JP3531922B2 - Method for producing molded article of expanded aliphatic polyester resin particles - Google Patents

Method for producing molded article of expanded aliphatic polyester resin particles

Info

Publication number
JP3531922B2
JP3531922B2 JP2000285547A JP2000285547A JP3531922B2 JP 3531922 B2 JP3531922 B2 JP 3531922B2 JP 2000285547 A JP2000285547 A JP 2000285547A JP 2000285547 A JP2000285547 A JP 2000285547A JP 3531922 B2 JP3531922 B2 JP 3531922B2
Authority
JP
Japan
Prior art keywords
expanded
resin particles
particles
aliphatic polyester
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000285547A
Other languages
Japanese (ja)
Other versions
JP2001106821A (en
Inventor
寿男 所
暁 塩谷
篠原  充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP15162797A external-priority patent/JP3229978B2/en
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2000285547A priority Critical patent/JP3531922B2/en
Publication of JP2001106821A publication Critical patent/JP2001106821A/en
Application granted granted Critical
Publication of JP3531922B2 publication Critical patent/JP3531922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性を有する
実用性に優れた脂肪族ポリエステル系樹脂発泡粒子成形
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing expanded polyester polyester resin particles having biodegradability and excellent practicality.

【0002】[0002]

【従来の技術】近年、軽量、弾性、緩衝性、断熱性、成
形性等の点に特徴を有するプラスチック発泡体が主に包
装容器、緩衝材等に用いられているが、これら多量に使
用されているプラスチックの廃棄物の処理が困難なため
に、自然環境を汚染する可能性を有し、大きな社会問題
となっている。このために自然境環中で分解処理される
生分解性プラスチックが研究され、これまでに脂肪族ポ
リエステルや澱粉とポリビニルアルコールとのアロイ等
がいくつか商品化されている。しかしながら、これらの
生分解性樹脂の発泡体のほとんどは押出発泡体であり、
発泡粒子成形体については数少ない。発泡粒子成形体
は、所望の形状の成形体にすることができ、かつ軽量、
緩衝性、断熱性といった利点があり、以前より実用性の
ある生分解性発泡粒子成形体が望まれていた。
2. Description of the Related Art In recent years, plastic foams having characteristics such as light weight, elasticity, cushioning property, heat insulating property and moldability are mainly used for packaging containers, cushioning materials and the like. Since it is difficult to dispose of existing plastic waste, there is a possibility of polluting the natural environment, which has become a major social problem. For this reason, biodegradable plastics that are decomposed in the natural environment have been studied, and up to now, some of aliphatic polyesters and alloys of starch and polyvinyl alcohol have been commercialized. However, most of these biodegradable resin foams are extruded foams,
There are few foamed particle molded products. The expanded particle molded body can be molded into a desired shape and is lightweight.
A biodegradable expanded particle molded product having advantages such as buffering property and heat insulating property and having practical utility has been desired.

【0003】脂肪族ポリエステル粒子に発泡剤を含有さ
せて予備発泡粒子とした後、これを金型内で加熱成形
し、成形体を得る方法が特開平6−248106号公報
に記載され公知であるが、この方法では、その予備発泡
粒子を金型内で成形したときに、発泡成形体は得られる
ものの、その成形収縮率が大きく実用性に欠けるもので
あった。
A method is known from JP-A-6-248106, in which a method of obtaining a molded product by making a pre-expanded particle by adding a foaming agent to an aliphatic polyester particle and then heat-molding this in a mold is known. However, according to this method, when the pre-expanded particles are molded in a mold, a foamed molded product can be obtained, but the molding shrinkage ratio is large and it is not practical.

【0004】[0004]

【発明が解決しようとする課題】本発明は、生分解性を
有し、かつ成形収縮率の小さな脂肪族ポリエステル系樹
脂発泡粒子成形体の製造方法を提供することをその課題
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a foamed product of aliphatic polyester resin foamed particles which is biodegradable and has a small molding shrinkage.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、本発明を完成
するに至った。即ち、本発明によれば、生分解性を有し
かつゲル分率が少なくとも5%である脂肪族ポリエステ
ル系樹脂発泡粒子を加熱成形することを特徴とする脂肪
族ポリエステル系樹脂発泡粒子成形体の製造方法が提供
される。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, a foamed aliphatic polyester resin foamed particle is characterized in that it has biodegradability and a foamed aliphatic polyester resin foamed particle having a gel fraction of at least 5% is heat-molded. A manufacturing method is provided.

【0006】[0006]

【発明の実施の形態】本発明で成形材料として用いる生
分解性を有するゲル分率が少なくとも5%である脂肪族
ポリエステル系樹脂発泡粒子(以下、単に発泡粒子とも
言う)は、生分解性を有する無架橋脂肪族ポリエステル
系樹脂を基材樹脂として作製された無架橋脂肪族ポリエ
ステル系樹脂粒子(以下、単に無架橋樹脂粒子とも言
う)を架橋させて得られた架橋樹脂粒子を発泡させるこ
とにより製造される。前記基材樹脂として用いる無架橋
脂肪族ポリエステル系樹脂は、その主鎖に生分解性の脂
肪族エステルを主成分として含むものである。その脂肪
族エステルの主鎖中の含有割合は、少なくとも60モル
%、好ましくは80〜100モル%、より好ましくは9
0〜100モル%の割合である。
BEST MODE FOR CARRYING OUT THE INVENTION Expanded aliphatic polyester resin particles having a gel fraction of at least 5% (hereinafter also simply referred to as expanded particles) used as a molding material in the present invention have biodegradability. By foaming the crosslinked resin particles obtained by crosslinking the non-crosslinked aliphatic polyester-based resin particles (hereinafter also simply referred to as non-crosslinked resin particles) prepared by using the non-crosslinked aliphatic polyester-based resin having the base resin Manufactured. The non-crosslinked aliphatic polyester resin used as the base resin has a main chain containing a biodegradable aliphatic ester as a main component. The content of the aliphatic ester in the main chain is at least 60 mol%, preferably 80 to 100 mol%, more preferably 9 mol%.
It is a ratio of 0 to 100 mol%.

【0007】脂肪族ポリエステル系樹脂には、ヒドロキ
シ酸重縮合物、ラクトンの開環重合物及びグリコール成
分とジカルボン酸成分との重縮合物等が包含される。ヒ
ドロキシ酸重縮合物としては、ヒドロキシ酪酸の重縮合
物等が挙げられ、ラクトンの開環重合物としては、ポリ
カプロラクトン等が挙げられ、グリコール成分とジカル
ボン酸成分との重縮合体としては、ポリブチレンサクシ
ネート等が挙げられる。また、前記基材樹脂には、前記
ポリマーを連結剤を介して高分子量化したものや、複数
のポリマーをブレンドしたもの、炭酸ジエステル共重合
物等も包含される。前記連結剤としては、2,4−トリ
レンジイソシアネート、ジフェニルメタンジイソシアネ
ート、1,5−ナフチレンジイソシアネート、キシリレ
ンジイソシアネート、水素化キシリレンジイソシアネー
ト、ヘキサメチレンジイソシアネート、イソホロンジイ
ソシアネート等のジイソシアネート;ジフェニルカーボ
ネート、ジトリールカーボネート、ビス(クロロフェニ
ル)カーボネート、m−クレジルカーボネート等のアリ
ールカーボネート等が挙げられる。基材樹脂としては、
特に、炭素数が4以下の1種又は2種以上のグリコール
成分と炭素数が4以下の1種又は2種以上の脂肪族ジカ
ルボン酸成分との重縮合物を基材樹脂として用いるのが
好ましい。尚、本発明の目的、効果を阻害しない範囲で
その他の樹脂又はゴム成分を基材樹脂に混合することが
できる。
The aliphatic polyester resins include hydroxy acid polycondensates, lactone ring-opening polymers, and polycondensates of glycol components and dicarboxylic acid components. Examples of the hydroxy acid polycondensate include a polycondensate of hydroxybutyric acid, a ring-opening polymer of a lactone such as polycaprolactone, and a polycondensate of a glycol component and a dicarboxylic acid component. Butylene succinate and the like can be mentioned. In addition, the base resin also includes those obtained by increasing the molecular weight of the polymer through a linking agent, those obtained by blending a plurality of polymers, and carbonic acid diester copolymers. Examples of the linking agent include diisocyanates such as 2,4-tolylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate; diphenyl carbonate, ditolyl. Examples include aryl carbonates such as carbonate, bis (chlorophenyl) carbonate, and m-cresyl carbonate. As the base resin,
In particular, it is preferable to use, as the base resin, a polycondensate of one or more glycol components having 4 or less carbon atoms and one or more aliphatic dicarboxylic acid components having 4 or less carbon atoms. . Other resins or rubber components can be mixed with the base resin as long as the object and effect of the present invention are not impaired.

【0008】前記基材樹脂において、温度190℃、剪
断速度100sec-1の条件下での溶融粘度は、好まし
くは1×102〜1×105Pa・s、更に好ましくは5
×102〜5×103Pa・sである。その溶融粘度が1
×102Pa・s未満では、粘度が低すぎるため、得ら
れる発泡粒子の独立気泡率が低くなり、発泡成形体が得
られ難くなる。一方、溶融粘度が1×105Pa・sを
超えると、粘度が高すぎるために、発泡粒子を成形する
ときに、気泡が成長できず、実用的な発泡成形体となり
にくい。
The above-mentioned base resin has a melt viscosity of preferably 1 × 10 2 to 1 × 10 5 Pa · s, more preferably 5 at a temperature of 190 ° C. and a shear rate of 100 sec −1.
× 10 2 to 5 × 10 3 Pa · s. Its melt viscosity is 1
If it is less than × 10 2 Pa · s, the viscosity will be too low, and the closed cell content of the obtained expanded particles will be low, making it difficult to obtain a foamed molded product. On the other hand, if the melt viscosity exceeds 1 × 10 5 Pa · s, the viscosity is too high, so that bubbles cannot grow when molding the foamed particles, and it is difficult to obtain a practical foamed molded product.

【0009】なお、本明細書でいう温度190℃、剪断
速度100sec-1の条件下での溶融粘度は、次のよう
にして求めたものである。溶融粘度測定装置として、チ
アスト社製のレビオス2100を用い、基材樹脂の溶融
物をその装置に付設された先端ノズルから、樹脂温度1
90℃、剪断速度100sec-1の条件で押出し流出さ
せることによって測定した。この場合、そのノズルの孔
直径Dは1.0mmとし、ノズルの長さLとノズルの孔
直径Dとの比L/Dは10とした。
The melt viscosity under the conditions of a temperature of 190 ° C. and a shear rate of 100 sec -1 in this specification is obtained as follows. As a melt viscosity measuring device, a Revast 2100 manufactured by Cheast Co., Ltd. is used, and a molten material of a base resin is discharged from a tip nozzle attached to the device to a resin temperature of 1
It was measured by extruding under a condition of 90 ° C. and a shear rate of 100 sec −1 . In this case, the hole diameter D of the nozzle was 1.0 mm, and the ratio L / D between the nozzle length L and the nozzle hole diameter D was 10.

【0010】本発明で用いる発泡粒子を好ましく製造す
るには、先ず、基材樹脂粒子を作る。この粒子は、従来
公知の方法で作ることができ、例えば、基材樹脂を押出
機で溶融混練した後、ストランド状に押出し、冷却後、
適宜の長さに切断するか又はストランドを適宜長さに切
断後冷却することによって得ることができる。基材樹脂
粒子の1個当りの重量は、0.05〜10mg、好まし
くは1〜4mgにするのがよい。粒子重量が前記範囲を
超えると、その内部までの均質な架橋が困難になり、一
方、前記範囲より小さくなると、その樹脂粒子の製造が
困難になる。
In order to preferably produce the expanded beads used in the present invention, first, base resin particles are prepared. These particles can be produced by a conventionally known method, for example, after melt-kneading a base resin with an extruder, extruding into a strand shape, cooling,
It can be obtained by cutting into a suitable length or by cutting the strand into a suitable length and then cooling. The weight of each base resin particle is 0.05 to 10 mg, preferably 1 to 4 mg. When the weight of the particles exceeds the above range, it becomes difficult to uniformly crosslink the inside thereof, and when the weight of the particles is less than the above range, it becomes difficult to produce the resin particles.

【0011】前記基材樹脂は、例えば、黒、灰色、茶色
等の着色顔料又は染料を添加して着色したものであって
もよい。着色した基材樹脂より得られた着色樹脂粒子を
用いれば、着色された発泡粒子及び成形体を得ることが
できる。また、基材樹脂には、気泡調整剤として、例え
ばタルク、炭酸カルシウム、ホウ砂、ほう酸亜鉛、水酸
化アルミニウム等の無機物をあらかじめ添加することが
できる。基材樹脂に着色顔料、染料又は無機物等の添加
剤を添加する場合は、添加剤をそのまま基材樹脂に練り
込むこともできるが、通常は分散性等を考慮して添加剤
のマスターバッチを作り、それと基材樹脂とを混練する
ことが好ましい。着色顔料、染料の添加量は着色の色に
よっても異なるが、通常基材樹脂100重量部に対して
0.001〜5重量部とするのが好ましい。無機物を基
材樹脂に添加することにより、発泡倍率の向上効果を得
ることができる。
The base resin may be colored by adding a coloring pigment or dye such as black, gray or brown. By using colored resin particles obtained from a colored base resin, colored expanded particles and a molded product can be obtained. Further, an inorganic substance such as talc, calcium carbonate, borax, zinc borate, aluminum hydroxide or the like can be added to the base resin in advance as a cell regulator. When an additive such as a coloring pigment, a dye or an inorganic substance is added to the base resin, the additive can be kneaded into the base resin as it is, but usually a master batch of the additive is taken into consideration in consideration of dispersibility and the like. It is preferable to make it and knead it with the base resin. The addition amount of the coloring pigment and the dye varies depending on the coloring color, but it is usually preferably 0.001 to 5 parts by weight with respect to 100 parts by weight of the base resin. By adding an inorganic substance to the base resin, the effect of improving the expansion ratio can be obtained.

【0012】前記基材樹脂粒子は、次に、これを架橋さ
せる。この場合の基材樹脂粒子の架橋は、密閉容器内で
基材樹脂粒子を分散媒とともに分散させ、架橋剤、必要
に応じて架橋助剤を添加して加熱することより実施する
ことができる。分散媒としては、基材樹脂粒子を溶解さ
せないものであればどのようなものでもよい。このよう
なものとしては、例えば、水、エチレングリコール、メ
タノール、エタノール等が挙げられるが、通常は水が使
用される。基材樹脂粒子を分散媒に分散せしめて加熱す
るに際し、その樹脂粒子相互の融着を防止するために融
着防止剤を用いることができる。この融着防止剤として
は、分散媒に溶解せず、加熱によって溶融しないもので
あれば無機系、有機系を問わずに使用可能であるが、一
般には無機系のものが好ましい。無機系の融着防止剤と
しては、カオリン、タルク、マイカ、酸化アルミニウ
ム、酸化チタン、水酸化アルミニウム等の粉体が好適で
ある。また、分散助剤として、ドデシルベンゼンスルホ
ン酸ナトリウム、オレイン酸ナトリウム等のアニオン系
界面活性剤を好適に使用することができる。上記融着防
止剤としては、平均粒径0.001〜100μm、特に
0.001〜30μmのものが好ましい、融着防止剤の
添加量は基材樹脂粒子100重量部に対し、通常は0.
01〜10重量部が好ましい。また、界面活性剤は樹脂
粒子100重量部に対し、通常0.001〜5重量部添
加することが好ましい。
Next, the base resin particles are crosslinked. Crosslinking of the base resin particles in this case can be carried out by dispersing the base resin particles together with the dispersion medium in a closed container, adding a crosslinking agent and, if necessary, a crosslinking aid, and heating. Any dispersion medium may be used as long as it does not dissolve the base resin particles. Examples of such substances include water, ethylene glycol, methanol, ethanol and the like, but water is usually used. When the base resin particles are dispersed in a dispersion medium and heated, a fusion preventing agent can be used to prevent the resin particles from being fused to each other. As the anti-fusing agent, any of an inorganic type and an organic type can be used as long as it does not dissolve in the dispersion medium and does not melt by heating, but an inorganic type is generally preferable. As the inorganic anti-fusing agent, powders of kaolin, talc, mica, aluminum oxide, titanium oxide, aluminum hydroxide and the like are suitable. Further, as the dispersion aid, anionic surfactants such as sodium dodecylbenzenesulfonate and sodium oleate can be preferably used. The anti-fusing agent preferably has an average particle size of 0.001 to 100 μm, and particularly preferably 0.001 to 30 μm. The amount of the anti-fusing agent added is usually 0.
01 to 10 parts by weight is preferable. Further, it is preferable to add the surfactant in an amount of usually 0.001 to 5 parts by weight with respect to 100 parts by weight of the resin particles.

【0013】前記架橋剤としては、従来公知の有機過酸
化物、例えば、ラウロイルパーオキサイド、ステアロイ
ルパーオキサイド、ベンゾイルパーオキサイド等のジア
シルパーオキサイド、ビス(4−t−ブチルシクロヘキ
シル)パーオキシジカーボネート、ジイソプロピルパー
オキシジカーボネート等のパーオキシジカーボネート、
t−ブチルパーオキシイソブチレート等のパーオキシエ
ステル等のいずれのものも使用できる。本発明の場合、
特に、1時間の半減期を与える温度が基材樹脂の融点よ
りも低いものの使用が好ましい。分解温度が余りにも高
い有機過酸化物を用いると、水中で基材樹脂粒子を加熱
する場合に、その加熱温度が高くなり、また加熱時間も
長くなるため、基材樹脂が加水分解する恐れがあるので
好ましくない。
As the cross-linking agent, conventionally known organic peroxides, for example, diacyl peroxides such as lauroyl peroxide, stearoyl peroxide and benzoyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, Peroxydicarbonate such as diisopropyl peroxydicarbonate,
Any of peroxyesters such as t-butyl peroxyisobutyrate can be used. In the case of the present invention,
In particular, it is preferable to use a material having a temperature that gives a half-life of 1 hour lower than the melting point of the base resin. When an organic peroxide having a decomposition temperature that is too high is used, when the base resin particles are heated in water, the heating temperature becomes high and the heating time becomes long, so that the base resin may be hydrolyzed. It is not preferable because it exists.

【0014】前記有機過酸化物の使用と関連して、架橋
助剤として、不飽和結合を少なくとも2個、好ましくは
2〜3個有する化合物を用いるのが好ましい。この場合
の不飽和結合には、2重結合の他、3重結合が包含され
る。前記架橋助剤としては、エチレングリコールジアク
リレート、ポリエチレングリコールジアクリレート、ト
リメチロールプロパントリアクリレート、テトラメチロ
ールメタントリアクリレート、テトラメチロールメタン
テトラアクリレート、エチレングリコールジメタクリレ
ート、トリメチロールプロパントリメタクリレート、ア
リルメタクリレート等のアクリレート系又はメタクリレ
ート系の化合物;トリアリルシアヌレート、トリアリル
イソシアヌレート等のシアヌール酸又はイソシアヌール
酸のアリルエステル;トリメリット酸トリアリルエステ
ル、トリメシン酸トリアリルエステル、ピロメリット酸
トリアリルエステル、ベンゾフェノンテトラカルボン酸
トリアリルエステル、シュウ酸ジアリル、コハク酸ジア
リル、アジピン酸ジアリル等のカルボン酸のアリルエス
テル;N−フェニルマレイミド、N,N’−m−フェニ
レンビスマレイミド等のマレイミド系化合物;1,2−
ポリブタジエン等の2重結合を有するポリマー;フタル
酸ジプロバギル、イソフタル酸ジプロバギル、トリメシ
ン酸トリプロバギル、イタコン酸ジプロバギル、マレイ
ン酸ジプロバギル等の2個以上の3重結合を有する化合
物等挙げられる。有機過酸化物とジビニル化合物とを組
合わせる場合、殊にベンゾイルパーオキサイドとジビニ
ルベンゼンとの組合わせが好ましい。
In connection with the use of the organic peroxide, it is preferable to use a compound having at least 2 unsaturated bonds, preferably 2 to 3 unsaturated bonds, as a crosslinking aid. The unsaturated bond in this case includes a triple bond as well as a double bond. Examples of the crosslinking aid include ethylene glycol diacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate, tetramethylolmethane triacrylate, tetramethylolmethane tetraacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, and allyl methacrylate. Acrylate-based or methacrylate-based compounds; allyl esters of cyanuric acid or isocyanuric acid such as triallyl cyanurate, triallyl isocyanurate; trimellitic acid triallyl ester, trimesic acid triallyl ester, pyromellitic acid triallyl ester, benzophenone Tetracarboxylic acid triallyl ester, diallyl oxalate, diallyl succinate, diadipic acid Allyl esters of carboxylic acids such as Le; N- phenylmaleimide, N, N'-m- phenylene maleimide compound of bismaleimide; 1,2
Polymers having a double bond such as polybutadiene; and compounds having two or more triple bonds such as diprobagyl phthalate, diprobagyl isophthalate, triprobagyl trimesinate, diprobagyl itaconate, diprobagyl maleate, and the like. When the organic peroxide and the divinyl compound are combined, the combination of benzoyl peroxide and divinylbenzene is particularly preferable.

【0015】架橋剤として用いる有機過酸化物の使用割
合は、基材樹脂粒子100重量部当り、0.01〜10
重量部、好ましくは0.1〜5重量部の割合である。ま
た、架橋助剤として用いる不飽和化合物の使用割合は、
基材樹脂粒子100重量部当り、0.001〜10重量
部、好ましくは0.01〜2重量部の割合である。分散
媒中で架橋剤の存在下で基材樹脂粒子を加熱し、架橋さ
せる場合、その加熱温度は、基材樹脂の種類により一義
的に決めることは困難であるが、一般的には、その基材
樹脂粒子の融点よりも60℃程度低い温度以上の温度で
ある。例えば、基材樹脂粒子が1,4−ブタンジオール
成分とコハク酸成分とからなるポリエステル(mp:1
13℃)の場合、その加熱温度は、50〜140℃、好
ましくは90〜120℃である。尚、必要に応じて加熱
温度未満の温度にて有機過酸化物の含侵工程を採用する
ことができる。前記基材樹脂粒子は、前記分散媒中にお
ける架橋剤の存在下での加熱により、架橋される。前記
架橋樹脂粒子において、そのゲル分率は、少なくとも5
%であり、好ましくは30〜80%、更に好ましくは4
0〜70%である。ゲル分率が前記範囲より低くなる
と、その架橋樹脂粒子から得られた発泡粒子(予備発泡
粒子)を用いて発泡成形体を形成したときに、その成形
収縮率が大きくなり、実用性ある発泡成形体を得ること
ができなくなる。一方、ゲル分率が前記範囲より高くな
ると、その予備発泡粒子の2次発泡性及び融着性が悪く
なり高品質の発泡成形体を得ることができなくなる可能
性がある。架橋樹脂粒子のゲル分率は、分散媒中で架橋
剤の存在下で基材樹脂粒子を架橋する際のその架橋条件
等により調節することができる。
The proportion of the organic peroxide used as the crosslinking agent is 0.01 to 10 per 100 parts by weight of the base resin particles.
The ratio is parts by weight, preferably 0.1 to 5 parts by weight. In addition, the ratio of the unsaturated compound used as the crosslinking aid is
The amount is 0.001 to 10 parts by weight, preferably 0.01 to 2 parts by weight, per 100 parts by weight of the base resin particles. When the base resin particles are heated in the presence of a cross-linking agent in the dispersion medium and cross-linked, the heating temperature is difficult to uniquely determine depending on the type of the base resin, but generally, The temperature is about 60 ° C. lower than the melting point of the base resin particles or higher. For example, the base resin particles are a polyester (mp: 1) composed of a 1,4-butanediol component and a succinic acid component.
13 ° C), the heating temperature is 50 to 140 ° C, preferably 90 to 120 ° C. If necessary, the step of impregnating the organic peroxide can be adopted at a temperature lower than the heating temperature. The base resin particles are crosslinked by heating in the presence of a crosslinking agent in the dispersion medium. In the crosslinked resin particles, the gel fraction is at least 5
%, Preferably 30 to 80%, more preferably 4
It is 0 to 70%. When the gel fraction is lower than the above range, the molding shrinkage becomes large when a foamed molded product is formed using the foamed particles (pre-expanded particles) obtained from the crosslinked resin particles, and the foam molding has practical utility. You can't get a body. On the other hand, when the gel fraction is higher than the above range, the secondary foamability and fusion property of the pre-expanded particles may be deteriorated, and it may not be possible to obtain a high-quality foamed molded product. The gel fraction of the crosslinked resin particles can be adjusted by the crosslinking conditions and the like when the base resin particles are crosslinked in the dispersion medium in the presence of the crosslinking agent.

【0016】なお、明細書中でいうゲル分率は、次のよ
うにして測定される。150mlのフラスコに、架橋樹
脂粒子、発泡粒子又は発泡粒子成形体約1gと100m
lのクロロホルムを入れ、大気圧下で8時間加熱還流し
た後、得られた加熱処理物を200メッシュの金網を有
する吸引濾過装置を用いて濾過処理する。得られた金網
上の濾過処理物を80℃のオーブン中で760トールの
真空条件下にて8時間乾燥する。この際に得られた乾燥
物重量W1を測定する。この重量W1の架橋樹脂粒子W2
に対する重量比率(W1/W2×100%)をゲル分率と
する。
The gel fraction referred to in the specification is measured as follows. In a 150 ml flask, about 1 g of crosslinked resin particles, expanded particles or expanded particles molded product and 100 m
After adding 1 l of chloroform and heating under reflux for 8 hours under atmospheric pressure, the obtained heat-treated product is filtered using a suction filter having a 200-mesh wire net. The obtained filtered product on the wire net is dried in an oven at 80 ° C. under a vacuum condition of 760 torr for 8 hours. The dried product weight W 1 obtained at this time is measured. This weight W 1 of crosslinked resin particles W 2
The gel ratio is defined as the weight ratio (W 1 / W 2 × 100%) to

【0017】前記においては、基材樹脂粒子を有機過酸
化物を用いて架橋する方法について示したが、この架橋
は、有機過酸化物を用いる架橋に限らず、他の公知の方
法、例えば、電子線架橋法、シラン架橋法等を用いて行
うことができる。
In the above description, the method of crosslinking the base resin particles with the organic peroxide has been described, but the crosslinking is not limited to the crosslinking with the organic peroxide, and other known methods such as, for example, It can be carried out using an electron beam crosslinking method, a silane crosslinking method, or the like.

【0018】次に、発泡粒子を得るために、前記のよう
にして得られた架橋樹脂粒子を用いて、これを発泡させ
る。この場合の架橋樹脂粒子の発泡方法としては、その
架橋樹脂粒子を密閉容器内において発泡剤の存在下で分
散媒に分散させるとともに、その内容物を加熱して架橋
樹脂粒子を軟化させてその粒子内に発泡剤を含浸させ、
次いで容器の一端を開放し、容器内圧力を発泡剤の蒸気
圧以上の圧力に保持しながら粒子と分散媒とを同時に容
器内よりも低圧の雰囲気(通常は大気圧下)に放出して
発泡させる発泡方法を好ましく採用することができる。
また、他の方法として、架橋樹脂粒子に密閉容器内で発
泡剤を含侵させて発泡性粒子を得た後、これを密閉容器
から取出し、その樹脂粒子を加熱軟化させて発泡させる
方法、あらかじめ分解型発泡剤を樹脂粒子中に練り込ん
でおきその樹脂粒子を発泡剤の分解温度以上に加熱して
発泡させる方法等を用いることもできる。このようにし
て得られた発泡粒子は架橋樹脂粒子と同じゲル分率の架
橋構造を有する。
Next, in order to obtain expanded particles, the crosslinked resin particles obtained as described above are used to expand the particles. As a method for foaming the crosslinked resin particles in this case, the crosslinked resin particles are dispersed in a dispersion medium in the presence of a foaming agent in a closed container, and the contents are heated to soften the crosslinked resin particles to form the particles. Impregnate the inside with a foaming agent,
Next, open one end of the container, and while maintaining the pressure inside the container at a pressure equal to or higher than the vapor pressure of the foaming agent, simultaneously release the particles and the dispersion medium into an atmosphere at a pressure lower than that in the container (usually under atmospheric pressure) to foam. The foaming method can be preferably adopted.
In addition, as another method, after obtaining a foamable particle by impregnating a cross-linking resin particle with a foaming agent in a closed container, the method is taken out from the closed container, and the resin particle is heated and softened to foam, in advance. It is also possible to use a method in which a decomposable foaming agent is kneaded into resin particles and the resin particles are heated above the decomposition temperature of the foaming agent to foam. The expanded beads thus obtained have a crosslinked structure with the same gel fraction as the crosslinked resin particles.

【0019】上記発泡粒子を得るに際して用いられる発
泡剤としては、従来公知のもの、例えば、プロパン、ブ
タン、ヘキサン、シクロブタン、シクロヘキサン、トリ
クロロフロロメタン、ジクロロジフロロメタン、クロロ
フロロメタン、トリフロロメタン、1,2,2,2−テ
トラフロロメタン、1−クロロ−1,1−ジフロロエタ
ン、1,1−ジフロロエタン、1−クロロ−1,2,
2,2−テトラフロロエタン等の揮発性発泡剤や、窒
素、二酸化炭素、アルゴン、空気等の無機ガス系発泡剤
が用いられるが、なかでもオゾン層の破壊がなく且つ安
価な無機ガス系発泡剤が好ましく、特に窒素、二酸化炭
素又は空気が好ましい。
The foaming agent used for obtaining the expanded beads is a conventionally known one, for example, propane, butane, hexane, cyclobutane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, chlorofluoromethane, trifluoromethane, 1,2,2,2-tetrafluoromethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,
Volatile foaming agents such as 2,2-tetrafluoroethane and inorganic gas-based foaming agents such as nitrogen, carbon dioxide, argon, and air are used. Among them, inexpensive inorganic gas-based foams that do not destroy the ozone layer. Agents are preferred, especially nitrogen, carbon dioxide or air.

【0020】前記発泡方法において、その発泡剤(窒素
及び空気を除く)の使用量は、架橋樹脂粒子100重量
部当たり、2〜50重量部であり、窒素又は空気を発泡
剤として使用する場合、その使用量は20〜60kgf
/cm2Gの圧力範囲になるように密閉容器内に圧入す
ればよい。これらの発泡剤の使用量は、所望する発泡粒
子の嵩密度と発泡温度との関係から適宜選定される。ま
た、ゲル化樹脂粒子の加熱温度は、発泡剤をその粒子内
に含浸させるのに適した温度であればよく、その架橋樹
脂粒子の軟化温度が採用される。前記のようにして得ら
れる発泡粒子の嵩密度は、通常0.015〜0.6g/
cm3であり、その平均気泡径は、通常0.05〜0.
5mmである。この発泡粒子は、加熱により発泡膨張
し、その発泡倍率は、その加熱温度や発泡剤含有量等に
より異なるが、一般的には、2〜90倍、好ましくは1
0〜60倍に膨張する。本発明の発泡粒子は、このよう
な特性を利用して、発泡成形体用の予備発泡粒子として
用いることができる。なお、上述の発泡粒子の製造方法
以外に、あらかじめ加熱分解型発泡剤を樹脂粒子中に存
在させておき、その樹脂粒子を発泡剤の分解温度以上に
加熱することにより発泡粒子を得る方法もある。また、
架橋工程は無架橋発泡粒子製造後に電子線架橋法、シラ
ン架橋法等により発泡粒子を架橋せしめゲル分率を少な
くとも5%、好ましくは30〜80%、更に好ましくは
40〜70%に調整することもでき架橋樹脂粒子から得
られたものと同様の効果が期待できる。
In the foaming method, the amount of the foaming agent (excluding nitrogen and air) used is 2 to 50 parts by weight per 100 parts by weight of the crosslinked resin particles, and when nitrogen or air is used as the foaming agent, The usage is 20-60kgf
It may be press-fitted into the closed container so that the pressure range is / cm 2 G. The amount of these foaming agents used is appropriately selected from the relationship between the desired bulk density of the expanded particles and the expansion temperature. Further, the heating temperature of the gelled resin particles may be a temperature suitable for impregnating the foaming agent into the particles, and the softening temperature of the crosslinked resin particles is adopted. The bulk density of the expanded beads obtained as described above is usually 0.015 to 0.6 g /
cm 3 , and the average bubble diameter is usually 0.05 to 0.
It is 5 mm. The expanded particles expand and expand by heating, and the expansion ratio thereof varies depending on the heating temperature, the content of the foaming agent, etc., but is generally 2 to 90 times, preferably 1
Expands 0 to 60 times. The expanded particles of the present invention can be used as pre-expanded particles for an expanded molded article by utilizing such characteristics. In addition to the above-described method for producing expanded particles, there is also a method in which a heat-decomposable foaming agent is present in the resin particles in advance and the expanded particles are obtained by heating the resin particles above the decomposition temperature of the expanding agent. . Also,
In the crosslinking step, after the production of non-crosslinked expanded particles, the expanded particles are crosslinked by an electron beam crosslinking method, a silane crosslinking method or the like to adjust the gel fraction to at least 5%, preferably 30 to 80%, more preferably 40 to 70%. The same effect as that obtained from the crosslinked resin particles can be expected.

【0021】本発明において発泡粒子成形体を製造する
には、生分解性を有しかつゲル分率が少なくとも5%で
ある脂肪族ポリエステル系樹脂発泡粒子を金型に入れ、
加熱成形する。この加熱成形により発泡粒子は相互に融
着し、一体となった発泡成形体を与える。この場合の成
形用金型としては慣用のものが用いられる。また、加熱
手段としては、通常、スチーム加熱が用いられ、その加
熱温度は、発泡粒子表面が溶融する温度であればよい。
このようにして得られた発泡粒子成形体は発泡粒子と同
じゲル分率を有する。
In order to produce a foamed-particle molded product in the present invention, foamed aliphatic polyester resin particles having a biodegradability and a gel fraction of at least 5% are put in a mold,
Heat molding. By this heat molding, the foamed particles are fused with each other to give an integrated foamed molded body. In this case, a commonly used mold is used. Further, steam heating is usually used as the heating means, and the heating temperature may be a temperature at which the surface of the expanded beads melts.
The expanded particle molded article thus obtained has the same gel fraction as the expanded particles.

【0022】本発明による発泡粒子成形体の形状は特に
制約されず、その形状は、例えば、容器状、板状、筒体
状、柱状、シート状、ブロック状等の各種の形状である
ことができる。本発明による発泡粒子成形体は、成形収
縮率の非常に小さなもので、その成形収縮率は、10%
以下、好ましくは5%以下である。発泡粒子成形体の収
縮率は、発泡粒子のゲル分率が、5%以上特に、30%
以上のときに、小さな値を示し、しかも、このようなゲ
ル分率の場合には、発泡粒子は熱融着性及び生分解性に
もすぐれていることから、圧縮強度や曲げ強度、引張り
強度等の機械的強度にすぐれた生分解性発泡粒子成形体
を得ることができる。
The shape of the expanded particle molded article according to the present invention is not particularly limited, and the shape may be various shapes such as a container shape, a plate shape, a cylinder shape, a column shape, a sheet shape, and a block shape. it can. The expanded particle molded article according to the present invention has a very small molding shrinkage, and the molding shrinkage is 10%.
It is preferably 5% or less. The shrinkage ratio of the foamed particle molded body is such that the gel fraction of the foamed particles is 5% or more, especially 30%.
In the above cases, a small value is shown, and in the case of such a gel fraction, since the expanded particles are excellent in heat fusion property and biodegradability, compressive strength, bending strength, tensile strength It is possible to obtain a biodegradable expanded particle molded article having excellent mechanical strength such as.

【0023】[0023]

【実施例】次に、本発明を実施例によりさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0024】実施例1〜3 1,4−ブタンジオールとコハク酸を主成分とする脂肪
族ポリエステル樹脂(ビオノーレ#1003)(昭和高
分子(株)製、融点113℃、MFR(190℃)8g
/10min、剪断速度100sec-1の溶融粘度95
0Pa・s)100重量部あたり水酸化アルミニウム
0.2重量部をドライブレンドで添加し、押出機にて溶
融混練した後、ストランド状に押出し、次いでこのスト
ランドを切断して、直径1.3mm、長さ1.3mm、
1個当り約2mgの無架橋樹脂粒子を得た。次に、この
無架橋樹脂粒子100重量部、水300重量部、カオリ
ン1.5重量部、ドデシルベンゼンスルホン酸ナトリウ
ム0.02重量部、ナイパーFF(過酸化ベンゾイル純
度50%品:日本油脂(株)製)2重量部、表1に示す
量のDVB−570(ジビニルベンゼン純度57%品:
新日鐡化学(株)製)を5リットルのオートクレーブに
仕込み、撹拌しながら105℃まで加熱し、同温度で6
0分間保持した後、30℃まで冷却し架橋樹脂粒子を得
た。得られた架橋樹脂粒子のゲル分率は、表1に示す通
りであった。次いで、架橋樹脂粒子100重量部、水3
00重量部、カオリン1重量部、ドデシルベンゼンスル
ホン酸ナトリウム0.02重量部を5リットルオートク
レーブに仕込み、そのゲル化樹脂粒子の軟化温度(発泡
温度)まで加熱し、炭酸ガスをオートクレーブ内圧力が
表1に示す圧力まで注入し含侵させた。その後、オート
クレーブの一端を開放して、オートクレーブに窒素ガス
を導入してオートクレーブ内圧力を維持しながら内容物
を大気圧下に放出して架橋樹脂粒子を発泡させた。この
発泡粒子の嵩密度及び平均気泡径を表1に示す。次い
で、得られた発泡粒子を60℃で24時間乾燥熟成し、
208×208×25mmの金型に充填し、表1に示す
スチーム圧で加熱し成形した。得られた成形体は大気圧
下60℃で24時間養生した。得られた発泡粒子成形体
の嵩密度、収縮率及び生分解性を評価し、その結果を表
1に示す。
Examples 1 to 3 Aliphatic polyester resin (Bionole # 1003) containing 1,4-butanediol and succinic acid as main components (manufactured by Showa Highpolymer Co., Ltd., melting point 113 ° C., MFR (190 ° C.) 8 g
/ 10 min, melt viscosity of 100 sec -1 shear rate 95
0 Pa · s) 0.2 parts by weight of aluminum hydroxide per 100 parts by weight of dry blend is melt-kneaded by an extruder and extruded into a strand, and then the strand is cut to have a diameter of 1.3 mm, Length 1.3 mm,
About 2 mg of non-crosslinked resin particles were obtained. Next, 100 parts by weight of the non-crosslinked resin particles, 300 parts by weight of water, 1.5 parts by weight of kaolin, 0.02 parts by weight of sodium dodecylbenzenesulfonate, Niper FF (benzoyl peroxide 50% purity product: NOF Corporation) 2 parts by weight of DVB-570 (divinylbenzene purity 57% product:
Nippon Steel Chemical Co., Ltd.) was charged into a 5 liter autoclave and heated to 105 ° C. with stirring, and at the same temperature, 6
After holding for 0 minutes, it was cooled to 30 ° C. to obtain crosslinked resin particles. The gel fraction of the obtained crosslinked resin particles was as shown in Table 1. Next, 100 parts by weight of crosslinked resin particles and 3 parts of water
00 parts by weight, kaolin 1 part by weight, and sodium dodecylbenzenesulfonate 0.02 parts by weight were charged into a 5 liter autoclave and heated to the softening temperature (foaming temperature) of the gelled resin particles, and the carbon dioxide gas pressure in the autoclave was adjusted to the surface. The pressure was increased up to the pressure shown in FIG. Then, one end of the autoclave was opened, and nitrogen gas was introduced into the autoclave to release the contents under atmospheric pressure while maintaining the pressure inside the autoclave to foam the crosslinked resin particles. Table 1 shows the bulk density and average cell diameter of the expanded beads. Then, the obtained expanded particles are dried and aged at 60 ° C. for 24 hours,
It was filled in a mold of 208 × 208 × 25 mm and heated at the steam pressure shown in Table 1 to be molded. The obtained molded body was aged at 60 ° C. under atmospheric pressure for 24 hours. The bulk density, shrinkage rate and biodegradability of the obtained expanded particle molded article were evaluated, and the results are shown in Table 1.

【0025】比較例1、2 実施例1で示した無架橋樹脂粒子100重量部、水30
0重量部、カオリン1.5重量部、ドデシルベンゼンス
ルホン酸ナトリウム0.02重量部を5リットルオート
クレーブに仕込み、発泡温度まで加熱し、炭酸ガスをオ
ートクレーブ内圧力が表1に示す圧力まで注入し含侵さ
せた。その後、オートクレーブに窒素ガスを導入つつオ
ートクレーブの一端を開放して、内容物を大気圧下に放
出して樹脂粒子を発泡させた。この発泡粒子の嵩密度及
び平均気泡径を表1に示す。次に、得られた発泡粒子を
60℃で24時間乾燥熟成し、208×208×25m
mの金型に充填し、表1に示すスチーム圧で加熱し成形
した。得られた成形体は大気圧下60℃で24時間養生
した。得られた発泡粒子成形体の性状を表1に示した。
Comparative Examples 1 and 2 100 parts by weight of the non-crosslinked resin particles shown in Example 1 and 30 parts of water
0 parts by weight, 1.5 parts by weight of kaolin, and 0.02 parts by weight of sodium dodecylbenzenesulfonate were charged into a 5 liter autoclave, heated to a foaming temperature, and carbon dioxide gas was injected until the internal pressure of the autoclave was as shown in Table 1. Invaded. Then, one end of the autoclave was opened while introducing nitrogen gas into the autoclave, and the contents were discharged under atmospheric pressure to foam the resin particles. Table 1 shows the bulk density and average cell diameter of the expanded beads. Next, the obtained expanded particles are dried and aged at 60 ° C. for 24 hours to obtain 208 × 208 × 25 m.
It was filled in a mold of m and heated at the steam pressure shown in Table 1 to be molded. The obtained molded body was aged at 60 ° C. under atmospheric pressure for 24 hours. Table 1 shows the properties of the obtained expanded bead molded product.

【0026】実施例4 1,4−ブタンジオールとコハク酸を主成分とする実施
例1で示したものとMFRの異なる脂肪族ポリエステル
樹脂(ビオノーレ#1001)(昭和高分子(株)製、
融点113℃、MFR(190℃)1.8g/10mi
n、剪断速度100sec-1の溶融粘度1950Pa・
s)を使用し表1に示す架橋条件を採用した以外は実施
例1と同様に実験を行った。この場合に得られた発泡粒
子及びその成形体の性状を表1に示す。
Example 4 Aliphatic polyester resin (Bionole # 1001) having a MFR different from that shown in Example 1 containing 1,4-butanediol and succinic acid as main components (manufactured by Showa High Polymer Co., Ltd.,
Melting point 113 ° C., MFR (190 ° C.) 1.8 g / 10 mi
n, shear rate 100 sec -1 melt viscosity 1950 Pa
The experiment was performed in the same manner as in Example 1 except that (s) was used and the crosslinking conditions shown in Table 1 were adopted. Table 1 shows the properties of the expanded beads and the molded product obtained in this case.

【0027】なお、上記実施例及び比較例における成形
体の収縮率は次のようにして算出し、面方向における
縦、横の収縮率の内、大きい方を採用した。
The shrinkage ratios of the molded articles in the above Examples and Comparative Examples were calculated as follows, and the larger one of the vertical and horizontal shrinkage ratios in the plane direction was adopted.

【数1】 R:成形体収縮率 A:成形直後から60℃24時間の条件にて養生した後
の面方向の長さ B:Aに対応する金型の面方向の長さ また、上記実施例及び比較例の成形体における生分解性
は、微生物存在下24℃の水中に成形体を投入し、成形
体の重量減少の経時変化を測定し、50%の重量が減少
するのに要する日数により評価した。
[Equation 1] R: Mold shrinkage A: Length in the surface direction after curing at 60 ° C. for 24 hours immediately after molding B: Length in the surface direction of the mold corresponding to A. Also, the above-mentioned Examples and Comparative Examples. The biodegradability of the molded article was evaluated by the time required for reducing the weight by 50% by placing the molded article in water at 24 ° C in the presence of microorganisms, measuring the time-dependent change in the weight loss of the molded article.

【0028】本発明の実施例1〜4の発泡粒子成形体
は、5%以上のゲル分率を有することから、いずれもそ
の収縮率が5%以下であり、実用性が高く、かつ生分解
性もその50重量%減少日数が38日以下と良好であ
る。これに対し、比較例1、2の発泡粒子成形体は、い
ずれもその収縮率10%を超え、成形体としては不適当
なものであった。また、比較例の発泡粒子は発泡粒子を
得る際の嵩倍率の発泡温度依存性が高く発泡粒子製造時
の発泡倍率コントロールが難しいものであった。
Since the expanded particle molded articles of Examples 1 to 4 of the present invention have a gel fraction of 5% or more, all of them have a shrinkage rate of 5% or less, are highly practical, and are biodegradable. As for the property, the number of days for which 50% by weight reduction is 38 days or less is also good. On the other hand, the foamed particle molded products of Comparative Examples 1 and 2 each had a shrinkage ratio of more than 10% and were unsuitable as molded products. Further, in the expanded beads of Comparative Example, the expansion ratio of the bulk ratio when obtaining the expanded particles was high, and it was difficult to control the expansion ratio during the production of the expanded particles.

【0029】[0029]

【表1】 *実施例1〜4において発泡粒子及び成形体のゲル分率
は架橋樹脂粒子のゲル分率と同じであった。
[Table 1] * In Examples 1 to 4, the gel fraction of the expanded particles and the molded product was the same as the gel fraction of the crosslinked resin particles.

【0030】[0030]

【発明の効果】本発明によれば、生分解性を有する実用
性に優れた脂肪族ポリエステル系樹脂の発泡粒子成形体
を工業的に有利に製造することができる。本発明の方法
によれば、加熱成形したときに加熱収縮が小さく、発泡
粒子同士の融着性も良好な発泡粒子成形体を得ることが
できる。本発明の発泡粒子成形体は、寸法安定性、耐熱
性、緩衝性及び機械的強度に優れ、緩衝材、包装資材等
として好適に使用されると共に、生分解性を有している
ためその後の廃棄処分が容易となるなどその産業的意義
は多大である。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to industrially advantageously produce a foamed particle molding of an aliphatic polyester resin having biodegradability and excellent in practical use. According to the method of the present invention, it is possible to obtain a foamed particle molded product which has a small heat shrinkage when heat-molded and has a good fusion property between foamed particles. The expanded particle molded product of the present invention is excellent in dimensional stability, heat resistance, cushioning property and mechanical strength, and is suitably used as a cushioning material, packaging material and the like, and since it has biodegradability, Its industrial significance is great, such as the ease of disposal.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−23840(JP,A) 特開 平6−248106(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08J 9/232 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-23840 (JP, A) JP-A-6-248106 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08J 9/232

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 生分解性を有しかつゲル分率が少なくと
も5%である脂肪族ポリエステル系樹脂発泡粒子を加熱
成形することを特徴とする脂肪族ポリエステル系樹脂発
泡粒子成形体の製造方法。
1. A method for producing a molded product of expanded aliphatic polyester resin particles, which comprises heat-molding expanded polyester resin resin particles having biodegradability and a gel fraction of at least 5%.
【請求項2】 生分解性を有する該脂肪族ポリエステル
系樹脂発泡粒子の基材樹脂が脂肪族エステル成分を少な
くとも60モル%含有するものである請求項1に記載の
脂肪族ポリエステル系樹脂発泡粒子成形体の製造方法。
2. The expanded aliphatic polyester resin particles according to claim 1, wherein the base resin of the expanded expanded polyester polyester resin particles having biodegradability contains at least 60 mol% of an aliphatic ester component. Method for manufacturing molded body.
【請求項3】 該脂肪族ポリエステル系樹脂発泡粒子の
ゲル分率が30〜80%である請求項1又は2に記載の
脂肪族ポリエステル系樹脂発泡粒子成形体の製造方法。
3. The method for producing a foamed aliphatic polyester resin particle according to claim 1 or 2, wherein the gel fraction of the expanded aliphatic polyester resin particle is 30 to 80%.
【請求項4】 該脂肪族ポリエステル系樹脂発泡粒子の
嵩密度が0.015〜0.6g/cm3である請求項
1、2又は3に記載の脂肪族ポリエステル系樹脂発泡粒
子成形体の製造方法。
4. The foamed product of aliphatic polyester resin foam particles according to claim 1, 2 or 3, wherein the expanded density of the aliphatic polyester resin resin particles is 0.015 to 0.6 g / cm 3. Method.
【請求項5】 該脂肪族ポリエステル系樹脂発泡粒子の
平均気泡径が0.05〜0.5mmである請求項1〜4
のいずれかに記載の脂肪族ポリエステル系樹脂発泡粒子
成形体の製造方法。
5. The average bubble diameter of the aliphatic polyester resin foamed particles is 0.05 to 0.5 mm.
5. The method for producing an expanded product of aliphatic polyester-based resin particles according to any one of 1.
JP2000285547A 1997-05-26 2000-09-20 Method for producing molded article of expanded aliphatic polyester resin particles Expired - Fee Related JP3531922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285547A JP3531922B2 (en) 1997-05-26 2000-09-20 Method for producing molded article of expanded aliphatic polyester resin particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15162797A JP3229978B2 (en) 1997-05-26 1997-05-26 Aliphatic polyester-based resin foam particles, molded product thereof, and method for producing the resin foam particles
JP2000285547A JP3531922B2 (en) 1997-05-26 2000-09-20 Method for producing molded article of expanded aliphatic polyester resin particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15162797A Division JP3229978B2 (en) 1997-05-26 1997-05-26 Aliphatic polyester-based resin foam particles, molded product thereof, and method for producing the resin foam particles

Publications (2)

Publication Number Publication Date
JP2001106821A JP2001106821A (en) 2001-04-17
JP3531922B2 true JP3531922B2 (en) 2004-05-31

Family

ID=32658471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285547A Expired - Fee Related JP3531922B2 (en) 1997-05-26 2000-09-20 Method for producing molded article of expanded aliphatic polyester resin particles

Country Status (1)

Country Link
JP (1) JP3531922B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036179A (en) * 2003-06-25 2005-02-10 Mitsubishi Chemicals Corp Aliphatic polyester-based resin composition
CN101146855A (en) * 2005-03-25 2008-03-19 株式会社钟化 Foamed thermoplastic resin particles, its formed body and method of producing the foamed particles
WO2006112287A1 (en) 2005-04-14 2006-10-26 Kaneka Corporation Polyhydroxyalkanoate-based resin foam particle, molded article comprising the same and process for producing the same
EP1947127B1 (en) 2005-10-26 2011-03-30 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead

Also Published As

Publication number Publication date
JP2001106821A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP3229978B2 (en) Aliphatic polyester-based resin foam particles, molded product thereof, and method for producing the resin foam particles
JP3531922B2 (en) Method for producing molded article of expanded aliphatic polyester resin particles
CA2242611A1 (en) Modified polypropylene resin, foam made from the resin and processes for the production of both
JP2007186692A (en) Method for producing polylactic acid-based resin expandable beads
JPH0559140B2 (en)
JP2002302567A (en) Method for continuous production of pre-expanded bead of biodegradable polyester-based resin
US6686400B2 (en) Foamed and expanded beads of polyester-based resin and foam molding obtained therefrom
JP2004067945A (en) Foaming particle of aliphatic polyester carbonate-based resin, molded product of the same and method for producing the foaming particle
JP2000109595A (en) Formed article of biodegradable foamed polyester resin particle and foamed particle
JP4548688B2 (en) POLYESTER RESIN FOAM PIECES AND FOAM PIECES MOLDED
JP4582674B2 (en) Polyester resin expanded particles and molded articles thereof
EP1275687B1 (en) Expanded beads of polyester resin
JP2003003001A (en) Expanded polyester resin particle and its molded article
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
JP3963359B2 (en) Method for producing polyester resin foam molding and method for preserving polyester resin foam particles
JP2001049021A (en) Polyester-based resin foamed particle and foamed particle molded article
JP3943947B2 (en) Antistatic polyester resin expanded particles and molded articles thereof
JPH06104749B2 (en) Moldable shrinkable thermoplastic polymer foam beads
JPH09111030A (en) Polyethylene terephthalate resin foamed product and its production
JP4015487B2 (en) Polyester resin expanded particles and molded articles thereof
JPH07330935A (en) Crystalline polyolefin foam
JP2003003002A (en) Expanded polyester resin particle
JP2902242B2 (en) Foamable resin sheet and method for producing the same
JP2002187972A (en) Expanded polyester resin particle for multi-stage expansion and method for expanding the particle by multi-stage expansion
JP2798572B2 (en) Method for producing recycled expanded polystyrene resin molded article

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees