JP2003064213A - Method for manufacturing molding from poly(lactic acid) foam particle - Google Patents

Method for manufacturing molding from poly(lactic acid) foam particle

Info

Publication number
JP2003064213A
JP2003064213A JP2001255114A JP2001255114A JP2003064213A JP 2003064213 A JP2003064213 A JP 2003064213A JP 2001255114 A JP2001255114 A JP 2001255114A JP 2001255114 A JP2001255114 A JP 2001255114A JP 2003064213 A JP2003064213 A JP 2003064213A
Authority
JP
Japan
Prior art keywords
particles
expanded
polylactic acid
foamed
expanded particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001255114A
Other languages
Japanese (ja)
Other versions
JP4917221B2 (en
Inventor
Mitsuru Shinohara
篠原  充
Tomoo Tokiwa
知生 常盤
Masakazu Sakaguchi
正和 坂口
Toshio Tokoro
寿男 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2001255114A priority Critical patent/JP4917221B2/en
Publication of JP2003064213A publication Critical patent/JP2003064213A/en
Application granted granted Critical
Publication of JP4917221B2 publication Critical patent/JP4917221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a molding from poly(lactic acid) foam particles which molding is low in the fluctuation of the density between portions, which excels in the fusion between foam particles, and which gives uniform mechanical properties. SOLUTION: The foam particles formed from a resin having poly(lactic acid) as the major component are charged into a mold so as for the compression ratio to be 5-70% and then the foam particles are heated by a heating medium and fused together.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微生物分解性を有
するポリ乳酸発泡粒子成形体の製造方法に関する。更に
詳しくは発泡粒子同士の融着性に優れ、密度ばらつきの
小さい、均一な機械的物性を有するポリ乳酸発泡粒子成
形体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polylactic acid expanded particle molded article having biodegradability. More specifically, the present invention relates to a method for producing a foamed polylactic acid molded article which has excellent fusion-bonding properties between expanded particles, has a small density variation, and has uniform mechanical properties.

【0002】[0002]

【従来の技術】ポリスチレン、ポリエチレン、ポリプロ
ピレン等の樹脂からなる発泡粒子成形体は包装用緩衝
材、農産箱、魚箱、自動車部材、建築材料、土木材料等
幅広く使用されている。しかしながら、これらの発泡粒
子成形体は使用後、自然環境下で放置された場合に微生
物により殆ど分解されないためごみ散乱による環境破壊
の問題を引き起こす虞がある。一方、微生物により分解
される樹脂の研究もなされており、これまでに例えば外
科用の縫合糸としてポリ乳酸からなる微生物分解性樹脂
等が実用化され長年の実績をおさめている。また、近
年、ポリ乳酸の原料である乳酸がとうもろこし等を原材
料として発酵法によって大量且つ安価に製造できるよう
になってきている。そこで、実用性、人体安全性、微生
物分解性において実績をおさめているポリ乳酸からなる
発泡体が望まれてきている。ポリ乳酸からなる発泡体に
関する先行技術としては、特表平5−508669号、
特開平4−304244号、特開平5−139435
号、特開平5−140361号、特開平9−26365
1号等の押出発泡体に関するもの、特開平5−1709
65号、特開平5−170966号、特開2000−1
36261号等の発泡粒子に関するものが挙げられる。
上記ポリ乳酸発泡体に関する先行技術において特に発泡
粒子に関するものは形状的な制約を比較的受けずに所望
の形状の発泡体を得ることができ、軽量性、緩衝性、断
熱性などの目的に応じた物性設計も容易であるため実用
性のあるものとして特に有望である。
Foamed particle moldings made of resins such as polystyrene, polyethylene and polypropylene are widely used as cushioning materials for packaging, agricultural production boxes, fish boxes, automobile parts, building materials, civil engineering materials and the like. However, since these foamed particle molded bodies are hardly decomposed by microorganisms when they are left in a natural environment after use, they may cause a problem of environmental destruction due to dust scattering. On the other hand, research on resins that are decomposed by microorganisms has also been made, and for example, microbially decomposable resins made of polylactic acid as surgical sutures have been put into practical use so far, and have achieved many years of achievements. Further, in recent years, lactic acid, which is a raw material of polylactic acid, can be produced in large quantities at low cost by a fermentation method using corn or the like as a raw material. Therefore, a foam made of polylactic acid, which has a proven track record in practicality, human safety and biodegradability, has been desired. As a prior art relating to a foam made of polylactic acid, Japanese Patent Publication No. 5-508669,
JP-A-4-304244, JP-A-5-139435
Japanese Patent Application Laid-Open No. 5-140361, Japanese Patent Application Laid-Open No. 9-26365.
No. 1, etc. relating to extruded foams, JP-A-5-1709
No. 65, JP-A-5-170966, JP-A 2000-1
36261 and the like related to expanded particles.
In the prior art related to the above polylactic acid foam, in particular those related to expanded particles, a foam having a desired shape can be obtained without being relatively restricted in shape, and depending on the purpose such as lightness, cushioning and heat insulating properties. It is especially promising because it has practical properties because it can be easily designed.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のポリ乳
酸からなる発泡粒子成形体は、発泡性樹脂粒子を金型内
に充填し、熱風により該樹脂粒子を発泡させると同時に
粒子同士を相互に融着したものであるため、発泡粒子成
形体の部分部分の密度のばらつきが大きく、発泡粒子同
士の融着性が不充分なものであり、機械的物性に劣るも
のであった。そこで、本発明は、部分部分の密度ばらつ
きが小さく、発泡粒子同士の融着性に優れ、均一な機械
的物性を有するポリ乳酸発泡粒子成形体の製造方法を提
供することをその課題とする。
However, in the conventional foamed particle molded article made of polylactic acid, the expandable resin particles are filled in a mold, and the resin particles are foamed by hot air, and at the same time, the particles are mutually reciprocated. Since they were fused, there was a large variation in the density of the part of the expanded particle molded article, the fusibility of the expanded particles to each other was insufficient, and the mechanical properties were poor. Therefore, it is an object of the present invention to provide a method for producing a polylactic acid foamed particle molded article which has a small density variation in a partial portion, is excellent in fusion bonding between expanded particles, and has uniform mechanical properties.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するためにポリ乳酸発泡粒子成形体の製造方法に
ついて鋭意検討した結果、本発明を完成するに至った。
即ち、本発明によれば、以下に示すポリ乳酸発泡粒子成
形体の製造方法が提供される。 (1)ポリ乳酸を主成分とする樹脂から形成された発泡
粒子を型内に5〜70%の圧縮率となるように充填した
後に加熱媒体により該発泡粒子を加熱し、融着させるこ
とを特徴とするポリ乳酸発泡粒子成形体の製造方法。 (2)該発泡粒子の見かけ密度が0.015〜0.3g
/cm3である前記(1)に記載のポリ乳酸発泡粒子成
形体の製造方法。 (3)該発泡粒子が0.3〜4mol/(1,000g
発泡粒子)の気体を含む前記(1)又は(2)に記載の
ポリ乳酸発泡粒子成形体の製造方法。 (4)ポリ乳酸を主成分とする樹脂から形成された発泡
粒子が0.7〜4mol/(1000g発泡粒子)の気
体を含み、該発泡粒子を型内に充填した後に加熱媒体に
より該発泡粒子を加熱し、融着させることを特徴とする
ポリ乳酸発泡粒子成形体の製造方法。 (5)該ポリ乳酸が、ポリ乳酸をゲル化処理したもので
ある前記(1)〜(4)のいずれかに記載のポリ乳酸発
泡粒子成形体の製造方法。 (6)該ポリ乳酸の示差走査熱量測定による融解熱量が
0.1J/gを超えることを特徴とする前記(1)〜
(5)のいずれかに記載のポリ乳酸発泡粒子成形体の製
造方法。 (7)該気体が二酸化炭素である前記(3)又は(4)
に記載のポリ乳酸発泡粒子成形体の製造方法。
Means for Solving the Problems The present inventors have completed the present invention as a result of extensive studies on a method for producing a polylactic acid expanded particle molded article in order to solve the above problems.
That is, according to the present invention, the following method for producing a polylactic acid expanded particle molded article is provided. (1) Filling a foamed particle formed of a resin containing polylactic acid as a main component in a mold so as to have a compression ratio of 5 to 70%, and then heating the foamed particle with a heating medium to fuse the particles. A method for producing a polylactic acid foamed particle molded article, which is characterized. (2) The apparent density of the expanded beads is 0.015 to 0.3 g
/ Cm 3 The method for producing a polylactic acid expanded particle molded article according to (1) above. (3) The expanded particles are 0.3 to 4 mol / (1,000 g
The method for producing a polylactic acid expanded particle molded article according to (1) or (2) above, which contains a gas of expanded particles). (4) Expanded particles formed of a resin containing polylactic acid as a main component include a gas of 0.7 to 4 mol / (1000 g expanded particles), and the expanded particles are filled with a heating medium after filling the expanded particles in a mold. A method for producing a polylactic acid expanded particle molded article, which comprises heating and fusing. (5) The method for producing a foamed polylactic acid molded article according to any one of (1) to (4), wherein the polylactic acid is a gelled polylactic acid. (6) The heat of fusion of the polylactic acid as measured by differential scanning calorimetry exceeds 0.1 J / g.
The method for producing a polylactic acid expanded particle molded article according to any one of (5). (7) The above (3) or (4), wherein the gas is carbon dioxide
The method for producing a foamed product of polylactic acid expanded particles according to 1.

【0005】[0005]

【発明の実施の形態】本発明において、成形材料として
用いるポリ乳酸を主成分とする樹脂から形成された発泡
粒子(以下、単に発泡粒子ともいう)は、ポリ乳酸を主
成分とする樹脂を基材樹脂として作製された発泡用樹脂
粒子を発泡させることにより製造される。前記基材樹脂
の主成分となるポリ乳酸とは、重合に供するモノマーの
重量に換算して、乳酸成分を50重量%以上含むポリマ
ーを言う。このようなものには、例えば、(1)乳酸の
重合体、(2)乳酸と他の脂肪族ヒドロキシカルボン酸
とのコポリマー、(3)乳酸と脂肪族多価アルコールと
脂肪族多価カルボン酸とのコポリマー、(4)乳酸と他
の脂肪族多価カルボン酸とのコポリマー、(5)前記
(1)〜(4)の何れかの組み合わせによる混合物等が
包含される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, expanded particles (hereinafter also simply referred to as expanded particles) formed from a resin containing polylactic acid as a main component used as a molding material are based on a resin containing polylactic acid as a main component. It is manufactured by foaming resin particles for foaming produced as a material resin. The polylactic acid, which is the main component of the base resin, refers to a polymer containing 50% by weight or more of a lactic acid component in terms of the weight of monomers used for polymerization. Examples thereof include (1) a polymer of lactic acid, (2) a copolymer of lactic acid and another aliphatic hydroxycarboxylic acid, (3) lactic acid, an aliphatic polyhydric alcohol and an aliphatic polycarboxylic acid. And (4) a copolymer of lactic acid and another aliphatic polycarboxylic acid, (5) a mixture of any of the above (1) to (4), and the like.

【0006】本発明においては、ポリ乳酸に対して、脂
肪族エステル成分を少なくとも35モル%含む生分解性
脂肪族ポリエステルを混合することができる。この場合
の脂肪族ポリエステルには、ヒドロキシ酸重縮合物、ラ
クトンの開環重合物、多価アルコール成分と多価カルボ
ン酸成分との重縮合物等が包含される。ヒドロキシ酸重
縮合物としては、ヒドロキシ酪酸の重縮合物等が挙げら
れ、ラクトンの開環重合物としては、ポリカプロラクト
ン等が挙げられ、多価アルコール成分と多価カルボン酸
成分との重縮合体としては、ポリブチレンサクシネー
ト、ポリブチレンサクシネートアジペート、ポリ(ブチ
レンアジペート/テレフタレート)等が挙げられる。ポ
リ乳酸に対する生分解性脂肪族ポリエステルの混合割合
は、両者の合計量に対して、50重量%以下、好ましく
は5〜30重量%である。
In the present invention, a biodegradable aliphatic polyester containing at least 35 mol% of an aliphatic ester component can be mixed with polylactic acid. In this case, the aliphatic polyester includes a hydroxy acid polycondensate, a lactone ring-opening polymer, a polycondensate of a polyhydric alcohol component and a polyvalent carboxylic acid component, and the like. Examples of the hydroxy acid polycondensate include a polycondensate of hydroxybutyric acid, and examples of the ring-opening polymer of a lactone include polycaprolactone and the like, and a polycondensate of a polyhydric alcohol component and a polyvalent carboxylic acid component. Examples thereof include polybutylene succinate, polybutylene succinate adipate, and poly (butylene adipate / terephthalate). The mixing ratio of the biodegradable aliphatic polyester to polylactic acid is 50% by weight or less, preferably 5 to 30% by weight, based on the total amount of both.

【0007】本発明において、ポリ乳酸発泡成形体に耐
熱性が要求される場合には、ポリ乳酸としては、ガラス
転移温度(Tg)が高いものか、融点(Tm)が高い結
晶性のものを用いるのが好ましい。本発明では、そのガ
ラス転移温度が50〜65℃、更には55〜65である
か、又はその融点が130〜180℃、更には140〜
180であるものの使用が好ましい。本発明において基
材樹脂の融点及びガラス転移温度はJIS K 712
1−1987に準拠して測定する。基材樹脂の融点は、
示差走査熱量測定によって得られる第2回目のDSC曲
線から得られる、ピーク頂点の温度である。基材樹脂の
ガラス転移温度は、示差走査熱量測定によって得られる
第2回目のDSC曲線から得られる、各ベースラインの
延長した直線から縦軸方向に等距離にある直線と、ガラ
ス転移の階段状変化部分の曲線とが交わる点の中間点ガ
ラス転移温度とする。前記ポリ乳酸の示差走査熱量測定
によって得られる第2回目のDSC曲線とは、基材樹脂
1〜5mgを、示差走査熱量計によって10℃/分の昇
温速度で200℃まで昇温し(ここで、得られるDSC
曲線を第1回目のDSC曲線という。)、次いで、20
0℃から10℃/分の降温速度で0℃まで降温する。そ
の後、再度10℃/分の昇温速度で200℃まで昇温し
て得られるDSC曲線を第2回目のDSC曲線をいう。
また、該基材樹脂にピーク頂点の温度が2つ以上現れる
場合には、高温度側を融点とする。
In the present invention, when the polylactic acid foamed molded article is required to have heat resistance, polylactic acid having a high glass transition temperature (Tg) or a crystalline polylactic acid having a high melting point (Tm) is used. It is preferably used. In the present invention, its glass transition temperature is 50 to 65 ° C, further 55 to 65, or its melting point is 130 to 180 ° C, further 140 to
The use of 180 is preferred. In the present invention, the melting point and glass transition temperature of the base resin are JIS K 712.
It measures according to 1-187. The melting point of the base resin is
It is the temperature at the peak apex obtained from the second DSC curve obtained by differential scanning calorimetry. The glass transition temperature of the base resin is obtained from the second DSC curve obtained by differential scanning calorimetry, and is a straight line that is equidistant in the vertical axis direction from the extended straight line of each baseline and the stepwise shape of the glass transition. The midpoint glass transition temperature at the point where the curve of the changing portion intersects. The second DSC curve obtained by the differential scanning calorimetry of the polylactic acid means that 1 to 5 mg of the base resin is heated to 200 ° C. at a heating rate of 10 ° C./min by a differential scanning calorimeter (here. Then, the DSC obtained
The curve is called the first DSC curve. ), Then 20
The temperature is lowered from 0 ° C. to 0 ° C. at a rate of 10 ° C./min. After that, the DSC curve obtained by raising the temperature to 200 ° C. again at a heating rate of 10 ° C./min is referred to as the second DSC curve.
When two or more peak peak temperatures appear in the base resin, the high temperature side is the melting point.

【0008】上記乳酸の重合体の具体例としては、L−
乳酸、D−乳酸、DL−乳酸又はそれらの混合物、又
は、それらの環状2量体であるL−ラクチド、D−ラク
チド、DL−ラクチド、又はそれらの混合物からなる単
量体又は2量体の重合物を挙げることができる。
Specific examples of the lactic acid polymer include L-
Lactic acid, D-lactic acid, DL-lactic acid or a mixture thereof, or a monomer or dimer of L-lactide, D-lactide, DL-lactide which is a cyclic dimer thereof, or a mixture thereof. A polymer can be mentioned.

【0009】本発明において使用されるポリ乳酸の製造
方法の具体例としては、例えば、乳酸又は乳酸と脂肪族
ヒドロキシカルボン酸の混合物を原料として、直接脱水
重縮合する方法(例えば、米国特許第5,310,86
5号に示されている製造方法)、乳酸の環状二量体(ラ
クチド)を重合する開環重合法(例えば、米国特許2,
758,987号に開示されている製造方法)、乳酸と
脂肪族ヒドロキシカルボン酸の環状2量体、例えば、ラ
クチドやグリコリドとε−カプロラクトンを、触媒の存
在下にて重合する開環重合法(例えば、米国特許4,0
57,537号に開示されている製造方法)、乳酸と脂
肪族二価アルコールと脂肪族二塩基酸の混合物を、直接
脱水重縮合する方法(例えば、米国特許第5,428,
126号に開示されている製造方法)、ポリ乳酸と脂肪
族二価アルコールと脂肪族二塩基酸とポリマーを、有機
溶媒存在下に縮合する方法(例えば、欧州特許公報第0
712880 A2号に開示されている製造方法)、乳
酸を触媒の存在下、脱水重縮合反応を行うことによりポ
リエステル重合体を製造するに際し、少なくとも一部の
工程で、固相重合を行う方法、等を挙げることができる
が、その製造方法は、特に限定されない。また、少量の
グリセリンのような脂肪族多価アルコール、ブタンテト
ラカルボン酸のような脂肪族多塩基酸、多糖類等のよう
な多価アルコール類を共存させて、共重合させても良
く、又ジイソシアネート化合物等のような結合剤(高分
子鎖延長剤)を用いて分子量を上げてもよい。
Specific examples of the method for producing the polylactic acid used in the present invention include, for example, a method of direct dehydration polycondensation using lactic acid or a mixture of lactic acid and an aliphatic hydroxycarboxylic acid as a raw material (for example, US Pat. No. 5 , 310, 86
5), a ring-opening polymerization method for polymerizing a cyclic dimer (lactide) of lactic acid (for example, US Pat.
No. 758,987), a ring-opening polymerization method in which a cyclic dimer of lactic acid and an aliphatic hydroxycarboxylic acid, for example, lactide or glycolide and ε-caprolactone are polymerized in the presence of a catalyst ( For example, US Pat.
57,537), a method of direct dehydration polycondensation of a mixture of lactic acid, an aliphatic dihydric alcohol and an aliphatic dibasic acid (for example, US Pat. No. 5,428,
No. 126), a method of condensing polylactic acid, an aliphatic dihydric alcohol, an aliphatic dibasic acid and a polymer in the presence of an organic solvent (for example, European Patent Publication No. 0).
No. 71280 A2), a method of performing solid phase polymerization in at least some steps in producing a polyester polymer by performing dehydration polycondensation reaction of lactic acid in the presence of a catalyst, etc. However, the manufacturing method is not particularly limited. Further, a small amount of an aliphatic polyhydric alcohol such as glycerin, an aliphatic polybasic acid such as butanetetracarboxylic acid, or a polyhydric alcohol such as a polysaccharide may be allowed to coexist and be copolymerized. The molecular weight may be increased by using a binder (polymer chain extender) such as a diisocyanate compound.

【0010】本発明で用いるポリ乳酸には、結晶性及び
非結晶性のものが包含されるが得られる発泡粒子の成形
体の耐熱性の点から結晶性のものの使用が好ましい。非
結晶性のものを用いる場合には特に、あらかじめゲル化
処理したものを用いるのが得られる発泡粒子の型内成形
性の点から好ましい。ポリ乳酸をゲル化処理するには、
そのポリ乳酸又はこれを主成分とする樹脂をゲル化処理
すればよい。この場合のゲル化処理には、従来公知の各
種の方法、例えば、有機過酸化物を用いる方法、電子線
架橋方法、シラン架橋方法、ポリイソシアネート架橋方
法等が包含される。本発明で発泡剤を含浸させるポリ乳
酸において、その結晶化度は、好ましくは20%以下、
更に好ましくは10%以下である。尚、上記結晶化度は
理学電気工業(株)製のX線回析装置にて測定し、得ら
れたチャートの結晶ピーク面積と総ピーク面積との比率
から求められる。また、本発明で用いるゲル化処理した
ポリ乳酸において、そのゲル分率は5〜100%、好ま
しくは10〜90%、更に好ましくは20〜80%であ
る。
The polylactic acid used in the present invention includes crystalline and non-crystalline ones, but it is preferable to use crystalline one from the viewpoint of heat resistance of the obtained expanded particle molded article. In particular, when an amorphous material is used, it is preferable to use a material which has been subjected to gelation treatment in advance from the viewpoint of in-mold moldability of the obtained expanded particles. To gel the polylactic acid,
The polylactic acid or the resin containing the polylactic acid as a main component may be subjected to gelation treatment. The gelation treatment in this case includes various conventionally known methods such as a method using an organic peroxide, an electron beam crosslinking method, a silane crosslinking method, and a polyisocyanate crosslinking method. In the polylactic acid impregnated with the foaming agent in the present invention, its crystallinity is preferably 20% or less,
More preferably, it is 10% or less. The crystallinity is measured by an X-ray diffractometer manufactured by Rigaku Denki Kogyo Co., Ltd., and is calculated from the ratio of the crystal peak area to the total peak area of the obtained chart. In the gelled polylactic acid used in the present invention, the gel fraction is 5 to 100%, preferably 10 to 90%, more preferably 20 to 80%.

【0011】本発明で用いる発泡粒子を製造する方法と
しては、従来公知の方法が採用できる。本発明におい
て、発泡粒子を好ましく製造するには、先ず、基材樹脂
粒子を作る。この基材樹脂粒子は、従来公知の方法で作
ることができ、例えば、基材樹脂を押出機で溶融混練し
た後、ストランド状に押出し、冷却後、適宜の長さに切
断するか又はストランドを適宜長さに切断後冷却するこ
とによって得ることができる。基材樹脂粒子の1個当り
の重量は、0.05〜10mg、好ましくは1〜4mg
にするのがよい。粒子重量が前記範囲より小さくなる
と、その樹脂粒子の製造が困難になる。樹脂粒子の形状
は特に制約されず、柱状(ペレット状)の他、球形状、
棒状等の各種の形状であることができる。
As a method for producing the expanded beads used in the present invention, a conventionally known method can be adopted. In the present invention, in order to preferably produce expanded beads, first, base resin particles are prepared. The base resin particles can be produced by a conventionally known method. For example, after melt-kneading the base resin with an extruder, the base resin is extruded in a strand shape, and after cooling, cut into an appropriate length or the strand is cut. It can be obtained by cutting to an appropriate length and then cooling. The weight of each base resin particle is 0.05 to 10 mg, preferably 1 to 4 mg
It is better to If the weight of the particles is smaller than the above range, it becomes difficult to produce the resin particles. The shape of the resin particles is not particularly limited, and in addition to the columnar shape (pellet shape), the spherical shape,
It may have various shapes such as a rod shape.

【0012】尚、基材樹脂を押出機で溶融混練しストラ
ンド状に押出す工程において、基材樹脂が吸湿性を有す
るものの場合、基材樹脂を予め乾燥させておくことが好
ましい。多量の水分を保有した樹脂を押出し機に投入す
ると、発泡用の樹脂粒子に発泡粒子の気泡の均一性に悪
影響を及ぼす気泡が混入したり、押出機で溶融混練する
場合に基材樹脂の物性低下が起こりメルトフローレイト
(MFR)が極端に大きくなってしまう虞がある。樹脂
の劣化を抑制するために、ベント口付き押出し機を使用
して、真空吸引して基材樹脂から水分を除去する方法も
採用できる。また、押出温度条件についても基材樹脂の
MFRが極端に大きくならないように条件を設定する。
In the step of melt-kneading the base resin with an extruder and extruding it into a strand, if the base resin has hygroscopicity, it is preferable to dry the base resin in advance. When a resin containing a large amount of water is put into the extruder, bubbles that adversely affect the uniformity of the bubbles in the expanded resin particles are mixed into the resin particles for expansion, and the physical properties of the base resin when melt-kneading with an extruder There is a possibility that the melt flow rate (MFR) may be extremely increased due to the decrease. In order to suppress the deterioration of the resin, a method of using a extruder with a vent and vacuum suction to remove water from the base resin can also be adopted. Also, the extrusion temperature conditions are set so that the MFR of the base resin does not become extremely large.

【0013】次に、前記のように得られる発泡用樹脂粒
子には、発泡剤を含浸させた後、発泡させる。この場合
の樹脂粒子に発泡剤を含浸させた後発泡させる方法とし
ては、樹脂粒子に密閉容器内で発泡剤を含浸させて発泡
性樹脂粒子を得た後、これらを密閉容器から取出し、そ
の樹脂粒子を加熱軟化させて発泡させる方法を好ましく
採用できる。また、他の方法として、樹脂粒子を密閉容
器内において発泡剤の存在下で分散媒に分散させるとと
もに、その内容物を加熱して樹脂粒子を軟化させてその
粒子内に発泡剤を含浸させ、次いで容器の一端を開放
し、容器内圧力を発泡剤の蒸気圧以上の圧力に保持しな
がら粒子と分散媒とを同時に容器内よりも低圧の雰囲気
(通常は大気圧下)に放出して発泡させる発泡方法、あ
らかじめ分解型発泡剤を樹脂粒子中に練り込んでおきそ
の樹脂粒子を発泡剤の分解温度以上に加熱して発泡させ
る方法等を用いることもできる。
Next, the foaming resin particles obtained as described above are impregnated with a foaming agent and then foamed. In this case, as a method of foaming after impregnating the resin particles with the foaming agent, the resin particles are impregnated with the foaming agent in the closed container to obtain expandable resin particles, and then these are taken out from the closed container, and the resin A method of heating and softening the particles to foam them can be preferably adopted. Further, as another method, while dispersing the resin particles in the dispersion medium in the presence of a foaming agent in a closed container, the contents are heated to soften the resin particles to impregnate the foaming agent in the particles, Next, open one end of the container, and while maintaining the pressure inside the container at a pressure equal to or higher than the vapor pressure of the foaming agent, simultaneously release the particles and the dispersion medium into an atmosphere at a pressure lower than that in the container (usually under atmospheric pressure) to foam. It is also possible to use a foaming method in which the decomposition-type foaming agent is kneaded into the resin particles in advance, and the resin particles are heated to a temperature above the decomposition temperature of the foaming agent to foam.

【0014】押出し機により発泡粒子を得る方法を採用
する場合には、基材樹脂を押出し機を使用して溶融させ
ると共に、発泡剤と混練して発泡性溶融混練物とし、次
いでストランド状に押出し発泡させると共に、冷却後適
宜の長さに切断するか又はストランドを適宜長さに切断
後冷却することによって発泡粒子を製造することができ
る。
When the method of obtaining expanded particles by an extruder is adopted, the base resin is melted by using an extruder and kneaded with a foaming agent to obtain an expandable melt-kneaded product, and then extruded in a strand form. The foamed particles can be produced by foaming and cutting the material to an appropriate length after cooling or cutting the strand to an appropriate length and then cooling.

【0015】前記基材樹脂は、例えば、黒、灰色、茶
色、青色、緑色等の着色顔料又は染料を添加して着色し
たものであってもよい。着色した基材樹脂を用いれば、
着色された発泡粒子及び成形体を得ることができる。着
色剤としては、有機系、無機系の顔料、染料などが挙げ
られる。このような、顔料及び染料としては、従来公知
の各種のものを用いることができる。また、基材樹脂に
は、気泡調整剤として、例えばタルク、炭酸カルシウ
ム、ホウ砂、ほう酸亜鉛、水酸化アルミニウム等の無機
物をあらかじめ添加することができる。基材樹脂に着色
顔料、染料又は無機物等の添加剤を添加する場合は、添
加剤をそのまま基材樹脂に練り込むこともできるが、通
常は分散性等を考慮して添加剤のマスターバッチを作
り、それと基材樹脂とを混練することが好ましい。着色
顔料又は染料の添加量は着色の色によっても異なるが、
通常、基材樹脂100重量部に対して0.001〜5重
量部とするのが好ましい。無機物を基材樹脂に添加する
ことにより、発泡倍率の向上効果を得ることができる。
また、本発明では、難燃剤、帯電防止剤、耐候剤、増粘
剤等の添加剤の混合も可能である。
The base resin may be colored by adding a coloring pigment or dye such as black, gray, brown, blue or green. If you use a colored base resin,
It is possible to obtain colored expanded particles and a molded body. Examples of the colorant include organic and inorganic pigments and dyes. As such pigments and dyes, various conventionally known pigments can be used. Further, an inorganic substance such as talc, calcium carbonate, borax, zinc borate, aluminum hydroxide or the like can be added to the base resin in advance as a cell regulator. When an additive such as a coloring pigment, a dye or an inorganic substance is added to the base resin, the additive can be kneaded into the base resin as it is, but usually a master batch of the additive is taken into consideration in consideration of dispersibility and the like. It is preferable to make it and knead it with the base resin. The amount of coloring pigment or dye added varies depending on the color of coloring,
Usually, 0.001 to 5 parts by weight is preferable with respect to 100 parts by weight of the base resin. By adding an inorganic substance to the base resin, the effect of improving the expansion ratio can be obtained.
Further, in the present invention, it is possible to mix additives such as a flame retardant, an antistatic agent, a weathering agent and a thickener.

【0016】尚、製品が使用後に廃棄されることを想定
すると、顔料及び気泡調整剤等添加剤の高濃度添加は好
ましくない。また、発泡用樹脂粒子を経て発泡粒子を得
る場合、得られた発泡用樹脂粒子はは加水分解が進行し
ないような環境下で保存することが好ましい。また、発
泡粒子においても同様に加水分解が進行しないような環
境下で保存することが好ましい。
It should be noted that it is not preferable to add a high concentration of an additive such as a pigment and a cell regulator, assuming that the product is discarded after use. When the expanded resin particles are obtained through the expanded resin particles, the obtained expanded resin particles are preferably stored in an environment in which hydrolysis does not proceed. Similarly, it is preferable to store the foamed particles in an environment in which hydrolysis does not proceed.

【0017】上記発泡粒子を得るに際して用いられる発
泡剤としては、従来公知のもの、例えば、プロパン、ブ
タン、ヘキサン、シクロブタン、シクロヘキサン、トリ
クロロフロロメタン、ジクロロジフロロメタン、クロロ
フロロメタン、トリフロロメタン、1,1,1,2−テ
トラフロロエタン、1−クロロ−1,1−ジフロロエタ
ン、1,1−ジフロロエタン、1−クロロ−1,2,
2,2−テトラフロロエタン等の有機系の物理発泡剤
や、窒素、二酸化炭素、アルゴン、空気等の無機系の物
理発泡剤が用いられるが、なかでもオゾン層の破壊がな
く且つ安価な無機系の物理発泡剤が好ましく、特に窒
素、二酸化炭素、空気が好ましい。本発明においては、
発泡剤の使用量に対して、より小さな見掛け密度の発泡
粒子が得られる点から二酸化炭素が更に好ましい。
The foaming agent used for obtaining the expanded beads is a conventionally known one, for example, propane, butane, hexane, cyclobutane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, chlorofluoromethane, trifluoromethane, 1,1,1,2-tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,
Organic physical foaming agents such as 2,2-tetrafluoroethane and inorganic physical foaming agents such as nitrogen, carbon dioxide, argon, and air are used. Among them, inorganic layers that do not destroy the ozone layer and are inexpensive The physical foaming agents of the system are preferable, and nitrogen, carbon dioxide and air are particularly preferable. In the present invention,
Carbon dioxide is more preferable from the viewpoint that foamed particles having a smaller apparent density can be obtained with respect to the amount of the foaming agent used.

【0018】予め、発泡用樹脂粒子を作り、該発泡用樹
脂粒子に発泡剤を含浸させる場合、密閉容器内に樹脂粒
子を入れ、発泡剤を、5〜100kgf/cm2Gの圧
力範囲になるように密閉容器内に圧入すればよい。発泡
剤の使用量は、所望する発泡粒子の見かけ密度と発泡温
度との関係から適宜選定される。
When foaming resin particles are prepared in advance and the foaming resin particles are impregnated with the foaming agent, the resin particles are placed in a closed container and the foaming agent is in a pressure range of 5 to 100 kgf / cm 2 G. It may be press-fitted into the closed container. The amount of the foaming agent used is appropriately selected from the relationship between the desired apparent density of the foamed particles and the foaming temperature.

【0019】また、発泡用樹脂粒子を密閉容器に入れ、
これに発泡剤を所定の時間接触させて粒子内に発泡剤を
含浸させ、その後密閉容器内から樹脂粒子を取出し発泡
性樹脂粒子を得る方法において、その発泡剤の含浸は基
材樹脂のガラス転移温度以下の温度で実施することが好
ましい。発泡剤の含浸温度は、好ましくは5〜60℃、
更に好ましくは5〜40℃である。また、その含浸時の
発泡剤の圧力は、目的とする発泡粒子の発泡倍率によっ
ても変わってくるが、通常は5〜100kgf/cm2
Gであり、含浸時間は10分間〜24時間である。特
に、発泡剤に二酸化炭素を使用する場合においては、そ
の二酸化炭素の含浸量は通常2.5〜30重量%、好ま
しくは3〜20重量%となるように実施することが好ま
しい。なお、この場合の二酸化炭素の含浸量は次式で表
される。
Further, the resin particles for foaming are put in a closed container,
In this method, the foaming agent is contacted with the foaming agent for a predetermined time to impregnate the particles with the foaming agent, and then the resin particles are taken out from the closed container to obtain expandable resin particles. It is preferable to carry out at a temperature below the temperature. The impregnation temperature of the foaming agent is preferably 5 to 60 ° C,
More preferably, it is 5-40 degreeC. The pressure of the foaming agent during the impregnation varies depending on the expansion ratio of the target foamed particles, but is usually 5 to 100 kgf / cm 2.
G, and the impregnation time is 10 minutes to 24 hours. In particular, when carbon dioxide is used as the foaming agent, it is preferable that the impregnation amount of carbon dioxide is usually 2.5 to 30% by weight, preferably 3 to 20% by weight. The impregnated amount of carbon dioxide in this case is represented by the following equation.

【数1】 二酸化炭素含浸量(重量%)=A/(A+B)×100 A:樹脂粒子に含浸した二酸化炭素の重量 B:二酸化炭素含浸前の樹脂粒子の重量[Equation 1] Carbon dioxide impregnation amount (wt%) = A / (A + B) × 100 A: Weight of carbon dioxide impregnated in resin particles B: Weight of resin particles before carbon dioxide impregnation

【0020】上式におけるAは二酸化炭素含浸樹脂粒子
の重量から二酸化炭素含浸前の樹脂粒子の重量を差し引
くことによって求められる。尚、該含浸量を算出するた
めの上記のいずれの重量も0.0001gの位まで計測
するものとする。発泡剤を含浸した発泡性樹脂粒子を加
熱発泡させるための加熱媒体としては、水蒸気、加熱調
整した空気や窒素等が挙げられるが、通常は水蒸気が用
いられる。発泡性樹脂粒子を加熱し発泡させる方法とし
ては、従来公知の方法が採用できるが、通常は容器内に
発泡性樹脂粒子を充填し水蒸気を導入して発泡させる。
尚、密閉容器にはわずかに内部の圧力をリークさせる開
孔弁が備わっていると、容器内の空気が排除でき、密度
が均一な発泡粒子が得られ易い。発泡剤が含浸している
樹脂粒子を加熱する際の温度、すなわち発泡温度は、通
常、基材樹脂の(ガラス転移温度−30℃)〜(ガラス
転移温度+60℃)、好ましくは(ガラス転移温度−2
0℃)〜(ガラス転移温度+40℃)である。発泡温度
が前記範囲より低いと、十分な発泡が起こり難く、また
前記範囲より高いと発泡粒子の独立気泡率が低下してし
まい良好な成形体が得られにくいといった問題が発生す
る。
A in the above equation is obtained by subtracting the weight of resin particles before carbon dioxide impregnation from the weight of carbon dioxide impregnated resin particles. It should be noted that any of the above weights for calculating the impregnated amount is measured up to the order of 0.0001 g. As a heating medium for heating and foaming the expandable resin particles impregnated with the foaming agent, steam, heat-adjusted air, nitrogen and the like can be mentioned, but steam is usually used. As a method for heating the foamable resin particles to foam them, a conventionally known method can be adopted, but normally, the foamable resin particles are filled in a container and steam is introduced to foam them.
If the closed container is provided with an opening valve that slightly leaks the internal pressure, the air in the container can be removed, and expanded particles having a uniform density can be easily obtained. The temperature when heating the resin particles impregnated with the foaming agent, that is, the foaming temperature is usually (glass transition temperature −30 ° C.) to (glass transition temperature + 60 ° C.), preferably (glass transition temperature) of the base resin. -2
0 ° C) to (glass transition temperature + 40 ° C). When the foaming temperature is lower than the above range, sufficient foaming is unlikely to occur, and when the foaming temperature is higher than the range, the closed cell ratio of the foamed particles is lowered, and it is difficult to obtain a good molded product.

【0021】本発明における発泡粒子は、その見かけ密
度が0.015〜0.3g/cm3であることが好まし
く、0.015〜0.2g/cm3であることが更に好
ましい。密度が前記範囲より大きい場合は、発泡粒子の
密度のばらつきが大きくなり易く、型内にて加熱成形す
る際の発泡粒子の膨張性、融着性のばらつきに繋がり得
られる発泡粒子成形体の物性低下の虞がある。一方、前
記範囲より小さい場合、発泡倍率が比較的高いために、
成形収縮率が大きな成形体となる虞れがある。
The foamed particles of the present invention preferably has an apparent density of 0.015~0.3g / cm 3, further preferably 0.015~0.2g / cm 3. When the density is larger than the above range, the variation in the density of the expanded particles is likely to be large, and the physical properties of the expanded particle molded body can be obtained, which leads to the expansion of the expanded particles during the heat molding in the mold and the variation in the fusion property. There is a risk of deterioration. On the other hand, when it is smaller than the above range, the expansion ratio is relatively high,
There is a risk that the molded product will have a large molding shrinkage.

【0022】本明細書において発泡粒子の見かけ密度
は、23℃のエタノールの入ったメスシリンダーを用意
し、該メスシリンダーに相対湿度50%、23℃、1a
tmの条件にて2日放置した500個以上の発泡粒子
(発泡粒子群の重量W1)を金網などを使用して沈め
て、エタノール水位上昇分より読みとられる発泡粒子群
の容積V1(cm3)にてメスシリンダーに入れた発泡
粒子群の重量W1(g)を割り算することにより求める
(W1/V1)。また、本発明の発泡粒子の嵩密度は
0.01〜0.2g/cm3であることが好ましく、
0.01〜0.12g/cm3であることがより好まし
い。
In the present specification, the apparent density of the expanded particles is 23 ° C., and a graduated cylinder containing ethanol is prepared. The graduated cylinder has a relative humidity of 50%, 23 ° C., and 1 a.
At least 500 expanded particles (weight W1 of expanded particle group) left for 2 days under the condition of tm were sunk using a metal net or the like, and the volume V1 (cm 3 ), The weight W1 (g) of the expanded particle group placed in the graduated cylinder is divided (W1 / V1). The expanded particles of the present invention preferably have a bulk density of 0.01 to 0.2 g / cm 3 ,
It is more preferably 0.01 to 0.12 g / cm 3 .

【0023】本明細書において発泡粒子の嵩密度は、空
のメスシリンダーを用意し、該メスシリンダーに相対湿
度50%、23℃、1atmの条件にて2日放置した5
00個以上の発泡粒子(発泡粒子群の重量W2)を入れ
たときメスシリンダーの目盛りが示す容積V2(c
3)にてメスシリンダーに入れた発泡粒子群の重量W
2(g)を割り算することにより求める(W2/V
2)。
In the present specification, as for the bulk density of the expanded particles, an empty graduated cylinder is prepared, and the graduated cylinder is left to stand for 2 days under the conditions of relative humidity 50%, 23 ° C. and 1 atm.
The volume V2 (c) indicated by the scale of the graduated cylinder when 00 or more expanded particles (weight W2 of the expanded particle group) are put in
m 3 ) Weight W of the expanded particle group put in the graduated cylinder
Calculate by dividing 2 (g) (W2 / V
2).

【0024】更に、本発明における発泡粒子の平均気泡
径は、10〜500μmであり、好ましくは30〜40
0μmである。該気泡径が前記範囲より小さいと、本発
明の加熱成形時において膜強度が弱すぎるために破泡等
が生じ、養生回復性の悪い成形体となる。また、該気泡
径が前記範囲より大きいと加熱発泡時において膜強度が
強すぎるために、十分な膨張が生じず、表面平滑性の劣
った成形体となってしまう。本明細書において発泡粒子
の平均気泡径は、発泡粒子を略二分割し、その発泡粒子
断面に存在する全ての気泡の最大径を求め、この操作を
10個以上の発泡粒子について行ない、求められた該最
大径の算術平均値をもって平均気泡径とする。
Further, the foamed particles in the present invention have an average cell diameter of 10 to 500 μm, preferably 30 to 40.
It is 0 μm. When the cell diameter is smaller than the above range, the film strength is too weak at the time of the heat molding of the present invention, so that the cells are broken and the curing recovery property becomes poor. On the other hand, if the cell diameter is larger than the above range, the film strength will be too strong at the time of foaming by heating, so that sufficient expansion does not occur, resulting in a molded product having poor surface smoothness. In the present specification, the average cell diameter of the foamed particles is obtained by dividing the foamed particles into approximately two parts, determining the maximum diameters of all the cells present in the cross section of the foamed particles, and performing this operation for 10 or more foamed particles. The arithmetic mean value of the maximum diameter is defined as the average bubble diameter.

【0025】本発明において発泡粒子成形体を製造する
には、発泡粒子を型内に5〜70%、好ましくは15〜
70%更に好ましくは30〜70%の圧縮率となるよう
に充填した後に、加熱媒体により該発泡粒子を加熱して
成形を行う。特に、融解熱量が、0.1J/gを超える
ポリ乳酸を主成分とする樹脂から形成された発泡粒子の
場合は、15〜70%の圧縮率となるように型内に充填
して加熱成形することが好ましい。この加熱成形により
発泡粒子は相互に強く融着し、一体となった密度ばらつ
きが小さく、外観良好な発泡成形体を与える。この場合
の成形用の型としては慣用の金型や特開2000−15
708号等に記載の連続成形装置にしようされてるスチ
ールベルトが用いられる。また、加熱手段としては、通
常スチーム加熱が用いられ、その加熱温度は発泡粒子表
面が溶融する温度であればよい。本発明では、成形の際
に、発泡粒子を型内に5〜70%の圧縮率となるように
充填する。ポリ乳酸が結晶性の場合は特に、圧縮率が5
%未満では、成形体の融着性が劣ると共に表面平滑性が
劣った成形体となる虞がある。一方で、70%を超える
と、成形体内部の融着性が劣りやすくなり、また発泡製
品の特徴である軽量化の主旨から外れてしまう。また、
圧縮装置設備上の困難性を伴う。
In the present invention, in order to produce a molded product of expanded particles, expanded particles are contained in the mold in an amount of 5 to 70%, preferably 15 to 70%.
After filling so as to have a compression ratio of 70%, more preferably 30 to 70%, the expanded particles are heated by a heating medium to carry out molding. In particular, in the case of expanded particles formed from a resin containing polylactic acid as a main component having a heat of fusion of more than 0.1 J / g, it is filled in a mold so as to have a compression rate of 15 to 70%, and heat-molded. Preferably. By this heat-molding, the foamed particles are strongly fused to each other, and there is little variation in the integrated density, and a foamed molded article having a good appearance is provided. As a molding die in this case, a conventional die or JP-A-2000-15 is used.
A steel belt used in the continuous forming apparatus described in No. 708 is used. As the heating means, steam heating is usually used, and the heating temperature may be any temperature at which the surface of the expanded beads melts. In the present invention, at the time of molding, the expanded particles are filled in the mold so as to have a compression rate of 5 to 70%. Especially when polylactic acid is crystalline, the compressibility is 5
If it is less than%, the fusion property of the molded article may be poor and the molded article may have poor surface smoothness. On the other hand, if it exceeds 70%, the fusion property inside the molded article tends to be poor, and the purpose of weight reduction, which is a characteristic of the foamed product, tends to be lost. Also,
Compressor equipment is difficult.

【0026】本発明で言う圧縮率は、以下のように表さ
れる。圧縮率は、型の内容積と型内に充填される発泡粒
子の大気中の嵩容積との関係で表すことができる。
The compression ratio referred to in the present invention is expressed as follows. The compressibility can be expressed by the relationship between the internal volume of the mold and the bulk volume of the expanded particles filled in the mold in the atmosphere.

【数2】 圧縮率(%)=(A−B)×100/A (2) A:型内に充填された発泡粒子の大気中での嵩容積(c
3) B:型の内容積(cm3) 上式におけるAは型内に充填された発泡粒子の重量
(g)を該発泡粒子の嵩密度(g/cm3)にて割り算
することにより求められる。
## EQU00002 ## Compressibility (%) = (A−B) × 100 / A (2) A: Bulk volume (c) of the expanded particles filled in the mold in the atmosphere.
m 3 ) B: Inner volume of the mold (cm 3 ) A in the above formula is obtained by dividing the weight (g) of the expanded particles filled in the mold by the bulk density (g / cm 3 ) of the expanded particles. Desired.

【0027】本発明において前記圧縮率となるように発
泡粒子を特に金型内に充填する場合において、従来公知
の充填方法が採用できる。このような方法としては、例
えば、1)クラッキング法、2)加圧充填法、3)圧縮
充填法などが挙げられる。1)クラッキング法は、原料
ビーズ容器およびキャビテイ内を大気圧に連通し開放し
た状態で、インジェクタにより原料ビーズを機械的に搬
送して充填した後、型締めする方法である。2)加圧充
填法は、原料ビーズ容器内を0.2〜1.5kg/cm
2G程度に加圧し、チャンバを通じて大気圧に開放した
状態のキャビテイ内に、その差圧を利用して搬送して充
填する方法である。3)圧縮充填法は、原料ビーズ容器
内の圧力pを加圧充填法より高めの圧力にて加圧し、一
方のチャンバ内を加圧して、ベントホールを通じて連通
しているキャビテイ内圧力p1の差圧(p−p1)を変
化させて、原料ビーズを搬送して充填する方法であり、
原料ビーズが圧縮された状態で送られるので、充填性に
優れる。
In the present invention, a conventionally known filling method can be adopted particularly when the expanded particles are filled in the mold so as to have the compression ratio. Examples of such a method include 1) a cracking method, 2) a pressure filling method, and 3) a compression filling method. 1) The cracking method is a method in which raw material beads are mechanically transported and filled by an injector in a state where the raw material bead container and the cavity are communicated with atmospheric pressure and opened, and then the mold is clamped. 2) The pressure filling method is 0.2 to 1.5 kg / cm in the raw material bead container.
This is a method in which the cavity is pressurized to about 2 G and is opened to the atmospheric pressure through the chamber, and is transported and filled by utilizing the differential pressure. 3) In the compression filling method, the pressure p in the raw material bead container is increased at a pressure higher than that in the pressure filling method, the pressure in one chamber is increased, and the difference in the cavity internal pressure p1 communicating through the vent hole. In this method, the pressure (p-p1) is changed to convey and fill the raw material beads,
Since the raw material beads are sent in a compressed state, the filling property is excellent.

【0028】本発明では、上記の圧縮率となるように発
泡粒子を型内に充填する方法と併せて型内に供する発泡
粒子に予め空気、窒素、二酸化炭素等の無機ガス、特に
二酸化炭素を気体として含ませておくことが好ましい。
又、ブタン等の有機ガスも使用できる。気体を付与した
発泡粒子を成形用発泡粒子として用いることにより、発
泡粒子の成形時の膨張性、該粒子相互の融着性、成形体
の型形状再現性及び寸法安定性が向上する。該気体は、
好ましくは0.3〜4mol/(1000g発泡粒
子)、更に好ましくは0.7〜4mol/(1000g
発泡粒子)の範囲内で付与する。
In the present invention, in combination with the method of filling the foamed particles into the mold so that the above compression ratio is obtained, the foamed particles to be provided in the mold are previously filled with an inorganic gas such as air, nitrogen, carbon dioxide, etc., especially carbon dioxide. It is preferably contained as a gas.
Also, an organic gas such as butane can be used. By using the expanded particles to which a gas has been added as the expanded particles for molding, the expandability of the expanded particles at the time of molding, the mutual fusion property of the particles, the mold shape reproducibility of the molded product, and the dimensional stability are improved. The gas is
Preferably 0.3 to 4 mol / (1000 g expanded particles), more preferably 0.7 to 4 mol / (1000 g).
(Expanded particles).

【0029】尚、本明細書において、発泡粒子の気体量
(mol/1000g発泡粒子)は以下のように求めら
れる。
In the present specification, the gas amount of the expanded particles (mol / 1000 g expanded particles) is obtained as follows.

【数3】 前記式中の気体増加量(g)は次のように求める。成形
機に充填される気体を付与することにより内部圧力が高
められた発泡粒子を500個以上取り出して60秒以内
に相対湿度50%、23℃の大気圧下の恒温室に移動
し、その恒温室内の秤に乗せ、該発泡粒子を取り出して
120秒後の重量を読み取る。このときの重量をQ
(g)とする。次に、該発泡粒子を相対湿度50%、2
3℃の大気圧下の同恒温室内にて240時間放置する。
発泡粒子内の高い圧力の気体は時間の経過とともに気泡
膜を透過して外部に抜け出すため発泡粒子の重量はそれ
に伴って減少し、240時間後では平衡に達しているた
め実質的にその重量は安定している。上記240時間後
の該発泡粒子の重量を同恒温室内にて測定し、このとき
の重量をS(g)とする。上記のいずれの重量も0.0
001gの位まで読み取るものとする。この測定で得ら
れたQ(g)とS(g)の差を(5)式中の気体増加量
(g)とする。また、本発明において発泡粒子成形体を
得る為の他の方法として、0.7〜4mol/(100
0g発泡粒子)の気体を含む発泡粒子を圧縮せず又は圧
縮率を5%未満として型内に従来公知の方法により充填
した後に、加熱媒体により該発泡粒子を加熱し、融着さ
せる方法も挙げられる。発泡粒子が0.7〜4mol/
(1000g発泡粒子)の気体を含むことにより、発泡
粒子から成形体を得る際の発泡粒子の膨張性、該粒子相
互の融着性、成形体の型形状再現性及び寸法安定性が向
上する。特に融解熱量が0.1J/gを超えるポリ乳酸
を主成分とする樹脂から形成された発泡粒子の場合は、
1〜4mol/(1000g発泡粒子)、更に1.5〜
4mol/(1000g発泡粒子)の範囲内で気体を含
むことが好ましい。該気体量が0.7mol/(100
0g発泡粒子)未満の場合は、本発明の目的とする所期
の効果が十分達成できない虞れがあり、一方、4mol
/(1000g発泡粒子)を超える場合は、該発泡粒子
と得る上での設備上の困難性が伴う。尚、型内に供する
該発泡粒子に含まれる気体としては、前述した気体と同
様に空気、窒素、二酸化炭素等の無機ガス、又はブタン
等の有機ガスが挙げられ、無機ガス、特に二酸化炭素が
好ましい。
[Equation 3] The gas increase amount (g) in the above equation is determined as follows. Taking out 500 or more expanded particles whose internal pressure has been increased by applying gas to the molding machine, move them to a temperature-controlled room at a relative humidity of 50% and atmospheric pressure of 23 ° C. within 60 seconds, and then keep the temperature constant. The weight is put on an indoor scale, the expanded particles are taken out, and the weight after 120 seconds is read. Q at this time
(G). Next, the foamed particles are treated with a relative humidity of 50% and 2
It is left for 240 hours in the same constant temperature room under the atmospheric pressure of 3 ° C.
The high-pressure gas in the expanded particles permeates the bubble film and escapes to the outside with the lapse of time, so the weight of the expanded particles decreases accordingly, and after 240 hours, the equilibrium has been reached, so that the weight is substantially stable. The weight of the expanded particles after 240 hours is measured in the same thermostatic chamber, and the weight at this time is defined as S (g). The weight of any of the above is 0.0
It shall be read to the nearest 001 g. The difference between Q (g) and S (g) obtained by this measurement is defined as the gas increase amount (g) in the equation (5). Further, in the present invention, as another method for obtaining a foamed particle molded body, 0.7 to 4 mol / (100
(0 g foamed particles) A method in which expanded particles containing a gas of 0 g are not compressed or are filled in a mold by a compression ratio of less than 5% by a conventionally known method, and then the expanded particles are heated and fused by a heating medium is also included. To be Expanded particles are 0.7-4 mol /
By containing a gas of (1000 g foamed particles), the expandability of the foamed particles when obtaining a molded product from the expanded particles, the fusion property between the particles, the reproducibility of the mold shape of the molded product, and the dimensional stability are improved. Particularly in the case of expanded particles formed from a resin whose main component is polylactic acid having a heat of fusion of more than 0.1 J / g,
1-4 mol / (1000 g expanded particles), further 1.5-
It is preferable to contain a gas within the range of 4 mol / (1000 g expanded particles). The amount of gas is 0.7 mol / (100
If the amount is less than 0 g expanded particles), the intended effect of the present invention may not be sufficiently achieved, while 4 mol
If it exceeds / (1000 g expanded particles), there is a difficulty in equipment for obtaining the expanded particles. As the gas contained in the foamed particles to be provided in the mold, air, nitrogen, an inorganic gas such as carbon dioxide, or an organic gas such as butane can be used as the gas described above. preferable.

【0030】また、上述の本発明方法は結晶性を示すポ
リ乳酸発泡粒子を型内成形する上で極めて有効であり融
着性、外観良好な成形体を得ることができる。尚、本明
細書において結晶性を示すポリ乳酸発泡粒子とは示差走
査熱量測定による融解熱量が0.1J/gを超える、更
に1J/g以上、特に5J/g以上のポリ乳酸を主成分
とするポリ乳酸発泡粒子(融解熱量の上限はおおむね1
00J/gである)のことである。また、本明細書にお
いて示差走査熱量測定による融解熱量:ΔH(J/g)
はJIS K7122−1987に準拠して測定され、
発泡粒子又は樹脂粒子1〜3mgを示差走査熱量計によ
って10℃/分の昇温速度で200℃まで昇温した後、
10℃/分降温速度で0℃まで降温し、再度10℃/分
の昇温速度で200℃まで昇温したときに得られるDS
C曲線の吸熱ピーク面積から求められる。本発明による
発泡粒子成形体の形状は特に制約されず、その形状は、
例えば、容器状、板状、筒体状、柱状、シート状、ブロ
ック状等の各種の形状であることができる。本発明の発
泡粒子成形体は、好ましくは密度0.01〜0.2g/
cm3のものであり、寸法安定性、表面平滑性において
優れたものである。
Further, the above-mentioned method of the present invention is extremely effective in in-mold molding of polylactic acid expanded particles exhibiting crystallinity, and a molded product having good fusion property and good appearance can be obtained. In the present specification, the foamed polylactic acid particles exhibiting crystallinity include polylactic acid as a main component having a heat of fusion of more than 0.1 J / g as measured by differential scanning calorimetry, further 1 J / g or more, especially 5 J / g or more. Polylactic acid foam particles (The upper limit of heat of fusion is about 1
00 J / g). Further, in the present specification, the heat of fusion by differential scanning calorimetry: ΔH (J / g)
Is measured in accordance with JIS K7122-1987,
After heating 1 to 3 mg of the foamed particles or the resin particles to 200 ° C. at a temperature rising rate of 10 ° C./min by a differential scanning calorimeter,
DS obtained when the temperature is lowered to 0 ° C. at a rate of 10 ° C./min and is again raised to 200 ° C. at a rate of 10 ° C./min.
It is determined from the endothermic peak area of the C curve. The shape of the expanded particle molded article according to the present invention is not particularly limited, and its shape is
For example, various shapes such as a container shape, a plate shape, a cylinder shape, a column shape, a sheet shape, and a block shape can be used. The expanded particle molded article of the present invention preferably has a density of 0.01 to 0.2 g /
cm 3 and is excellent in dimensional stability and surface smoothness.

【0031】本明細書において発泡粒子成形体の密度
(g/cm3)は、成形体の外形寸法から求められる体
積VM(cm3)にて成形体重量WM(g)を割り算す
る(WM/VM)ことにより求められる値である。
In the present specification, the density (g / cm 3 ) of the foamed particle molded body is obtained by dividing the molded body weight WM (g) by the volume VM (cm 3 ) obtained from the outer dimension of the molded body (WM / VM).

【0032】[0032]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0033】実施例1〜実施例5 結晶性ポリ乳酸((株)島津製作所製ラクティ903
0)とタルクとを押出機にて溶融混練した後、ストラン
ド状に押出し、次いでこのストランドを約25℃の水中
で急冷固化させた後に切断して、直径約1.3mm、長
さ約1.9mm、1個当たり約3mgの樹脂粒子を得
た。なお、タルクは2000ppmとなるように添加し
た。次に、5Lの内容積を有するオートクレーブを10
℃に調整した後、この樹脂粒子1000gを投入した。
炭酸ガスを圧力調整弁を介してオートクレーブ内に圧入
し、オートクレーブ内の圧力が表1に示す圧力になるよ
うに調整し、15時間保持した。次に、オートクレーブ
内の炭酸ガスを抜き出した後、樹脂粒子を取出した。こ
の樹脂粒子の炭酸ガス含浸量を表1に示す。この炭酸ガ
スが含浸した樹脂粒子を、密閉容器内に充填した後、水
蒸気を導入して表1に示す温度に加熱し、膨張発泡した
発泡粒子を得た。この発泡粒子の密度を表1に示す。得
られた発泡粒子を密閉容器内に充填し、20℃の雰囲気
温度条件下で表2に示す気体にて発泡粒子を加圧するこ
とにより該気体を発泡粒子に付与した。発泡粒子の気体
含浸量を表2に示す。次いで気体を付与した発泡粒子を
200×250×10mmの金型に表2に示す圧縮率に
なるように充填し、表2に示す温度の水蒸気で加熱成形
した。得られた成形体は30℃で24時間養生した。得
られた発泡粒子成形体の密度を表2に示す。
Examples 1 to 5 Crystalline polylactic acid (Lacty 903 manufactured by Shimadzu Corporation)
0) and talc are melted and kneaded by an extruder, then extruded into a strand shape, and then this strand is rapidly solidified in water at about 25 ° C. and then cut to have a diameter of about 1.3 mm and a length of about 1. 9 mm, and about 3 mg of resin particles were obtained. The talc was added so as to be 2000 ppm. Then, an autoclave having an internal volume of 5 L is
After adjusting to ° C, 1000 g of the resin particles were added.
Carbon dioxide gas was press-fitted into the autoclave through the pressure control valve, the pressure inside the autoclave was adjusted to the pressure shown in Table 1, and the pressure was maintained for 15 hours. Next, the carbon dioxide gas in the autoclave was extracted, and then the resin particles were extracted. Table 1 shows the carbon dioxide impregnation amount of the resin particles. The resin particles impregnated with carbon dioxide gas were filled in a closed container, and then steam was introduced to heat the particles to a temperature shown in Table 1 to obtain expanded and expanded foamed particles. Table 1 shows the density of the expanded beads. The obtained expanded particles were filled in a closed container, and the expanded particles were pressurized with the gas shown in Table 2 under an atmospheric temperature condition of 20 ° C. to give the gas to the expanded particles. The gas impregnation amount of the expanded particles is shown in Table 2. Next, the foamed particles to which the gas was applied were filled in a mold of 200 × 250 × 10 mm so as to have a compression rate shown in Table 2, and heat-molded with steam having a temperature shown in Table 2. The obtained molded body was aged at 30 ° C. for 24 hours. Table 2 shows the densities of the obtained expanded particle molded products.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】尚、表1に示した発泡粒子の内部圧力は下
記式により算出される。
The internal pressure of the expanded particles shown in Table 1 is calculated by the following formula.

【数4】 (但し、増加気体量は前記(3)式の増加気体量と同様
に求められる内部圧力測定時の発泡粒子重量と加圧処理
する前の発泡粒子重量との差を示し、Tは雰囲気絶対温
度、発泡粒子内の気体体積は下記式により算出される値
である。また、気体分子量は付与した気体がCO2の場
合44(g/モル)、空気の場合28.9(g/モル)
とした。)
[Equation 4] (However, the increased gas amount indicates the difference between the weight of the expanded particles at the time of measuring the internal pressure and the weight of the expanded particles before the pressure treatment, which is obtained in the same manner as the increased gas amount in the above formula (3), and T is the absolute temperature of the atmosphere. The volume of gas in the expanded particles is a value calculated by the following formula: The gas molecular weight is 44 (g / mol) when the applied gas is CO 2 and 28.9 (g / mol) when it is air.
And )

【数5】 [Equation 5]

【0037】実施例6、7、9、比較例1 非結晶性ポリ乳酸((株)島津製作所製ラクティ980
0、Tg:53℃)とタルクとポリイソシアネート化合
物(ミリオネートMR−200:日本ポリウレタン工業
(株)製)とを二軸押出機を用いてシリンダー温度18
0℃で溶融混練した後、ストランド状に押出し、次いで
このストランドを約20℃の水中で急冷固化させた後に
切断して、直径約1.3mm、長さ約1.9mm、1個
当たり約3mgの樹脂粒子を得た。なお、タルクは1重
量%、ポリイソシアネート化合物は3重量%となるよう
に添加した。この場合のポリイソシアネートは、化合物
名ポリメチレンポリフェニルポリイソシアネートであ
る。得られた樹脂粒子を約30℃、相対湿度約50%の
雰囲気下に30日間保管した。上記保管後の樹脂粒子の
ゲル分率は53%であった。次に、5Lの内容積を有す
るオートクレーブに樹脂粒子100重量部、水300重
量部、酸化アルミニウム0.5重量部、ドデシルベンゼ
ンスルホン酸ナトリウム0.06重量部を仕込み、攪拌
しながら110℃まで加熱して昇温し、二酸化炭素をオ
ートクレーブ内圧力が4MPaになるまで注入し含浸さ
せた。その後、同温度で20分間保持した後、オートク
レーブの一端を開放して、オートクレーブ内に窒素ガス
を導入してオートクレーブ内圧力を維持しながら内容物
を大気圧下に放出して樹脂粒子を発泡させた。この発泡
粒子の見掛け密度は0.148g/cm3であった。
尚、発泡粒子のゲル分率は60%であった。得られた発
泡粒子を密閉容器内に充填し、20℃の雰囲気温度条件
下で二酸化炭素にて加圧し、二酸化炭素を含浸させて表
2に示す気体含浸量の発泡粒子とした。この発泡粒子を
200×250×10mmの金型に表2に示す圧縮率と
なるように充填し、118℃の水蒸気で加熱成形した。
実施例にて得られた成形体は30℃で24時間養生し
た。得られた発泡粒子成形体は融着性の良好なもので、
表2に示す密度を有し、ゲル分率が60%のものであっ
た。 実施例8 攪拌しながら120℃まで加熱して昇温して、二酸化炭
素をオートクレーブ内圧力が4MPaになるまで注入し
含浸させることにより、二酸化炭素含浸温度を120℃
とし、同温度で20分間保持した後、オートクレーブの
一端を開放することにより発泡温度を120℃とした以
外は実施例7と同様にして発泡粒子を得た(発泡粒子の
ゲル分率60%)。得られた発泡粒子を200×250
×10mmの金型に充填し、118℃の水蒸気で加熱成
形した。得られた成形体は30℃で24時間養生した。
得られた発泡粒子成形体は融着性の良好なもので、密度
0.105g/cm3を有し、ゲル分率60%のもので
あった。なお、前記ゲル分率は以下のようにして測定さ
れたものである。 (ゲル分率の測定)本明細書における樹脂粒子及び発泡
粒子のゲル分率の測定は、次のように測定される。樹脂
粒子又は発泡粒子約1gをサンプルとし、サンプル重量
W2を秤量する。次に秤量したサンプルと100mlの
クロロホルムを150mlのフラスコに入れ、大気圧下
で10時間、62℃の条件にて加熱環流した後、得られ
た加熱処理物が十分に熱い50℃以上の状態のうちに2
00メッシュの金網を有する吸引濾過装置を用いて濾過
処理する。得られた金網上の濾過処理物を80℃のオー
ブン中で30〜40トールの条件下にて8時間乾燥す
る。この際に得られた乾燥物重量W1を測定する。この
重量W1のサンプル重量W2に対する重量比の百分率
(W1/W2)×100%をゲル分率とする。発泡粒子
成形体のゲル分率の測定は、成形体表面を含まないよう
に縦5mm×横5mm×高さ5mmの直方体を複数切り
出し、測定用のサンプルとした以外は発泡粒子の場合と
同様にして測定される。
Examples 6, 7, 9 and Comparative Example 1 Amorphous polylactic acid (Lacty 980 manufactured by Shimadzu Corporation)
0, Tg: 53 ° C.), talc, and a polyisocyanate compound (Millionate MR-200: manufactured by Nippon Polyurethane Industry Co., Ltd.) using a twin-screw extruder at a cylinder temperature of 18
After melt-kneading at 0 ° C, it is extruded into a strand, and then this strand is rapidly cooled and solidified in water at about 20 ° C and then cut to have a diameter of about 1.3 mm, a length of about 1.9 mm, and about 3 mg per piece. Resin particles of The talc was added in an amount of 1% by weight and the polyisocyanate compound was added in an amount of 3% by weight. The polyisocyanate in this case is the compound name polymethylene polyphenyl polyisocyanate. The obtained resin particles were stored for 30 days in an atmosphere of about 30 ° C. and a relative humidity of about 50%. The gel fraction of the resin particles after the storage was 53%. Next, 100 parts by weight of resin particles, 300 parts by weight of water, 0.5 parts by weight of aluminum oxide, and 0.06 parts by weight of sodium dodecylbenzenesulfonate are charged into an autoclave having an internal volume of 5 L, and heated to 110 ° C. with stirring. Then, the temperature was raised, and carbon dioxide was injected and impregnated until the internal pressure of the autoclave reached 4 MPa. Then, after holding at the same temperature for 20 minutes, one end of the autoclave is opened and nitrogen gas is introduced into the autoclave to release the contents under atmospheric pressure while maintaining the pressure inside the autoclave to foam the resin particles. It was The apparent density of the expanded beads was 0.148 g / cm 3 .
The gel fraction of the expanded beads was 60%. The obtained foamed particles were filled in a closed container, pressurized with carbon dioxide under an atmospheric temperature condition of 20 ° C., and impregnated with carbon dioxide to obtain gas-impregnated amounts of the foamed particles shown in Table 2. The foamed particles were filled in a mold of 200 × 250 × 10 mm so as to have the compressibility shown in Table 2, and heat-molded with steam at 118 ° C.
The molded bodies obtained in the examples were aged at 30 ° C. for 24 hours. The obtained expanded particle molded article has a good fusion property,
It had a density shown in Table 2 and a gel fraction of 60%. Example 8 The temperature of carbon dioxide impregnation is 120 ° C. by heating to 120 ° C. with stirring and raising the temperature to inject and impregnate carbon dioxide until the internal pressure of the autoclave becomes 4 MPa.
Then, after holding at the same temperature for 20 minutes, expanded beads were obtained in the same manner as in Example 7 except that the foaming temperature was 120 ° C. by opening one end of the autoclave (gel fraction of expanded particles 60%). . 200 × 250 of the obtained expanded particles
It was filled in a mold of × 10 mm and heat-molded with steam at 118 ° C. The obtained molded body was aged at 30 ° C. for 24 hours.
The obtained expanded bead molded product had a good fusion property, a density of 0.105 g / cm 3 , and a gel fraction of 60%. The gel fraction is measured as follows. (Measurement of Gel Fraction) The gel fraction of the resin particles and the expanded particles in the present specification is measured as follows. About 1 g of resin particles or expanded particles is used as a sample, and the sample weight W2 is weighed. Next, the weighed sample and 100 ml of chloroform were placed in a 150 ml flask and heated to reflux under atmospheric pressure for 10 hours at 62 ° C., and the resulting heat-treated product was sufficiently hot at 50 ° C. or higher. 2 at home
Filtration is performed using a suction filtration device having a 00 mesh wire mesh. The obtained filtered product on the wire net is dried in an oven at 80 ° C. under the condition of 30 to 40 Torr for 8 hours. The dried product weight W1 obtained at this time is measured. The percentage (W1 / W2) × 100% of the weight ratio of the weight W1 to the sample weight W2 is the gel fraction. The measurement of the gel fraction of the foamed particle molded body was performed in the same manner as in the case of the foamed particles except that a rectangular parallelepiped having a length of 5 mm × a width of 5 mm × a height of 5 mm was cut out so as not to include the surface of the molded body and used as a sample for measurement. Measured.

【0038】[0038]

【発明の効果】本発明の製造方法によれば、部分部分の
密度ばらつきが小さく、発泡粒子同士の融着性、表面平
滑性に優れ、均一な機械的物性を有するポリ乳酸発泡粒
子成形体が得られる。本発明によって得られる発泡粒子
成形体は、寸法安定性、外観、緩衝性及び機械的強度に
優れ、緩衝材、包装資材等として好適に使用されると共
に、生分解性を有しているためその後の廃棄処分が容易
となるなどその産業的意義は多大である。
According to the production method of the present invention, there is provided a polylactic acid foamed particle molded article having a small density variation in a partial portion, excellent fusion bonding between foamed particles, excellent surface smoothness, and uniform mechanical properties. can get. The expanded particle molded product obtained by the present invention has excellent dimensional stability, appearance, cushioning property and mechanical strength, and is suitably used as a cushioning material, packaging material, etc., and has biodegradability. Its industrial significance is great, such as the easy disposal of

フロントページの続き (72)発明者 坂口 正和 栃木県鹿沼市さつき町10−3 株式会社ジ ェイエスピー鹿沼研究所内 (72)発明者 所 寿男 栃木県鹿沼市さつき町10−3 株式会社ジ ェイエスピー鹿沼研究所内 Fターム(参考) 4F074 AA68 BA32 BA33 BA53 BA54 CA51 CC03X CC04Y DA02Continued front page    (72) Inventor Masakazu Sakaguchi             10-3 Satsukicho, Kanuma City, Tochigi Prefecture             KSP Kanuma Research Institute (72) Inventor Toshio Tokoro             10-3 Satsukicho, Kanuma City, Tochigi Prefecture             KSP Kanuma Research Institute F-term (reference) 4F074 AA68 BA32 BA33 BA53 BA54                       CA51 CC03X CC04Y DA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ポリ乳酸を主成分とする樹脂から形成さ
れた発泡粒子を型内に5〜70%の圧縮率となるように
充填した後に加熱媒体により該発泡粒子を加熱し、融着
させることを特徴とするポリ乳酸発泡粒子成形体の製造
方法。
1. A foamed particle formed of a resin containing polylactic acid as a main component is filled in a mold so as to have a compression ratio of 5 to 70%, and then the foamed particle is heated and fused by a heating medium. A method for producing a polylactic acid expanded particle molded article, which is characterized by the following.
【請求項2】 該発泡粒子の見かけ密度が0.015〜
0.3g/cm3である請求項1に記載のポリ乳酸発泡
粒子成形体の製造方法。
2. The apparent density of the expanded beads is 0.015 to 0.015.
The method for producing a polylactic acid expanded particle molded article according to claim 1, wherein the method is 0.3 g / cm 3 .
【請求項3】 該発泡粒子が0.3〜4mol/(1,
000g発泡粒子)の気体を含む請求項1又は2に記載
のポリ乳酸発泡粒子成形体の製造方法。
3. The expanded particles are 0.3 to 4 mol / (1,
000 g foamed particles).
【請求項4】 ポリ乳酸を主成分とする樹脂から形成さ
れた発泡粒子が0.7〜4mol/(1000g発泡粒
子)の気体を含み、該発泡粒子を型内に充填した後に加
熱媒体により該発泡粒子を加熱し、融着させることを特
徴とするポリ乳酸発泡粒子成形体の製造方法。
4. The expanded particles formed from a resin containing polylactic acid as a main component contain 0.7 to 4 mol / (1000 g expanded particles) of gas, and the expanded particles are filled in a mold and then heated by a heating medium. A method for producing a polylactic acid expanded particle molded article, which comprises heating the expanded particles to fuse them.
【請求項5】 該ポリ乳酸が、ポリ乳酸をゲル化処理し
たものである請求項1〜4のいずれかに記載のポリ乳酸
発泡粒子成形体の製造方法。
5. The method for producing a polylactic acid expanded particle molded article according to claim 1, wherein the polylactic acid is obtained by gelling polylactic acid.
【請求項6】 該ポリ乳酸の示差走査熱量測定による融
解熱量が0.1J/gを超えることを特徴とする請求項
1〜5のいずれかに記載のポリ乳酸発泡粒子成形体の製
造方法。
6. The method for producing a polylactic acid expanded particle molded article according to claim 1, wherein a heat of fusion of the polylactic acid measured by differential scanning calorimetry exceeds 0.1 J / g.
【請求項7】 該気体が二酸化炭素である請求項3又は
4に記載のポリ乳酸発泡粒子成形体の製造方法。
7. The method for producing a foamed polylactic acid molded article according to claim 3, wherein the gas is carbon dioxide.
JP2001255114A 2001-08-24 2001-08-24 Method for producing polylactic acid foamed particle molded body Expired - Fee Related JP4917221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255114A JP4917221B2 (en) 2001-08-24 2001-08-24 Method for producing polylactic acid foamed particle molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255114A JP4917221B2 (en) 2001-08-24 2001-08-24 Method for producing polylactic acid foamed particle molded body

Publications (2)

Publication Number Publication Date
JP2003064213A true JP2003064213A (en) 2003-03-05
JP4917221B2 JP4917221B2 (en) 2012-04-18

Family

ID=19083148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255114A Expired - Fee Related JP4917221B2 (en) 2001-08-24 2001-08-24 Method for producing polylactic acid foamed particle molded body

Country Status (1)

Country Link
JP (1) JP4917221B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073495A (en) * 2001-08-30 2003-03-12 Jsp Corp Method for producing expandable particle of polylactic acid
JP2007169394A (en) * 2005-12-20 2007-07-05 Sekisui Plastics Co Ltd Method for producing polylactic acid resin expanded particle for in-mold expansion molding
JP2009061754A (en) * 2007-09-10 2009-03-26 Kaneka Corp Foam molding machine of thermoplastic resin
JP2011016941A (en) * 2009-07-09 2011-01-27 Sekisui Plastics Co Ltd Manufacturing method for polylactic acid-based resin foam, and polylactic acid-based resin foam
US8283389B2 (en) * 2007-01-30 2012-10-09 Biopolymer Network Limited Methods of manufacture of polylactic acid foams
WO2013047075A1 (en) * 2011-09-28 2013-04-04 株式会社ジェイエスピー Polylactic acid-based resin foamed particles and molded article thereof
WO2013058056A1 (en) * 2011-10-18 2013-04-25 株式会社ジェイエスピー Method for producing expanded polylactic acid resin particle
JP2013517340A (en) * 2010-01-14 2013-05-16 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing foamable polylactic acid-containing granules
US20140259909A1 (en) * 2011-10-29 2014-09-18 Synbra Technology B.V. Growth substrate for plants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300387A (en) * 1986-09-16 1996-11-19 Kanegafuchi Chem Ind Co Ltd Production of in-mold foamed molded object of polypropylene resin
JP2000044717A (en) * 1998-07-30 2000-02-15 Kanegafuchi Chem Ind Co Ltd Pre-expanded polypropylene resin particle, and production of in-mold foamed molding therefrom
JP2000136261A (en) * 1998-08-28 2000-05-16 Mitsui Chemicals Inc Foaming particle and production of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300387A (en) * 1986-09-16 1996-11-19 Kanegafuchi Chem Ind Co Ltd Production of in-mold foamed molded object of polypropylene resin
JP2000044717A (en) * 1998-07-30 2000-02-15 Kanegafuchi Chem Ind Co Ltd Pre-expanded polypropylene resin particle, and production of in-mold foamed molding therefrom
JP2000136261A (en) * 1998-08-28 2000-05-16 Mitsui Chemicals Inc Foaming particle and production of the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073495A (en) * 2001-08-30 2003-03-12 Jsp Corp Method for producing expandable particle of polylactic acid
JP2007169394A (en) * 2005-12-20 2007-07-05 Sekisui Plastics Co Ltd Method for producing polylactic acid resin expanded particle for in-mold expansion molding
US8283389B2 (en) * 2007-01-30 2012-10-09 Biopolymer Network Limited Methods of manufacture of polylactic acid foams
JP2009061754A (en) * 2007-09-10 2009-03-26 Kaneka Corp Foam molding machine of thermoplastic resin
JP2011016941A (en) * 2009-07-09 2011-01-27 Sekisui Plastics Co Ltd Manufacturing method for polylactic acid-based resin foam, and polylactic acid-based resin foam
US10253150B2 (en) 2010-01-14 2019-04-09 Basf Se Method for producing expandable granulates containing polylactic acid
US9212270B2 (en) 2010-01-14 2015-12-15 Basf Se Method for producing expandable granulates containing polylactic acid
JP2013517340A (en) * 2010-01-14 2013-05-16 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing foamable polylactic acid-containing granules
CN103827184A (en) * 2011-09-28 2014-05-28 株式会社Jsp Polylactic acid-based resin foamed particles and molded article thereof
JPWO2013047075A1 (en) * 2011-09-28 2015-03-26 株式会社ジェイエスピー Polylactic acid-based resin expanded particles and molded articles thereof
EP2762521A4 (en) * 2011-09-28 2015-07-08 Jsp Corp Polylactic acid-based resin foamed particles and molded article thereof
TWI565742B (en) * 2011-09-28 2017-01-11 Jsp股份有限公司 Polylactic acid foamed bead and molded article thereof
US10184038B2 (en) 2011-09-28 2019-01-22 Jsp Corporation Polylactic acid-based resin expanded beads and molded article thereof
WO2013047075A1 (en) * 2011-09-28 2013-04-04 株式会社ジェイエスピー Polylactic acid-based resin foamed particles and molded article thereof
JPWO2013058056A1 (en) * 2011-10-18 2015-04-02 株式会社ジェイエスピー Method for producing foamed polylactic acid resin particles
EP2772509A4 (en) * 2011-10-18 2015-07-08 Jsp Corp Method for producing expanded polylactic acid resin particle
WO2013058056A1 (en) * 2011-10-18 2013-04-25 株式会社ジェイエスピー Method for producing expanded polylactic acid resin particle
US20140259909A1 (en) * 2011-10-29 2014-09-18 Synbra Technology B.V. Growth substrate for plants
US9521814B2 (en) * 2011-10-29 2016-12-20 Synbra Technology B.V. Growth substrate for plants

Also Published As

Publication number Publication date
JP4917221B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP5004247B2 (en) Polylactic acid expanded particle molded body
TWI398471B (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
KR101768263B1 (en) Polylactic acid resin foam particle and polylactic acid resin foam particle molding
JP4289547B2 (en) Polylactic acid foamed particles and molded product of polylactic acid foamed particles
EP2940070B1 (en) Molded article of polylactic acid-based resin expanded beads
JP5941052B2 (en) Method for producing polylactic acid-based resin expanded particles, and method for producing a molded article thereof
EP1947127B1 (en) Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead
JP5986096B2 (en) Method for producing foamed polylactic acid resin particles
TWI513748B (en) Polylactic resin expanded beads and molded article of the expanded beads
JP3730805B2 (en) Aliphatic polyester resin pre-expanded particles having biodegradability, molded product thereof and method for producing the pre-expanded particles
JP4917221B2 (en) Method for producing polylactic acid foamed particle molded body
JP5620733B2 (en) Method for producing foamed polylactic acid resin particles
JP4225477B2 (en) Method for producing polylactic acid-based resin in-mold foam molded body and polylactic acid-based resin in-mold foam molded body
JP4748698B2 (en) Method for producing polylactic acid foamable resin particles
KR101440217B1 (en) Polypropylene composition to improve a low temperature impact strength and its articles
JP4582871B2 (en) Non-crosslinked resin foamable particles
JP4761421B2 (en) Method for producing polyester resin foam and method for producing foamable polyester resin material
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
JP2003321568A (en) Prefoamed particle of non-crosslinked biodegradable polyester-based resin, molded product thereof, and method for producing the prefoamed particle
JP2021535237A (en) Process of forming polylactide-based expanded bead foam
JP4582674B2 (en) Polyester resin expanded particles and molded articles thereof
JP5306137B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees