JP2007186692A - Method for producing polylactic acid-based resin expandable beads - Google Patents

Method for producing polylactic acid-based resin expandable beads Download PDF

Info

Publication number
JP2007186692A
JP2007186692A JP2006338297A JP2006338297A JP2007186692A JP 2007186692 A JP2007186692 A JP 2007186692A JP 2006338297 A JP2006338297 A JP 2006338297A JP 2006338297 A JP2006338297 A JP 2006338297A JP 2007186692 A JP2007186692 A JP 2007186692A
Authority
JP
Japan
Prior art keywords
polylactic acid
based resin
weight
parts
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006338297A
Other languages
Japanese (ja)
Inventor
Keisuke Okuma
敬介 大熊
Fuminobu Hirose
文信 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006338297A priority Critical patent/JP2007186692A/en
Publication of JP2007186692A publication Critical patent/JP2007186692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid-based expanded foam through a simplified production process with improved productivity by a beads method to afford the foam with expandability, moldability and convenience. <P>SOLUTION: Expandable beads are obtained by melt-kneading and extruding, using an extruder, a mixture of a polylactic acid-based resin, a crosslinking agent and a foaming agent followed by cutting the extruded kneaded product. Thereby, the polylactic acid-based expanded foam having expandability and moldability equivalent to the case with conventional process can be obtained while simplifying both of the crosslinking step and the impregnating step into a single step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリ乳酸系樹脂の発泡性粒子に関する。さらに詳しくは、ビーズ法によるポリ乳酸系発泡成形体を作製するに際し、架橋工程と含浸工程を一工程で行うことで得られるポリ乳酸系樹脂の発泡性粒子及びその製造方法に関するものである。   The present invention relates to expandable particles of a polylactic acid resin. More specifically, the present invention relates to an expandable particle of polylactic acid resin obtained by performing a crosslinking step and an impregnation step in one step when producing a polylactic acid-based foamed molded article by a bead method, and a method for producing the same.

化石資源を原料とする発泡ポリオレフィン、発泡ポリスチレンの代替として、特許文献1において、ポリ乳酸を主たる原料とする発泡成形体が提案されている。この発泡成形体は非石油資源である澱粉を出発原料としており、地球資源保護、環境保全の見地から見て非常に望ましいものであると言える。また、ポリ乳酸系発泡成形体は、ポリスチレン系発泡成形体と同様に、未発泡の発泡性粒子の状態で加工業者へ搬送でき、該業者側で該発泡性粒子を予備発泡し、得られた予備発泡粒子を型内で成形できる等、従来の発泡成形体の利点をも有する。   As an alternative to foamed polyolefin and foamed polystyrene using fossil resources as raw materials, Patent Document 1 proposes a foamed molded product using polylactic acid as a main raw material. This foamed molded product uses starch, which is a non-petroleum resource, as a starting material, and can be said to be very desirable from the viewpoint of global resource protection and environmental conservation. Further, the polylactic acid-based foamed molded article, like the polystyrene-based foamed molded article, was able to be transported to a processor in the state of unfoamed expandable particles, and was obtained by pre-foaming the expandable particles on the contractor side. It also has the advantages of conventional foamed molded products, such as pre-expanded particles can be molded in the mold.

一般的に、ビーズ法型内発泡成形を行う場合、例えば、ポリスチレン系発泡成形体は大きく分けて(1)スチレンモノマーの懸濁重合及び発泡剤の含浸工程、(2)発泡性粒子を予備発泡する工程、(3)予備発泡粒子を型内で成形する工程、を経て製造される。   In general, when performing foam molding in a bead method, for example, polystyrene-based foam molded products are roughly divided into (1) a styrene monomer suspension polymerization and foaming agent impregnation step, and (2) pre-expanding of expandable particles. And (3) a step of forming pre-expanded particles in a mold.

一方、特許文献1に記載されているビーズ法によるポリ乳酸系発泡成形体の製造方法は、(1)ポリ乳酸系樹脂を架橋する工程、(2)発泡剤を含浸する工程、(3)発泡性粒子を予備発泡する工程、(4)予備発泡粒子を型内で成形する工程、と4つの工程からなり、一般的なポリスチレン発泡成形体の製造工程より架橋にかかる工程が増える事となる。ポリ乳酸系樹脂は汎用の樹脂群に比較すると高価であるため、これらを解消して生産性の向上を図り製造コストを低減することが望まれている。   On the other hand, the method for producing a polylactic acid-based foam molded article by the bead method described in Patent Document 1 includes (1) a step of crosslinking a polylactic acid-based resin, (2) a step of impregnating a foaming agent, and (3) foaming. 4 steps, the step of pre-foaming the conductive particles, and the step of molding the pre-foamed particles in the mold, and the number of steps involved in crosslinking is increased compared to the production step of a general polystyrene foam molded article. Since polylactic acid-based resins are more expensive than general-purpose resin groups, it is desired to eliminate these problems to improve productivity and reduce manufacturing costs.

ポリ乳酸系樹脂から発泡成形体を得る他の技術として、例えば、特許文献2には、ポリ乳酸またはヒドロキシカルボン酸のコポリマーから成る熱可塑性ポリマー組成物に発泡剤を吸収してなる密度0.15〜0.5g/cm3の分解性ポリマーの発泡性粒子が開示されている。 As another technique for obtaining a foamed molded product from a polylactic acid-based resin, for example, Patent Document 2 discloses a density of 0.15 obtained by absorbing a foaming agent in a thermoplastic polymer composition composed of a copolymer of polylactic acid or hydroxycarboxylic acid. ˜0.5 g / cm 3 degradable polymer expandable particles are disclosed.

また、特許文献3には、特定の溶融粘度と結晶融解熱量及び結晶融解吸熱曲線を有するポリ乳酸系樹脂と発泡剤からなる無架橋のポリ乳酸系樹脂発泡性粒子が開示されている。   Patent Document 3 discloses non-crosslinked polylactic acid resin foamable particles composed of a polylactic acid resin having a specific melt viscosity, crystal melting heat quantity and crystal melting endothermic curve, and a foaming agent.

しかしながら、これらの技術ではポリ乳酸樹脂に特段の処理を行うことなく発泡粒子を作成しているが、ポリ乳酸系樹脂の場合、そのままだと発泡に適正な条件が得にくいため、低い発泡倍率の予備発泡粒子しか得られず、成形性も悪くなるという問題がある。実際、我々は該特許文献の記載に従い、ポリ乳酸系樹脂の発泡成形体を作製したが、予備発泡粒子の倍率は20倍程度と低く、また、成形時には収縮が生じ易く、低温でないと成形することができなかった。そのため、ポリ乳酸系樹脂自体を架橋や高分子量化する等の処理を施すことが必須である。   However, in these technologies, foamed particles are prepared without performing special treatment on the polylactic acid resin. However, in the case of the polylactic acid resin, it is difficult to obtain appropriate conditions for foaming as it is, so that the low foaming ratio is low. There is a problem that only pre-expanded particles can be obtained and the moldability is deteriorated. In fact, we made a foamed molded product of polylactic acid resin according to the description in the patent document. However, the ratio of the pre-expanded particles is as low as about 20 times. I couldn't. Therefore, it is essential to perform treatments such as crosslinking or increasing the molecular weight of the polylactic acid resin itself.

一方、特許文献4では、生分解性ポリエステル系樹脂と発泡剤とを押出機で混練し、発泡されたストランドとして押出し、この発泡ストランドをカットして予備発泡粒子を得る方法が開示されている。   On the other hand, Patent Document 4 discloses a method in which a biodegradable polyester resin and a foaming agent are kneaded with an extruder, extruded as a foamed strand, and the foamed strand is cut to obtain pre-expanded particles.

この方法では、含浸工程と予備発泡工程を一工程とし、連続的に予備発泡粒子を得ることができるが、基材樹脂がポリ乳酸の場合、前述したように無架橋では発泡倍率は低くなり、成形性も悪化する。また、この方法では未発泡状態での搬送が不可能になるため、嵩高い予備発泡粒子の状態で搬送しなければならず、輸送コストが高価になるという問題が発生する。   In this method, the impregnation step and the pre-foaming step are made into one step, and pre-foamed particles can be obtained continuously. However, when the base resin is polylactic acid, as described above, the foaming ratio is low without crosslinking, Formability also deteriorates. In addition, since this method makes it impossible to carry in an unfoamed state, it has to be carried in a state of bulky pre-expanded particles, which causes a problem that the transportation cost becomes expensive.

以上のように、ビーズ法によるポリ乳酸系発泡成形体を作製するに際し、製造工程を簡素化した上で、従来のポリ乳酸系発泡成形体が有する発泡性、成形性、さらに搬送等の利便性が発現された例は存在しない。
国際公開第99/021915号パンフレット 特開平5−170966号公報 特開2002−20525号公報 特開2002−302567号公報
As described above, when producing a polylactic acid-based foamed molded article by the bead method, the manufacturing process is simplified, and the foamability, moldability, and convenience of conveyance, etc. of conventional polylactic acid-based foamed molded articles are further improved. There is no example in which is expressed.
International Publication No. 99/021915 Pamphlet Japanese Patent Laid-Open No. 5-170966 JP 2002-20525 A JP 2002-302567 A

本発明が解決しようとする課題は、ビーズ法によるポリ乳酸系発泡成形体を作製するに際し、製造工程を簡素化し、生産性を向上させると同時に、発泡性、成形性、利便性を有するポリ乳酸系発泡成形体を提供することである。   The problem to be solved by the present invention is that, when producing a polylactic acid-based foamed molded article by the bead method, the production process is simplified, the productivity is improved, and at the same time, the polylactic acid having foamability, moldability and convenience. It is providing a type | system | group foaming molding.

本発明者らは、上述の課題を解決すべく鋭意研究を重ねた結果、ポリ乳酸系樹脂及び架橋剤、発泡剤を押出機で溶融混練後押出し、押出された混練物をカットすることで、架橋工程と含浸工程を一工程とすることが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have extruded a polylactic acid resin, a crosslinking agent, and a foaming agent after melt-kneading with an extruder, and cutting the extruded kneaded product, It has been found that the cross-linking step and the impregnation step can be made into one step, and the present invention has been completed.

即ち本発明の第一は、ポリ乳酸系樹脂、架橋剤、及び、発泡剤を押出機で溶融混練した後押出し、押出された該混練物をカットして発泡性粒子とすることを特徴とするポリ乳酸系樹脂発泡性粒子の製造方法に関する。好ましい実施態様は、ポリ乳酸系樹脂が、乳酸モノマーのL体とD体のモル比が95/5〜60/40、又は40/60〜5/95であることを特徴とする上記記載のポリ乳酸系樹脂発泡性粒子の製造方法に関する。より好ましくは、架橋剤が、イソシアネート基≧2.0当量/モルのポリイソシアネート化合物であり、該ポリイソシアネート化合物をポリ乳酸系樹脂100重量部に対して0.5〜5.0重量部配合する事を特徴とする上記記載のポリ乳酸系樹脂発泡性粒子の製造方法、更に好ましくは、ポリ乳酸系樹脂100重量部に対して発泡剤を1.0重量部以上10.0重量部以下含浸させる事を特徴とする上記記載のポリ乳酸系樹脂発泡性粒子の製造方法、に関する。本発明の第二は、上記記載の製造方法によって得られる、見かけ比重0.25〜1.25g/cm3のポリ乳酸系樹脂発泡性粒子に関する。   That is, the first of the present invention is characterized in that a polylactic acid resin, a crosslinking agent, and a foaming agent are melt-kneaded with an extruder and then extruded, and the extruded kneaded product is cut into foamable particles. The present invention relates to a method for producing polylactic acid resin expandable particles. In a preferred embodiment, the polylactic acid-based resin is characterized in that the molar ratio of L-form and D-form of lactic acid monomer is 95/5 to 60/40, or 40/60 to 5/95. The present invention relates to a method for producing lactic acid resin expandable particles. More preferably, the crosslinking agent is a polyisocyanate compound having an isocyanate group ≧ 2.0 equivalents / mol, and 0.5 to 5.0 parts by weight of the polyisocyanate compound is blended with respect to 100 parts by weight of the polylactic acid resin. The method for producing expandable particles of polylactic acid resin described above, more preferably, impregnating 1.0 part by weight or more and 10.0 parts by weight or less of foaming agent with respect to 100 parts by weight of polylactic acid resin. The present invention relates to the above-described method for producing polylactic acid-based resin expandable particles. The second of the present invention relates to polylactic acid-based resin expandable particles having an apparent specific gravity of 0.25 to 1.25 g / cm 3 obtained by the production method described above.

本発明のポリ乳酸系樹脂の発泡性粒子の製造方法によれば、架橋工程と含浸工程を一工程とすることができたため、含浸工程での過剰な発泡剤の投入する必要なく、エネルギー効率も良く、連続的に発泡性粒子を製造することができる。また、従来の製法で製造されるポリ乳酸系発泡成形体と同等の発泡性、成形性を有するポリ乳酸系発泡体が得られる。   According to the method for producing expandable particles of the polylactic acid-based resin of the present invention, since the crosslinking step and the impregnation step can be made into one step, it is not necessary to add an excessive blowing agent in the impregnation step, and energy efficiency is also improved. Good, expandable particles can be produced continuously. Moreover, the polylactic acid-type foam which has the foamability and moldability equivalent to the polylactic acid-type foam molding manufactured by the conventional manufacturing method is obtained.

以下、本発明を詳細に説明する。本発明のポリ乳酸系樹脂発泡性粒子は、ポリ乳酸系樹脂、架橋剤、及び、発泡剤を押出機で溶融混練した後押出し、押出された該混練物をカットして得るものである。   Hereinafter, the present invention will be described in detail. The polylactic acid-based resin expandable particles of the present invention are obtained by melt-kneading a polylactic acid-based resin, a cross-linking agent, and a foaming agent with an extruder and then extruding and cutting the extruded kneaded product.

本発明に用いるポリ乳酸系樹脂は、乳酸モノマーのL体とD体のモル比が95/5〜60/40、又は40/60〜5/95の範囲であり、好ましくは90/10〜70/30、又は30/70〜10/90の範囲である。L体とD体のモル比が95/5〜60/40、又は40/60〜5/95の範囲の場合、結晶性が低いため高い倍率の発泡成形体が得やすい。また、ポリ乳酸系樹脂は、一部モノマーが乳酸と交換可能なヒドロキシカルボン酸、ジカルボン酸、ジオール等で置き換わってもよく、エポキシ化大豆油やエポキシ化亜麻仁油等で一部分岐架橋されていても良い。   The polylactic acid resin used in the present invention has a molar ratio of L-form and D-form of lactic acid monomer in the range of 95/5 to 60/40, or 40/60 to 5/95, preferably 90/10 to 70. / 30 or 30/70 to 10/90. When the molar ratio of the L-form and the D-form is in the range of 95/5 to 60/40, or 40/60 to 5/95, a foamed molded article with a high magnification can be easily obtained because of low crystallinity. In addition, the polylactic acid-based resin may be partially replaced with hydroxycarboxylic acid, dicarboxylic acid, diol, etc., which can be exchanged for lactic acid, or partially branched and cross-linked with epoxidized soybean oil, epoxidized linseed oil, etc. good.

本発明に用いる架橋剤としては、ポリイソシアネート化合物、過酸化物、酸無水物、エポキシ化合物等、一般的な架橋剤を少なくとも1種用いることができる。   As a crosslinking agent used for this invention, at least 1 sort (s) of general crosslinking agents, such as a polyisocyanate compound, a peroxide, an acid anhydride, an epoxy compound, can be used.

ポリイソシアネート化合物としては、芳香族、脂環族、脂肪族系のポリイソシアネート化合物が使用可能であり、芳香族ポリイソシアネートとしては、トリレン、ジフェニルメタン、ナフチレン、トリフェニルメタンを骨格とするポリイソシアネート化合物が挙げられる。また、脂環族ポリイソシアネートとしては、イソホロン、水酸化ジフェニルメタンを骨格とするポリイソシアネート化合物、脂肪族ポリイソシアネートとしては、ヘキサメチレン、リジンを骨格とするポリイソシアネート化合物が挙げられる。   As the polyisocyanate compound, aromatic, alicyclic, and aliphatic polyisocyanate compounds can be used. As the aromatic polyisocyanate, polyisocyanate compounds having a skeleton of tolylene, diphenylmethane, naphthylene, and triphenylmethane are available. Can be mentioned. Examples of the alicyclic polyisocyanate include a polyisocyanate compound having a skeleton of isophorone and diphenylmethane hydroxide, and examples of the aliphatic polyisocyanate include a polyisocyanate compound having a skeleton of hexamethylene and lysine.

過酸化物としては、ベンゾイルパーオキサイド、ビス(ブチルパーオキシ)トリメチルシクロヘキサン、ビス(ブチルパーオキシ)シクロドデカン、ブチルビス(ブチルパーオキシ)バレレート、ジクミルパーオキサイド、ブチルパーオキシベンゾエート、ジブチルパーオキサイド、ビス(ブチルパーオキシ)ジイソプロピルベンゼン、ジメチルジ(ブチルパーオキシ)ヘキサン、ジメチルジ(ブチルパーオキシ)ヘキシン、ブチルパーオキシクメン等の有機化酸化物が挙げられる。   Peroxides include benzoyl peroxide, bis (butylperoxy) trimethylcyclohexane, bis (butylperoxy) cyclododecane, butylbis (butylperoxy) valerate, dicumyl peroxide, butylperoxybenzoate, dibutyl peroxide, Examples thereof include organic oxides such as bis (butylperoxy) diisopropylbenzene, dimethyldi (butylperoxy) hexane, dimethyldi (butylperoxy) hexyne, and butylperoxycumene.

酸無水物としては、無水トリメリット酸、無水ピロメリット酸、エチレン−無水マレイン酸共重合体、メチルビニルエーテル−無水マレイン酸共重合体、スチレン−無水マレイン酸共重合体等が挙げられる。   Examples of the acid anhydride include trimellitic anhydride, pyromellitic anhydride, ethylene-maleic anhydride copolymer, methyl vinyl ether-maleic anhydride copolymer, styrene-maleic anhydride copolymer, and the like.

エポキシ化合物としては、グリシジルメタクリレート−メチルメタクリレート共重合体、グリシジルメタクリレート−スチレン共重合体、グリシジルメタクリレート−スチレン−ブチルアクリレート共重合体、ポリエチレングリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ヤシ脂肪酸グリシジルエステル、エポキシ化大豆油、エポキシ化アマニ油等の各種グリシジルエーテル及び各種グリシジルエステル等が挙げられる。   Epoxy compounds include glycidyl methacrylate-methyl methacrylate copolymer, glycidyl methacrylate-styrene copolymer, glycidyl methacrylate-styrene-butyl acrylate copolymer, polyethylene glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, coconut fatty acid glycidyl ester. And various glycidyl ethers and various glycidyl esters such as epoxidized soybean oil and epoxidized linseed oil.

これら架橋剤のうち、混練時の架橋増粘によるトルクアップが少なく、混練後に水分の存在下で加熱することによって尿素結合、ウレタン結合、アロファネート結合などによる後増粘が可能であるポリイソシアネート化合物が好ましく用いられる。ポリイソシアネート化合物の中でも、汎用性、取り扱い性、耐候性等からトリレン、ジフェニルメタン骨格とするポリイソシアネート化合物、特にジフェニルメタンのポリイソシアネートが好ましく使用される。   Among these cross-linking agents, there is little torque increase due to cross-linking thickening at the time of kneading, and polyisocyanate compounds that can be post-thickened by urea bond, urethane bond, allophanate bond, etc. by heating in the presence of moisture after kneading. Preferably used. Among the polyisocyanate compounds, polyisocyanate compounds having tolylene and diphenylmethane skeletons, particularly polyisocyanates of diphenylmethane are preferably used in view of versatility, handleability, weather resistance, and the like.

架橋剤の添加量は、ポリ乳酸系樹脂100重量部に対して、0.1重量部以上5.0重量部以下であることが好ましく、例えば、イソシアネート基≧2.0当量/モルのポリイソシアネート化合物を使用する場合、該化合物の添加量は、ポリ乳酸系樹脂100重量部に対して0.5重量部以上5.0重量部以下であることが好ましく、更に好ましくは1.0重量部以上3.0重量部以下である。添加量が0.5重量部以上であれば、ポリ乳酸樹脂組成物の溶融粘度を発泡に適した領域まで上昇させる傾向があり、5.0重量部以下であれば、発泡を阻害しない溶融粘度領域となる傾向があるため好ましい。   The addition amount of the crosslinking agent is preferably 0.1 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the polylactic acid resin, for example, polyisocyanate having isocyanate groups ≧ 2.0 equivalents / mol. When a compound is used, the amount of the compound added is preferably 0.5 parts by weight or more and 5.0 parts by weight or less, more preferably 1.0 part by weight or more with respect to 100 parts by weight of the polylactic acid resin. 3.0 parts by weight or less. If the addition amount is 0.5 parts by weight or more, there is a tendency to increase the melt viscosity of the polylactic acid resin composition to a region suitable for foaming, and if it is 5.0 parts by weight or less, the melt viscosity that does not inhibit foaming. This is preferable because it tends to be a region.

本発明に用いる発泡剤は、無機ガス、揮発性発泡剤、水等が挙げられ、無機ガスとしては、二酸化炭素、窒素等が挙げられ、揮発性発泡剤としては、プロパン、n−ブタン、i−ブタン、ペンタン、シクロペンタン、ヘプタン等の脂肪族炭化水素、トリクロルフルオルメタン、ジクロルジフルオルエタン、ジクロルテトラフルオルエタン、テトラフルオロエタン、メチルクロライドなどのハロゲン化炭化水素等が挙げられる。なお、発泡剤は上記のものを単独で用いるほか、これらを混合して用いることもできる。   Examples of the foaming agent used in the present invention include inorganic gas, volatile foaming agent, and water. Examples of the inorganic gas include carbon dioxide and nitrogen. Examples of the volatile foaming agent include propane, n-butane, i. -Aliphatic hydrocarbons such as butane, pentane, cyclopentane, heptane, halogenated hydrocarbons such as trichlorofluoromethane, dichlorodifluoroethane, dichlorotetrafluoroethane, tetrafluoroethane, methyl chloride, etc. . In addition, the above-mentioned foaming agents can be used alone or in combination.

発泡剤の添加量は、該ポリ乳酸系樹脂100重量部に対して、1.0重量部以上10.0重量部以下であることが好ましく、更に好ましくは3.0重量部以上8.0重量部以下である。添加量が1.0重量部以上であれば、所望の発泡倍率が得られる傾向があり、10.0重量部以下であれば、発泡が阻害されない傾向があるため好ましい。従来の発泡性樹脂粒子を得る場合に含浸工程で発泡性粒子に所定の発泡剤を含有させるために過剰な発泡剤を使用しなければならなかったが、本発明においては、過剰な発泡剤を使用せずとも発泡剤の含浸が可能となった。   The addition amount of the foaming agent is preferably 1.0 part by weight or more and 10.0 parts by weight or less, and more preferably 3.0 parts by weight or more and 8.0 parts by weight with respect to 100 parts by weight of the polylactic acid resin. Or less. If the addition amount is 1.0 part by weight or more, a desired foaming ratio tends to be obtained, and if it is 10.0 parts by weight or less, foaming tends not to be inhibited, which is preferable. In the case of obtaining conventional expandable resin particles, an excessive foaming agent had to be used in order to allow the expandable particles to contain a predetermined foaming agent in the impregnation step. The foaming agent can be impregnated without using it.

その他、目的に応じて発泡助剤や核剤等の添加剤を使用しても良い。発泡助剤として、可塑剤、トルエン、エチルベンゼン、キシレン、シクロヘキサン等が挙げられる。核剤としては、タルク、二酸化珪素、二酸化チタン、炭酸カルシウム、重炭酸ナトリウムなどの無機粉末や、クエン酸、重炭酸ナトリウムとクエン酸の混合物等を挙げることができ、これらを混合して用いることもできる。これら添加剤の添加量は、添加剤の種類にもよるが、一般にポリ乳酸系樹脂100重量部に対し、0.01〜3重量部程度である。   In addition, additives such as foaming aids and nucleating agents may be used depending on the purpose. Examples of foaming aids include plasticizers, toluene, ethylbenzene, xylene, and cyclohexane. Examples of nucleating agents include inorganic powders such as talc, silicon dioxide, titanium dioxide, calcium carbonate, and sodium bicarbonate, citric acid, a mixture of sodium bicarbonate and citric acid, and the like. You can also. The addition amount of these additives is generally about 0.01 to 3 parts by weight with respect to 100 parts by weight of the polylactic acid resin, although it depends on the kind of the additive.

本発明においては、ポリ乳酸系樹脂、架橋剤、及び、発泡核剤を押出機に供給する。このような押出機としては、従来から汎用されている押出機であれば特に限定されず、例えば、単軸押出機、二軸押出機、複数の押出機を連結させたタンデム型の押出機が挙げられるが、架橋剤及び発泡剤の分散が良好な点で二軸押出機やタンデム型押出機を用いることが好ましい。   In the present invention, a polylactic acid resin, a crosslinking agent, and a foam nucleating agent are supplied to an extruder. Such an extruder is not particularly limited as long as it is a conventionally used extruder, and examples thereof include a single-screw extruder, a twin-screw extruder, and a tandem type extruder in which a plurality of extruders are connected. Although mentioned, it is preferable to use a twin screw extruder or a tandem type extruder from the viewpoint of good dispersion of the crosslinking agent and the foaming agent.

そして、上記押出機にポリ乳酸系樹脂及び架橋剤、発泡核剤を供給するのであるが、押出機にポリ乳酸系樹脂と架橋剤を供給して溶融混練し、この押出機内の溶融状態にある混練物中に、発泡剤を注入ポンプを用いて圧入することが好ましい。   Then, the polylactic acid resin, the crosslinking agent, and the foaming nucleating agent are supplied to the extruder. The polylactic acid resin and the crosslinking agent are supplied to the extruder and melt-kneaded, and are in a molten state in the extruder. It is preferable to press-fit a foaming agent into the kneaded product using an injection pump.

このように溶融混練された発泡剤含有混練物を押出機先端のダイヘッドの押出孔から押出し、カットすることで発泡性粒子を得る。   The foaming agent-containing kneaded material melt-kneaded in this way is extruded from the extrusion hole of the die head at the tip of the extruder and cut to obtain expandable particles.

押出機による混練温度は、150℃以上250℃以下が好ましく、更に好ましくは180℃以上230℃以下である。また、押出機先端部の温度及び圧力は、混練物が発泡しない範囲であれば特に制限しない。通常は100℃以上170℃以下で、1MPa以上30MPa以下である。   The kneading temperature by the extruder is preferably 150 ° C. or higher and 250 ° C. or lower, more preferably 180 ° C. or higher and 230 ° C. or lower. Further, the temperature and pressure at the tip of the extruder are not particularly limited as long as the kneaded product does not foam. Usually, it is 100 degreeC or more and 170 degrees C or less, and is 1 MPa or more and 30 MPa or less.

押出機より押出された混練物をカットする方法としては種々の方法があり、特に限定するものではないが、押出されたストランドを水等で冷却しながらカットするストランドカット方式や水中カット方式が好ましい。   There are various methods for cutting the kneaded product extruded from the extruder, and it is not particularly limited. However, a strand cutting method or an underwater cutting method in which the extruded strand is cut while being cooled with water or the like is preferable. .

このようにして発泡性粒子が得られるが、該発泡性粒子の見かけ比重は、0.25〜1.25g/cm3が好ましく、更に好ましくは、0.50〜1.20g/cm3である。0.25g/cm3より低いと、嵩高い粒子となり、輸送コストが高くなる場合がある。 In this way, expandable particles are obtained. The apparent specific gravity of the expandable particles is preferably 0.25 to 1.25 g / cm 3, more preferably 0.50 to 1.20 g / cm 3 . If it is lower than 0.25 g / cm 3 , the particles become bulky and the transportation cost may increase.

本発明のポリ乳酸系樹脂の発泡性粒子は、その後、従来の発泡性粒子と同様の予備発泡工程、型内成形工程を経てポリ乳酸系発泡成形体を作製することができる。   Thereafter, the polylactic acid-based foamed product of the polylactic acid-based resin of the present invention can be produced through a preliminary foaming process and an in-mold molding process similar to those of conventional foamable particles.

以上のように、本発明のポリ乳酸系樹脂発泡性粒子の製造方法によれば、ポリ乳酸系樹脂と架橋剤を押出機へ投入し、その後発泡剤を加え溶融混練した後、混練物を押出し、押出された混練物をカットして発泡性粒子を得ることができるので、既に説明した従来のポリ乳酸系発泡成形体の製造工程のうち、(1)ポリ乳酸系樹脂を架橋する工程と(2)発泡剤を含浸する工程が一工程となるため、ポリ乳酸系発泡成形体を得るまでの工程を大幅に短縮することができる。   As described above, according to the method for producing polylactic acid-based resin expandable particles of the present invention, the polylactic acid-based resin and the cross-linking agent are put into an extruder, and after adding the foaming agent and melt-kneading, the kneaded product is extruded. Since the extrudate kneaded product can be cut to obtain expandable particles, among the steps for producing the conventional polylactic acid-based foamed molded article already described, (1) a step of crosslinking a polylactic acid-based resin ( 2) Since the step of impregnating the foaming agent is a single step, the steps required to obtain a polylactic acid-based foamed molded product can be greatly shortened.

以下、実施例によって本発明を詳細に説明するが、本発明は、これらの実施例に何ら限定されるものではない。尚、評価は下記の方法で行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples at all. The evaluation was performed by the following method.

(評価方法)
(1)発泡性粒子の見かけ比重の測定方法:
2000cm3の容器に発泡性粒子を取り、その質量を測定して小数点以下第4位を四捨五入して小数点以下第三位まで求め、下記の式より求めた。
発泡性粒子の見かけ比重(g/cm3)=発泡性粒子の質量(g)/見かけ体積(2000cm3
尚、発泡粒子の見かけ比重も同様の測定方法で求めた。
(2)成形性の評価方法:
外観(表面の伸び、収縮)及び内部融着の度合いから、以下の基準で目視にて評価した。○:良好、×:不良。
(実施例1)
L体/D体=90/10のポリ乳酸100重量部にポリイソシアネート化合物(「ミリオネ−トMR−200」、イソシアネート基2.7〜2.8当量/モル、日本ポリウレタン工業(株)製)2.0重量部を第1段押出機と第2段押出機とからなるタンデム式押出機に供給して押出し、次いでブタン6重量部を第1段押出機後半の注入口より供給し、第1段押出機及び第2段押出機でポリ乳酸及びポリイソシアネート化合物、ブタンを溶融混練した。その後、第2段押出機先端のダイヘッドの押出孔(孔径1mmΦ、孔数:24個)から混練物を押出して、ストランドを水で冷却しながらカットし、乾燥して、発泡性粒子を得た。なお、タンデム式押出機の温度は、第1段押出機の1ゾーン〜4ゾーン:185℃、第2段押出機の1ゾーン〜4ゾーン:150℃とした。
(Evaluation methods)
(1) Measuring method of apparent specific gravity of expandable particles:
The foamable particles were taken in a 2000 cm 3 container, and the mass was measured. The fourth decimal place was rounded off to the third decimal place, and the following formula was obtained.
Apparent specific gravity of expandable particles (g / cm 3 ) = mass of expandable particles (g) / apparent volume (2000 cm 3 )
The apparent specific gravity of the expanded particles was determined by the same measurement method.
(2) Formability evaluation method:
From the appearance (surface elongation, shrinkage) and the degree of internal fusion, visual evaluation was made according to the following criteria. ○: Good, ×: Poor
Example 1
Polyisocyanate compound ("Millionate MR-200", isocyanate group 2.7 to 2.8 equivalent / mol, manufactured by Nippon Polyurethane Industry Co., Ltd.) 2.0 parts by weight is supplied to a tandem extruder composed of a first stage extruder and a second stage extruder and extruded, and then 6 parts by weight of butane is supplied from an inlet in the latter half of the first stage extruder. Polylactic acid, polyisocyanate compound, and butane were melt-kneaded in a first-stage extruder and a second-stage extruder. Thereafter, the kneaded product was extruded from the extrusion hole (hole diameter 1 mmΦ, hole number: 24) of the die head at the tip of the second stage extruder, and the strand was cut while being cooled with water and dried to obtain expandable particles. . The temperature of the tandem extruder was 1 zone to 4 zones of the first stage extruder: 185 ° C, and 1 zone to 4 zones of the second stage extruder was 150 ° C.

(比較例1)
ポリイソシアネート化合物を添加しないこと以外は実施例1と同様に行った。
(Comparative Example 1)
The same procedure as in Example 1 was carried out except that no polyisocyanate compound was added.

(比較例2)
L体/D体=90/10のポリ乳酸100重量部にポリイソシアネート化合物2.0重量部を二軸押出機(TEM35B、東芝機械(株))にてシリンダ温度185℃で混練し、水中カッターを用いて混練粒子を得た。得られた混練粒子を100重量部、水100重量部、発泡剤としてイソブタン20重量部、アセトン10重量部を耐圧容器に仕込み、82℃で90分間保持した。十分に冷却後取出し、乾燥して、発泡性粒子を得た。
次いで、上述の実施例、比較例で得られた発泡性粒子を85℃の蒸気に1分間曝すことで発泡させ、予備発泡粒子を得た。この予備発泡粒子を室温で2日間熟成した後、成型用金型に充填し、103℃の蒸気で20秒加熱して型内発泡成形体を得た。得られた発泡性粒子、及び予備発泡粒子の見かけ比重と成形性に関する評価を表1に示す。
(Comparative Example 2)
L-form / D-form = 90/10 polylactic acid 100 parts by weight and polyisocyanate compound 2.0 parts by weight are kneaded with a twin screw extruder (TEM35B, Toshiba Machine Co., Ltd.) at a cylinder temperature of 185 ° C. Kneaded particles were obtained. 100 parts by weight of the obtained kneaded particles, 100 parts by weight of water, 20 parts by weight of isobutane as a blowing agent, and 10 parts by weight of acetone were charged in a pressure vessel and held at 82 ° C. for 90 minutes. After sufficiently cooling, the product was taken out and dried to obtain expandable particles.
Next, the expandable particles obtained in the above-mentioned Examples and Comparative Examples were foamed by exposing them to steam at 85 ° C. for 1 minute to obtain pre-expanded particles. After the pre-expanded particles were aged at room temperature for 2 days, they were filled in a molding die and heated with steam at 103 ° C. for 20 seconds to obtain an in-mold foam molded product. Table 1 shows evaluations regarding the apparent specific gravity and moldability of the obtained expandable particles and pre-expanded particles.

Figure 2007186692
Figure 2007186692

表1から明らかなように、実施例のポリ乳酸系樹脂の発泡性粒子は、予備発泡倍率、成形性共に良好であり、比較例2にある従来工程で得られる発泡性粒子と同等のものが得られる。しかしながら、比較例2は、ポリ乳酸系樹脂を架橋する工程、発泡剤を含浸する工程、発泡性粒子を予備発泡する工程、予備発泡粒子を型内で成形する工程、の4つの工程からなり、それに対し実施例1は、架橋工程と含浸工程が一工程になっているため、工業生産上有利であるといえる。   As is clear from Table 1, the foamable particles of the polylactic acid-based resin of the examples have good prefoaming ratio and moldability, and are equivalent to the foamable particles obtained in the conventional process in Comparative Example 2. can get. However, Comparative Example 2 consists of four steps: a step of crosslinking a polylactic acid resin, a step of impregnating a foaming agent, a step of pre-foaming expandable particles, and a step of molding pre-foamed particles in a mold, On the other hand, Example 1 is advantageous in industrial production because the crosslinking step and the impregnation step are one step.

また、同じように工程を簡略化してもポリイソシアネート化合物を添加していない比較例1では、予備発泡倍率が低く、成形性も悪い発泡性粒子が得られた。   In the same manner, in Comparative Example 1 in which the polyisocyanate compound was not added even if the process was simplified, expandable particles having a low preliminary expansion ratio and poor moldability were obtained.

本発明のポリ乳酸系樹脂の発泡性粒子及びその製造方法によれば、従来工程と同等の発泡性、成形性を有するポリ乳酸系発泡成形体が得られ、且つ製造工程が簡素化されたことで、生産性の向上、製造コストの低減に繋がり、ポリ乳酸系発泡成形体の普及に大いに役立つものである。   According to the foamable particles of the polylactic acid resin of the present invention and the method for producing the same, a polylactic acid foamed molded article having foamability and moldability equivalent to those of the conventional process was obtained, and the production process was simplified. This leads to an improvement in productivity and a reduction in production cost, and is very useful for the popularization of polylactic acid-based foamed molded products.

Claims (5)

ポリ乳酸系樹脂、架橋剤、及び、発泡剤を押出機で溶融混練した後に押出し、押出された該混練物をカットして発泡性粒子とすることを特徴とするポリ乳酸系樹脂発泡性粒子の製造方法。   A polylactic acid-based resin expandable particle, characterized in that a polylactic acid-based resin, a crosslinking agent, and a foaming agent are melt-kneaded with an extruder and then extruded, and the extruded kneaded product is cut into expandable particles. Production method. ポリ乳酸系樹脂が、乳酸モノマーのL体とD体のモル比が95/5〜60/40、又は40/60〜5/95であることを特徴とする請求項1記載のポリ乳酸系樹脂発泡性粒子の製造方法。   The polylactic acid-based resin according to claim 1, wherein the polylactic acid-based resin has a molar ratio of L-form to D-form of lactic acid monomer of 95/5 to 60/40, or 40/60 to 5/95. A method for producing expandable particles. 架橋剤が、イソシアネート基≧2.0当量/モルのポリイソシアネート化合物であり、該ポリイソシアネート化合物をポリ乳酸系樹脂100重量部に対して0.5〜5.0重量部配合する事を特徴とする請求項1又は2に記載のポリ乳酸系樹脂発泡性粒子の製造方法。   The crosslinking agent is a polyisocyanate compound having an isocyanate group ≧ 2.0 equivalents / mol, and the polyisocyanate compound is blended in an amount of 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the polylactic acid resin. The manufacturing method of the polylactic acid-type resin expandable particle of Claim 1 or 2. ポリ乳酸系樹脂100重量部に対して発泡剤を1.0重量部以上10.0重量部以下含浸させる事を特徴とする請求項1〜3何れかに記載のポリ乳酸系樹脂発泡性粒子の製造方法。   The polylactic acid-based resin expandable particle according to any one of claims 1 to 3, wherein 100 parts by weight of the polylactic acid-based resin is impregnated with 1.0 to 10.0 parts by weight of a foaming agent. Production method. 請求項1〜4何れか一項に記載の製造方法によって得られる、見かけ比重0.25〜1.25g/cm3のポリ乳酸系樹脂発泡性粒子。 Polylactic acid-based resin expandable particles having an apparent specific gravity of 0.25 to 1.25 g / cm 3 obtained by the production method according to any one of claims 1 to 4.
JP2006338297A 2005-12-15 2006-12-15 Method for producing polylactic acid-based resin expandable beads Pending JP2007186692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338297A JP2007186692A (en) 2005-12-15 2006-12-15 Method for producing polylactic acid-based resin expandable beads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005361314 2005-12-15
JP2006338297A JP2007186692A (en) 2005-12-15 2006-12-15 Method for producing polylactic acid-based resin expandable beads

Publications (1)

Publication Number Publication Date
JP2007186692A true JP2007186692A (en) 2007-07-26

Family

ID=38342070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338297A Pending JP2007186692A (en) 2005-12-15 2006-12-15 Method for producing polylactic acid-based resin expandable beads

Country Status (1)

Country Link
JP (1) JP2007186692A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169394A (en) * 2005-12-20 2007-07-05 Sekisui Plastics Co Ltd Method for producing polylactic acid resin expanded particle for in-mold expansion molding
US20120065286A1 (en) * 2010-09-10 2012-03-15 Lifoam Industries Process for enabling secondary expansion of expandable beads
WO2013089387A1 (en) * 2011-12-13 2013-06-20 (주)엘지하우시스 Foam sheet using cross-linked polylactic acid, and preparation method thereof
EP2554584A4 (en) * 2010-03-29 2015-04-01 Uchiyama Kosuke Polylactic acid composition, foam-molded article thereof and method for producing same
US10518444B2 (en) 2010-07-07 2019-12-31 Lifoam Industries, Llc Compostable or biobased foams
WO2023189102A1 (en) * 2022-03-30 2023-10-05 株式会社カネカ Method for producing aliphatic polyester-based foam particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017037A (en) * 1998-06-30 2000-01-18 Kanebo Ltd Expandable resin composition having biodegadability
JP2002302567A (en) * 2001-04-05 2002-10-18 Achilles Corp Method for continuous production of pre-expanded bead of biodegradable polyester-based resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017037A (en) * 1998-06-30 2000-01-18 Kanebo Ltd Expandable resin composition having biodegadability
JP2002302567A (en) * 2001-04-05 2002-10-18 Achilles Corp Method for continuous production of pre-expanded bead of biodegradable polyester-based resin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169394A (en) * 2005-12-20 2007-07-05 Sekisui Plastics Co Ltd Method for producing polylactic acid resin expanded particle for in-mold expansion molding
EP2554584A4 (en) * 2010-03-29 2015-04-01 Uchiyama Kosuke Polylactic acid composition, foam-molded article thereof and method for producing same
US10518444B2 (en) 2010-07-07 2019-12-31 Lifoam Industries, Llc Compostable or biobased foams
US20120065286A1 (en) * 2010-09-10 2012-03-15 Lifoam Industries Process for enabling secondary expansion of expandable beads
US8962706B2 (en) * 2010-09-10 2015-02-24 Lifoam Industries, Llc Process for enabling secondary expansion of expandable beads
WO2013089387A1 (en) * 2011-12-13 2013-06-20 (주)엘지하우시스 Foam sheet using cross-linked polylactic acid, and preparation method thereof
KR101393811B1 (en) * 2011-12-13 2014-05-13 (주)엘지하우시스 Foam sheet using cross-linked pla and manufacturing method of thereof
US9512265B2 (en) 2011-12-13 2016-12-06 Lg Hausys, Ltd. Foam sheet using cross-linked polylactic acid, and preparation method thereof
WO2023189102A1 (en) * 2022-03-30 2023-10-05 株式会社カネカ Method for producing aliphatic polyester-based foam particles

Similar Documents

Publication Publication Date Title
US7863343B2 (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
JP4761916B2 (en) Polylactic acid resin foam molding
NZ580424A (en) Particulate expandable polylactic acid, a method for producing the same, a foamed moulded product based on particulate expandable polylactic acid, as well as a method for producing the same
JP2012007180A (en) Method of manufacturing polylactic acid resin foamed molding
JP2007186692A (en) Method for producing polylactic acid-based resin expandable beads
JP4578309B2 (en) Method for producing polylactic acid resin foam, method for producing polylactic acid resin foam molded article, and polylactic acid resin foam
JP4019747B2 (en) Expandable particles, expanded particles and expanded molded articles comprising a polyester resin composition
JP2008056869A (en) Polylactic acid-based expandable particle, expanded particle, and expanded molding therefrom
JP2002302567A (en) Method for continuous production of pre-expanded bead of biodegradable polyester-based resin
KR100837106B1 (en) A method for manufacturing of non-crosslinked polypropylene foam sheet
CA3026811C (en) Process for producing expandable polylactic acid-containing pellets
JP3777338B2 (en) Non-crosslinked biodegradable polyester resin pre-expanded particles, molded product thereof and method for producing the pre-expanded particles
JP2009144061A (en) Foam molded article
JP3688179B2 (en) Thermoplastic polyester resin foamed particles for in-mold foam molding and method for producing in-mold foam molded article using the same
KR101783837B1 (en) Core-Shell Structured Foam With Easily Controlling Density
JPH08253617A (en) Foamable particle of lactic acid-based polyester
JP2004277440A (en) Polylactic acid foaming resin particle and foam molded product
JP4299490B2 (en) Lightweight structural material with good decomposability, heat insulating material, and manufacturing method thereof
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
JP3531922B2 (en) Method for producing molded article of expanded aliphatic polyester resin particles
JPH09111030A (en) Polyethylene terephthalate resin foamed product and its production
JP5110615B2 (en) Polylactic acid resin foam molding
JP2009144064A (en) Method for producing molded article
JPH073067A (en) Thermoplastic foam with improved cushioning properties and long durability
JPH10152572A (en) Production of biodegradable aliphatic polyester-based resin foamed sheet and the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A977 Report on retrieval

Effective date: 20120113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120515

Free format text: JAPANESE INTERMEDIATE CODE: A02