JP4582871B2 - Non-crosslinked resin foamable particles - Google Patents

Non-crosslinked resin foamable particles Download PDF

Info

Publication number
JP4582871B2
JP4582871B2 JP2000206745A JP2000206745A JP4582871B2 JP 4582871 B2 JP4582871 B2 JP 4582871B2 JP 2000206745 A JP2000206745 A JP 2000206745A JP 2000206745 A JP2000206745 A JP 2000206745A JP 4582871 B2 JP4582871 B2 JP 4582871B2
Authority
JP
Japan
Prior art keywords
temperature
δhm
polylactic acid
heat
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000206745A
Other languages
Japanese (ja)
Other versions
JP2002020525A5 (en
JP2002020525A (en
Inventor
正幸 鋤柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2000206745A priority Critical patent/JP4582871B2/en
Publication of JP2002020525A publication Critical patent/JP2002020525A/en
Publication of JP2002020525A5 publication Critical patent/JP2002020525A5/ja
Application granted granted Critical
Publication of JP4582871B2 publication Critical patent/JP4582871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、生分解性を有し且つ発泡後に実用上充分な緩衝性能を有する発泡成形体となり得る、ポリ乳酸系樹脂からなる発泡性粒子及びそれを金型内で加熱発泡して得られる耐熱性の改良された発泡成形体に関する。
【0002】
【従来の技術】
軽量で優れた緩衝性能、成形加工性を有するプラスチック発泡体は精密機械、ガラス製品などの壊れやすい製品、衝撃に弱い光学機器、コンピューター関連機器の梱包材として大変有用であるが、従来その素材はポリスチレン、ポリオレフィンなどであり、その使用後に不要なゴミとして廃棄する場合に、丈夫で腐らないと言う性質のために土中埋設や埋め立てにより処分された廃棄物の累積量が増大し、都市部を中心にして埋め立て用地を確保することが困難な状況になっている。
この様な状況下でプラスチック廃棄物の減容化を可能にする材料として、自然界において微生物等によって分解される生分解性プラスチックが望まれるようになった。
既に脂肪族ポリエステル系樹脂を中心に生分解性を有するプラスチックは多数見出されているが、その中でもポリ乳酸系樹脂は、石油などの化石燃料に由来しないで、トウモロコシなどの天然物を原料として生産される点、及びその原料である乳酸が極めて安全な物質であるという点から、使用後生分解されて自然界で循環される樹脂としては最も好ましい樹脂の一つと言える。
【0003】
しかしながら、ポリ乳酸系樹脂は結晶性の樹脂であり、溶融粘度の温度依存性が大きいために、溶融粘度を発泡に適した粘度に保つことが困難であるという問題点がある。
生分解性を有する発泡性粒子に関しては、特開平6−248106号公報には主にグリコール類とジカルボン酸との2成分からなる脂肪族ポリエステルの発泡性粒子について開示されているが、ポリ乳酸系樹脂の発泡性粒子については開示されていない。
これら主にグリコール類とジカルボン酸との2成分からなる脂肪族ポリエステルはポリ乳酸系樹脂とは化学構造が異なり成形時の溶融粘度挙動も異なり、また、ポリ乳酸系樹脂に比べ柔軟性に富み、弾性率が低く、発泡体の機械的物性もポリ乳酸系樹脂発泡体と異なるものである。
また、特開平10−324766号公報には、架橋構造を有する脂肪族ポリエステル系樹脂発泡粒子について開示されていて、化学架橋または放射線架橋などの架橋反応を必要とし、無架橋では良好な発泡体は得られない。加えて、実施例にはジオールとジカルボン酸からなる脂肪族ポリエステル系樹脂発泡粒子のみの開示であり、無架橋のポリ乳酸系樹脂発泡性粒子の発泡性改良については何も述べられていない。
また、特開2000−17037号公報においては、ポリ乳酸に特定のポリイソシアネートを特定量使用することが必須であり、ポリイソシアネートを使用しない方法については全く開示されていない。
【0004】
【発明が解決しようとする課題】
本発明は、生分解性を有し且つ実用上優れた緩衝性能を有し且つ耐熱性の改良された型内発泡成形体を与えるポリ乳酸系樹脂発泡性粒子において、無架橋で優れた発泡性を有する発泡性粒子を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、驚くべき事に特定の溶融粘度と結晶融解熱量ΔHm及び結晶融解吸熱曲線を有するポリ乳酸系樹脂を使用することにより本発明の目的が達成されることを見出し本発明を完成するに至った。
即ち、本発明:
▲1▼ 乳酸単量体単位を50重量%以上含むポリ乳酸系樹脂において、温度190℃、剪断速度100sec-1における溶融粘度が1×102〜1×105Pa
・sであり、且つ示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が6℃以上で、ポリ乳酸系樹脂と発泡剤からなる無架橋のポリ乳酸系樹脂発泡性粒子を提供する。また、
▲2▼ ポリ乳酸系樹脂が、示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が8℃以上である、▲1▼記載の発泡性粒子を提供する。また、
▲3▼ 乳酸単量体単位を50重量%以上含むポリ乳酸系樹脂において、温度190℃、剪断速度100sec-1における溶融粘度が1×102〜1×105Pa
・sであり、且つ示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が6℃以上であることを特徴とする、ポリ乳酸系樹脂と発泡剤からなる無架橋のポリ乳酸系樹脂発泡性粒子を加熱発泡成形してなる発泡成形体を提供する。また、
▲4▼ ポリ乳酸系樹脂が、示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が8℃以上である。▲3▼記載の発泡成形体を提供する。
【0006】
本発明について、以下に具体的に説明する。
本発明の発泡性粒子は、ポリ乳酸系樹脂からなる。
該ポリ乳酸系樹脂とは、乳酸単量体単位を50重量%以上含有する重合体であって、ポリ乳酸及び、乳酸と他のヒドロキシカルボン酸およびラクトン類からなる群より選ばれる化合物との共重合体、または乳酸単量体単位を50重量%以上含有するこれら重合体を主体として含有するの組成物である。
乳酸単量体単位の含有量が50重量%未満の場合、発泡体の耐熱性および機械的強度が低下する傾向にある。好ましくは乳酸単量体単位を80重量%以上含む共重合体であり、さらに好ましくは、乳酸単量体単位を90重量%以上含む共重合体である。
【0007】
また、本発明のポリ乳酸系樹脂におけるL−乳酸単量体単位とD−乳酸単量体単位の比率は、後述の示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が6℃以上、好ましくは8℃以上であれば特に制限されない。
乳酸としては、L−乳酸、D−乳酸が挙げられる。
その他のヒドロキシカルボン酸としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸等が挙げられる。
また、ラクトン類としては、グリコリド、ラクチド、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、ε−カプロラクトンおよびこれらにメチル基などの種々の基が置換したラクトン類などが挙げられる。
乳酸と共重合する上記の化合物の内、好ましい物としてはグリコリド、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、ε−カプロラクトンなどの無置換のラクトン類であり、特に好ましくはε−カプロラクトンである。
【0008】
ポリ乳酸系樹脂の重合方法としては、縮合重合法、開環重合法などの公知の方法を採用できる。
また、ポリエポキシ化合物、多価カルボン酸無水物、多価カルボン酸塩化物、ポリアミン、多価カルボン酸のアルキルエステル、四塩化珪素などの多官能珪素化合物などの結合剤を使用して分子量を増大する方法を用いることもできる。
ポリ乳酸系樹脂の重量平均分子量は20,000〜1,000,000の範囲が好ましく、さらに好ましくは重量平均分子量40,000〜800,000の範囲である。
【0009】
本発明のポリ乳酸系樹脂発泡性粒子には、上記の樹脂の他に、可塑剤、熱安定剤、酸化防止剤、および紫外線吸収剤、帯電防止剤、滑剤、離型剤、核剤、結晶化促進剤などの公知の添加剤を、本発明の要件と特性を損なわない範囲で配合することが可能である。
即ち、酸化防止剤としては、P−tブチルヒドロキシトルエン、P−tブチルヒドロキシアニソール等のヒンダードフェノール系酸化防止剤;
ジステアリルチオジプロピオネート、ジラウリルチオジプロピオネート等のイオウ系酸化防止剤;
熱安定剤としては、トリフェニルホスファイト、トリラウリルホスファイト、トリスノニルフェニルホスファイト等;
紫外線吸収剤としては、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2,4,5−トリヒドロキシブチロフェノン、P−tブチルフェニルサリシレートなどがあり;
【0010】
滑剤としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム等があり;
帯電防止剤としては、N,N−ビス(ヒドロキシエチル)アルキルアミン、アルキルアミン、アルキルアリルスルホネート、アルキルスルホネート等があり;
難燃剤としては、ヘキサブロモシクロドデカン、トリス−(2,3−ジクロロプロピル)ホスフェート、ペンタブロモフェニルアリルエーテル等;
発泡核剤としては、炭酸カルシウム、シリカ、二酸化チタン、タルク、マイカアルミナ等があり;
結晶促進剤としては、ポリエチレンテレフタレート等が挙げられる。
【0011】
また、本発明で用いられるポリ乳酸系樹脂において、温度190℃、剪断速度100sec-1の条件下での溶融粘度は1×102〜1×105Pa・sである
ことが必要であり、好ましくは5×102〜5×104Pa・sである。
溶融粘度が1×102Pa・s未満では粘度が低くなり過ぎて得られる発泡粒子の独立気泡率が低くなり、また良好な発泡体が得られ難くなる。一方、溶融粘度が1×105Pa・sを越えると粘度が高過ぎるため、気泡が成長できず、良好な発泡体を成形でき難くなる。
本発明においてポリ乳酸系樹脂の溶融粘度は東洋精機製作所製「キャピログラフ1C−PDM−C」を用いて測定した。
【0012】
また、本発明に用いられるポリ乳酸系樹脂は示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が6℃以上であることが必要である。好ましくはΔHmは40J/g以上である。
ΔHmが30J/g未満であると、100℃以下で発泡成形する場合には有利であるが、出来た成形品は例えば100℃付近の熱湯に接触すると軟化、溶融し易く耐熱性に劣る成形品となる傾向にある。よって、100℃以上の耐熱性を得るためにはΔHmが30J/g以上である事が必要である。
しかしながら、ΔHmが30J/g以上であると融点付近におけるポリ乳酸系樹脂の溶融粘度の温度依存性が大きくなり、融点以上の温度において急激な粘度低下が起こり、発泡性粒子を加熱して金型内で成形する際に、溶融粘度を発泡に適した状態に維持するための温度調整が困難になり良好な成形品を得ることが難しくなる。
【0013】
そこで、この急激な粘度低下を防ぎ、溶融粘度を発泡に適した状態に維持するための温度調整を容易にするためには、昇温して測定した時のΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が6℃以上であることが必要になる。好ましくは(T70−T50)が8℃以上である。
上述から分かる様に、ΔHmが30J/g以上で且つ(T70−T50)が6℃未満の場合、溶融粘度を発泡に適した状態に維持するための温度調整が困難になり良好な成形品を得ることが難しくなる。
50〜T70の温度範囲を型内発泡成形に適した温度とする理由は、樹脂の50%未満の融解状態では均一な発泡は生じ得ないし、また70%を越える融解状態では粒子間の融着が極度に進行したり、激しく流動して気泡構造の整った粒子の形状維持が出来ないためである。
【0014】
0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmは示差走査熱量測定をすることにより求められる。
ΔHmは昇温速度10℃/分で樹脂サンプルを昇温した時の全結晶を融解するのに必要な熱量であって、ポリ乳酸系樹脂の結晶融点付近に現れる結晶融解による吸熱ピークの面積から求められる。
また、ΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)およびその差(T70−T50)も上記の示差走査熱量測定より求められる。
例として図1〜図4において、T50、T70およびその差(T70−T50)の求め方を示したが、図1〜図3は(T70−T50)が6℃以上の例(実施例)であり、図4は6℃未満の例(比較例)であり、曲線の形状はこれらの例のみに限定されるものではない。
図1〜4は、DSCで測定した結晶融解吸熱曲線の求め方を説明するためのグラフであり、DSCで求めた結晶吸熱曲線とベースラインで囲まれた部分の全面積がΔHmに対応し、その内T50で二分された部分の内の左側(低温側)の面積がΔHmの50%の面積となり、T70で二分された部分の左側の面積がΔHmの70%に成るようにT50、T70が求められる。
【0015】
本発明においてΔHmを大きくする方法としては、例えば(I)L乳酸/D乳酸の共重合組成を50/50〜100/0または0/100に近づけて樹脂の結晶化度を高くさせてΔHmを大きくする方法、
(2) ポリ乳酸系樹脂中のコモノマー含有量を減少して結晶化度を高くさせてΔHmを大きくする方法、
(3) ポリ乳酸系樹脂を融点以下の温度でアニーリングすることにより結晶化度を高めてΔHmを大きくする方法、およびこれらを組み合わせる方法がある。
【0016】
また、(T70−T50)を大きくする方法としては、(I)融点の異なる複数のポリ乳酸系樹脂をブレンドすることにより、100℃以上における該樹脂の結晶融解吸熱曲線をなだらかなピークにする方法、
(2) 複数のピークを持つ曲線にする方法等があるが、これらに限定されるものではない。
好ましくは、重合時に上記のように複数の融点を持つポリ乳酸系樹脂を重合機内でブレンドしてできた、複数の樹脂成分がより均一に混ざり合っている樹脂を使用することである。
これらのDSC測定は、パーキンエルマー(Perkin−Elmer)社製の示差走査熱量計、「DSC−7」型を用いて、約10mgの試料を10℃/分の速度で0℃から200℃まで昇温させて測定した。
【0017】
本発明のポリ乳酸系樹脂発泡性粒子は上記のような要件を満たすことでポリイソシアネートを使用せず、無架橋粒子でありながら良好な発泡性を有し、実用上充分な緩衝性能を有する型内発泡成形体となるが、無架橋であることの利点は、 (イ)架橋操作および架橋剤を省略できるという原料面、 (ロ)生産性の面でのコストメリットである。
【0018】
本発明の発泡性粒子を成形する方法は、(I)ポリ乳酸系樹脂を押出機内で加熱溶融し、溶融後に押出機内に発泡剤を注入し、樹脂と発泡剤とを良くミキシングした後に、押出機から冷水中に樹脂を押出し急冷、ペレタイズする方法、及び
(2) 発泡剤を注入せずに樹脂を押出しペレタイズし、その粒子を密閉容器内において発泡剤の存在下で分散媒に分散させると共に、その内容物を加熱して粒子を軟化させて粒子内に発泡剤を含浸させる方法等があるが、型内発泡用の発泡性粒子を得る方法としては(2) の方が適している。
ここで、本発明の発泡性粒子の発泡前の平均粒径は0.1mm〜20mmが好ましく、さらには0.4mm〜10mmであることがより好ましい。
【0019】
発泡剤を含んだ本発明の発泡性粒子は、通常、加熱により第一次の発泡で発泡倍率を3倍以上に予備発泡させてから、次いでこれらを金型に充填し、更に加熱して二次発泡させると高発泡倍率の発泡成形体を製造することが出来る。
本発明で用いられる発泡剤としては、ポリ乳酸系樹脂の融点又は軟化点以下の沸点を有することが必要である。
例えば、プロパン、ブタン、ペンタン、ヘキサン、シクロブタン、シクロヘキサン、トリクロロフロロメタン、1,2,2,2−テトラフロロメタン等の揮発性発泡剤があるが、オゾン層の破壊がなく且つ取り扱い性から好ましいものはブタン、ペンタン、ヘキサンである。
【0020】
この揮発性発泡剤は、ポリ乳酸系樹脂100重量部に対して0.5〜40重量部使用される。好ましくは、2〜20重量部使用される。
0.5重量部未満では充分な発泡倍率の発泡体が得られず、また40重量部を越えると成形が困難になり、できた発泡体は実用に耐えないものとなる。
無機系発泡剤としては、水、窒素、二酸化炭素、アルゴン、空気等が用いられるが、安価な無機系発泡剤である水、窒素、二酸化炭素、空気が好ましい。
空気などの常温でガス状の発泡剤を使用する場合、その使用量は20〜60kgf/cm2Gの圧力範囲に成るように密閉容器に発泡剤を注入、加圧すればよい。
また、気泡の発生状態を調整する目的で、例えばタルク、酸化珪素のような無機粉末;ステアリン酸亜鉛、ステアリン酸カルシウムのような有機質微粉末;更にクエン酸、炭酸水素ナトリウムのような加熱により分解してガスを発生する微粉末等の気泡核剤を必要に応じて添加しても良い。
【0021】
また、本発明の発泡性粒子は、一度加熱発泡後冷却し、気泡内を空気が満たした状態で再度加熱発泡することによって1回の発泡で得られるより高倍率の発泡体が得られる。
1回の加熱発泡では一般的に2〜60cc/g程度に膨張するが、多数回加熱発泡することで90cc/g以上の発泡も可能になる。
本発明の発泡性粒子を一次発泡させて発泡倍率を3倍以上とし、乾燥熟成したものを金型内に充填して更に水蒸気等で加熱することにより、型どおりの高発泡倍率の発泡成形体を得ることが出来できる。
この場合、電気機器、コンピュータ、時計等の精密機器、眼鏡、顕微鏡などの光学機器、その他陶磁器、ガラス製品などの壊れやすい物などの輸送、保管の場合に外部からの衝撃を和らげ、製品が破損、故障しないようにするために用いられる緩衝材として、また魚、野菜、肉、食料品、医療品、カップラーメンの容器などの保温、保冷するための発泡体容器、発泡成形体として有効なものとなる。
【0022】
【発明の実施の形態】
実施例および比較例によって本発明を説明する。
まず、実施例および比較例で用いた評価方法について以下に説明する。
(1) 溶融粘度
溶融粘度は東洋精機製作所製キャピログラフ1C−PMD−Cを用いて、190℃でノズル径1.0ミリ、L/D=10のノズルを用いて、剪断速度100sec-1での溶融粘度を測定した。
(2) 重量平均分子量
Waters社製のゲルパーミエイションクロマトグラフィー(GPC)を用い、且つクロロホルムを溶媒として試料のクロロホルム溶液の濃度を1mg/1ccとし、溶媒温度40℃、溶媒流速1ml/分で測定を実施した。
標準ポリスチレンを用いてポリスチレン換算して重量平均分子量を求めた。
(3) 結晶融解熱量ΔHm、T50、T70
パーキンエルマー(Perkin−Elmer)社製の示差走査熱量計(DSC)、「DSC−7」型を用いて、約10mgの試料を10℃/分の速度で0℃から200℃まで昇温させてΔHm、T50、T70を測定した。
【0023】
(4) 発泡倍率
発泡体の発泡倍率は、重量既知W(g)の発泡体の体積V(cc)を水没法で測定し、その体積を重量で割ってV/W(cc/g)を求めて評価した。
(5) 型内成形性
型内発泡で得られた成形品の融着度と対金型寸法収縮率を以下の基準で評価した。
即ち、融着度、対金型寸法収縮率の両方とも特に良好な発泡成形品が得られる場合◎、両方とも並みに良好な場合は○、いずれかが△の場合△、両方が△か×の場合×と評価した。
(6) 耐熱性
厚さ2mm、内容量約200ccのコップ状の発泡成形体を成形し、これに100℃の熱水を注ぎ、30分経過後の容器の変形度合いで評価した。
容器の変形が殆ど無いものを〇、変形はあるが水がこぼれないものを△、変形が激しく水がこぼれてしまうものを×として評価した。
(7) 生分解性試験
金型内発泡成形品を厚さ約1mmの板状にカットし、約0.1gをステンレス製0.3mmの網目のネット状サンプルホルダーに挟み、地中約10cmの深さの所に埋め9か月経過後に残存するサンプルの重量を測定した。
残存率が40%以下であるものを○、残存率が40〜90%のものを△、残存率が90%以上のものを×と判定した。
【0024】
以下の実施例および比較例におけるポリ乳酸系樹脂は、乳酸単独重合体については特開平6−65360号公報に記載された方法に従い、錫末を触媒にL−乳酸およびD−乳酸を用いて直接縮合によりポリ乳酸重合体を得た(表1のポリマーA〜E、及びL)。
また、共重合体については、Journal of Polymer Science :PartB:Polymer Physics,Vol.32,2481−2489ページ(1994年)に記載された方法に従い、オクタン酸スズ触媒を用いてL−ラクチド、D−ラクチドおよびε−カプロラクトンの共重合体を合成し、さらにアジピン酸塩化物を用いてカップリング反応を行い表1のポリマーF〜Kの様なポリ乳酸系重合体を得た。
以下の実施例と比較例においては、全て表1のポリ乳酸系樹脂を使用して実施した。
【0025】
(実施例1)
表1のポリマーA,C,Eを表2に示した組成割合で二軸押出機を用いて溶融混錬し、ストランド状に押出し、水冷し、直径0.7mm、長さ1.3mmの粒子形状に切断した。
次いで、得られた樹脂粒子100重量部、水300重量部を5リットルの圧力容器に仕込み、樹脂粒子を80℃まで加熱し、炭酸ガスを圧力容器内圧が30kg/cm2Gになるまで圧入し、含浸させた。その後、この発泡性粒子を取出し、発泡装置へ移して、槽内温度を80℃から発泡温度まで20秒掛けて昇温し、更にその温度を保持しながら10秒間水蒸気加熱し、一次発泡粒子を得た。
発泡温度は表2のポリマーのT50、T70、およびΔHmの値を参考に事前に最適条件を求めてそれを採用した。
そして、一次発泡粒子の目標倍率である倍率である4cc/gに近く独立気泡率が高く、均一な気泡径となる条件をそのポリマーの最適発泡温度とした。
こうして得られた一次発泡樹脂粒子の発泡倍率を表2に示す。
【0026】
次に得られた一次発泡粒子を60℃で24時間乾燥熟成し、内部空間の寸法が縦200mm、横100mm、高さ20mmの金型に充填し、水蒸気を使って表2に示す温度で加熱し成形し、得られた発泡成形体を大気圧下60℃で24時間養生した。得られた発泡成形体の発泡倍率を表2に示した。
なお、耐熱性は上と同じようにして内容積約200cc、厚さ2mmのコップ状の成形体が得られる金型で成形して得たコップを使用して評価した。
その評価結果を表2に示す。また、生分解性テスト結果も表2に示した。
本実施例の一次発泡粒子は金型内で高い発泡倍率を達成し、良好な型内成形性、熱湯に対する耐熱性を有し且つ生分解性も有することが明らかである。
【0027】
(実施例2〜7)
実施例2〜7では、表2に記載されたポリマーを使用する点を除いて実施例1と同じようにして一次発泡粒子を作成し、且つ同じようにして型内発泡成形体を得た。
その際に使用したポリマーの溶融粘度、結晶融解熱量ΔHmおよびT50、T70、一次発泡粒子の発泡倍率、型内発泡成形体の発泡倍率、型内成形性、耐熱性、生分解性テスト結果を表2に示した。
実施例2〜7の一次発泡粒子は高い発泡倍率を達成し、良好な型内成形性、熱湯に対する耐熱性を有し且つ生分解性も有することが明らかである。
【0028】
(比較例1〜5)
比較例1〜5では、表2に記載されたポリマーを使用する点を除いて実施例1と同じようにして一次発泡粒子を成形し、且つ実施例1と同じようにして型内発泡成形を実施した。
また、使用したポリマーの溶融粘度、結晶融解熱量ΔHmおよびT50、T70、一次発泡粒子の発泡倍率、型内発泡成形体の発泡倍率、型内成形性、耐熱性、生分解性テスト結果を表2に示した。
比較例1においては、一次発泡に際して最適発泡温度条件が得られず、安定して一次発泡粒子は得られなかった。比較例2においては、型内発泡成形における温度管理が難しく、低発泡倍率になり、且つ型内成形性も不良であった。
比較例3、4においては、100℃以下で発泡可能であり、型内で100℃の水蒸気で発泡させると粒子間の融着が過剰に進んでいて、型内成形性は△であり、且つ熱湯に対する耐熱性も劣っていた。
比較例5においては、溶融粘度が低すぎて、一次発泡時にガスが抜けてしまい発泡体は得られなかった。
【0029】
【表1】

Figure 0004582871
【0030】
【表2】
Figure 0004582871
(注)*1;最適発泡温度条件が得られず。*2;発泡体が得られず。
【0031】
【発明の効果】
本発明によるポリ乳酸系樹脂発泡性粒子は、生分解性を有しプラスチック廃棄物問題を解決でき、且つ優れた型内成形性を有し、発泡成形後に実用上優れた緩衝性能と熱湯に対する耐熱性を有する型内発泡成形体を成形し得る、非常に有用な発泡性粒子である。
【図面の簡単な説明】
【図1】DSCで測定したT50=12℃、T70=18℃、(T70−T50)=6℃の場合の結晶融解吸熱曲線を説明するグラフ(実施例)である。
【図2】DSCで測定したT50=11℃、T70=18℃、(T70−T50)=7℃の場合の結晶融解吸熱曲線を説明するグラフ(実施例)である。
【図3】DSCで測定したT50=18℃、T70=17℃、(T70−T50)=9℃の場合の結晶融解吸熱曲線を説明するグラフ(実施例)である。
【図4】DSCで測定したT50=13℃、T70=17℃、(T70−T50)=4℃の場合の結晶融解吸熱曲線を説明するグラフ(比較例)である。[0001]
[Industrial application fields]
The present invention relates to foamable particles comprising a polylactic acid resin that can be a foamed molded article having biodegradability and practically sufficient buffering performance after foaming, and heat resistance obtained by heating and foaming the same in a mold. The present invention relates to a foam molded article having improved properties.
[0002]
[Prior art]
Lightweight plastic foam with excellent cushioning performance and moldability is very useful as a packaging material for precision machinery, fragile products such as glass products, optical devices that are vulnerable to impact, and computer-related equipment. Polystyrene, polyolefin, etc., and when it is discarded as unnecessary garbage after its use, the accumulated amount of waste disposed of in landfills or landfills increases due to the property that it is durable and does not rot. It is difficult to secure landfill site in the center.
Under such circumstances, a biodegradable plastic that can be decomposed by microorganisms and the like in nature has been desired as a material that enables volume reduction of plastic waste.
A number of biodegradable plastics have already been found centering on aliphatic polyester resins. Among them, polylactic acid resins are not derived from fossil fuels such as petroleum, and natural products such as corn are used as raw materials. It can be said that it is one of the most preferable resins as a resin that is biodegraded after use and circulated in nature from the point that it is produced and lactic acid, which is the raw material, is an extremely safe substance.
[0003]
However, since the polylactic acid resin is a crystalline resin and the temperature dependence of the melt viscosity is large, there is a problem that it is difficult to maintain the melt viscosity at a viscosity suitable for foaming.
Regarding expandable particles having biodegradability, JP-A-6-248106 discloses aliphatic polyester expandable particles mainly composed of two components of glycols and dicarboxylic acid. There is no disclosure of resin expandable particles.
Aliphatic polyesters consisting mainly of two components, glycols and dicarboxylic acids, have a different chemical structure from polylactic acid resins and different melt viscosity behavior during molding, and are more flexible than polylactic acid resins. The elastic modulus is low, and the mechanical properties of the foam are also different from those of the polylactic acid resin foam.
JP-A-10-324766 discloses aliphatic polyester resin foamed particles having a crosslinked structure, which requires a crosslinking reaction such as chemical crosslinking or radiation crosslinking. I can't get it. In addition, the Examples disclose only aliphatic polyester resin foamed particles composed of a diol and a dicarboxylic acid, and nothing is stated about improvement of foamability of non-crosslinked polylactic acid resin foamable particles.
Japanese Patent Application Laid-Open No. 2000-17037 requires the use of a specific amount of a specific polyisocyanate in polylactic acid, and does not disclose any method that does not use a polyisocyanate.
[0004]
[Problems to be solved by the invention]
The present invention is a polylactic acid-based resin foamable particle having a biodegradable, practically superior buffer performance and improved heat resistance, and having excellent foamability without crosslinking. It is an object of the present invention to provide expandable particles having the following.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor surprisingly uses the polylactic acid resin having a specific melt viscosity, a crystal melting heat amount ΔHm, and a crystal melting endothermic curve. The inventors have found that the object is achieved and have completed the present invention.
That is, the present invention:
(1) In a polylactic acid resin containing lactic acid monomer units of 50% by weight or more, temperature is 190 ° C., shear rate is 100 sec.-1The melt viscosity at 1 × 102~ 1x10FivePa
S, and the crystal melting heat amount ΔHm existing between 100 ° C. and 200 ° C. when measured by raising the temperature from 0 ° C. to 200 ° C. with a differential scanning calorimeter (DSC) is 30 J / g or more, and The temperature that reaches the heat of crystal fusion corresponding to 50% of ΔHm (T50) And the temperature that reaches 70% of the crystal melting heat (T70) Difference (T)70-T50) Is 6 ° C. or higher, and non-crosslinked polylactic acid resin foamable particles comprising a polylactic acid resin and a foaming agent are provided. Also,
(2) When the polylactic acid resin is measured by raising the temperature from 0 ° C. to 200 ° C. with a differential scanning calorimeter (DSC), the heat of crystal fusion ΔHm existing between 100 ° C. and 200 ° C. is 30 J / g or more. The temperature at which the heat of crystal fusion corresponding to 50% of ΔHm is reached (T50) And the temperature that reaches 70% of the crystal melting heat (T70) Difference (T)70-T50) Is 8 ° C. or higher, and the expandable particles according to (1) are provided. Also,
(3) Polylactic acid resin containing 50% by weight or more of lactic acid monomer units, temperature 190 ° C., shear rate 100 sec.-1The melt viscosity at 1 × 102~ 1x10FivePa
S, and the crystal melting heat amount ΔHm existing between 100 ° C. and 200 ° C. when measured by raising the temperature from 0 ° C. to 200 ° C. with a differential scanning calorimeter (DSC) is 30 J / g or more, and The temperature that reaches the heat of crystal fusion corresponding to 50% of ΔHm (T50) And the temperature that reaches 70% of the crystal melting heat (T70) Difference (T)70-T50) Is 6 ° C. or higher, and a foamed molded article obtained by heating and foaming non-crosslinked polylactic acid resin foamable particles comprising a polylactic acid resin and a foaming agent is provided. Also,
(4) When the polylactic acid resin is measured by raising the temperature from 0 ° C. to 200 ° C. with a differential scanning calorimeter (DSC), the heat of crystal fusion ΔHm existing between 100 ° C. and 200 ° C. is 30 J / g or more. The temperature at which the heat of crystal fusion corresponding to 50% of ΔHm is reached (T50) And the temperature that reaches 70% of the crystal melting heat (T70) Difference (T)70-T50) Is 8 ° C. or higher. (3) A foamed molded product according to (3) is provided.
[0006]
The present invention will be specifically described below.
The expandable particles of the present invention are made of a polylactic acid resin.
The polylactic acid-based resin is a polymer containing 50% by weight or more of lactic acid monomer units, and is a copolymer of polylactic acid and a compound selected from the group consisting of lactic acid and other hydroxycarboxylic acids and lactones. It is a composition containing mainly a polymer or a polymer containing 50% by weight or more of lactic acid monomer units.
When the content of the lactic acid monomer unit is less than 50% by weight, the heat resistance and mechanical strength of the foam tend to be lowered. A copolymer containing 80% by weight or more of lactic acid monomer units is preferred, and a copolymer containing 90% by weight or more of lactic acid monomer units is more preferred.
[0007]
The ratio of the L-lactic acid monomer unit to the D-lactic acid monomer unit in the polylactic acid resin of the present invention is measured by raising the temperature from 0 ° C. to 200 ° C. with a differential scanning calorimeter (DSC) described later. At which the heat of crystal fusion ΔHm existing between 100 ° C. and 200 ° C. is 30 J / g or more and reaches the crystal heat of fusion corresponding to 50% of ΔHm (T50) And the temperature that reaches 70% of the crystal melting heat (T70) Difference (T)70-T50) Is 6 ° C or higher, preferably 8 ° C or higher.
Examples of lactic acid include L-lactic acid and D-lactic acid.
Examples of other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid and the like.
Examples of lactones include glycolide, lactide, β-propiolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, and lactones substituted with various groups such as a methyl group.
Among the above compounds copolymerized with lactic acid, preferred are unsubstituted lactones such as glycolide, β-propiolactone, γ-butyrolactone, δ-valerolactone, and ε-caprolactone, particularly preferably ε- Caprolactone.
[0008]
As a polymerization method of the polylactic acid resin, known methods such as a condensation polymerization method and a ring-opening polymerization method can be employed.
Also, increase molecular weight by using binders such as polyepoxy compounds, polycarboxylic anhydrides, polycarboxylic acid chlorides, polyamines, polyvalent carboxylic acid alkyl esters, silicon tetrachloride and other polyfunctional silicon compounds It is also possible to use a method of
The weight average molecular weight of the polylactic acid resin is preferably in the range of 20,000 to 1,000,000, more preferably in the range of 40,000 to 800,000.
[0009]
In addition to the above resins, the polylactic acid-based resin expandable particles of the present invention include plasticizers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, lubricants, mold release agents, nucleating agents, crystals. It is possible to mix | blend well-known additives, such as a chemical accelerator, in the range which does not impair the requirements and characteristics of this invention.
That is, as the antioxidant, hindered phenol antioxidants such as Pt butylhydroxytoluene and Pt butylhydroxyanisole;
Sulfur-based antioxidants such as distearyl thiodipropionate and dilauryl thiodipropionate;
Examples of heat stabilizers include triphenyl phosphite, trilauryl phosphite, and trisnonyl phenyl phosphite;
Examples of ultraviolet absorbers include 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2,4,5-trihydroxybutyrophenone, Pt butylphenyl salicylate;
[0010]
Lubricants include calcium stearate, zinc stearate, barium stearate, etc .;
Antistatic agents include N, N-bis (hydroxyethyl) alkylamine, alkylamine, alkylallyl sulfonate, alkyl sulfonate, etc .;
Examples of the flame retardant include hexabromocyclododecane, tris- (2,3-dichloropropyl) phosphate, pentabromophenyl allyl ether, etc .;
Examples of foam nucleating agents include calcium carbonate, silica, titanium dioxide, talc, and mica alumina;
Examples of the crystal accelerator include polyethylene terephthalate.
[0011]
In the polylactic acid resin used in the present invention, the temperature is 190 ° C. and the shear rate is 100 sec.-1The melt viscosity under the conditions of 1 × 102~ 1x10FivePa · s
Preferably 5 × 102~ 5x10FourPa · s.
Melt viscosity is 1 × 102If it is less than Pa · s, the viscosity becomes too low, and the closed cell ratio of the obtained foamed particles becomes low, and it becomes difficult to obtain a good foam. On the other hand, the melt viscosity is 1 × 10FiveWhen Pa · s is exceeded, the viscosity is too high, so bubbles cannot grow and it becomes difficult to form a good foam.
In the present invention, the melt viscosity of the polylactic acid resin was measured using “Capillograph 1C-PDM-C” manufactured by Toyo Seiki Seisakusho.
[0012]
In addition, the polylactic acid resin used in the present invention has a crystal melting heat ΔHm of 30 J / ° C. existing between 100 ° C. and 200 ° C. when measured by raising the temperature from 0 ° C. to 200 ° C. with a differential scanning calorimeter (DSC). The temperature at which the heat of crystal fusion reaching 50% of ΔHm is reached (T50) And the temperature that reaches 70% of the crystal melting heat (T70) Difference (T)70-T50) Must be 6 ° C. or higher. ΔHm is preferably 40 J / g or more.
When ΔHm is less than 30 J / g, it is advantageous when foam molding is performed at 100 ° C. or less, but the resulting molded product is, for example, a molded product that tends to soften and melt when in contact with hot water near 100 ° C. and has poor heat resistance. It tends to be. Therefore, in order to obtain a heat resistance of 100 ° C. or higher, ΔHm needs to be 30 J / g or higher.
However, if ΔHm is 30 J / g or more, the temperature dependence of the melt viscosity of the polylactic acid resin in the vicinity of the melting point becomes large, and a sudden drop in viscosity occurs at a temperature above the melting point. When molding inside, it is difficult to adjust the temperature for maintaining the melt viscosity in a state suitable for foaming, and it becomes difficult to obtain a good molded product.
[0013]
Therefore, in order to prevent this sudden decrease in viscosity and to easily adjust the temperature to maintain the melt viscosity in a state suitable for foaming, the heat of crystal fusion corresponding to 50% of ΔHm when measured by raising the temperature is used. Reaching temperature (T50) And the temperature that reaches 70% of the crystal melting heat (T70) Difference (T)70-T50) Must be 6 ° C. or higher. Preferably (T70-T50) Is 8 ° C. or higher.
As can be seen from the above, ΔHm is 30 J / g or more and (T70-T50) Is less than 6 ° C., it becomes difficult to adjust the temperature to maintain the melt viscosity in a state suitable for foaming, and it becomes difficult to obtain a good molded product.
T50~ T70The reason why the temperature range is suitable for in-mold foam molding is that uniform foaming cannot occur in a molten state of less than 50% of the resin, and fusion between particles is extremely severe in a molten state of more than 70%. This is because the shape of particles that progress or flow violently and have a well-structured cell structure cannot be maintained.
[0014]
The crystal melting heat quantity ΔHm existing between 100 ° C. and 200 ° C. when measured by raising the temperature from 0 ° C. to 200 ° C. can be obtained by differential scanning calorimetry.
ΔHm is the amount of heat required to melt all the crystals when the temperature of the resin sample is raised at a rate of temperature increase of 10 ° C./min. From the area of the endothermic peak due to crystal melting that appears near the crystalline melting point of the polylactic acid resin. Desired.
Further, the temperature (T) that reaches the heat of crystal fusion corresponding to 50% of ΔHm.50) And the temperature that reaches 70% of the crystal melting heat (T70) And the difference (T70-T50) Is also obtained from the above differential scanning calorimetry.
As an example, in FIGS.50, T70And the difference (T70-T501 to 3 are shown in FIGS.70-T50) Is an example (example) of 6 ° C. or higher, and FIG. 4 is an example (comparative example) of less than 6 ° C., and the shape of the curve is not limited to only these examples.
1 to 4 are graphs for explaining how to obtain the crystal melting endothermic curve measured by DSC, and the total area of the portion surrounded by the crystal endothermic curve obtained by DSC and the baseline corresponds to ΔHm. T50The area on the left side (low temperature side) of the portion divided by 2 becomes 50% of ΔHm, and T70So that the area on the left side of the portion divided by 2 becomes 70% of ΔHm.50, T70Is required.
[0015]
As a method for increasing ΔHm in the present invention, for example, (I) LH / D-lactic acid copolymer composition is brought close to 50/50 to 100/0 or 0/100 to increase the crystallinity of the resin, thereby increasing ΔHm. How to enlarge,
(2) A method of increasing ΔHm by decreasing the comonomer content in the polylactic acid resin to increase the crystallinity,
(3) There are a method of increasing ΔHm by annealing a polylactic acid resin at a temperature below the melting point to increase ΔHm, and a method of combining them.
[0016]
Also, (T70-T50) Is increased by (I) a method of blending a plurality of polylactic acid resins having different melting points so that the crystal melting endothermic curve of the resin at 100 ° C. or higher has a gentle peak,
(2) There is a method of making a curve having a plurality of peaks, but it is not limited to these.
Preferably, a resin obtained by blending a polylactic acid resin having a plurality of melting points in the polymerization machine as described above at the time of polymerization and having a plurality of resin components mixed more uniformly is used.
These DSC measurements were performed using a differential scanning calorimeter, “DSC-7”, manufactured by Perkin-Elmer, Inc., and about 10 mg of sample was raised from 0 ° C. to 200 ° C. at a rate of 10 ° C./min. Measured by warming.
[0017]
The polylactic acid-based resin expandable particles of the present invention do not use polyisocyanate by satisfying the above-mentioned requirements, have good expandability while being non-crosslinked particles, and have a practically sufficient buffer performance. Although it is an inner foamed molded article, the advantages of being non-crosslinked are (a) raw materials that a crosslinking operation and a crosslinking agent can be omitted, and (b) cost merit in terms of productivity.
[0018]
The method for molding expandable particles of the present invention is as follows. (I) A polylactic acid resin is heated and melted in an extruder, and after melting, a foaming agent is injected into the extruder, and the resin and the foaming agent are mixed well and then extruded. A method of extruding resin into cold water from a machine, quenching, pelletizing, and
(2) The resin is extruded and pelletized without injecting the foaming agent, and the particles are dispersed in a dispersion medium in the presence of the foaming agent in a sealed container, and the contents are heated to soften the particles to make the particles inside. (2) is more suitable as a method for obtaining expandable particles for in-mold foaming.
Here, the average particle diameter before foaming of the expandable particles of the present invention is preferably 0.1 mm to 20 mm, and more preferably 0.4 mm to 10 mm.
[0019]
The foamable particles of the present invention containing a foaming agent are usually pre-foamed by heating to a foaming ratio of 3 times or more by primary foaming, and then filled into a mold and further heated to form a foaming particle. Subsequent foaming can produce a foamed molded article with a high expansion ratio.
As a foaming agent used by this invention, it is necessary to have the boiling point below the melting | fusing point or softening point of polylactic acid-type resin.
For example, there are volatile blowing agents such as propane, butane, pentane, hexane, cyclobutane, cyclohexane, trichlorofluoromethane, 1,2,2,2-tetrafluoromethane, etc., but there is no destruction of the ozone layer and it is preferable from the viewpoint of handling. Those are butane, pentane and hexane.
[0020]
The volatile foaming agent is used in an amount of 0.5 to 40 parts by weight with respect to 100 parts by weight of the polylactic acid resin. Preferably, 2 to 20 parts by weight are used.
If the amount is less than 0.5 parts by weight, a foam having a sufficient expansion ratio cannot be obtained. If the amount exceeds 40 parts by weight, molding becomes difficult, and the resulting foam is unpractical.
As the inorganic foaming agent, water, nitrogen, carbon dioxide, argon, air and the like are used, but water, nitrogen, carbon dioxide and air which are inexpensive inorganic foaming agents are preferable.
When using a gaseous foaming agent at room temperature such as air, the amount used is 20-60 kgf / cm.2What is necessary is just to inject and pressurize a foaming agent to an airtight container so that it may become the pressure range of G.
In addition, for the purpose of adjusting the generation state of bubbles, for example, inorganic powders such as talc and silicon oxide; organic fine powders such as zinc stearate and calcium stearate; and further decomposition by heating such as citric acid and sodium bicarbonate. A bubble nucleating agent such as fine powder that generates gas may be added as necessary.
[0021]
In addition, the foamable particles of the present invention are once heated and foamed and then cooled, and then the foam is heated and foamed again in a state where the air is filled with air, thereby obtaining a foam having a higher magnification than that obtained by one foaming.
In general, one heating foaming expands to about 2 to 60 cc / g. However, by heating and foaming many times, foaming of 90 cc / g or more is possible.
The foamed particles of the present invention are subjected to primary foaming to a foaming ratio of 3 times or more, and the dried and aged product is filled in a mold and further heated with water vapor or the like, so that the foamed molded article having a high foaming ratio as usual. Can be obtained.
In this case, electrical equipment, computers, precision equipment such as watches, optical equipment such as glasses and microscopes, other fragile items such as ceramics and glass products, etc. are transported and stored, so that external shocks are reduced and the product is damaged. Effective as a cushioning material used to prevent failure, and as a foam container and foam molded body for keeping warm and cold for fish, vegetables, meat, foodstuffs, medical products, cup ramen containers, etc. It becomes.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be explained by examples and comparative examples.
First, evaluation methods used in Examples and Comparative Examples will be described below.
(1) Melt viscosity
Melt viscosity was measured using a Capillograph 1C-PMD-C manufactured by Toyo Seiki Seisakusho, using a nozzle with a nozzle diameter of 1.0 mm and L / D = 10 at 190 ° C., and a shear rate of 100 sec.-1The melt viscosity at was measured.
(2) Weight average molecular weight
Water permeation gel permeation chromatography (GPC) was used, and chloroform was used as a solvent and the concentration of the sample chloroform solution was 1 mg / 1 cc. The solvent temperature was 40 ° C. and the solvent flow rate was 1 ml / min.
The weight average molecular weight was calculated in terms of polystyrene using standard polystyrene.
(3) Heat of crystal melting ΔHm, T50, T70
Using a differential scanning calorimeter (DSC) manufactured by Perkin-Elmer, “DSC-7”, a sample of about 10 mg was heated from 0 ° C. to 200 ° C. at a rate of 10 ° C./min. ΔHm, T50, T70Was measured.
[0023]
(4) Foaming ratio
The foaming ratio of the foam was evaluated by measuring the volume V (cc) of the foam having a known weight W (g) by a submersion method and dividing the volume by the weight to obtain V / W (cc / g).
(5) In-mold formability
The degree of fusion of the molded product obtained by in-mold foaming and the dimensional shrinkage against the mold were evaluated according to the following criteria.
That is, when a particularly good foamed molded product is obtained in both the degree of fusion and the dimensional shrinkage ratio to the mold, ◯ when both are equally good, △ when either is △, both are △ or × In the case of, it was evaluated as x.
(6) Heat resistance
A cup-shaped foamed molded article having a thickness of 2 mm and an internal volume of about 200 cc was molded, hot water at 100 ° C. was poured into this, and the degree of deformation of the container after 30 minutes was evaluated.
The case where the container was hardly deformed was evaluated as ◯, the case where there was deformation but no water spilled was evaluated as Δ, and the case where deformation was severe and water spilled was evaluated as x.
(7) Biodegradability test
The in-mold foam-molded product is cut into a plate with a thickness of about 1 mm, and about 0.1 g is sandwiched between stainless steel 0.3 mm mesh net-like sample holders and buried in a depth of about 10 cm in the ground. The weight of the sample remaining after a lapse of months was measured.
Those having a residual rate of 40% or less were evaluated as “◯”, those having a residual rate of 40 to 90% as “Δ”, and those having a residual rate of 90% or higher as “X”.
[0024]
The polylactic acid-based resins in the following examples and comparative examples are obtained by directly using L-lactic acid and D-lactic acid with tin powder as a catalyst according to the method described in JP-A-6-65360 for lactic acid homopolymers. Polylactic acid polymers were obtained by condensation (Polymers A to E and L in Table 1).
Moreover, about a copolymer, Journal of Polymer Science: PartB: Polymer Physics, Vol. 32, 2481-2489 (1994), a copolymer of L-lactide, D-lactide and ε-caprolactone was synthesized using a tin octoate catalyst, and adipic acid chloride was further used. Then, a coupling reaction was performed to obtain a polylactic acid polymer such as polymers F to K in Table 1.
In the following examples and comparative examples, all were carried out using the polylactic acid resin in Table 1.
[0025]
Example 1
Polymers A, C, and E in Table 1 were melt-kneaded using a twin screw extruder at the composition ratio shown in Table 2, extruded into strands, cooled with water, and particles having a diameter of 0.7 mm and a length of 1.3 mm Cut into shape.
Next, 100 parts by weight of the obtained resin particles and 300 parts by weight of water are charged into a 5 liter pressure vessel, the resin particles are heated to 80 ° C., and carbon dioxide gas is supplied at an internal pressure of 30 kg / cm.2It was press-fitted until G and impregnated. Thereafter, the foamable particles are taken out, transferred to a foaming apparatus, the temperature in the tank is increased from 80 ° C. to the foaming temperature over 20 seconds, and further heated with water vapor for 10 seconds while maintaining the temperature. Obtained.
The foaming temperature is T of the polymer in Table 2.50, T70, And the value of ΔHm was referred to in advance to find the optimum condition and adopted.
And the condition which becomes close to 4 cc / g which is the magnification which is the target magnification of the primary foamed particles and has a high closed cell ratio and a uniform cell diameter was defined as the optimum foaming temperature of the polymer.
Table 2 shows the expansion ratio of the primary expanded resin particles thus obtained.
[0026]
Next, the obtained primary expanded particles were dried and aged at 60 ° C. for 24 hours, filled in a mold having an internal space dimension of 200 mm in length, 100 mm in width and 20 mm in height, and heated at a temperature shown in Table 2 using steam. The foamed molded product thus obtained was cured at 60 ° C. under atmospheric pressure for 24 hours. Table 2 shows the expansion ratio of the obtained foamed molded product.
The heat resistance was evaluated by using a cup obtained by molding with a mold capable of obtaining a cup-shaped molded body having an internal volume of about 200 cc and a thickness of 2 mm in the same manner as above.
The evaluation results are shown in Table 2. The biodegradability test results are also shown in Table 2.
It is apparent that the primary expanded particles of this example achieve a high expansion ratio in the mold, have good moldability, heat resistance to hot water, and biodegradability.
[0027]
(Examples 2 to 7)
In Examples 2 to 7, primary foamed particles were prepared in the same manner as in Example 1 except that the polymers listed in Table 2 were used, and in-mold foam molded articles were obtained in the same manner.
The melt viscosity, crystal melting heat quantity ΔHm and T of the polymer used at that time50, T70Table 2 shows the expansion ratio of the primary expanded particles, the expansion ratio of the in-mold foam molding, the in-mold moldability, the heat resistance, and the biodegradability test results.
It is clear that the primary expanded particles of Examples 2 to 7 achieve a high expansion ratio, have good moldability, heat resistance against hot water, and also have biodegradability.
[0028]
(Comparative Examples 1-5)
In Comparative Examples 1 to 5, primary foam particles were molded in the same manner as in Example 1 except that the polymers listed in Table 2 were used, and in-mold foam molding was performed in the same manner as in Example 1. Carried out.
Further, the melt viscosity, heat of crystal melting ΔHm and T50, T70Table 2 shows the expansion ratio of the primary expanded particles, the expansion ratio of the in-mold foam molding, the in-mold moldability, the heat resistance, and the biodegradability test results.
In Comparative Example 1, the optimum foaming temperature condition was not obtained during primary foaming, and primary foamed particles were not stably obtained. In Comparative Example 2, temperature control in in-mold foam molding was difficult, the foaming ratio was low, and in-mold moldability was also poor.
In Comparative Examples 3 and 4, foaming is possible at 100 ° C. or lower, and when foaming is performed with water vapor at 100 ° C. in the mold, the fusion between the particles proceeds excessively, the moldability in the mold is Δ, and The heat resistance against hot water was also poor.
In Comparative Example 5, the melt viscosity was too low and the gas escaped during the primary foaming, and a foam was not obtained.
[0029]
[Table 1]
Figure 0004582871
[0030]
[Table 2]
Figure 0004582871
(Note) * 1; Optimal foaming temperature conditions cannot be obtained. * 2: No foam was obtained.
[0031]
【The invention's effect】
The polylactic acid-based resin foamable particles according to the present invention are biodegradable, can solve the plastic waste problem, have excellent in-mold moldability, and have practically excellent buffer performance and heat resistance to hot water after foam molding. It is a very useful foamable particle that can form an in-mold foam-molded article having the properties.
[Brief description of the drawings]
FIG. 1 T measured by DSC50= 152 ℃, T70= 158 ℃, (T70-T50) = Graph (Example) for explaining a crystal melting endothermic curve in the case of 6 ° C.
FIG. 2 T measured by DSC50= 151 ℃, T70= 158 ℃, (T70-T50) = Graph (Example) for explaining a crystal melting endothermic curve in the case of 7 ° C.
FIG. 3 T measured by DSC50= 148 ℃, T70= 157 ° C, (T70-T50) = Graph (Example) for explaining the crystal melting endothermic curve in the case of 9 ° C.
FIG. 4 T measured by DSC50= 153 ℃, T70= 157 ° C, (T70-T50) = Graph (comparative example) for explaining a crystal melting endothermic curve in the case of 4 ° C.

Claims (4)

乳酸単量体単位を50重量%以上含むポリ乳酸系樹脂において、温度190℃、剪断速度100sec-1における溶融粘度が1×102〜1×105Pa・sであり、且つ示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が6℃以上であることを特徴とする、ポリ乳酸系樹脂と発泡剤からなる無架橋のポリ乳酸系樹脂発泡性粒子。A polylactic acid resin containing 50% by weight or more of a lactic acid monomer unit having a melt viscosity of 1 × 10 2 to 1 × 10 5 Pa · s at a temperature of 190 ° C. and a shear rate of 100 sec −1 , and a differential scanning calorimeter (DSC) When the temperature is raised to 0 ° C. to 200 ° C. and measured, the heat of crystal fusion ΔHm existing between 100 ° C. and 200 ° C. is 30 J / g or more, and reaches the heat of crystal fusion corresponding to 50% of ΔHm. It consists of a polylactic acid resin and a foaming agent, characterized in that the difference (T 70 -T 50 ) between the temperature (T 50 ) and the temperature (T 70 ) that reaches the heat of crystal melting corresponding to 70% is 6 ° C. or more. Non-crosslinked polylactic acid resin foamable particles. ポリ乳酸系樹脂が、示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が8℃以上であることを特徴とする、請求項1記載の発泡性粒子。When the polylactic acid-based resin is measured by raising the temperature from 0 ° C. to 200 ° C. with a differential scanning calorimeter (DSC), the crystal melting heat ΔHm existing between 100 ° C. and 200 ° C. is 30 J / g or more, and The difference (T 70 -T 50 ) between the temperature (T 50 ) that reaches 50% of ΔHm and the temperature (T 70 ) that reaches 70% of the crystal melting heat is equal to or higher than 8 ° C. The expandable particle according to claim 1. 乳酸単量体単位を50重量%以上含むポリ乳酸系樹脂において、温度190℃、剪断速度100sec-1における溶融粘度が1×102〜1×105Pa・sであり、且つ示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が6℃以上であることを特徴とする、ポリ乳酸系樹脂と発泡剤からなる無架橋のポリ乳酸系樹脂発泡性粒子を加熱発泡成形してなる発泡成形体。A polylactic acid resin containing 50% by weight or more of a lactic acid monomer unit having a melt viscosity of 1 × 10 2 to 1 × 10 5 Pa · s at a temperature of 190 ° C. and a shear rate of 100 sec −1 , and a differential scanning calorimeter (DSC) When the temperature is raised to 0 ° C. to 200 ° C. and measured, the heat of crystal fusion ΔHm existing between 100 ° C. and 200 ° C. is 30 J / g or more, and reaches the heat of crystal fusion corresponding to 50% of ΔHm. It consists of a polylactic acid resin and a foaming agent, characterized in that the difference (T 70 -T 50 ) between the temperature (T 50 ) and the temperature (T 70 ) that reaches the heat of crystal melting corresponding to 70% is 6 ° C. or more. A foam molded article obtained by heating and foaming non-crosslinked polylactic acid resin foamable particles. ポリ乳酸系樹脂が、示差走査熱量計(DSC)で0℃〜200℃まで昇温して測定した時に100℃〜200℃の間に存在する結晶融解熱量ΔHmが30J/g以上であり、且つΔHmの50%に当たる結晶融解熱量に達する温度(T50)と70%に当たる結晶融解熱量に達する温度(T70)との差(T70−T50)が8℃以上であることを特徴とする。請求項3記載の発泡成形体。When the polylactic acid-based resin is measured by raising the temperature from 0 ° C. to 200 ° C. with a differential scanning calorimeter (DSC), the crystal melting heat ΔHm existing between 100 ° C. and 200 ° C. is 30 J / g or more, and The difference (T 70 -T 50 ) between the temperature (T 50 ) that reaches 50% of ΔHm and the temperature (T 70 ) that reaches 70% of the crystal melting heat is equal to or higher than 8 ° C. . The foaming molding of Claim 3.
JP2000206745A 2000-07-07 2000-07-07 Non-crosslinked resin foamable particles Expired - Fee Related JP4582871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206745A JP4582871B2 (en) 2000-07-07 2000-07-07 Non-crosslinked resin foamable particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206745A JP4582871B2 (en) 2000-07-07 2000-07-07 Non-crosslinked resin foamable particles

Publications (3)

Publication Number Publication Date
JP2002020525A JP2002020525A (en) 2002-01-23
JP2002020525A5 JP2002020525A5 (en) 2007-08-23
JP4582871B2 true JP4582871B2 (en) 2010-11-17

Family

ID=18703626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206745A Expired - Fee Related JP4582871B2 (en) 2000-07-07 2000-07-07 Non-crosslinked resin foamable particles

Country Status (1)

Country Link
JP (1) JP4582871B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100523064C (en) * 2002-07-01 2009-08-05 株式会社Jsp Polylactic acid foamed particle and molded product of the polylactic acid foamed particle
JP4578094B2 (en) * 2002-12-27 2010-11-10 株式会社カネカ Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP4807834B2 (en) * 2005-01-25 2011-11-02 株式会社ジェイエスピー Expandable polylactic acid resin particles, polylactic acid expanded particles, and molded polylactic acid expanded particles
EP1683828B1 (en) * 2005-01-25 2011-11-16 Jsp Corporation Expandable polylactic acid resin particles
JP4820641B2 (en) * 2005-12-20 2011-11-24 積水化成品工業株式会社 Method for producing foamed polylactic acid resin particles for in-mold foam molding
NZ552936A (en) * 2007-01-30 2009-09-25 Biopolymer Network Ltd Methods of manufacture of polylactic acid foams
CN103261299B (en) * 2010-12-21 2015-04-22 株式会社Jsp Polylactic acid resin foam particle and polylactic acid resin foam particle molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319438A (en) * 1999-05-11 2000-11-21 Kanegafuchi Chem Ind Co Ltd Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP2001064375A (en) * 1999-06-22 2001-03-13 Mitsui Chemicals Inc Production of polyhydroxycarboxylic acid
JP2002003709A (en) * 2000-06-20 2002-01-09 Unitika Ltd Biodegradable heat-resistant resin composition, sheet, molded product and foamed product
JP2002020526A (en) * 2000-07-07 2002-01-23 Asahi Kasei Corp Expandable resin beads

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176336A (en) * 1983-03-25 1984-10-05 Japan Styrene Paper Co Ltd Expanded polypropylene resin particles
JPH11166068A (en) * 1997-12-02 1999-06-22 Mitsui Chem Inc Foamable particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319438A (en) * 1999-05-11 2000-11-21 Kanegafuchi Chem Ind Co Ltd Biodegradable aliphatic polyester resin prefoaming beads, molded product thereof and manufacture of prefoaming beads
JP2001064375A (en) * 1999-06-22 2001-03-13 Mitsui Chemicals Inc Production of polyhydroxycarboxylic acid
JP2002003709A (en) * 2000-06-20 2002-01-09 Unitika Ltd Biodegradable heat-resistant resin composition, sheet, molded product and foamed product
JP2002020526A (en) * 2000-07-07 2002-01-23 Asahi Kasei Corp Expandable resin beads

Also Published As

Publication number Publication date
JP2002020525A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP5004247B2 (en) Polylactic acid expanded particle molded body
JP4530491B2 (en) Biodegradable heat-resistant resin composition and sheet, molded body, foam
KR101768263B1 (en) Polylactic acid resin foam particle and polylactic acid resin foam particle molding
JP5383489B2 (en) Biodegradable aliphatic polyester-based expanded particles and molded articles thereof
US10167372B2 (en) Manufacture of polylactic acid foams using liquid carbon dioxide
CN111684001B (en) Poly (3-hydroxyalkanoate) foamed particles and poly (3-hydroxyalkanoate) foamed molded article
WO2013047075A1 (en) Polylactic acid-based resin foamed particles and molded article thereof
JP2000136261A (en) Foaming particle and production of the same
JP5986096B2 (en) Method for producing foamed polylactic acid resin particles
JP2004083890A (en) Polylactic acid foamed particle and molded product of the polylactic acid foamed particle
JP4582871B2 (en) Non-crosslinked resin foamable particles
JP4836983B2 (en) Polylactic acid resin particles impregnated with foaming agent and method for producing the same
JP2002020526A (en) Expandable resin beads
JP2002155197A (en) Biodegradable heat resistant resin composition, and sheet, molding, and expanded material therefrom
JP3944281B2 (en) Polyglycolic acid foam
JP3550782B2 (en) Expandable particles of lactic acid-based polyester
JP2609795B2 (en) Polyester expandable particles and foam
JP2015000963A (en) Polylactic acid expanded material and method for producing the same
JP2004051803A (en) Biodegradable resin foam and shock absorbing material made of the same
US20220162377A1 (en) Foam sheet, product, and method for producing foam sheet
JP2003064213A (en) Method for manufacturing molding from poly(lactic acid) foam particle
JP2012241166A (en) Poly(3-hydroxyalkanoate)-based preliminarily foamed particle and in-mold expansion-molded body
JP4748698B2 (en) Method for producing polylactic acid foamable resin particles
WO2014136746A1 (en) Aliphatic polyester foam and production method therefor
WO2020201935A1 (en) Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees