特に好ましい。なお、ポリ乳酸系樹脂予備発泡粒子の連続気泡率の調整は、押出発泡温度及び発泡剤量を調整することによって行われる。   If the open cell ratio of the polylactic acid resin pre-expanded particles is high, the polylactic acid resin pre-expanded particles hardly foam at the time of in-mold foam molding, and the fusion property between the polylactic acid resin pre-expanded particles is low. Thus, the mechanical strength of the resulting polylactic acid-based resin foam molded article may be lowered, so that it is preferably 40% or less, more preferably 35% or less, and particularly preferably 30% or less. In addition, adjustment of the open cell ratio of the polylactic acid resin pre-expanded particles is performed by adjusting the extrusion foaming temperature and the amount of the foaming agent.

ここで、ポリ乳酸系樹脂予備発泡粒子の連続気泡率は下記の要領で測定される。先ず、体積測定空気比較式比重計の試料カップを用意し、この試料カップの80%程度を満たす量のポリ乳酸系樹脂予備発泡粒子の全重量A(g)を測定する。次に、上記ポリ乳酸系樹脂予備発泡粒子全体の体積B(cm3 )を比重計を用いて1−1/2−1気圧法により測定する。なお、体積測定空気比較式比重計は、例えば、東京サイエンス社から商品名「1000型」にて市販されている。 Here, the open cell ratio of the polylactic acid resin pre-expanded particles is measured in the following manner. First, a sample cup of a volumetric air comparison type hydrometer is prepared, and the total weight A (g) of polylactic acid resin pre-expanded particles in an amount satisfying about 80% of the sample cup is measured. Next, the volume B (cm 3 ) of the entire polylactic acid resin pre-expanded particles is measured by a 1-1 / 2-atm method using a hydrometer. The volumetric air comparison type hydrometer is commercially available, for example, from Tokyo Science Co. under the trade name “1000 type”.

続いて、金網製の容器を用意し、この金網製の容器を水中に浸漬し、この水中に浸漬した状態における金網製の容器の重量C(g)を測定する。次に、この金網製の容器内に上記ポリ乳酸系樹脂予備発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器とこの金網製容器に入れたポリ乳酸系樹脂予備発泡粒子の全量とを併せた重量D(g)を測定する。   Subsequently, a wire mesh container is prepared, the wire mesh container is immersed in water, and the weight C (g) of the wire mesh container in the state immersed in the water is measured. Next, after all of the polylactic acid resin pre-expanded particles are placed in the wire mesh container, the wire mesh container is immersed in water, and the wire mesh container and the wire mesh The weight D (g) of the total amount of the polyfoamed resin pre-foamed particles placed in the container is measured.

そして、下記式に基づいてポリ乳酸系樹脂予備発泡粒子の見掛け体積E(cm3 )を算出し、この見掛け体積Eと上記ポリ乳酸系樹脂予備発泡粒子全体の体積B(cm3 )に基づいて下記式によりポリ乳酸系樹脂予備発泡粒子の連続気泡率を算出することができる。なお、水1gの体積を1cm3 とした。
E=A+(C−D)
連続気泡率(%)=100×(E−B)/E
Then, the apparent volume E (cm 3 ) of the polylactic acid-based resin pre-expanded particles is calculated based on the following formula, and based on this apparent volume E and the total volume B (cm 3 ) of the polylactic acid-based resin pre-expanded particles. The open cell ratio of the polylactic acid resin pre-expanded particles can be calculated by the following formula. The volume of 1 g of water was 1 cm 3 .
E = A + (CD)
Open cell ratio (%) = 100 × (EB) / E

又、上記ポリ乳酸系樹脂予備発泡粒子の粒径は、小さいと、型内発泡成形時にポリ乳酸系樹脂予備発泡粒子の発泡性が低下することがある一方、大きいと、型内発泡成形時に金型内へのポリ乳酸系樹脂予備発泡粒子の充填性が低下することがあるので、1.0〜5.0mmが好ましい。そして、押出発泡体がストランド状であり、このストランド状の押出発泡体をその長さ方向に所定間隔毎に切断してポリ乳酸系樹脂予備発泡粒子を製造した場合、ポリ乳酸系樹脂予備発泡粒子における切断面に直交する方向の長さは、5mm以下が好ましい。   In addition, if the particle size of the polylactic acid-based resin pre-expanded particles is small, the foamability of the polylactic acid-based resin pre-expanded particles may be reduced at the time of in-mold foam molding. Since the filling property of the polylactic acid resin pre-expanded particles in the mold may be lowered, 1.0 to 5.0 mm is preferable. When the extruded foam is in the form of a strand, and the polylactic acid resin pre-foamed particles are produced by cutting the strand-shaped extruded foam at predetermined intervals in the length direction, the polylactic acid resin pre-foamed particles The length in the direction orthogonal to the cut surface is preferably 5 mm or less.

ここで、ポリ乳酸系樹脂予備発泡粒子の粒径は、ポリ乳酸系樹脂予備発泡粒子の直径を直接、ノギスを用いて測定することができる。なお、押出発泡体がストランド状であり、このストランド状の押出発泡体をその長さ方向に所定間隔毎に切断してポリ乳酸系樹脂予備発泡粒子を製造した場合には、各ポリ乳酸系樹脂予備発泡粒子の切断面における最も長い直径(長径)及び最も短い直径(短径)を測定すると共に、各ポリ乳酸径樹脂予備発泡粒子における切断面に直交する方向の長さを測定し、ポリ乳酸系樹脂予備発泡粒子の長径、短径及び長さの相加平均値をポリ乳酸系樹脂予備発泡粒子の粒径とする。   Here, the particle diameter of the polylactic acid-based resin pre-expanded particles can be measured directly using a caliper with the diameter of the polylactic acid-based resin pre-expanded particles. In addition, when the extruded foam is in the form of a strand and the polylactic acid resin pre-expanded particles are produced by cutting the strand-shaped extruded foam at predetermined intervals in the length direction, each polylactic acid resin The longest diameter (major axis) and the shortest diameter (minor axis) at the cut surface of the pre-expanded particles are measured, and the length of each polylactic acid diameter resin pre-expanded particle in the direction orthogonal to the cut surface is measured. The arithmetic average value of the major axis, minor axis and length of the resin-based resin pre-expanded particles is defined as the particle size of the polylactic acid-based resin pre-expanded particles.

このようにして得られたポリ乳酸系樹脂予備発泡粒子を金型のキャビティ内に充填して加熱し、ポリ乳酸系樹脂予備発泡粒子を発泡させることによって、ポリ乳酸系樹脂予備発泡粒子を発泡させて得られる発泡粒子同士をそれらの発泡圧によって互いに融着一体化させると共にポリ乳酸系樹脂の結晶化度を上昇させて、融着性及び耐熱性に優れた所望形状を有するポリ乳酸系樹脂発泡成形体を得ることができる。   The polylactic acid resin pre-foamed particles thus obtained are filled in a mold cavity and heated to foam the polylactic acid resin pre-foamed particles, thereby foaming the polylactic acid resin pre-foamed particles. Foamed polylactic acid resin having desired shape excellent in fusion property and heat resistance by fusing and integrating the obtained foam particles with each other by their foaming pressure and increasing the crystallinity of polylactic acid resin A molded body can be obtained.

なお、金型内に充填したポリ乳酸系樹脂予備発泡粒子の加熱媒体としては、特に限定されず、水蒸気の他に、熱風などが挙げられる。水蒸気の圧力は、低いと、ポリ乳酸系樹脂予備発泡粒子の結晶化度を充分に上昇させることができず、得られるポリ乳酸系樹脂発泡成形体の耐熱性が低下することがある一方、高いと、ポリ乳酸系樹脂予備発泡粒子の温度上昇が急激なものとなり、ポリ乳酸系樹脂予備発泡粒子の結晶化度の上昇がポリ乳酸系樹脂予備発泡粒子の溶融速度に追いつかず、ポリ乳酸系樹脂予備発泡粒子が溶けてしまい、発泡圧が不足して、ポリ乳酸系樹脂予備発泡粒子を発泡させて得られる発泡粒子同士の融着性が低下し或いは得られるポリ乳酸系樹脂発泡成形体に収縮が生じることがあるので、適宜調整される。   In addition, it does not specifically limit as a heating medium of the polylactic acid-type resin pre-expanded particle with which it filled in the metal mold | die, Hot air etc. are mentioned other than water vapor | steam. If the pressure of the water vapor is low, the crystallinity of the polylactic acid resin pre-expanded particles cannot be sufficiently increased, and the heat resistance of the resulting polylactic acid resin foamed molded product may be lowered, while being high. As a result, the temperature rise of the polylactic acid resin pre-expanded particles becomes abrupt, and the increase in crystallinity of the polylactic acid resin pre-expanded particles cannot keep up with the melting rate of the polylactic acid resin pre-expanded particles. The pre-foamed particles are melted, the foaming pressure is insufficient, and the fusibility between the foamed particles obtained by foaming the polylactic acid-based resin pre-foamed particles is reduced, or the resulting polylactic acid-based resin foam molding is shrunk. May be appropriately adjusted.

そして、得られたポリ乳酸系樹脂発泡成形体の結晶化度は、低いと、ポリ乳酸系樹脂発泡成形体の耐熱性が低下する一方、高いと、ポリ乳酸系樹脂発泡成形体が脆くなることがあるので、好ましくは30〜60%、より好ましくは32〜59%、特に好ましくは34〜58%となるように型内発泡成形条件を調整するのがよい。なお、ポリ乳酸系樹脂発泡成形体の結晶化度は、ポリ乳酸系樹脂予備発泡粒子の結晶化度の測定方法と同様であるのでその説明を省略する。   When the crystallinity of the obtained polylactic acid-based resin foamed molded product is low, the heat resistance of the polylactic acid-based resin foamed molded product is reduced. On the other hand, when the crystallinity is high, the polylactic acid-based resin foamed molded product becomes brittle. Therefore, it is preferable to adjust the in-mold foam molding conditions so that it is preferably 30 to 60%, more preferably 32 to 59%, and particularly preferably 34 to 58%. In addition, since the crystallinity degree of a polylactic acid-type resin foaming molding is the same as the measuring method of the crystallinity degree of a polylactic acid-type resin pre-expanded particle, the description is abbreviate | omitted.

又、得られたポリ乳酸系樹脂発泡成形体の融着率は、40%以上が好ましく、50%以上がより好ましく、60%以上が特に好ましい。なお、ポリ乳酸系樹脂発泡成形体の融着率は、下記の要領で測定されたものをいう。先ず、ポリ乳酸系樹脂発泡成形体を折り曲げて所定箇所から切断する。そして、ポリ乳酸系樹脂発泡成形体の切断面に露出している発泡粒子の全粒子数N1 を目視により数えると共に、材料破壊した発泡粒子、即ち、分割された発泡粒子の粒子数N2 を目視により数え、下記式に基づいて融着率を算出することができる。
融着率(%)=100×材料破壊した発泡粒子の粒子数N2 /発泡粒子の全粒子数N1
Further, the fusion rate of the obtained polylactic acid resin foamed molded article is preferably 40% or more, more preferably 50% or more, and particularly preferably 60% or more. In addition, the fusion rate of a polylactic acid-type resin foaming molding means what was measured in the following way. First, the polylactic acid resin foamed molded body is bent and cut from a predetermined location. Then, the total number N 1 of foam particles exposed on the cut surface of the polylactic acid resin foam molded article is visually counted, and the foamed particles whose material is broken, that is, the number N 2 of the divided foam particles is calculated. It can be counted visually and the fusion rate can be calculated based on the following formula.
Fusing rate (%) = 100 × number of particles of expanded foam particles N 2 / total number of expanded particles N 1

更に、上記ポリ乳酸系樹脂予備発泡粒子に更に不活性ガスを常温にて含浸させて、ポリ乳酸系樹脂予備発泡粒子の発泡力を向上させてもよい。このようにポリ乳酸系樹脂予備発泡粒子の発泡力を向上させることにより、型内発泡成形時におけるポリ乳酸系樹脂予備発泡粒子を発泡させて得られる発泡粒子同士の融着性が向上し、得られるポリ乳酸系樹脂発泡成形体は更に優れた機械的強度を有する。なお、上記不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウムなどが挙げられる。   Further, the polylactic acid resin pre-expanded particles may be further impregnated with an inert gas at room temperature to improve the foaming power of the polylactic acid resin pre-expanded particles. Thus, by improving the foaming power of the polylactic acid resin pre-foamed particles, the fusion property between the foamed particles obtained by foaming the polylactic acid resin pre-foamed particles during in-mold foam molding is improved. The resulting polylactic acid-based resin foamed molded article has further excellent mechanical strength. Examples of the inert gas include carbon dioxide, nitrogen, and helium.

本発明のポリ乳酸系樹脂予備発泡粒子の製造方法では、ポリ乳酸系樹脂として、構成モノマー成分としてD体及びL体の双方の光学異性体を含有し且つD体又はL体のうちの少ない方の光学異性体の含有量が5モル%未満であるポリ乳酸系樹脂か、或いは、構成モノマー成分としてD体又はL体のうちの何れか一方の光学異性体のみを含有しているポリ乳酸系樹脂を用いていることから、得られるポリ乳酸系樹脂予備発泡粒子は、その結晶化性が高くて耐熱性に優れている。   In the method for producing pre-expanded particles of polylactic acid resin of the present invention, the polylactic acid resin contains both optical isomers of D-form and L-form as constituent monomer components, and the lesser of D-form or L-form A polylactic acid resin containing less than 5 mol% of the optical isomer, or a polylactic acid resin containing only one of the optical isomers D or L as a constituent monomer component Since the resin is used, the resulting polylactic acid resin pre-expanded particles have high crystallinity and excellent heat resistance.

そして、上記ポリ乳酸系樹脂予備発泡粒子の製造方法では、結晶性が高いポリ乳酸系樹脂のうち、動的粘弾性測定にて得られた貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tと融点(mp)とが所定関係にあるポリ乳酸系樹脂を用いて押出発泡に適したものとし、押出発泡によってポリ乳酸系樹脂を発泡させており、従来のようにポリ乳酸系樹脂粒子を一旦、作製し、このポリ乳酸系樹脂粒子に発泡剤を含浸させて予備発泡させる場合と異なり、粒子状にしてから熱を加えることはなく、よって、ポリ乳酸系樹脂予備発泡粒子の結晶化度の上昇を防止し、得られるポリ乳酸系樹脂予備発泡粒子の融着性を良好に維持することができる。   And in the manufacturing method of the said polylactic acid-type resin pre-expanded particle, among the polylactic acid-type resin with high crystallinity, the temperature in the intersection of the storage elastic modulus curve obtained by dynamic viscoelasticity measurement and a loss elastic modulus curve A polylactic acid resin having a predetermined relationship between T and melting point (mp) is suitable for extrusion foaming, and the polylactic acid resin is foamed by extrusion foaming. Unlike the case in which the polylactic acid resin particles are once prepared and impregnated with a foaming agent and pre-foamed, heat is not applied after the particles are formed. Therefore, the degree of crystallinity of the polylactic acid resin pre-foamed particles Can be prevented, and the fusion property of the resulting polylactic acid resin pre-expanded particles can be maintained well.

更に、上記ポリ乳酸系樹脂予備発泡粒子の製造方法で得られるポリ乳酸系樹脂予備発泡粒子は、その結晶化度が30%未満となるように調整されていることから、型内発泡時における融着性に優れていると共に、この型内発泡時に加えられる熱によってポリ乳酸系樹脂粒子の結晶化度を、該ポリ乳酸系樹脂予備発泡粒子を発泡させて得られる発泡粒子同士の融着性を阻害させないように上昇させて、ポリ乳酸系樹脂発泡成形体に優れた耐熱性を付与することができ、よって、本発明のポリ乳酸系樹脂予備発泡粒子を用いて得られたポリ乳酸系樹脂発泡成形体は優れた耐熱性及び機械的強度を有する。   Furthermore, since the polylactic acid resin pre-expanded particles obtained by the method for producing the polylactic acid resin pre-expanded particles are adjusted so that the crystallinity is less than 30%, In addition to excellent adhesion, the degree of crystallinity of the polylactic acid-based resin particles by heat applied during in-mold foaming, and the adhesion between the expanded particles obtained by expanding the pre-expanded particles of the polylactic acid-based resin The polylactic acid resin foam can be obtained by using the polylactic acid resin pre-foamed particles according to the present invention. The molded body has excellent heat resistance and mechanical strength.

本発明においてポリ乳酸系樹脂予備発泡粒子の嵩密度及びポリ乳酸系樹脂発泡成形体の見掛け密度は下記の要領によって測定されたものをいう。   In the present invention, the bulk density of the polylactic acid-based resin pre-expanded particles and the apparent density of the polylactic acid-based resin foamed molded product are those measured by the following procedure.

(ポリ乳酸系樹脂予備発泡粒子の嵩密度)
ポリ乳酸系樹脂予備発泡粒子の嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。即ち、JIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいてポリ乳酸系樹脂予備発泡粒子の嵩密度を測定した。
(Bulk density of pre-expanded particles of polylactic acid resin)
The bulk density of the polylactic acid-based resin pre-expanded particles refers to that measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. That is, it measured using the apparent density measuring device based on JISK6911, and measured the bulk density of the polylactic acid-type resin pre-expanded particle based on the following formula.

ポリ乳酸系樹脂予備発泡粒子の嵩密度(g/cm3
=〔試料を入れたメスシリンダーの質量(g)−メスシリンダーの質量(g)〕
/〔メスシリンダーの容量(cm3 )〕
Bulk density (g / cm 3 ) of pre-expanded particles of polylactic acid resin
= [Mass of measuring cylinder with sample (g) -Mass of measuring cylinder (g)]
/ [Capacity of measuring cylinder (cm 3 )]

(ポリ乳酸系樹脂発泡成形体の見掛け密度)
ポリ乳酸系樹脂発泡成形体の見掛け密度は、JIS K6767:1999「発泡プラスチック及びゴム−見掛け密度の測定」に記載の方法で測定されたものをいう。
(Apparent density of polylactic acid resin foam molding)
The apparent density of the polylactic acid-based resin foamed molded product refers to that measured by the method described in JIS K6767: 1999 “Measurement of foamed plastic and rubber-apparent density”.

(実施例1)
一段目となる口径50mmの単軸押出機と二段目となる口径65mmの単軸押出機とを接続管を介して接続してなるタンデム型の押出機を用意した。
Example 1
A tandem type extruder in which a single-screw extruder having a diameter of 50 mm serving as the first stage and a single-screw extruder having a diameter of 65 mm serving as the second stage were connected via a connecting pipe was prepared.

そして、上記タンデム型の押出機の一段目の押出機に、結晶性のポリ乳酸系樹脂(ユニチカ社製 商品名「TERRAMAC TE−6100」、融点:167.8℃、D体比率:1.5重量%、L体比率:98.5重量%、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T:140.3℃、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点の温度Tにおける弾性率(貯蔵弾性率又は損失弾性率):5.37×104 Pa)100重量部及び気泡調整剤としてポリテトラフルオロエチレン粉末(旭硝子社製 商品名「フルオンL169J」)0.1重量部を供給して始めは190℃にて溶融混練した後に220℃まで徐々に昇温させながら溶融混練した。なお、図1に、ポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線及び損失弾性率曲線を示した。 Then, a crystalline polylactic acid resin (trade name “TERRAMAC TE-6100” manufactured by Unitika Co., Ltd., melting point: 167.8 ° C., D-form ratio: 1.5 is added to the first stage extruder of the tandem type extruder. % By weight, L-form ratio: 98.5% by weight, temperature T at the intersection of storage modulus curve and loss modulus curve obtained by dynamic viscoelasticity measurement: 140.3 ° C., dynamic viscoelasticity measurement 100 parts by weight of the elastic modulus (storage elastic modulus or loss elastic modulus) at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained in step (T) or 5.37 × 10 4 Pa) First, 0.1 part by weight of polytetrafluoroethylene powder (trade name “Fluon L169J” manufactured by Asahi Glass Co., Ltd.) was supplied, and then melt-kneaded at 190 ° C. and then gradually heated to 220 ° C. In addition, in FIG. 1, the storage elastic modulus curve and the loss elastic modulus curve obtained by the dynamic viscoelasticity measurement of polylactic acid-type resin were shown.

続いて、第一押出機の途中から、イソブタン35重量%及びノルマルブタン65重量%からなるブタンをポリ乳酸系樹脂100重量部に対して0.8重量部となるように溶融状態のポリ乳酸系樹脂に圧入して、ポリ乳酸系樹脂中に均一に分散させた。   Subsequently, in the middle of the first extruder, a polylactic acid-based polylactic acid in a molten state so that butane comprising 35% by weight of isobutane and 65% by weight of normal butane is 0.8 parts by weight with respect to 100 parts by weight of the polylactic acid-based resin. It was press-fitted into the resin and uniformly dispersed in the polylactic acid resin.

しかる後、溶融状態のポリ乳酸系樹脂を一段目の押出機から接続管を介して二段目の押出機に連続的に供給した。溶融状態のポリ乳酸系樹脂を二段目の押出機にて樹脂温度202℃に冷却した後、二段目の押出機の先端に取り付けたマルチノズル金型の各ノズルから剪断速度5659sec-1で押出発泡させてストランド状のポリ乳酸系樹脂押出発泡体を製造した。 Thereafter, the molten polylactic acid-based resin was continuously supplied from the first-stage extruder to the second-stage extruder via a connecting pipe. After the molten polylactic acid-based resin is cooled to a resin temperature of 202 ° C. by a second stage extruder, the shear rate is 5659 sec −1 from each nozzle of a multi-nozzle mold attached to the tip of the second stage extruder. Extruded and foamed to produce a strand-like polylactic acid resin extruded foam.

続いて、ストランド状のポリ乳酸系樹脂押出発泡体を、マルチノズル金型の各ノズル先端から60cmの距離に亘って空冷により冷却し、続いて、ストランド状のポリ乳酸系樹脂押出発泡体を2mの距離に亘って冷却水槽内の水面上に浮かせて冷却した。なお、冷却水槽内の水温は、30℃であった。   Subsequently, the strand-shaped polylactic acid-based resin extruded foam is cooled by air cooling over a distance of 60 cm from the tip of each nozzle of the multi-nozzle mold, and then the strand-shaped polylactic acid-based resin extruded foam is 2 m. Over the water surface in the cooling water tank and cooled. In addition, the water temperature in a cooling water tank was 30 degreeC.

なお、マルチノズル金型は、出口直径が1.0mmのノズルが15個、配設されており、ランド部の長さは7mmであった。又、マルチノズル金型のノズルから押出発泡させた際の樹脂温度は、二段目の押出機の先端部と金型との間にブレーカープレートを挿入し、このブレーカープレートの中心部に熱電対を挿入することによって測定した。   The multi-nozzle mold was provided with 15 nozzles having an exit diameter of 1.0 mm, and the land portion had a length of 7 mm. The resin temperature when extrusion foaming from the nozzle of the multi-nozzle mold is such that a breaker plate is inserted between the tip of the second stage extruder and the mold, and a thermocouple is placed in the center of the breaker plate. Was measured by inserting.

そして、ストランド状のポリ乳酸系樹脂押出発泡体を充分に水切りした後、このポリ乳酸系樹脂押出発泡体をファンカッタ式のペレタイザーを用いて2.3mm毎に円柱状に切断してポリ乳酸系樹脂予備発泡粒子を得た。なお、得られたポリ乳酸系樹脂予備発泡粒子は、その嵩密度が0.17g/cm3 で、粒径が1.7〜2.3mmで、結晶化度は25.5%で、連続気泡率は27.8%であった。 The strand-shaped polylactic acid-based resin extruded foam is sufficiently drained, and the polylactic acid-based resin extruded foam is cut into a cylindrical shape every 2.3 mm using a fan cutter type pelletizer. Resin pre-expanded particles were obtained. The obtained polylactic acid resin pre-expanded particles have a bulk density of 0.17 g / cm 3 , a particle size of 1.7 to 2.3 mm, a crystallinity of 25.5%, and open cell The rate was 27.8%.

次に、上記ポリ乳酸系樹脂予備発泡粒子を密閉容器内に入れ、この密閉容器内に二酸化炭素を0.49MPaの圧力にて圧入して常温にて24時間に亘って放置してポリ乳酸系樹脂予備発泡粒子に二酸化炭素を含浸させた。   Next, the polylactic acid-based resin pre-expanded particles are put in a sealed container, carbon dioxide is pressed into the sealed container at a pressure of 0.49 MPa, and left at room temperature for 24 hours. The resin pre-expanded particles were impregnated with carbon dioxide.

続いて、上記ポリ乳酸系樹脂予備発泡粒子を金型内に充填して型締めし、この金型内にゲージ圧0.018MPaの水蒸気を20秒間に亘って供給して、ポリ乳酸系樹脂予備発泡粒子を加熱、発泡させて、このポリ乳酸系樹脂予備発泡粒子を発泡させて得られる発泡粒子同士を融着一体化させ、更に、この状態にて120秒間に亘って保温した後に水冷して、縦300mm×横400mm×高さ20mmの直方体形状のポリ乳酸系樹脂発泡成形体を得た。なお、得られたポリ乳酸系樹脂発泡成形体は、その見掛け密度が0.18g/cm3 で、融着率は70%であった。 Subsequently, the polylactic acid-based resin pre-expanded particles are filled in a mold and clamped, and water vapor with a gauge pressure of 0.018 MPa is supplied into the mold for 20 seconds. The foamed particles are heated and foamed, and the foamed particles obtained by foaming the polylactic acid resin pre-foamed particles are fused and integrated together. Further, in this state, the mixture is kept warm for 120 seconds and then cooled with water. A rectangular parallelepiped polylactic acid-based resin foam molded article having a length of 300 mm, a width of 400 mm, and a height of 20 mm was obtained. The resulting polylactic acid resin foamed molded article had an apparent density of 0.18 g / cm 3 and a fusion rate of 70%.

(実施例2)
ポリ乳酸系樹脂として、結晶性のポリ乳酸系樹脂(ユニチカ社製 商品名「TERRAMAC HV−6200」、融点:167.4℃、D体比率:1.5重量%、L体比率:98.5重量%、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T:139.5℃、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点の温度Tにおける弾性率(貯蔵弾性率又は損失弾性率):4.23×104 Pa)を用いたこと、二段目の押出機にてポリ乳酸系樹脂を200℃に冷却したこと以外は実施例1と同様にしてポリ乳酸系樹脂予備発泡粒子を得た。
(Example 2)
As a polylactic acid resin, a crystalline polylactic acid resin (trade name “TERRAMAC HV-6200” manufactured by Unitika Ltd.), melting point: 167.4 ° C., D-form ratio: 1.5 wt%, L-form ratio: 98.5 Weight%, temperature T at the intersection of storage elastic modulus curve and loss elastic modulus curve obtained by dynamic viscoelasticity measurement, 139.5 ° C., storage elastic modulus curve obtained by dynamic viscoelasticity measurement And the elastic modulus at the temperature T at the intersection of the elastic modulus curve and the loss elastic modulus curve (storage elastic modulus or loss elastic modulus): 4.23 × 10 4 Pa). Polylactic acid-based resin pre-expanded particles were obtained in the same manner as in Example 1 except that it was cooled to 200 ° C.

なお、得られたポリ乳酸系樹脂予備発泡粒子は、その嵩密度が0.18g/cm3 で、粒径が1.7〜2.3mmで、結晶化度は22.8%で、連続気泡率は22.2%であった。又、得られたポリ乳酸系樹脂発泡成形体は、その見掛け密度が0.18g/cm3 で、融着率は80%であった。 The obtained polylactic acid resin pre-expanded particles have a bulk density of 0.18 g / cm 3 , a particle size of 1.7 to 2.3 mm, a crystallinity of 22.8%, and open cell The rate was 22.2%. The resulting polylactic acid resin foamed molded article had an apparent density of 0.18 g / cm 3 and a fusion rate of 80%.

(比較例1)
ポリ乳酸系樹脂として、結晶性のポリ乳酸系樹脂(ユニチカ社製 商品名「TERRAMAC TE−4000」、融点:170.3℃、D体比率:1.4重量%、L体比率:98.6重量%、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T:105.0℃、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点の温度Tにおける弾性率(貯蔵弾性率又は損失弾性率):1.17×104 Pa)を用いたこと以外は実施例1と同様にしてポリ乳酸系樹脂予備発泡粒子を得た。
(Comparative Example 1)
As the polylactic acid resin, crystalline polylactic acid resin (trade name “TERRAMAC TE-4000” manufactured by Unitika Ltd.), melting point: 170.3 ° C., D-form ratio: 1.4% by weight, L-form ratio: 98.6 Weight%, temperature T at the intersection of storage elastic modulus curve and loss elastic modulus curve obtained by dynamic viscoelasticity measurement: 105.0 ° C., storage elastic modulus curve obtained by dynamic viscoelasticity measurement And a polylactic acid resin preliminary in the same manner as in Example 1 except that the elastic modulus (storage elastic modulus or loss elastic modulus) at the temperature T at the intersection of the elastic modulus curve and the loss elastic modulus curve is 1.17 × 10 4 Pa). Expanded particles were obtained.

しかしながら、押出機から押出発泡させて得られたストランド状のポリ乳酸系樹脂押出発泡体に、破泡に伴うガスの抜け穴が断続的に発生し、ポリ乳酸系樹脂予備発泡粒子を安定的に製造することができなかった。   However, in the strand-like polylactic acid resin extruded foam obtained by extrusion foaming from an extruder, gas loopholes accompanying breakage occur intermittently, and polylactic acid resin pre-expanded particles are stably produced. I couldn't.

(比較例2)
マルチノズル金型の各ノズル先端から押出発泡させたストランド状のポリ乳酸系樹脂押出発泡体の空冷距離を60cmの代わりに1.5mとしたこと以外は実施例1と同様にしてポリ乳酸系樹脂予備発泡粒子を得た。
(Comparative Example 2)
A polylactic acid resin in the same manner as in Example 1 except that the air-cooling distance of the extruded polylactic acid resin foam in the form of a strand extruded from the tip of each nozzle of the multi-nozzle mold was set to 1.5 m instead of 60 cm. Pre-expanded particles were obtained.

なお、得られたポリ乳酸系樹脂予備発泡粒子は、その嵩密度が0.17g/cm3 で、粒径が1.7〜2.3mmで、結晶化度は30.5%で、連続気泡率は28.1%であった。又、得られたポリ乳酸系樹脂発泡成形体は、その見掛け密度が0.18g/cm3 で、融着率は10%であった。 The obtained polylactic acid resin pre-expanded particles have a bulk density of 0.17 g / cm 3 , a particle size of 1.7 to 2.3 mm, a crystallinity of 30.5%, and open cell The rate was 28.1%. The resulting polylactic acid resin foamed molded article had an apparent density of 0.18 g / cm 3 and a fusion rate of 10%.

Figure 0004761917
Figure 0004761917

実施例1で用いられたポリ乳酸系樹脂の動的粘弾性測定にて得られた、貯蔵弾性率曲線及び損失弾性率曲線を示したグラフである。2 is a graph showing a storage elastic modulus curve and a loss elastic modulus curve obtained by dynamic viscoelasticity measurement of the polylactic acid resin used in Example 1. FIG.

Claims (2)

ポリ乳酸系樹脂を押出機に供給して発泡剤の存在下にて溶融混練し押出発泡して押出発泡体を製造し、この押出発泡体を粒子状に切断して予備発泡粒子を製造する型内発泡成形用ポリ乳酸系樹脂予備発泡粒子の製造方法において、上記ポリ乳酸系樹脂が、その構成モノマー成分としてD体及びL体の双方の光学異性体を含有し且つD体又はL体のうちの少ない方の光学異性体の含有量が5モル%未満であるか、或いは、構成モノマー成分としてD体又はL体のうちの何れか一方の光学異性体のみを含有していると共に、上記ポリ乳酸系樹脂における融点(mp)と動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tとが下記式1を満たし、更に、ポリ乳酸系樹脂予備発泡粒子の結晶化度が30%未満となるように調整することを特徴とする型内発泡成形用ポリ乳酸系樹脂予備発泡粒子の製造方法。
(ポリ乳酸系樹脂の融点(mp)−40℃)
≦(交点における温度T)≦ポリ乳酸系樹脂の融点(mp)・・・式1
By supplying polylactic acid-based resin to an extruder to produce a melt-kneaded extrusion foaming and extrusion foamed in the presence of a blowing agent to produce pre-expanded particles by cutting the extruded foam particulate mold In the method for producing pre-expanded polylactic acid resin particles for inner foam molding, the polylactic acid resin contains both D-form and L-form optical isomers as constituent monomer components, and D-form or L-form The content of the smaller optical isomer is less than 5 mol%, or contains only one of the optical isomers D or L as a constituent monomer component, The melting point (mp) in the lactic acid-based resin and the temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement satisfy the following formula 1, and the polylactic acid resin preliminary The crystallinity of the expanded particles is less than 30% Mold foam method for manufacturing a molded polylactic acid resin pre-expanded particles, characterized in that adjusted to.
(Melting point of polylactic acid resin (mp) -40 ° C)
≦ (temperature T at the intersection) ≦ melting point of polylactic acid resin (mp) Formula 1
ポリ乳酸系樹脂における動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tでのポリ乳酸系樹脂の弾性率が1.0×103 〜1.0×105 Paであることを特徴とする請求項1に記載の型内発泡成形用ポリ乳酸系樹脂予備発泡粒子の製造方法。 The elastic modulus of the polylactic acid resin at a temperature T at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement in the polylactic acid resin is 1.0 × 10 3 to 1. It is 0x10 < 5 > Pa, The manufacturing method of the polylactic acid-type resin pre-expanded particle for in-mold foam molding of Claim 1 characterized by the above-mentioned.
JP2005294919A 2005-10-07 2005-10-07 Process for producing pre-expanded particles of polylactic acid resin Expired - Fee Related JP4761917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294919A JP4761917B2 (en) 2005-10-07 2005-10-07 Process for producing pre-expanded particles of polylactic acid resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294919A JP4761917B2 (en) 2005-10-07 2005-10-07 Process for producing pre-expanded particles of polylactic acid resin

Publications (2)

Publication Number Publication Date
JP2007100026A JP2007100026A (en) 2007-04-19
JP4761917B2 true JP4761917B2 (en) 2011-08-31

Family

ID=38027277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294919A Expired - Fee Related JP4761917B2 (en) 2005-10-07 2005-10-07 Process for producing pre-expanded particles of polylactic acid resin

Country Status (1)

Country Link
JP (1) JP4761917B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372512B2 (en) 2007-03-29 2013-02-12 Sekisui Plastics Co., Ltd. Polylactic acid-based resin foamed particles for in-mold foam-molding and method for producing the same, as well as method for producing polylactic acid-based resin foam-molded article
JP5498981B2 (en) * 2010-03-12 2014-05-21 積水化成品工業株式会社 COMPOSITE STRUCTURE MEMBER, ITS MANUFACTURING METHOD, AUTOMOBILE MEMBER, AND AUTOMOBILE DOOR PANEL
US20120009420A1 (en) 2010-07-07 2012-01-12 Lifoam Industries Compostable or Biobased Foams
US8962706B2 (en) 2010-09-10 2015-02-24 Lifoam Industries, Llc Process for enabling secondary expansion of expandable beads

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773342B2 (en) * 1997-12-02 2006-05-10 三井化学株式会社 Expandable particles
JP2002020526A (en) * 2000-07-07 2002-01-23 Asahi Kasei Corp Expandable resin beads
JP2003041036A (en) * 2001-07-31 2003-02-13 Sekisui Plastics Co Ltd Aliphatic-aromatic copolyester resin foam and method for producing the same
JP3824547B2 (en) * 2001-08-10 2006-09-20 ユニチカ株式会社 Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom
JP4578309B2 (en) * 2004-05-17 2010-11-10 積水化成品工業株式会社 Method for producing polylactic acid resin foam, method for producing polylactic acid resin foam molded article, and polylactic acid resin foam

Also Published As

Publication number Publication date
JP2007100026A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4820641B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP4761916B2 (en) Polylactic acid resin foam molding
JP4213200B2 (en) Polylactic acid resin foamed particles for in-mold foam molding, production method thereof, and production method of polylactic acid resin foam molding
JP5188232B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP4820623B2 (en) Method for producing foamable polylactic acid resin
JP4773870B2 (en) Process for producing polylactic acid-based resin foam molding
JPH0867758A (en) Polypropylene resin foam and its production
JP4578309B2 (en) Method for producing polylactic acid resin foam, method for producing polylactic acid resin foam molded article, and polylactic acid resin foam
JP4761917B2 (en) Process for producing pre-expanded particles of polylactic acid resin
JP4713274B2 (en) Method for producing polylactic acid resin foam
JP4960122B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP5216619B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP5044589B2 (en) Polyvinylidene fluoride-based resin foamed particles, and polyvinylidene fluoride-based resin foamed particles
JP4928920B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP2012188560A (en) Polyester resin foamed particle, polyester resin foamed molded product using the foamed particle, and method of producing the molded product
JP2011213906A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
JP5502778B2 (en) Polylactic acid resin foam and method for producing the same
JP5306137B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP2003301066A (en) Lightweight structural material and thermal insulation with good degradability when scrapped and manufacturing method thereof
JP5636310B2 (en) Method for producing polylactic acid resin foam, polylactic acid resin foam, and polylactic acid resin foam molded article
JP2011213905A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
JP2011111615A (en) Polylactic acid-based resin foamed particle for foam molding in mold, secondary foamed particle, and polylactic acid-based resin foamed molded article
JP2010023333A (en) Container forming poly-lactic acid resin foaming particle and its production process, also production process of poly-lactic acid resin foam container using container forming poly-lactic acid resin foaming particle
JP2011213893A (en) Automobile interior material and method for manufacturing the same
JP5498981B2 (en) COMPOSITE STRUCTURE MEMBER, ITS MANUFACTURING METHOD, AUTOMOBILE MEMBER, AND AUTOMOBILE DOOR PANEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees