JP2009263483A - New biodegradable aliphatic polyester-based resin foamed particle molded article - Google Patents

New biodegradable aliphatic polyester-based resin foamed particle molded article Download PDF

Info

Publication number
JP2009263483A
JP2009263483A JP2008114052A JP2008114052A JP2009263483A JP 2009263483 A JP2009263483 A JP 2009263483A JP 2008114052 A JP2008114052 A JP 2008114052A JP 2008114052 A JP2008114052 A JP 2008114052A JP 2009263483 A JP2009263483 A JP 2009263483A
Authority
JP
Japan
Prior art keywords
aliphatic polyester
based resin
resin
resin expanded
particle molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008114052A
Other languages
Japanese (ja)
Inventor
Toshio Miyagawa
登志夫 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008114052A priority Critical patent/JP2009263483A/en
Publication of JP2009263483A publication Critical patent/JP2009263483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aliphatic polyester-based resin foamed particle molded article having gas permeability and water permeability, moreover biodegradability. <P>SOLUTION: The aliphatic polyester-based resin foamed particle molded article is made by using an aliphatic polyester-based resin foamed particle in a pillar shape of 1.2≤L/D≤5.0, and used for applying to vegetation tray etc. that requires gas permeability and water permeability, moreover biodegradability. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

通気・通水性を有する生分解性脂肪族ポリエステル系樹脂発泡粒子成形体に関する。   The present invention relates to a foamed molded article of biodegradable aliphatic polyester resin particles having air permeability and water permeability.

これまで、通気性や通水性を必要とする発泡容器として、PSやPP製などの発泡容器が、植生トレー、植生ポット、植木鉢、水耕栽培用(苗・野菜類・花卉類・植物)支持材、観葉植物用支持材、屋上・壁面緑化支持材などの植栽容器、フラワーアレンジメント用支持材、水質浄化用支持材、生き物用保温材などに使用されている。   Up to now, foam containers made of PS or PP are supported as vegetation trays, vegetation pots, flower pots, hydroponics (seedlings / vegetables / flowers / plants) as foaming containers that require air permeability and water permeability. It is used in planting containers such as wood, foliage plant support materials, rooftop and wall greening support materials, flower arrangement support materials, water purification support materials, and heat insulation materials for living creatures.

例えば、花卉や樹木を植栽するに際し、予め合成樹脂素材をポット状もしくはトレー状に成形した植栽容器内で路地育成し、これを所望する植栽地にそのまま搬送し、植栽現場で合成樹脂性の植栽容器から抜き出して植栽することが行われてきた。   For example, when planting flowers and trees, grow alleys in planting containers that have been pre-molded with a synthetic resin material in a pot shape or tray shape, transport this directly to the desired planting site, and synthesize it at the planting site. It has been practiced to extract and plant from a resinous planting container.

このような方法は作業性が良くないばかりでなく、植栽容器は土中で分解しないため、植栽する際には植栽容器から植物を引き抜いて植栽する必要があり、この際に成長した根の先端が傷つき、成長に影響を与えるという欠点があった。また、植栽の都度発生する廃容器の多くは難分解性の合成高分子であるために廃棄が問題となっていた。このような課題を解決するべく最近では生分解性樹脂や天然素材を用いた成形体や不織布を用いた育苗ポットをはじめとする植栽容器が多く提案されるようになってきている。   Such a method is not only good in workability, but the planting container does not decompose in the soil, so when planting it is necessary to pull out the plant from the planting container and grow it at this time The tip of the root was damaged, affecting the growth. Moreover, since many of the waste containers generated at every planting are hardly decomposable synthetic polymers, disposal has been a problem. Recently, many planting containers including a seedling pot using a molded body using a biodegradable resin or a natural material or a non-woven fabric have been proposed to solve such problems.

ところが、生分解性素材を用いた植栽容器であっても根の成長に比較して植栽容器の分解速度が遅いと、発育した苗が容器の側面に沿って上昇するなど正常な根の成長を妨げる結果になる。また、生分解性樹脂に限らず、フィルムやシートを成形した容器では透水性に乏しく、植栽後の成長に影響を与える場合が多
い。こういった欠点を克服するべく容器の一部に薄い部分を作ったり(特許文献1)、容器の底部に多数の孔を開けたり(特許文献2、特許文献3)、メッシュを用いたり(特許文献4)する方法が提案されている。
However, even in the case of a planting container using a biodegradable material, if the decomposition rate of the planting container is slow compared to the growth of roots, the grown seedling will rise along the side of the container and The result is a hindrance to growth. Moreover, not only biodegradable resin but the container which shape | molded the film and the sheet | seat is poor in water permeability, and in many cases affects the growth after planting. In order to overcome these disadvantages, a thin portion is made in a part of the container (Patent Document 1), a large number of holes are made in the bottom of the container (Patent Document 2, Patent Document 3), and a mesh is used (Patent Document 1). Document 4) has been proposed.

しかし、局所的に薄くしても根の先端が入り込むすき間が無ければ、やはり根は壁面に沿って上昇してしまう。又、多数の孔を底部に開けた場合は、容器
の強度が局所的に低下してしまう。メッシュを用いた場合は、根が成長してメッシュを突き破る際に十分に生分解が進んでいないとメッシュで根が傷ついてしまう場合があるので好ましくない。
However, if there is no gap where the tip of the root enters even if it is thinned locally, the root will rise along the wall surface. Moreover, when many holes are opened in the bottom, the strength of the container is locally reduced. When a mesh is used, if the root grows and breaks through the mesh, if the biodegradation does not proceed sufficiently, the mesh may damage the root, which is not preferable.

また、容積の比較的大きい植栽トレーの場合、容器の中に土を盛る為、運搬の際重量物となり作業時に負荷がかかる。その為、発泡体形状による軽量化を目的とした方法が提案されている(特許文献5、特許文献6、特許文献7)。   Moreover, in the case of a planting tray having a relatively large volume, since soil is piled up in the container, it becomes a heavy object during transportation and a load is applied during work. For this reason, methods aimed at reducing the weight by the foam shape have been proposed (Patent Document 5, Patent Document 6, and Patent Document 7).

特許文献5、6は生分解性素材を用いた発泡体である為、土中分解しかつ軽量化、更に底部にスリット穴を設けて適度な排水は可能であるが、植物が生育する為の十分な通気部が設けられていない為、十分な通気・通水性を確保した生分解性素材からなる植生用発泡容器の提案には至っていない。   Since Patent Documents 5 and 6 are foams using biodegradable materials, they can be decomposed in the soil and reduced in weight, and can be drained appropriately by providing a slit hole at the bottom, but for growing plants. Since sufficient ventilation is not provided, no proposal has been made for a foam container for vegetation made of a biodegradable material ensuring sufficient ventilation and water permeability.

更に、生分解素材を用い発泡化する事で発泡膜が薄くなり生分解性は良好になる傾向ではあるが、それでも使用後速やかに土中分解するレベルにまでは至っていない。   Furthermore, foaming using a biodegradable material tends to make the foamed film thinner and improve biodegradability, but it still does not reach a level where it can be quickly decomposed in the soil after use.

一方、これまでL/Dの大きいポリプロピレン樹脂発泡粒子からなる発泡粒子成形体はあったが、通気性や通水性はもとより生分解性が必要な用途には用いられていなかった(特許文献7)。
特開平2000−000032号公報 特開平10−042712号公報 特開平11−18585号公報 特開平09−322658号公報 特開2001−258399号公報 特開2006−94709号公報 国際公開第2006/16478号パンフレット
On the other hand, there has been a foamed particle molded body made of polypropylene resin expanded particles having a large L / D so far, but it has not been used for applications that require biodegradability as well as air permeability and water permeability (Patent Document 7). .
JP 2000-000032 A Japanese Patent Laid-Open No. 10-042712 Japanese Patent Laid-Open No. 11-18585 JP 09-322658 A JP 2001-258399 A JP 2006-94709 A International Publication No. 2006/16478 Pamphlet

本発明の目的は、通気性や通水性、さらには生分解性を有する脂肪族ポリエステル系樹脂発泡粒子成形体を提供することにある。   An object of the present invention is to provide an aliphatic polyester-based resin expanded particle molded body having air permeability, water permeability, and biodegradability.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、特定のL/Dである柱状の発泡粒子を用いて空隙構造を有する成形体を用いれば、通気性や通水性が良好で、植物の生育を阻害せず、且つ土中分解する事で使用後の廃棄処理の問題を解消できることを見出し、本発明を完成するに至った。   As a result of intensive research to solve the above problems, the present inventors have good breathability and water permeability when using a molded article having a void structure using columnar foam particles having a specific L / D. Thus, the inventors have found that the problem of disposal after use can be solved by decomposing in the soil without inhibiting the growth of the plant, and the present invention has been completed.

即ち、本発明の第一は、L/Dが1.2以上、且つ5.0以下の柱状形状である脂肪族ポリエステル系樹脂発泡粒子を用いてなる脂肪族ポリエステル系樹脂発泡粒子成形体に関する。好ましい実施態様は、空隙率が10〜50%である上記記載の脂肪族ポリエステル系樹脂発泡粒子成形体に関する。より好ましくは、前記脂肪族ポリエステル系樹脂が、式(1):[−O−CHR−CH−CO−](ここでRはC2n+1で表されるアルキル基で、nは1〜15の整数)
で示される少なくとも1種の単位からなる重合体(以下、ポリ(3−ヒドロキシアルカノエート):略称はP3HA)で示される上記記載の脂肪族ポリエステル系樹脂発泡粒子成形体、更に好ましくは、P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(以下、略称はPHBH)である上記記載の脂肪族ポリエステル系樹脂発泡粒子成形体、特に好ましくは、PHBHの共重合成分の組成中、ポリ(3−ヒドロキシヘキサノエート)が1mol%〜20mol%である、上記記載の脂肪族ポリエステル系樹脂発泡粒子成形体、に関する。本発明の第二は、P3HAからなる発泡粒子を金型に充填し、加熱成形して発泡粒子を融着させるに際し、P3HAからなる発泡粒子の融点より25℃以上低い温度の水蒸気を用いることを特徴とする請求項1〜5何れかに記載の脂肪族ポリエステル系樹脂発泡粒子成形体の製造方法に関する。
That is, the first of the present invention relates to a molded article of aliphatic polyester resin foamed particles using aliphatic polyester resin foamed particles having a columnar shape with L / D of 1.2 or more and 5.0 or less. A preferred embodiment relates to the above-mentioned aliphatic polyester resin expanded particle molded body having a porosity of 10 to 50%. More preferably, the aliphatic polyester-based resin is represented by the formula (1): [—O—CHR 1 —CH 2 —CO—] (where R 1 is an alkyl group represented by C n H 2n + 1 , and n is 1-15 integer)
The above-mentioned aliphatic polyester-based resin expanded particle molded body represented by the following polymer represented by: (hereinafter, poly (3-hydroxyalkanoate): abbreviated as P3HA), more preferably P3HA Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter abbreviated as PHBH), the above-mentioned aliphatic polyester resin foamed molded article, particularly preferably a copolymer component of PHBH It is related with the aliphatic polyester-type resin expanded particle molding of the said description whose poly (3-hydroxyhexanoate) is 1 mol%-20 mol% in a composition. In the second aspect of the present invention, when the foamed particles made of P3HA are filled in a mold, and the foamed particles are fused by thermoforming, water vapor having a temperature 25 ° C. or lower than the melting point of the foamed particles made of P3HA is used. It is related with the manufacturing method of the aliphatic polyester-type resin expanded particle molding in any one of Claims 1-5 characterized by the above-mentioned.

本発明に従えば、通気性や通水性、さらには生分解性を有する脂肪族ポリエステル系樹脂発泡粒子成形体を提供することができる。   According to the present invention, it is possible to provide an aliphatic polyester resin expanded particle molded body having air permeability, water permeability, and biodegradability.

以下、本発明につき、さらに詳細に説明する。本発明の脂肪族ポリエステル系樹脂発泡粒子成形体は、脂肪族ポリエステルを主成分とし、さらにイソシアネート化合物等の変性剤を添加して得られた樹脂組成物に、分散剤と発泡剤を混合して発泡粒子を得、該発泡粒子を金型に充填し、成形加工することで得られる。該樹脂組成物には、本発明の効果を阻害しない程度であれば、溶融混練時に、上記物質以外に添加剤として、たとえば、着色剤、酸化防止剤、紫外線吸収剤、可塑剤、滑剤、結晶化核剤、無機充填剤、気泡調整剤などを添加できる。   Hereinafter, the present invention will be described in more detail. The molded article of the aliphatic polyester-based resin foamed particle of the present invention is obtained by mixing a dispersant and a foaming agent into a resin composition obtained by adding a modifier such as an isocyanate compound, which contains an aliphatic polyester as a main component. It is obtained by obtaining foamed particles, filling the foamed particles in a mold, and molding. In the resin composition, as long as the effect of the present invention is not inhibited, additives such as a colorant, an antioxidant, an ultraviolet absorber, a plasticizer, a lubricant, a crystal, and the like other than the above-mentioned substances at the time of melt kneading. Nucleating agents, inorganic fillers, bubble regulators and the like can be added.

本発明の脂肪族ポリエステルとは、生分解性を有するものであれば特に限定するものではないが、例えば、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリブチレンサクシネート・カーボネート等の多価アルコールと多価カルボン酸またはその酸無水物とを重縮合して得られるポリエステル、ε−カプロラクトン、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、エナントラクトンや4−メチルカプロラクトン、2,2,4−トリメチルカプロラクトン、3,3,5−トリメチルカプロラクトンなどの各種ラクトンの単独重合体、又は共重合体、ポリ乳酸、ポリ(3−ヒドロキシアルカノエート)(略称:P3HA)等が挙げられる。その中でも、生分解性の観点から、ポリ(3−ヒドロキシアルカノエート)が好ましい。   The aliphatic polyester of the present invention is not particularly limited as long as it has biodegradability. For example, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polybutylene succinate carbonate Polyester obtained by polycondensation of polyhydric alcohol such as polyhydric carboxylic acid or acid anhydride thereof, ε-caprolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, enanthlactone or 4-methyl Homopolymers or copolymers of various lactones such as caprolactone, 2,2,4-trimethylcaprolactone, 3,3,5-trimethylcaprolactone, copolymers, polylactic acid, poly (3-hydroxyalkanoate) (abbreviation: P3HA), etc. Is mentioned. Among these, poly (3-hydroxyalkanoate) is preferable from the viewpoint of biodegradability.

本発明のポリ(3−ヒドロキシアルカノエート)とは、式(1)で示される3−ヒドロキシアルカノエートよりなる繰り返し構造を有し、かつ微生物から生産される脂肪族ポリエステルである、ポリ(3−ヒドロキシアルカノエート)からなる組成物である。
[−CHR−CH2−CO−O−]………式(1)
(ここで、RはCnH2n+1で表されるアルキル基で、n=1〜15の整数)
The poly (3-hydroxyalkanoate) of the present invention is a poly (3-hydroxyalkanoate), which is an aliphatic polyester having a repeating structure composed of a 3-hydroxyalkanoate represented by the formula (1) and produced from microorganisms. Hydroxyalkanoate).
[—CHR—CH 2 —CO—O—] Formula (1)
(Where R is an alkyl group represented by CnH2n + 1, and n is an integer from 1 to 15)

本発明におけるP3HAとしては、前記3−ヒドロキシアルカノエートのホモポリマー、またはnの異なる2種以上の3−ヒドロキシアルカノエートの組み合わせからなるジ−コポリマー、トリ−コポリマー、テトラ−コポリマーなどの共重合体、またはこれらホモポリマー及び共重合体から選ばれる2種以上のブレンド物が挙げられ、中でもn=1の3−ヒドロキシブチレート、n=2の3−ヒドロキシバリレート、n=3の3−ヒドロキシヘキサノエート、n=5の3−ヒドロキシオクタノエート、n=15の3−ヒドロキシオクタデカノエートなどのホモポリマー、又はこれら前記nが異なる3−ヒドロキシアルカノエート単位2種以上の組合わせからなる共重合体、又はこれらホモポリマー及び共重合体から選ばれる2種以上のブレンド物が好ましく使用できる。より好ましいP3HAとしては、n=1の3−ヒドロキシブチレートとn=3の3−ヒドロキシヘキサノエートの共重合体であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(略称:PHBH)であり、その組成比が、3−ヒドロキシブチレート/3−ヒドロキシヘキサノエート=99/1〜80/20(mol/mol)であるPHBHが更に好ましい。3−ヒドロキシブチレート/3−ヒドロキシヘキサノエート組成比が99/1より大きいと、ホモポリマーであるポリヒドロキシブチレートと融点に差がなく、高温で加熱加工する必要があり、加熱加工時の熱分解による分子量低下が激しく品質の制御が困難となる場合がある。また3−ヒドロキシブチレート/3−ヒドロキシヘキサノエート組成比が80/20より小さいと加熱加工時の再結晶化に時間がかかるため生産性が悪い場合がある。   As P3HA in the present invention, a homopolymer of the above-mentioned 3-hydroxyalkanoate or a copolymer such as a di-copolymer, tri-copolymer or tetra-copolymer comprising a combination of two or more different 3-hydroxyalkanoates of n Or a blend of two or more selected from these homopolymers and copolymers, among which n = 1 3-hydroxybutyrate, n = 2 3-hydroxyvalerate, n = 3 3-hydroxy From homopolymers such as hexanoate, 3-hydroxyoctanoate with n = 5, 3-hydroxyoctadecanoate with n = 15, or combinations of two or more 3-hydroxyalkanoate units with different n Or a copolymer of two or more selected from these homopolymers and copolymers. De product can be preferably used. More preferable P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), which is a copolymer of 3-hydroxybutyrate with n = 1 and 3-hydroxyhexanoate with n = 3 ( (Abbreviation: PHBH), and the composition ratio of 3-hydroxybutyrate / 3-hydroxyhexanoate = 99/1 to 80/20 (mol / mol) is more preferable. When the composition ratio of 3-hydroxybutyrate / 3-hydroxyhexanoate is larger than 99/1, there is no difference in melting point from polyhydroxybutyrate, which is a homopolymer, and it is necessary to heat process at a high temperature. In some cases, the molecular weight is drastically reduced due to thermal decomposition, making it difficult to control the quality. On the other hand, if the composition ratio of 3-hydroxybutyrate / 3-hydroxyhexanoate is smaller than 80/20, it may take a long time to recrystallize at the time of heat processing, resulting in poor productivity.

尚、本発明では上記脂肪族ポリエステル樹脂2種以上を溶融ブレンドしてなる発泡粒子を用いて発泡成形体を作製できる。また、異なる2種以上の発泡粒子を混合して発泡成形してもよい。   In addition, in this invention, a foaming molding can be produced using the foaming particle formed by melt-blending 2 or more types of the said aliphatic polyester resin. Alternatively, two or more different foam particles may be mixed and foam-molded.

本発明の変性剤としては、発泡成形しやすい溶融特性に適宜調整可能であれば特に限定されるものではないが、反応性の点では、イソシアネート化合物が好ましい。   The modifier of the present invention is not particularly limited as long as it can be appropriately adjusted to a melt characteristic that facilitates foam molding, but is preferably an isocyanate compound in terms of reactivity.

本発明におけるイソシアネート化合物は、例えば、1分子中にイソシアネート基を2個以上有するものが挙げられ、種類としては芳香族、脂環族、脂肪族系のイソシアネート等がある。芳香族イソシアネートとしては、トリレン、ジフェニルメタン、ナフチレン、トリジン、キシレン、トリフェニルメタンを骨格とするイソシアネート化合物、脂環族イソシアネートとしてはイソホロン、水素化ジフェニルメタンを骨格とするイソシアネート化合物、脂肪族イソシアネートとしてはヘキサメチレン、リジンを骨格とするイソシアネート化合物等が例示できる。更に、これらイソシアネート化合物を2種類以上組み合わせたものも使用可能であるが、汎用性、取扱い性、耐候性等からトリレン、ジフェニルメタンの使用が好ましく、ジフェニルメタンのポリイソシアネートの使用がより好ましい。イソシアネート化合物の含有量は、脂肪族ポリエステル系樹脂からなる基材樹脂100重量部に対して1.5〜5.5重量部が好ましい。   Examples of the isocyanate compound in the present invention include those having two or more isocyanate groups in one molecule, and examples thereof include aromatic, alicyclic, and aliphatic isocyanates. Aromatic isocyanates include tolylene, diphenylmethane, naphthylene, tolidine, xylene, triphenylmethane-based isocyanate compounds, alicyclic isocyanates have isophorone, hydrogenated diphenylmethane-based isocyanate compounds, and aliphatic isocyanates have hexagonal structure. Examples include isocyanate compounds having a skeleton of methylene and lysine. Further, a combination of two or more of these isocyanate compounds can be used. However, from the viewpoint of versatility, handleability, weather resistance, etc., use of tolylene and diphenylmethane is preferable, and use of diisocyanate polyisocyanate is more preferable. The content of the isocyanate compound is preferably 1.5 to 5.5 parts by weight with respect to 100 parts by weight of the base resin made of an aliphatic polyester resin.

本発明の着色剤としては、例えば、黒、灰色、茶色、青色、緑色等の着色顔料又は染料が挙げられ、各々に有機系、無機系のものがある。このような、顔料及び染料としては、従来公知の各種のものを用いることができ、それらの群より選ばれる少なくとも1種を用い得る。   Examples of the colorant of the present invention include black, gray, brown, blue, green, and other colored pigments or dyes, each of which has an organic type and an inorganic type. As such pigments and dyes, various conventionally known ones can be used, and at least one selected from these groups can be used.

本発明の酸化防止剤としては、例えばヒンダードフェノール系、ホスファイト系、硫黄系、リン系酸化防止剤などが挙げられ、それらの群より選ばれる少なくとも1種を用い得る。   Examples of the antioxidant of the present invention include hindered phenol-based, phosphite-based, sulfur-based and phosphorus-based antioxidants, and at least one selected from these groups can be used.

本発明の紫外線吸収剤としては、フェニルサリシレート、p−tert−ブチルフェニルサリシレート等のサリチル酸誘導体、ベンゾフェノン類、ベンゾトリアゾール類、酸化亜鉛系紫外線安定剤、ヒンダードアミン類などが挙げられ、それらの群より選ばれる少なくとも1種を用い得る。   Examples of the ultraviolet absorber of the present invention include salicylic acid derivatives such as phenyl salicylate and p-tert-butylphenyl salicylate, benzophenones, benzotriazoles, zinc oxide-based ultraviolet stabilizers, hindered amines, etc., selected from these groups At least one of the above may be used.

本発明の可塑剤としては、脂肪族ポリエステル系樹脂との相溶性との観点から、グリセリン誘導体、エーテルエステル誘導体、グリコール酸誘導体、クエン酸誘導体、アジピン酸誘導体、ロジン誘導体、テトラヒドロフルフリルアルコール誘導体などが挙げられ、それらの群より選ばれる少なくとも1種を用い得る。   As the plasticizer of the present invention, glycerin derivatives, ether ester derivatives, glycolic acid derivatives, citric acid derivatives, adipic acid derivatives, rosin derivatives, tetrahydrofurfuryl alcohol derivatives, etc. from the viewpoint of compatibility with aliphatic polyester resins And at least one selected from these groups can be used.

本発明の滑剤としては、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウムやステアリン酸バリウム等の脂肪酸金属塩、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物などが挙げられ、それらの群より選ばれる少なくとも1種を用い得る。   Examples of the lubricant of the present invention include fatty acid metal salts such as sodium stearate, magnesium stearate, calcium stearate and barium stearate, liquid paraffin, olefin wax, stearyl amide compound, etc., and at least selected from these groups One can be used.

本発明の結晶化核剤としては、脂肪族ポリエステル系樹脂に対し結晶化促進効果が得られるものであれば特に限定されるものではないが、例えば、PHB、アミド系化合物等の有機物、タルク等の無機物などが挙げられ、脂肪族ポリエステル系樹脂との相溶性、結晶化促進効果及び生分解性の点から、PHBが好ましい。又、結晶化促進効果を最大限得るためには、結晶化核剤の粒径が微小であることが、より好ましい。   The crystallization nucleating agent of the present invention is not particularly limited as long as the crystallization accelerating effect can be obtained with respect to the aliphatic polyester-based resin. For example, organic substances such as PHB and amide compounds, talc and the like In view of compatibility with aliphatic polyester resins, crystallization promoting effect, and biodegradability, PHB is preferable. In order to obtain the maximum crystallization promoting effect, it is more preferable that the crystallization nucleating agent has a small particle size.

本発明の無機充填剤としては、シリカ、タルク、ケイ酸カルシウム、ワラストナイト、カオリン、クレー、マイカ、酸化亜鉛、酸化チタン、酸化珪素等の無機化合物などが挙げられ、それらの群より選ばれる少なくとも1種を用い得る。   Examples of the inorganic filler of the present invention include inorganic compounds such as silica, talc, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, and silicon oxide, and are selected from these groups. At least one can be used.

本発明の気泡調整剤としては、タルク、シリカ、ケイ酸カルシウム、炭酸カルシウム、酸化アルミニウム、酸化チタン、珪藻土、クレー、重曹、アルミナ、硫酸バリウム、酸化アルミニウム、ベントナイトなどの無機造核剤が挙げられ、それらの群より選ばれる少なくとも1種を用い得る。気泡調整剤の使用量は、樹脂組成物100重量部に対して通常0.005〜2重量部である。   Examples of the air conditioner of the present invention include inorganic nucleating agents such as talc, silica, calcium silicate, calcium carbonate, aluminum oxide, titanium oxide, diatomaceous earth, clay, baking soda, alumina, barium sulfate, aluminum oxide, and bentonite. , At least one selected from these groups can be used. The amount of the bubble regulator used is usually 0.005 to 2 parts by weight with respect to 100 parts by weight of the resin composition.

本発明の脂肪族ポリエステル系樹脂発泡粒子成形体の製造例を、特に限定するわけではないが以下に例示する。   Although the manufacturing example of the aliphatic polyester-type resin expanded particle molding of this invention is not necessarily limited, it illustrates below.

<樹脂組成物の作製>
本発明の樹脂組成物は、まずP3HAなどの脂肪族ポリエステル系樹脂である基材樹脂、イソシアネート化合物、さらには必要に応じて染料、顔料などの着色剤、酸化防止剤、紫外線吸収剤、可塑剤、滑剤、結晶化核剤、無機充填剤、気泡調整剤などの添加剤を所定量ずつブレンドした後、押出機、ニーダ−、バンバリーミキサー、ロールなどを用いて加熱溶融混錬し、押出機の場合、押出機先端のダイス部からストランドを得る。押し出されたストランドを、ペレタイザーのカッター回転数を調整しながらカッティングして樹脂組成物を得る。
<Preparation of resin composition>
The resin composition of the present invention includes a base resin that is an aliphatic polyester resin such as P3HA, an isocyanate compound, and further, if necessary, a colorant such as a dye and a pigment, an antioxidant, an ultraviolet absorber, and a plasticizer. , After blending a predetermined amount of additives such as lubricants, crystallization nucleating agents, inorganic fillers, bubble regulators, etc., then heat melt kneading using an extruder, kneader, Banbury mixer, roll, etc. In this case, a strand is obtained from the die part at the tip of the extruder. The extruded strand is cut while adjusting the number of rotations of the pelletizer cutter to obtain a resin composition.

その際、該樹脂組成物のL/DのLは、0.1〜5が好ましい。0.1mm未満であると、含浸時の発泡剤が揮発し易くなる場合がある。また、5mmを超えると、得られる樹脂発泡粒子サイズも大きくなる為、発泡成形時に金型充填口に詰まる場合がある。また、L/Dが1.2以上、且つ5.0以下の柱状形状である脂肪族ポリエステル系樹脂発泡粒子を得るためには、樹脂組成物のL/Dも大きい必要がある。その際、該樹脂組成物のL/Dの例として、1.2以上、且つ5.0以下になるようにカッティングすることが好ましい。本発明で言うL/Dとは、樹脂組成物又は樹脂発泡粒子の粒子1個当たりの最大直径をD、最大長さをLとし、最大長さを最大直径で割った値をL/Dという。   In that case, L of L / D of this resin composition has preferable 0.1-5. If it is less than 0.1 mm, the foaming agent at the time of impregnation tends to volatilize. If it exceeds 5 mm, the resin foam particle size obtained also becomes large, so that the mold filling port may be clogged during foam molding. Moreover, in order to obtain the aliphatic polyester-based resin expanded particles having a columnar shape with L / D of 1.2 or more and 5.0 or less, L / D of the resin composition needs to be large. In that case, as an example of L / D of this resin composition, it is preferable to cut so that it may become 1.2 or more and 5.0 or less. L / D as referred to in the present invention refers to the maximum diameter per particle of the resin composition or resin expanded particles as D, the maximum length as L, and the value obtained by dividing the maximum length by the maximum diameter as L / D. .

<脂肪族ポリエステル系樹脂発泡粒子作製工程>
上記で得られた樹脂組成物を、分散剤とともに密閉容器内で水系分散媒に分散後、発泡剤を密閉容器内に導入し、該樹脂組成物の軟化温度以上に加熱し、必要であれば発泡させる温度付近で一定の時間、例えば5分〜5時間保持した後、密閉容器の一端を解放し、前記樹脂組成物と水系分散媒とを密閉容器の圧力(例えば0.05〜20MPa)よりも低圧の雰囲気下に放出して、L/Dが1.2以上、且つ5.0以下の柱状形状である脂肪族ポリエステル系樹脂発泡粒子が得られる。L/Dが1.2未満の場合、最終的に得られる脂肪族ポリエステル系樹脂発泡粒子成形体の空隙率が低くなりすぎる場合がある。また、L/Dが5.0を越えると、得られる発泡粒子を発泡成形する際、金型充填口に発泡粒子が詰まる場合がある。
<Aliphatic polyester resin expanded particle production process>
After dispersing the resin composition obtained above in a water-based dispersion medium in a closed container together with a dispersant, a foaming agent is introduced into the sealed container and heated above the softening temperature of the resin composition, if necessary. After holding for a certain period of time near the foaming temperature, for example, 5 minutes to 5 hours, one end of the sealed container is released, and the resin composition and the aqueous dispersion medium are removed from the pressure of the sealed container (for example, 0.05 to 20 MPa). Is released into a low-pressure atmosphere, and aliphatic polyester resin expanded particles having a columnar shape with an L / D of 1.2 or more and 5.0 or less are obtained. When L / D is less than 1.2, the porosity of the finally obtained aliphatic polyester resin expanded resin molded body may be too low. On the other hand, when L / D exceeds 5.0, when the foamed particles to be obtained are foam-molded, the mold filling port may be clogged with foamed particles.

また、樹脂発泡粒子のL/DのLは、0.2〜20mmが好ましい。0.2mm未満であると、含浸時の発泡剤が揮発しやすくなる場合がある。また、20mmを超えると、得られる樹脂発泡粒子サイズも大きくなる為、発泡成形時に金型充填口に詰まる場合がある。   The L / D of the resin foam particles is preferably 0.2 to 20 mm. If it is less than 0.2 mm, the foaming agent at the time of impregnation tends to volatilize. On the other hand, if it exceeds 20 mm, the size of the resin foam particles obtained is increased, and therefore the mold filling port may be clogged during foam molding.

前記分散剤としては、第3リン酸カルシウム、ピロリン酸カルシウム、カオリン、塩基性炭酸マグネシウム、酸化アルミニウム、塩基性炭酸亜鉛等の無機物と、ドデシルベンゼンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ、ノルマルパラフィンスルフォン酸ソーダ等のアニオン界面活性剤とを組み合わせて使用される。無機物の使用量は、樹脂組成物100重量部に対して0.1〜3.0重量部が好ましく、アニオン界面活性剤の使用量は、樹脂組成物100重量部に対し0.001〜0.2重量部が好ましい。また、分散媒としては経済性及び取り扱い易さの観点から通常は水が好ましいが、水系であればこれに限られたものではない。   Examples of the dispersing agent include inorganic substances such as tricalcium phosphate, calcium pyrophosphate, kaolin, basic magnesium carbonate, aluminum oxide, basic zinc carbonate, dodecylbenzene sulfonate sodium, α-olefin sulfonate sodium, normal paraffin sulfonate sodium. In combination with an anionic surfactant. The amount of the inorganic substance used is preferably 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the resin composition, and the amount of the anionic surfactant used is 0.001 to 0.000 with respect to 100 parts by weight of the resin composition. 2 parts by weight is preferred. The dispersion medium is usually water from the viewpoint of economy and ease of handling, but is not limited to this as long as it is aqueous.

前記の発泡剤としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン等の炭素数3〜5の飽和炭化水素、ジメチルエーテル、ジエチルエーテル、及びメチルエチルエーテル等のエーテル、モノクロルメタン、ジクロロメタン、ジクロロジフルオロエタン等のハロゲン化炭化水素、二酸化炭素、窒素、空気などの無機ガス、水等が挙げられるが、これらを少なくとも1種使用すればよい。環境適合性を考えるとハロゲン化炭化水素以外の発泡剤が好ましい。発泡剤の添加量は、目的の予備発泡粒子の発泡倍率、発泡剤の種類、樹脂の種類、樹脂粒子と分散媒の比率、容器の空間容積、含浸または発泡温度などによって異なるが、樹脂組成物100重量部に対し、通常2〜10000重量部の範囲である。   Examples of the blowing agent include saturated hydrocarbons having 3 to 5 carbon atoms such as propane, normal butane, isobutane, normal pentane, isopentane, and neopentane, ethers such as dimethyl ether, diethyl ether, and methyl ethyl ether, monochloromethane, dichloromethane, Halogenated hydrocarbons such as dichlorodifluoroethane, inorganic gases such as carbon dioxide, nitrogen and air, water and the like can be mentioned, but at least one of these may be used. In view of environmental compatibility, foaming agents other than halogenated hydrocarbons are preferred. The amount of foaming agent added varies depending on the expansion ratio of the target pre-expanded particles, the type of foaming agent, the type of resin, the ratio of the resin particles to the dispersion medium, the space volume of the container, the impregnation or foaming temperature, etc. Usually, it is in the range of 2 to 10,000 parts by weight with respect to 100 parts by weight.

なお、上記方法で得られた発泡粒子は、必要であれば加圧空気で加圧熟成し、発泡粒子に発泡能を付与する事が可能である。   The foamed particles obtained by the above method can be pressurized and aged with pressurized air if necessary to impart foaming ability to the foamed particles.

<脂肪族ポリエステル系樹脂発泡粒子成形体作製工程>
上記方法で得られた発泡粒子を加圧熟成後、金型に充填し、次いで、金型内に水蒸気を導入することにより、発泡粒子同士を加熱融着させ、生分解性脂肪族ポリエステル系樹脂発泡粒子成形体が得られる。
<Aliphatic polyester resin foamed particle molding process>
The foamed particles obtained by the above-described method are subjected to pressure aging and then filled into a mold, and then, by introducing water vapor into the mold, the foamed particles are heat-fused to produce a biodegradable aliphatic polyester resin. A foamed particle molded body is obtained.

前記加熱成形して発泡粒子を融着させるに際し、脂肪族ポリエステル系樹脂発泡粒子の融点より25℃以上低い温度の水蒸気を用いることが好ましく、該融点より25〜80℃低い温度の水蒸気を用いることがより好ましい。加熱成形温度が脂肪族ポリエステル系樹脂発泡粒子の融点より25℃以上低くないと、最終的に得られる脂肪族ポリエステル系樹脂発泡粒子成形体の空隙率が低くなりすぎる場合がある。   When fusing the expanded particles by thermoforming, it is preferable to use water vapor at a temperature 25 ° C. or more lower than the melting point of the aliphatic polyester resin expanded particles, and use water vapor at a temperature 25 to 80 ° C. lower than the melting point. Is more preferable. If the heat molding temperature is not lower by 25 ° C. or more than the melting point of the aliphatic polyester resin expanded particles, the finally obtained aliphatic polyester resin expanded particles may have a too low porosity.

本発明で言う脂肪族ポリエステル系樹脂発泡粒子成形体の空隙率とは、例えば、発泡粒子成形体をある大きさに切り出し、外形寸法より見掛け体積V1を求め、更に同じ成形体を一定量のエタノールを入れたメスシリンダー中に浸漬しその時の増加容積V2を求める。得られた数値を以下式2に当てはめ、空隙率を算出する。
空隙率(%)={(V1−V2)/(V1)}×100………式(2)
The porosity of the aliphatic polyester-based resin expanded particle molded product referred to in the present invention refers to, for example, cutting the expanded particle molded product into a certain size, obtaining an apparent volume V1 from the outer dimensions, and further removing the same molded product with a certain amount of ethanol. Is immersed in a graduated cylinder and the increased volume V2 at that time is determined. The obtained numerical value is applied to Equation 2 below to calculate the porosity.
Void ratio (%) = {(V1−V2) / (V1)} × 100 (2)

本発明の脂肪族ポリエステル系樹脂発泡粒子成形体の空隙率としては、10〜50%であることが好ましい。10%未満の場合、満足する通水性、通気性を確保する事が困難な場合がある。また、50%を超える場合、発泡粒子同士の融着性が悪くなり、強度が得られず成形体が破損する場合がある。   The porosity of the aliphatic polyester resin expanded resin molded article of the present invention is preferably 10 to 50%. If it is less than 10%, it may be difficult to ensure satisfactory water permeability and air permeability. Moreover, when it exceeds 50%, the fusion | melting property of foamed particles worsens, intensity | strength cannot be acquired and a molded object may be damaged.

本発明の脂肪族ポリエステル系樹脂発泡粒子成形体は、植生トレー、植生ポット、植木鉢、水耕栽培用(苗・野菜類・花卉類・植物)支持材、観葉植物用支持材、屋上・壁面緑化支持材などの植栽容器、フラワーアレンジメント用支持材、水質浄化用支持材、生き物用保温材、ドレン材など、通気性・通水性、加えて生分解性が要求される用途に好適に用いられる。   Aliphatic polyester resin foamed particle molded body of the present invention includes a vegetation tray, a vegetation pot, a flower pot, a support material for hydroponics (seedlings / vegetables / flowers / plants), a support material for foliage plants, a rooftop / wall greening Suitable for applications that require breathability, water permeability, and biodegradability, such as planting containers such as support materials, support materials for flower arrangements, support materials for water purification, heat insulation materials for living creatures, drain materials, etc. .

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。また、実施例において「部」は重量基準である。本発明で使用した物質は以下の様に略した。
P3HA:ポリ(3−ヒドロキシアルカノエート)
PHBH:ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)
HH率:PHBH中のヒドロキシヘキサノエートのモル分率(mol%)
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, “parts” are based on weight. Substances used in the present invention were abbreviated as follows.
P3HA: poly (3-hydroxyalkanoate)
PHBH: poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)
HH ratio: mole fraction of hydroxyhexanoate in PHBH (mol%)

<樹脂組成物及び樹脂発泡粒子のL/D>
実施例・比較例で得られた樹脂組成物及び樹脂発泡粒子の最大直径及び最大長さをノギスで計測し、L及びL/Dを算出した。
<L / D of resin composition and resin expanded particles>
The maximum diameter and the maximum length of the resin compositions and resin expanded particles obtained in Examples and Comparative Examples were measured with calipers, and L and L / D were calculated.

<樹脂組成物及び樹脂発泡粒子の結晶融解温度(Tm)>
示差走査熱量測定は、実施例及び比較例にある樹脂組成物約5mgを精秤し、示差走査熱量計(セイコー電子工業(株)製、SSC5200)にて10℃/分の昇温速度で0℃から200℃まで昇温を実施し、得られたDSC曲線より、結晶融解温度(Tm)を得た。
<Crystal melting temperature (Tm) of resin composition and resin expanded particles>
In the differential scanning calorimetry, about 5 mg of the resin composition in Examples and Comparative Examples was precisely weighed, and the differential scanning calorimeter (Seiko Denshi Kogyo Co., Ltd., SSC5200) was heated at a rate of temperature increase of 10 ° C./min. The temperature was raised from 200C to 200C, and the crystal melting temperature (Tm) was obtained from the obtained DSC curve.

<樹脂組成物の重量平均分子量測定法>
GPC測定により、実施例及び比較例にある樹脂組成物のポリスチレン換算Mwを求めた。GPC装置はCCP&8020システム(東ソー製)を使用し、カラムはGPCK−805L(昭和電工製)、カラム温度40℃とし、各樹脂発泡粒子20mgをクロロホルム10mlに溶解したものを、200μl注入し、Mwを求めた。
<Method for measuring weight average molecular weight of resin composition>
The polystyrene conversion Mw of the resin composition in an Example and a comparative example was calculated | required by GPC measurement. The GPC device uses CCP & 8020 system (manufactured by Tosoh Corporation), the column is GPCK-805L (manufactured by Showa Denko), the column temperature is 40 ° C., 20 mg of each foamed resin particle is dissolved in 10 ml of chloroform, 200 μl is injected, and Mw is injected. Asked.

<樹脂発泡粒子及び樹脂発泡粒子成形体の発泡倍率測定法>
23℃のエタノールの入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて7日間放置した500個以上の脂肪族ポリエステル系樹脂発泡粒子(発泡粒子群の重量W(g))又は適当な大きさに切り出した脂肪族ポリエステル系樹脂発泡粒子成形体を、金網などを使用して沈めた時のエタノール液面上昇分より、発泡粒子群及び成形体の容積V(cm)を読みとった。発泡粒子及び成形体の発泡倍率は、発泡粒子群の重量W(g)、発泡粒子群及び成形体の容積V(cm)及び樹脂密度ρ(g/cm)から次式で算出した。
<Method for Measuring Foaming Ratio of Resin Foamed Particles and Resin Foamed Particle Molded Article>
A graduated cylinder containing ethanol at 23 ° C. was prepared, and 500 or more aliphatic polyester resin expanded particles (of the expanded particles group) were left in the graduated cylinder for 7 days at a relative humidity of 50%, 23 ° C. and 1 atm. Weight W (g)) or the volume of the foam particles and the molded product from the rise in the ethanol liquid level when the molded product of the aliphatic polyester resin expanded particle cut out to an appropriate size is sunk using a wire mesh or the like. V (cm 3 ) was read. The expansion ratio of the expanded particles and the molded body was calculated from the weight W (g) of the expanded particle group, the volume V (cm 3 ) of the expanded particle group and the molded body, and the resin density ρ (g / cm 3 ) by the following equation.

発泡倍率=V/(W/ρ)
<樹脂発泡粒子及び樹脂発泡粒子成形体の独立気泡率測定法>
マルチピクノメーター(ベックマン・ジャパン(株)社製)を用い、ASTM D−2856に準じて測定した。
Foaming ratio = V / (W / ρ)
<Method for measuring closed cell ratio of resin foam particles and resin foam particle molding>
It measured according to ASTM D-2856 using a multi-pynometer (manufactured by Beckman Japan Co., Ltd.).

<樹脂発泡粒子成形体の空隙率測定>
実施例・比較例で得られた脂肪族ポリエステル系樹脂発泡粒子成形体の表面からまずは5mmずつカッターで剥ぎ取り、残った樹脂発泡粒子成形体から50×50×10mmを切り出し、外形寸法より見掛け体積V1(cm)を求めた。更に、同じサンプルを一定量のエタノールを入れたメスシリンダー中に浸漬し、その時の増加体積V2(cm)を測定し、次式により求めた。
空隙率(%)={(V1−V2)/(V1)}×100………式(2)
<Measurement of porosity of molded resin particles>
First, peel off 5 mm each from the surface of the aliphatic polyester resin expanded particle molded body obtained in Examples and Comparative Examples with a cutter, cut out 50 × 50 × 10 mm from the remaining expanded resin particle molded body, and apparent volume from the outer dimensions V1 a (cm 3) was determined. Furthermore, the same sample was immersed in a graduated cylinder containing a certain amount of ethanol, and the increased volume V2 (cm 3 ) at that time was measured.
Void ratio (%) = {(V1−V2) / (V1)} × 100 (2)

<樹脂発泡粒子成形体の通水性評価>
実施例・比較例で得られた脂肪族ポリエステル系樹脂発泡粒子成形体を100×200×10(mm)の大きさに切り出し、上に水を載せてから3分間観察した。その際の評価基準は以下の通りである。○:成形体表面に水を垂らし成形体裏面から水が垂れ落ちる、×:成形体表面に水を垂らし成形体裏面から水が垂れ落ちない。
<Water permeability evaluation of resin foam particle molding>
Aliphatic polyester resin expanded resin molded articles obtained in Examples and Comparative Examples were cut out to a size of 100 × 200 × 10 (mm), and observed for 3 minutes after placing water thereon. The evaluation criteria at that time are as follows. ○: Water is dropped on the surface of the molded body and water falls from the back surface of the molded body. ×: Water is dropped on the surface of the molded body, and water does not fall from the back surface of the molded body.

<樹脂発泡粒子成形体の通気性評価>
実施例・比較例で得られた脂肪族ポリエステル系樹脂発泡粒子成形体を100×200×10(mm)の大きさに切り出し、成形体表面に口を当てて息を吹き込んだ際の状態を観察した。その際の評価基準は以下の通りである。○:成形体裏面から息が抜ける、×:成形体裏面から息が抜けない。
<Breathability evaluation of resin foam particle molding>
The foamed molded article of aliphatic polyester-based resin obtained in Examples / Comparative Examples was cut out to a size of 100 × 200 × 10 (mm), and the state when the breath was blown against the surface of the molded body was observed. did. The evaluation criteria at that time are as follows. ○: Breathing out from the back of the molded body, x: Breathing out from the back of the molded body.

<樹脂発泡粒子の生分解性>
実施例・比較例で得られた脂肪族ポリエステル系樹脂発泡粒子を、深さ10cmの土中に埋めて6ヶ月後、形状変化を観察し、分解性を以下の基準で評価した。○:かなりの部分が分解されており形状を確認しにくいほど分解、×:ほとんど形状に変化なく発泡粒子が観察され、分解していない。
<Biodegradability of resin foam particles>
The foamed aliphatic polyester resin particles obtained in Examples and Comparative Examples were embedded in soil having a depth of 10 cm, and after 6 months, the shape change was observed, and the degradability was evaluated according to the following criteria. ○: Decomposed so that a considerable part is decomposed and it is difficult to confirm the shape. ×: Foamed particles are observed with almost no change in shape, and are not decomposed.

(製造例1) 3HH率7mol%のPHBHの作製
生産菌株として、形質転換体(PHB−4/pJRDdmsEE32d13)を用いるが、PHB−4/pJRDdmsEE32d13を、国際公開第2004/074476号パンフレットの実施例に準拠した次の方法に従って該生産菌株を得た。まず、広宿主域ベクターであるRSF1010の誘導体のpJRD215(ATCC 37533、J.Davison,M.Heusterspreute等,Gene,51,275−280(1987))を制限酵素Van91Iで切断することにより、mobAおよびB遺伝子の一部分であるpJRD215の3215〜4075を欠失させた約9.5kbのDNA断片を得、これを、DNA Ligation Kit Ver.1(宝酒造(株)製)を用いて自己連結させ、プラスミドpJRDdmを得た。得られたpJRDdmを制限酵素EcoICRIとPshAIで切断することにより、ストレプトマイシン耐性遺伝子(strAおよびstrB遺伝子)のうち約1.5kbを欠失させ、平滑末端となった約8.0kbのDNA断片を得、これを自己連結させ、pJRD215の206〜1690を欠失させることでプラスミドpJRDdmsを得た。得られたpJRDdmsを制限酵素EcoRIで切断した後、アエロモナス・キャビエ由来ポリエステル合成酵素の改変遺伝子断片EE32d13(特開平10−108682号公報参照)を、上記で得られたpJRDdmsのEcoRIサイトに挿入することで発現プラスミドpJRDdmsEE32d13を得た。pJRDdmsEE32d13は、電気パルス法によりラルストニア・ユートロファPHB−4株(DSM541、ポリエステル合成能欠損株)に導入し、生産菌株(PHB−4/pJRDdmsEE32d13)を得た。
(Production Example 1) Production of PHBH having a 3HH ratio of 7 mol% A transformant (PHB-4 / pJRDdmsEE32d13) is used as a production strain. The production strain was obtained according to the following method. First, pARD215 (ATCC 37533, J. Davison, M. Heustersprite et al., Gene, 51,275-280 (1987)), a derivative of RSF1010, which is a broad host range vector, is cleaved with restriction enzyme Van91I, so that mobs A and B A DNA fragment of about 9.5 kb from which 3215-4075 of pJRD215, which is a part of the gene, was deleted, was obtained by using DNA Ligation Kit Ver. 1 (Takara Shuzo Co., Ltd.) was used for self-ligation to obtain plasmid pJRDdm. By cleaving the obtained pJRDdm with restriction enzymes EcoICRI and PshAI, about 1.5 kb of the streptomycin resistance gene (strA and strB genes) is deleted, and a blunt-ended DNA fragment of about 8.0 kb is obtained. This was self-ligated and the plasmid pJRDdms was obtained by deleting 206-1690 of pJRD215. After the obtained pJRDdms is cleaved with the restriction enzyme EcoRI, the modified gene fragment EE32d13 (see Japanese Patent Laid-Open No. 10-108682) of Aeromonas caviae is inserted into the EcoRI site of pJRDdms obtained above. The expression plasmid pJRDdmsEE32d13 was obtained. pJRDdmsEE32d13 was introduced into Ralstonia eutropha PHB-4 strain (DSM541, strain lacking polyester synthesis ability) by an electric pulse method to obtain a production strain (PHB-4 / pJRDdmsEE32d13).

種母培地の組成は1w/v% Meat−extract、1w/v% Bacto−Trypton、0.2w/v%Yeast−extract、0.9w/v%Na2PO4・12H2O 、0.15w/v%KH2PO4、(pH6.8)とした。   The composition of the seed medium is 1 w / v% Meat-extract, 1 w / v% Bacto-Trypton, 0.2 w / v% Yeast-extract, 0.9 w / v% Na2PO4 · 12H2O, 0.15 w / v% KH2PO4, (PH 6.8).

前培養培地の組成は1.1w/v% Na2PO4・12H2O、0.19w/v% KH2PO4、1.29 w/v%(NH4)2SO4 、0.1w/v% MgSO4・7H2O、2.5w/v%パームWオレイン油、0.5v/v% 微量金属塩溶液(0.1N塩酸に1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl2・6H2Oを溶かしたもの。)、5×10−6w/v% カナマイシンとした。   The composition of the preculture medium is 1.1 w / v% Na2PO4 · 12H2O, 0.19 w / v% KH2PO4, 1.29 w / v% (NH4) 2SO4, 0.1 w / v% MgSO4 · 7H2O, 2.5 w / v% Palm W olein oil, 0.5v / v% trace metal salt solution (1.6w / v% FeCl3 · 6H2O in 0.1N hydrochloric acid, 1w / v% CaCl2 · 2H2O, 0.02w / v% CoCl2 · 6H2O , 0.016 w / v% CuSO4 · 5H2O, 0.012 w / v% NiCl2 · 6H2O). 5 × 10 −6 w / v% kanamycin.

ポリエステル生産培地の組成は0.385w/v% Na2PO4・12H2O、0.067w/v% KH2PO4、0・291w/v%(NH4)2SO4 、0.1w/v% MgSO4・7H2O、0.5v/v% 微量金属塩溶液(0.1N塩酸に1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl2・6H2Oを溶かしたもの。)、0.05w/v%BIOSPUREX200K(消泡剤:コグニスジャパン製)、5×10−6w/v% カナマイシンとした。炭素源はパーム核油を分別した低融点画分であるパーム核油オレインを単一炭素源として用い、培養全般を通じ、比基質供給速度が0.08〜0.1(g油脂)×(g正味乾燥菌体重量)−1×(h)−1となるように流加した。   The composition of the polyester production medium is 0.385 w / v% Na2PO4 · 12H2O, 0.067 w / v% KH2PO4, 0.291 w / v% (NH4) 2SO4, 0.1 w / v% MgSO4 · 7H2O, 0.5 v / v % Trace metal salt solution (1.6 W / v% FeCl3 · 6H2O in 0.1N hydrochloric acid, 1 w / v% CaCl2 · 2H2O, 0.02 w / v% CoCl2 · 6H2O, 0.016 w / v% CuSO4 · 5H2O, 0 .012 w / v% NiCl2 · 6H2O dissolved), 0.05 w / v% BIOSPUREX200K (antifoaming agent: manufactured by Cognis Japan), 5 × 10-6 w / v% kanamycin. As a carbon source, palm kernel oil olein, which is a low melting point fraction obtained by separating palm kernel oil, is used as a single carbon source. Throughout the entire culture, the specific substrate supply rate is 0.08 to 0.1 (g oil) x (g It fed so that it might become (net dry microbial cell weight) -1x (h) -1.

生産菌株(PHB−4/pJRDdmsEE32d13)のグリセロールストック(50μl)を種母培地(10ml)に接種して24時間培養し、1.8Lの前培養培地を入れた3Lジャーファーメンター(丸菱バイオエンジ製MDL−300型)に1.0v/v%接種した。運転条件は、培養温度30℃、攪拌速度500rpm、通気量1.8L/minとし、pHは6.7〜6.8の間でコントロールしながら28時間培養した。pHコントロールには7%水酸化アンモニウム水溶液を使用した。   A glycerol stock (50 μl) of the production strain (PHB-4 / pJRDdmsEE32d13) was inoculated into a seed medium (10 ml) and cultured for 24 hours, and then a 3 L jar fermenter (Maruhishi Bioengineer) containing 1.8 L of a preculture medium. MDL-300 manufactured) was inoculated at 1.0 v / v%. The operating conditions were a culture temperature of 30 ° C., a stirring speed of 500 rpm, an aeration rate of 1.8 L / min, and a culture for 28 hours while controlling the pH between 6.7 and 6.8. A 7% aqueous ammonium hydroxide solution was used for pH control.

ポリエステル生産培養は6Lの生産培地を入れた10Lジャーファーメンター(丸菱バイオエンジ製MDL−1000型)に前培養種母を5.0v/v%接種した。運転条件は、培養温度28℃、攪拌速度400rpm、通気量3.6L/minとし、pHは6.7から6.8の間でコントロールした。 pHコントロールには7%水酸化アンモニウム水溶液を使用した。培養は約64時間行い、培養終了後、遠心分離によって菌体を回収、メタノールで洗浄、凍結乾燥し、乾燥菌体重量を測定した。   In the polyester production culture, a 10 L jar fermenter (MDL-1000, manufactured by Maruhishi Bioengine) containing 6 L of production medium was inoculated with 5.0 v / v% of the preculture seed. The operating conditions were a culture temperature of 28 ° C., a stirring speed of 400 rpm, an aeration rate of 3.6 L / min, and a pH controlled between 6.7 and 6.8. A 7% aqueous ammonium hydroxide solution was used for pH control. Culturing was carried out for about 64 hours. After completion of the cultivation, the cells were collected by centrifugation, washed with methanol, lyophilized, and the weight of the dried cells was measured.

得られた乾燥菌体約1gに100mlのクロロホルムを加え、室温で一昼夜攪拌して、菌体内のPHBHを抽出した。菌体残渣をろ別後、エバポレーターで総容量が約30mlになるまで濃縮後、約90mlのヘキサンを徐々に加え、ゆっくり攪拌しながら、1時間放置した。析出したPHBHをろ別後、50℃で3時間真空乾燥した。乾燥PHBHを以下の分析により、3HH組成分析及び分子量測定を行った。   To about 1 g of the obtained dried cells, 100 ml of chloroform was added and stirred overnight at room temperature to extract PHBH in the cells. The bacterial cell residue was filtered off and concentrated with an evaporator until the total volume reached about 30 ml. Then, about 90 ml of hexane was gradually added, and the mixture was allowed to stand for 1 hour with slow stirring. The precipitated PHBH was filtered off and then vacuum dried at 50 ° C. for 3 hours. The dry PHBH was subjected to 3HH composition analysis and molecular weight measurement by the following analysis.

<PHBHの3HH組成(mol%)分析>
生産されたPHBHの3HH組成分析は以下のようにガスクロマトグラフィーによって測定した。乾燥PHBHの約20mgに2mlの硫酸−メタノール混液(15:85)と2mlのクロロホルムを添加して密栓し、100℃で140分間加熱することでPHBH分解物のメチルエステルを得た。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置した。4mlのジイソプロピルエーテルを添加してよく混合した後、遠心して、上清中のPHBH分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより分析した。ガスクロマトグラフは島津製作所GC−17A、キャピラリーカラムはGLサイエンス社製NEUTRA BOND−1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。キャリアガスとしてHeを用い、カラム入口圧100kPaとし、サンプルは1μlを注入した。温度条件は、初発温度100〜200℃まで8℃/分の速度で昇温、さらに200〜290℃まで30℃/分の速度で昇温した。上記条件にて分析した結果、96時間培養終了時のPHBHの3HH組成は平均値で7mol%であった。
<Analysis of 3HH composition (mol%) of PHBH>
The 3HH composition analysis of the produced PHBH was measured by gas chromatography as follows. To 20 mg of dry PHBH, 2 ml of a sulfuric acid-methanol mixture (15:85) and 2 ml of chloroform were added and sealed, and heated at 100 ° C. for 140 minutes to obtain a methyl ester of a PHBH decomposition product. After cooling, 1.5 g of sodium bicarbonate was added little by little to neutralize it, and the mixture was allowed to stand until the generation of carbon dioxide gas stopped. After adding 4 ml of diisopropyl ether and mixing well, the mixture was centrifuged and the monomer unit composition of the PHBH degradation product in the supernatant was analyzed by capillary gas chromatography. The gas chromatograph used was Shimadzu Corporation GC-17A, and the capillary column used was GL Science's NEUTRA BOND-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 μm). He was used as the carrier gas, the column inlet pressure was 100 kPa, and 1 μl of the sample was injected. As temperature conditions, the temperature was raised from the initial temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further from 200 to 290 ° C. at the rate of 30 ° C./min. As a result of analysis under the above conditions, the 3HH composition of PHBH at the end of the 96-hour culture was 7 mol% on average.

<PHBHの重量平均分子量(Mw)分析>
PHBHの重量平均分子量(Mw)分析はゲル パーミッション クロマトグラフィー法により行った。抽出したPHBH約15mgを10mlのクロロホルムに溶解し、0.2μmのフィルターで濾過して測定用サンプルとし、その0.05mlを用いて分析した。測定システムはSLC−10A(島津製作所製)、カラムはShodex GPC K−806L(昭和電工製)を2本直列に接続し、40℃で測定した。移動層は1.0ml/分のクロロホルムとし、RI検出器(RID−10A、島津製作所製)を用いた。標準品としては同様に処理したポリスチレン(昭和電工製、重量平均分子量:約700万、約107万、15万、3万)を用い、検量線により算出した結果、PHBHの重量平均分子量は70万であった。
<Weight average molecular weight (Mw) analysis of PHBH>
The weight average molecular weight (Mw) analysis of PHBH was performed by gel permeation chromatography. About 15 mg of extracted PHBH was dissolved in 10 ml of chloroform, filtered through a 0.2 μm filter to obtain a measurement sample, and 0.05 ml of the sample was analyzed. The measurement system was SLC-10A (manufactured by Shimadzu Corporation), and the column was connected with two Shodex GPC K-806L (manufactured by Showa Denko) in series, and measurements were made at 40 ° C. The moving layer was chloroform at 1.0 ml / min, and an RI detector (RID-10A, manufactured by Shimadzu Corporation) was used. As a standard product, polystyrene treated in the same manner (manufactured by Showa Denko, weight average molecular weight: about 7 million, about 1.70 million, 150,000, 30,000) was calculated by a calibration curve. As a result, the weight average molecular weight of PHBH was 700,000. Met.

(実施例1)
3HH率7mol%のPHBH(Tm135℃、Mw70万、比重1.2g/ml)100重量部、及びポリイソシアネート化合物2重量部(日本ポリウレタン製、ミリオネートMR-200(イソシアネート基2.7〜2.8当量/モル))とをハンドブレンドした後、30mmφ二軸押出機(池貝製作所製、PCM30)でシリンダー温度150℃にて溶融混練し、押出機先端に取り付けられた3mmφの小孔ダイより押し出されたストランドを、ペレタイザーのカッター回転数を調整しながらL/D:2.4、L:3.1mm、融点138℃の樹脂組成物を作製した。
Example 1
100 parts by weight of PHBH (Tm 135 ° C., Mw 700,000, specific gravity 1.2 g / ml) having a 3HH ratio of 7 mol%, and 2 parts by weight of a polyisocyanate compound (manufactured by Nippon Polyurethane, Millionate MR-200 (isocyanate groups 2.7 to 2.8) Equivalent / mol)) is hand-blended with a 30 mmφ twin screw extruder (Ikegai Seisakusho, PCM30) at a cylinder temperature of 150 ° C. and extruded from a 3 mmφ small hole die attached to the tip of the extruder. A resin composition having an L / D of 2.4, an L of 3.1 mm, and a melting point of 138 ° C. was prepared from the prepared strand while adjusting the number of revolutions of the pelletizer.

該樹脂組成物100重量部を、4.5L耐圧容器に仕込んだ後、発泡剤としてイソブタン25重量部を添加、攪拌し、容器内温度が119℃となるまで昇温(発泡温度とする)後、容器内圧が2.5MPaの状態で1時間保持したのち、耐圧容器下部に設けた小孔ノズルを通して大気圧下に放出発泡し、L/D:2.2、L:7.7mm、発泡倍率が15倍、独立気泡率98%、融点146℃の脂肪族ポリエステル系樹脂発泡粒子を得た。   After charging 100 parts by weight of the resin composition into a 4.5 L pressure vessel, adding 25 parts by weight of isobutane as a foaming agent, stirring, and raising the temperature until the temperature in the container reaches 119 ° C. (foaming temperature) After holding for 1 hour in a state where the internal pressure of the container is 2.5 MPa, the foam is discharged and foamed under atmospheric pressure through a small hole nozzle provided in the lower part of the pressure-resistant container. L / D: 2.2, L: 7.7 mm, foaming ratio Was 15 times, closed cell ratio was 98%, and an aliphatic polyester resin expanded particle having a melting point of 146 ° C was obtained.

該脂肪族ポリエステル系樹脂発泡粒子を300×400×20mmの金型に充填し、0.06〜0.10MPa(約86〜100℃)の水蒸気を金型に導入し、樹脂発泡粒子を加熱、融着させ、空隙率18%、発泡倍率15倍、独立気泡率95%の脂肪族ポリエステル系樹脂発泡粒子成形体を得た。空隙構造を有する為、通気性及び通水性が確認できた。また、脂肪族ポリエステル系樹脂発泡粒子の生分解性は良好であった。発泡粒子及び成形体の評価結果は表1に示す。   The aliphatic polyester-based resin expanded particles are filled into a 300 × 400 × 20 mm mold, 0.06-0.10 MPa (about 86-100 ° C.) water vapor is introduced into the mold, and the resin expanded particles are heated. By fusion-bonding, an aliphatic polyester resin expanded particle molded body having a porosity of 18%, an expansion ratio of 15 times, and an closed cell ratio of 95% was obtained. Since it has a void structure, air permeability and water permeability were confirmed. Further, the biodegradability of the aliphatic polyester resin expanded particles was good. The evaluation results of the expanded particles and the molded product are shown in Table 1.

Figure 2009263483
Figure 2009263483

(実施例2)
ペレタイザーのカッター回転数を調整し、L/D:3.2にした以外は、実施例1と同様にして樹脂組成物を得た。樹脂組成物を実施例1と同様に発泡させ、L/D:3.0、発泡倍率12倍、独立気泡率99%、融点144℃の脂肪族ポリエステル系樹脂発泡粒子を得た。該脂肪族ポリエステル系樹脂発泡粒子を金型に充填後、0.06〜0.10MPa(約86〜100℃)の水蒸気を金型に導入し、樹脂発泡粒子を加熱、融着させ、空隙率30%、発泡倍率12倍、独立気泡率99%の脂肪族ポリエステル系樹脂発泡粒子成形体を得た。空隙構造を有する為、通気性及び通水性が確認できた。また、脂肪族ポリエステル系樹脂発泡粒子の生分解性は良好であった。発泡粒子及び成形体の評価結果は表1に示す。
(Example 2)
A resin composition was obtained in the same manner as in Example 1 except that the number of rotations of the pelletizer cutter was adjusted to L / D: 3.2. The resin composition was foamed in the same manner as in Example 1 to obtain aliphatic polyester resin expanded particles having an L / D of 3.0, an expansion ratio of 12 times, a closed cell ratio of 99%, and a melting point of 144 ° C. After filling the aliphatic polyester-based resin expanded particles into the mold, 0.06 to 0.10 MPa (about 86 to 100 ° C.) water vapor is introduced into the mold, and the expanded resin particles are heated and fused, and the porosity is increased. An aliphatic polyester resin expanded particle molded body having 30%, an expansion ratio of 12 times, and a closed cell ratio of 99% was obtained. Since it has a void structure, air permeability and water permeability were confirmed. Further, the biodegradability of the aliphatic polyester resin expanded particles was good. The evaluation results of the expanded particles and the molded product are shown in Table 1.

(比較例1)
ペレタイザーのカッター回転数を調整し、L/D:1.1にした以外は、実施例1と同様にして樹脂組成物を得た。
樹脂組成物を実施例1と同様に発泡させ、L/D:1.1、発泡倍率12倍、独立気泡率99%、融点144℃の脂肪族ポリエステル系樹脂発泡粒子を得た。該脂肪族ポリエステル系樹脂発泡粒子を金型に充填後、0.25〜0.30MPa(約127〜130℃)の水蒸気を金型に導入し、樹脂発泡粒子を加熱、融着させ、空隙率0%、発泡倍率12倍、独立気泡率99%の脂肪族ポリエステル系樹脂発泡粒子成形体を得た。空隙部が無い為、通気性及び通水性は確認できなかった。また、脂肪族ポリエステル系樹脂発泡粒子の生分解性は良好であった。発泡粒子及び成形体の評価結果は表1に示す。
(Comparative Example 1)
A resin composition was obtained in the same manner as in Example 1 except that the rotation speed of the cutter of the pelletizer was adjusted to L / D: 1.1.
The resin composition was foamed in the same manner as in Example 1 to obtain aliphatic polyester resin expanded particles having an L / D of 1.1, an expansion ratio of 12 times, a closed cell ratio of 99%, and a melting point of 144 ° C. After filling the aliphatic polyester-based resin expanded particles into the mold, water vapor of 0.25 to 0.30 MPa (about 127 to 130 ° C.) is introduced into the mold, the resin expanded particles are heated and fused, and the porosity is increased. An aliphatic polyester resin expanded particle molded body having 0%, an expansion ratio of 12 times, and a closed cell ratio of 99% was obtained. Since there was no gap, air permeability and water permeability could not be confirmed. Further, the biodegradability of the aliphatic polyester resin expanded particles was good. The evaluation results of the expanded particles and the molded product are shown in Table 1.

Claims (6)

L/Dが1.2以上、且つ5.0以下の柱状形状である脂肪族ポリエステル系樹脂発泡粒子を用いてなる脂肪族ポリエステル系樹脂発泡粒子成形体。   An aliphatic polyester-based resin expanded particle molded body using aliphatic polyester-based resin expanded particles having a columnar shape having an L / D of 1.2 or more and 5.0 or less. 空隙率が10〜50%である請求項1記載の脂肪族ポリエステル系樹脂発泡粒子成形体。   The aliphatic polyester resin expanded resin molded article according to claim 1, wherein the porosity is 10 to 50%. 前記脂肪族ポリエステル系樹脂が、下記式(1)で示される請求項1又は2に記載の脂肪族ポリエステル系樹脂発泡粒子成形体。
式(1)
[−O−CHR−CH−CO−] (1)
(ここでRはC2n+1で表されるアルキル基で、nは1〜15の整数)
で示される少なくとも1種の単位からなる重合体(以下、ポリ(3−ヒドロキシアルカノエート):略称はP3HA)
The aliphatic polyester-based resin expanded particle molded body according to claim 1 or 2, wherein the aliphatic polyester-based resin is represented by the following formula (1).
Formula (1)
[—O—CHR 1 —CH 2 —CO—] (1)
(Where R 1 is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 to 15)
A polymer comprising at least one unit represented by the following (hereinafter referred to as poly (3-hydroxyalkanoate): abbreviated as P3HA)
P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(以下、略称はPHBH)である請求項3に記載の脂肪族ポリエステル系樹脂発泡粒子成形体。   The aliphatic polyester-based resin expanded particle molded body according to claim 3, wherein P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter abbreviated as PHBH). PHBHの共重合成分の組成中、ポリ(3−ヒドロキシヘキサノエート)が1mol%〜20mol%である、請求項4に記載の脂肪族ポリエステル系樹脂発泡粒子成形体。   The aliphatic polyester-based resin expanded particle molded article according to claim 4, wherein poly (3-hydroxyhexanoate) is 1 mol% to 20 mol% in the composition of the copolymerization component of PHBH. P3HAからなる発泡粒子を金型に充填し、加熱成形して発泡粒子を融着させるに際し、P3HAからなる発泡粒子の融点より25℃以上低い温度の水蒸気を用いることを特徴とする請求項1〜5何れかに記載の脂肪族ポリエステル系樹脂発泡粒子成形体の製造方法。   The foamed particles made of P3HA are filled in a mold, and when the foamed particles are fused by thermoforming, steam having a temperature lower by 25 ° C. or more than the melting point of the foamed particles made of P3HA is used. 5. A method for producing an aliphatic polyester resin expanded particle molded body according to any one of 5 above.
JP2008114052A 2008-04-24 2008-04-24 New biodegradable aliphatic polyester-based resin foamed particle molded article Pending JP2009263483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114052A JP2009263483A (en) 2008-04-24 2008-04-24 New biodegradable aliphatic polyester-based resin foamed particle molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114052A JP2009263483A (en) 2008-04-24 2008-04-24 New biodegradable aliphatic polyester-based resin foamed particle molded article

Publications (1)

Publication Number Publication Date
JP2009263483A true JP2009263483A (en) 2009-11-12

Family

ID=41389754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114052A Pending JP2009263483A (en) 2008-04-24 2008-04-24 New biodegradable aliphatic polyester-based resin foamed particle molded article

Country Status (1)

Country Link
JP (1) JP2009263483A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319438A (en) * 1999-05-11 2000-11-21 Kanegafuchi Chem Ind Co Ltd Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP2004083890A (en) * 2002-07-01 2004-03-18 Jsp Corp Polylactic acid foamed particle and molded product of the polylactic acid foamed particle
JP2007015228A (en) * 2005-07-07 2007-01-25 Jsp Corp Manufacturing process of thermoplastic resin foamed particle, thermoplastic resin particle, thermoplastic resin foamed particle and molded body from thermoplastic resin foamed particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319438A (en) * 1999-05-11 2000-11-21 Kanegafuchi Chem Ind Co Ltd Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP2004083890A (en) * 2002-07-01 2004-03-18 Jsp Corp Polylactic acid foamed particle and molded product of the polylactic acid foamed particle
JP2007015228A (en) * 2005-07-07 2007-01-25 Jsp Corp Manufacturing process of thermoplastic resin foamed particle, thermoplastic resin particle, thermoplastic resin foamed particle and molded body from thermoplastic resin foamed particle

Similar Documents

Publication Publication Date Title
JP5014127B2 (en) Polyhydroxyalkanoate resin expanded particles, molded product thereof, and method for producing the expanded resin particles
JP5383489B2 (en) Biodegradable aliphatic polyester-based expanded particles and molded articles thereof
EP2832796B1 (en) Biodegradable polyester resin composition
EP3778771B1 (en) Molded article, sheet, and container, and tubular body, straw, swab, and balloon stick
CN102112519B (en) Branched pha compositions, methods for their production, and use in applications
Van der Walle et al. Properties, modifications and applications of biopolyesters
US20040068059A1 (en) Aliphatic polyester copolymer and process for producing the same, biodegradable resin molding based on aliphatic polyester, and lactone-containing resin
JP7123980B2 (en) Poly(3-hydroxyalkanoate) foamed particles and poly(3-hydroxyalkanoate) foamed molded product
JPH10508640A (en) Biodegradable polymer, its production and its use for producing biodegradable shaped bodies
CA2162173A1 (en) Polyester composition
NZ578875A (en) Foam layer produced of a biodegradable polyester mixture
US20230331950A1 (en) Method for producing poly(3-hydroxyalkanoate) foam particles and method for producing poly(3-hydroxyalkanoate) foam molded article
JP5408877B2 (en) POLYHYDROXYALKANOATE RESIN FOAM PARTICLE, FORMED ITS THEREOF AND METHOD FOR PRODUCING THE RESIN FOAM PARTICLE
US6458858B1 (en) Biodegradable polyester material particles
US20090192236A1 (en) Foamed polyhydroxyalkanoate resin particles
JP2009263483A (en) New biodegradable aliphatic polyester-based resin foamed particle molded article
Lu Processing and characterization of bio-based composites
WO2023188942A1 (en) Poly(3-hydroxyalkanoate)-based resin foam particles
JP2009235237A (en) Molded article of biodegradable foamed particles and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226