WO2020201935A1 - Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article - Google Patents

Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article Download PDF

Info

Publication number
WO2020201935A1
WO2020201935A1 PCT/IB2020/052840 IB2020052840W WO2020201935A1 WO 2020201935 A1 WO2020201935 A1 WO 2020201935A1 IB 2020052840 W IB2020052840 W IB 2020052840W WO 2020201935 A1 WO2020201935 A1 WO 2020201935A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable polyester
resin
particles
polyester resin
temperature
Prior art date
Application number
PCT/IB2020/052840
Other languages
French (fr)
Japanese (ja)
Inventor
新籾幸雄
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2020201935A1 publication Critical patent/WO2020201935A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to biodegradable polyester-based resin foam particles and biodegradable polyester-based resin foam molded articles, and methods for producing these.
  • the present application claims priority based on Japanese Patent Application No. 2019-067189 filed on March 29, 2019, the contents of which are incorporated herein by reference.
  • biodegradable polyester resins such as polylactic acid and polybutylene succinate are widely known.
  • a copolymer containing lactic acid, butylene succinate, butylene adipate or the like and ethylene terephthalate or carbonate as a constituent unit is also known.
  • the crystallinity of the biodegradable polyester resin is an important factor for exerting excellent strength in the biodegradable polyester resin foam molded product. Therefore, with respect to the conventional biodegradable polyester resin foam molded product, the biodegradable polyester resin contained in the foam molded product exhibits crystallinity, and at the same time, a good foaming ratio is obtained and light weight is exhibited. However, such a request has not been fully achieved. Therefore, the present invention provides biodegradable polyester-based resin foamed particles having crystallinity and good foamability, and a method for producing the same, and further, lightweight and highly strong biodegradable polyester-based resin foamed. An object of the present invention is to provide a molded product and a method for producing the same.
  • the present inventor has made diligent studies in order to solve the above problems, and by putting the biodegradable polyester resin having crystallinity into a specific crystalline state, the biodegradable polyester resin foamed particles are in a good foamed state. Therefore, the present invention has been completed by finding that it can be useful as a material for forming a biodegradable polyester resin foam molded product having excellent light weight.
  • the present invention Biodegradable polyester resin foamed particles containing biodegradable polyester resin.
  • a differential scanning calorimeter With the first temperature rise from 30 ° C to 200 ° C at a temperature rise rate of 10 ° C / min, With a temperature drop rate of 10 ° C / min from 200 ° C to 30 ° C, When the second temperature rise from 30 ° C. to 200 ° C. at a temperature rise rate of 10 ° C./min was carried out in order.
  • the melting peak observed on the first DSC curve (1) obtained by the first temperature rise is such that the melting peak on the second DSC curve (2) obtained by the second temperature rise is on the high temperature side.
  • the top of the peak on the high temperature side and the top of the peak on the low temperature side are ⁇ 15 ° C. of the peak top of the melting peak in the second DSC curve (2).
  • biodegradable polyester-based resin foam particles located within the range.
  • the present invention is a method for producing biodegradable polyester-based resin foamed particles for producing such biodegradable polyester-based resin foamed particles.
  • the biodegradable polyester resin particles containing the biodegradable polyester resin are heat-treated at a temperature within ⁇ 6 ° C. of the melting peak temperature (Tm) of the biodegradable polyester resin, and then heat-treated.
  • the first DSC curve (1) is obtained by further performing a cooling treatment of cooling at a cooling rate of 0.1 ° C./min or more and 5 ° C./min or less until the temperature becomes 50 ° C. or more lower than the melting peak temperature (Tm).
  • the heat-treated resin particles in which the peaks appear on the high-temperature side and the low-temperature side are obtained, and then a foaming agent is applied to the heat-treated resin particles at a temperature lower than the peak on the low-temperature side of the heat-treated resin particles.
  • a method for producing biodegradable polyester resin foam particles which is impregnated to obtain foamable resin particles and then heated to foam the foamable resin particles.
  • the present invention also provides a biodegradable polyester-based resin foam molded product, which is partially or wholly composed of the above-mentioned biodegradable polyester-based resin foamed particles.
  • the biodegradable polyester-based resin foam particles as described above are housed in a mold cavity, and the biodegradable polyester-based resin foam particles are heat-sealed in the cavity, thereby forming the cavity.
  • a method for producing a biodegradable polyester resin foam molded product which produces a biodegradable polyester resin foam molded product corresponding to a shape.
  • a biodegradable polyester resin foamed particles that have good foamability while having crystallinity and a method for producing the same are provided, and further, a biodegradable polyester resin that is lightweight and has excellent strength.
  • a foam molded product and a method for producing the same are provided.
  • FIG. 1 It is a figure which shows the DSC curve (1) of the PBS resin particle in Example 1.
  • FIG. 2 It is a figure which shows the DSC curve (1) of the PBS resin particle in the comparative example 1.
  • FIG. 1 It is a figure which shows the DSC curve (1) of the PBS resin particle in the comparative example 1.
  • biodegradable polyester-based resin foamed particles of the present embodiment are, for example, biodegradable polyester-based resin foamed molded products such as bead foamed molded products (hereinafter, simply “resin foamed”). It is also used as a raw material for "molded products”).
  • the resin composition constituting the biodegradable polyester-based resin foamed particles will be described.
  • the resin as the main component thereof is a biodegradable polyester resin.
  • the resin composition may contain additives and the like described later in addition to the biodegradable polyester resin.
  • Examples of the biodegradable polyester resin according to the present embodiment include an aliphatic polyester resin obtained by polycondensation of glycol and an aliphatic dicarboxylic acid.
  • Examples of the aliphatic polyester resin include polyethylene succinate, polybutylene succinate, polyhexamethylene succinate, polyethylene adipate, polyhexamethylene adipate, polybutylene adipate, polyethylene oxalate, polybutylene succinate, and poly. Examples thereof include neopentyl oxalate, polyethylene sebacate, polybutylene sebacate, polyhexamethylene sebacate, polybutylene succinate adipate, and polybutylene succinate carbonate.
  • the biodegradable polyester resin according to the present embodiment is, for example, poly ( ⁇ -hydroxy acid) such as polyglycolic acid or polylactic acid, or a copolymer thereof, poly ( ⁇ -caprolactone) or poly ( ⁇ -propio).
  • Poly ( ⁇ -hydroxyalkanoate) such as lactone), poly (3-hydroxybutyrate), poly (3-hydroxyvariate), poly (3-hydroxycaprolate), poly (3-hydroxyheptanoate)
  • Poly ( ⁇ -hydroxyalkanoate) such as poly (3-hydroxyoctanoate
  • aliphatic polyester resins such as poly (4-hydroxybutyrate) may be used.
  • the biodegradable polyester resin may be modified so as to form a branched structure or a crosslinked structure.
  • a chain extender such as carbodiimide can be used to introduce a branched structure or a crosslinked structure into a biodegradable polyester resin.
  • Modification with a chain extender is a functional that can be condensed with hydroxyl groups and carboxyl groups present in the molecular structure of biodegradable polyester resins such as acrylic organic compounds, epoxy organic compounds, and isocyanate organic compounds. This can be done using a compound having one or more groups. That is, the modification can be carried out by a method of binding an acrylic organic compound, an epoxy organic compound, an isocyanate organic compound or the like to a biodegradable polyester resin by a reaction.
  • the modification of the biodegradable polyester resin by the crosslinked structure or the branched structure can be carried out by, for example, a method of reacting the molecules of the biodegradable polyester resin with a radical initiator. Such a reaction can be carried out using an extruder such as a twin-screw extruder.
  • the molecules of the biodegradable polyester resin are preferable to react with a radical initiator in that the inclusion of other components after the modification can be suppressed.
  • a radical initiator having an appropriate reactivity
  • the decomposition starting point of the biodegradable polyester resin in the extruder was generated by the radical initiator. It is attacked by free radicals, and the site becomes a cross-linking point (branch point) and is stabilized.
  • the biodegradable polyester resin has increased thermal stability due to such modification, and it is difficult for the biodegradable polyester resin to have a low molecular weight when passing through an extruder.
  • radical initiator examples include organic peroxides, azo compounds, halogen molecules and the like. Of these, organic peroxides are preferred.
  • organic peroxides are preferred.
  • organic peroxide used in the present embodiment include peroxyesters, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyketals, and ketone peroxides.
  • peroxy ester examples include t-butyl peroxy-2-ethylhexyl carbonate, t-hexyl peroxyisopropyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxybenzoate, and t-butyl peroxylaurate.
  • T-Butylperoxy-3,5,5-trimethylhexanoate examples include monocarbonate.
  • hydroperoxide examples include permethane hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide and the like.
  • dialkyl peroxide examples include dicumyl peroxide, di-t-butyl peroxide, and 2,5-dimethyl-2,5-di (t-butylperoxy) hexin-3.
  • diacyl peroxide examples include dibenzoyl peroxide, di (4-methylbenzoyl) peroxide, and di (3-methylbenzoyl) peroxide.
  • peroxydicarbonate examples include di (2-ethylhexyl) peroxydicarbonate and diisopropylperoxydicarbonate.
  • peroxyketal examples include 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, and 2,2-di (t).
  • -Butyl peroxy) butane, n-butyl 4,4-di- (t-butyl peroxy) valerate, 2,2-bis (4,5-di-t-butyl peroxycyclohexyl) propane and the like can be mentioned. ..
  • ketone peroxide examples include methyl ethyl ketone peroxide and acetylacetone peroxide.
  • the organic peroxide is preferably a peroxy ester. Further, among the peroxyesters, the organic peroxide used for modifying the biodegradable polyester resin is preferably a peroxycarbonate-based organic peroxide.
  • the organic peroxide used for modifying the biodegradable polyester resin in the present embodiment is preferably a peroxymonocarbonate-based organic peroxide among the peroxycarbonate-based organic peroxides, and t-butyl. Peroxyisopropyl monocarbonate is particularly preferred.
  • the above-mentioned organic peroxide is usually used in a content of 0.1 part by mass or more with respect to 100 parts by mass of the biodegradable polyester resin to be modified, although it depends on its molecular weight and the like.
  • the content of the organic peroxide is preferably 0.2 parts by mass or more, and particularly preferably 0.3 parts by mass or more.
  • the content of the organic peroxide is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and particularly preferably 1.0 part by mass or less.
  • the content of the organic peroxide as described above By setting the content of the organic peroxide as described above to 0.1 parts by mass or more, the effect of modification on the biodegradable polyester resin can be more reliably exhibited. Further, by setting the content of the organic peroxide to 2.0 parts by mass or less, it is possible to prevent a large amount of gel from being mixed in the biodegradable polyester resin after modification.
  • the biodegradable polyester resin preferably does not have a long chain branch.
  • the biodegradable polyester resin of the present embodiment is preferably an aliphatic polyester resin from the viewpoint of biodegradability.
  • the proportion of the aliphatic polyester resin is preferably 85% by mass or more, and preferably 90% by mass or more. More preferably, it is 95% by mass or more. It is particularly preferable that all the biodegradable polyester resins contained in the resin composition are aliphatic polyester resins.
  • polybutylene succinate is particularly preferable as the biodegradable polyester resin used in the present embodiment.
  • the proportion of polybutylene succinate is preferably 85% by mass or more, and more preferably 90% by mass or more. It is preferably 95% by mass or more, and more preferably 95% by mass or more. It is particularly preferable that all the biodegradable polyester resins contained in the resin composition are polybutylene succinate.
  • one of the above-exemplified biodegradable aliphatic polyester resins may be selected and used, and a plurality of of the above-exemplified biodegradable aliphatic polyester resins may be mixed and used. It can also be used, and a biodegradable aliphatic polyester resin other than the above examples may be used.
  • the additive contained in the resin composition examples include polymers other than biodegradable polyester resins, inorganic substances such as inorganic fillers, and various rubber / plastic agents.
  • Examples of the polymer other than the biodegradable polyester resin that can be contained in the resin composition include a polymer-type antistatic agent, a fluorine-based resin used as a bubble modifier, and a rubber-based modifier.
  • the ratio of the biodegradable polyester resin to all the polymers contained in the resin composition constituting the resin foam particles is 85% by mass in order to make the resin foam particles and the resin foam molded body exhibit excellent biodegradability.
  • the above is preferable, 90% by mass or more is more preferable, and 95% by mass or more is further preferable.
  • the resin composition may optionally contain additives such as shrinkage inhibitors for the purpose of further improving its foam moldability.
  • the content of the additive is preferably in the range of 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the biodegradable polyester resin.
  • shrinkage inhibitor examples include laurate monoglyceride, palmitate monoglyceride, stearic acid monoglyceride, pentaerythlit monocaplate, pentaerythlit monooleate, pentaerythlit monolaurate, dipentaerythlit distearate, and sorbitan.
  • Other examples include higher alkylamines, fatty acid amides, and complete esters of higher fatty acids.
  • one of the above-exemplified ones may be selected and used, or a plurality of types of the above-exemplified shrinkage inhibitor may be mixed and used, and those known as shrinkage inhibitors other than the above-mentioned examples are known. May be used. Of these, monoglyceride stearate is particularly preferable.
  • a commonly used bubble adjusting agent can be used for the purpose of forming a good bubble structure at the time of foaming.
  • the bubble adjusting agent include fine powder of a fluorine-based resin such as polytetrafluoroethylene, talc, aluminum hydroxide, silica and the like.
  • the decomposition-type foaming agent described later can be used as a bubble adjusting agent because the foaming state can be adjusted by using it in combination with a volatile foaming agent.
  • the foaming agent used when forming the resin foam particles in the resin composition is not particularly limited, but is a volatile foaming agent that becomes a gas at normal temperature (23 ° C.) and normal pressure (1 atm), and a gas by thermal decomposition.
  • a decomposing foaming agent to be generated can be adopted, and as the volatile foaming agent, for example, an inert gas, an aliphatic hydrocarbon, an alicyclic hydrocarbon, or the like can be adopted.
  • the inert gas include carbon dioxide, nitrogen and the like
  • examples of the aliphatic hydrocarbon include propane, normal butane, isobutane, normal pentane, isopentane and the like
  • the aliphatic hydrocarbon includes the alicyclic hydrocarbon.
  • carbon dioxide is particularly preferably used in the present embodiment.
  • the proportion of the foaming agent is 1% by mass to 8% by mass, preferably 1% by mass to 7% by mass, and more preferably. 2, 2% by mass to 7% by mass.
  • Examples of the decomposing foaming agent include organic acids such as azodicarbonamide, dinitrosopentamethylenetetramine, sodium bicarbonate or citric acid, or a mixture thereof and a bicarbonate.
  • the additive examples include lubricants, antioxidants, antistatic agents, flame retardants, ultraviolet absorbers, light stabilizers, colorants, and inorganic fillers.
  • the resin composition may appropriately contain additives other than these.
  • the resin foamed particles can be produced by using a general foaming machine used for producing polystyrene resin foamed particles or the like, and the resin particles made of the resin composition are foamed by steam heating, hot air heating, or the like. Can be formed by
  • resin particles composed of the resin composition containing a biodegradable polyester resin are prepared, and the above-mentioned foaming is performed on the resin particles (raw grains).
  • a predetermined degree of foaming can be prepared by impregnating the agent, spreading an antistatic agent, an antibonding agent, or the like on the surface of the particles, putting the agent into a foaming machine, and heating until a desired bulk density is reached.
  • the bulk density of the resin foam particles in the present embodiment is 12 kg / m 3 or more and 500 kg / m 3 or less, preferably 30 kg / cm 3 or more and 500 kg / m 3 or less. If the bulk density of the resin foam particles is less than 12 kg / m 3 , shrinkage is likely to occur during foam molding, and the strength of the obtained resin foam molded product may not be sufficiently good. On the other hand, if the bulk density of the resin foam particles exceeds 500 kg / m 3 , the resin foam molded product may not be sufficiently lightweight.
  • the bulk density of the resin foam particles can be determined, for example, as follows.
  • the bulk factor of the resin foamed particles in the present embodiment is 2 times or more and 50 times or less, preferably 3 times or more and 45 times or less, and more preferably 4 times or more and 40 times or less.
  • the bulk multiple means a value obtained by integrating the resin density with the reciprocal of the bulk density.
  • the average bubble diameter of the resin foam particles in the present embodiment is preferably in the range of 30 ⁇ m or more and 300 ⁇ m or less.
  • the average cell diameter of the resin foamed particles is more preferably 50 ⁇ m or more and 250 ⁇ m or less, and further preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the average cell diameter of the resin foamed particles can be measured based on an image obtained by photographing a cross section of the resin foamed particles cut so as to be roughly divided into two at the center with a scanning electron microscope. .. Specifically, a photograph of the cross section is taken using a scanning electron microscope (for example, "S-3000N” manufactured by Hitachi, Ltd., "S-3400N” manufactured by Hitachi High-Technologies Corporation).
  • a scanning electron microscope for example, "S-3000N” manufactured by Hitachi, Ltd., "S-3400N” manufactured by Hitachi High-Technologies Corporation.
  • the direction in which the bubbles are relatively long is the vertical direction, and the direction orthogonal to this direction is the horizontal direction, and two photographs are taken at one place.
  • a total of 4 images are printed on A4 paper, 2 images in each of the vertical and horizontal directions, and the average chord length (t) of the bubbles is calculated from the number of bubbles on an arbitrary straight line (length 60 mm) parallel to the vertical and horizontal directions. Calculated by However, any straight line should be drawn so that the bubbles do not touch only at the contact points as much as possible (if they do, they are included in the number of bubbles).
  • the measurement shall be performed at 6 locations each in the vertical and horizontal directions.
  • the resin foam particles are preferably made into small particles and can be in the form of a columnar shape, a substantially spherical shape, or a spherical shape, but the substantially spherical shape or a spherical shape is preferable from the viewpoint of filling property into a molding die or the like.
  • the raw grains for obtaining the resin foamed particles are not particularly limited, but the volume per particle is preferably 0.5 mm 3 or more and 30 mm 3 or less, and particularly preferably 1 mm 3 or more and 10 mm 3 or less. ..
  • the method for obtaining small particles as the raw particles is not particularly limited, and examples thereof include a generally usable method of cutting after melt extrusion to make small particles, and a pulverization method. In the present embodiment, a method of cutting into small particles after melt extrusion is more preferable.
  • the manufacturing method of the present embodiment includes a step of preparing raw grains (raw grain preparation step), a step of primary foaming the raw grains to prepare preliminary foamed particles (primary foaming step), and a predetermined molding space inside.
  • a molding die in which a (cavity) is formed is prepared, the pre-foamed particles are filled in the molding die, and the pre-foamed particles are heated in the molding die to cause secondary foaming of the pre-foamed particles and the pre-foamed particles.
  • the present invention includes a step (molding step) of heat-sealing each other to produce a bead-foamed molded product in which a plurality of resin foam particles are integrated and has a shape corresponding to the cavity.
  • the crystal structure of the biodegradable polyester resin contained in the raw grains is optimized in order to exhibit good foamability in the primary foaming and the secondary foaming.
  • the preliminary foamed particles are prepared by carrying out the following steps.
  • the first step of preparing the heat-treated resin particles by further performing a cooling treatment of cooling at a cooling rate of 5 ° C./min or less until the temperature becomes 50 ° C. or more lower than the melting peak temperature (Tm).
  • the first step is carried out by, for example, a method of directly obtaining resin particles from a molten resin composition such as a hot-cut granulation method, and performing the heat treatment and the cooling treatment on the resin particles. Can be done. Further, in the first step, for example, the molten resin composition is once made into a resin sheet or a resin strand, and the resin sheet or the resin strand is subjected to the heat treatment and the cooling treatment, and then the resin sheet. It can also be carried out by a method of cutting the resin strand using a pelletizer or the like.
  • the heat-treated resin particles and the pre-foamed particles obtained by foaming the heat-treated resin particles are in a characteristic crystalline state. These crystalline states can be confirmed by a differential scanning calorimetry (DSC).
  • the heat-treated resin particles and the prefoamed particles are processed from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter.
  • First temperature increase (first scan) temperature decrease from 200 ° C to 30 ° C at a temperature decrease rate of 10 ° C / min
  • the melting peak on the second DSC curve (2) obtained by the second temperature rise was the melting peak temperature (Tm) of the biodegradable polyester resin.
  • a single peak with a peak top is observed, but in the first DSC curve (1) obtained by the first temperature rise, this peak is observed in a state where it is divided into a high temperature side and a low temperature side. Moreover, the top of the peak on the high temperature side and the top of the peak on the low temperature side are within ⁇ 15 ° C. of the peak top of the melting peak in the second DSC curve (2) (“Tm-15 ° C.” ⁇ . It can be in a state of being located at "Tm + 15 ° C.”).
  • the heat-treated resin particles and the prefoamed particles in the present embodiment have a single melting peak at the time of melting as in the second temperature rise (second scan) in the state before the heat treatment or the cooling treatment is performed.
  • the melting peak can be in a bifurcated state as seen in the first temperature rise (first scan).
  • the heat-treated resin particles and the prefoamed particles are preferably prepared so that the amount of heat of fusion at the peak on the high temperature side is 20 J / g or more.
  • the heat-treated resin particles and the pre-foamed particles exhibit good foamability during primary foaming and secondary foaming, respectively.
  • the heat-treated resin particles and the pre-foamed particles have crystallinity and can exhibit excellent strength with respect to the resin foamed molded product. it can.
  • the heat-treated resin particles and the prefoamed particles have a plurality of melting peaks at the time of melting, it is only necessary to divide the peaks as described above only in the main peak in the melting temperature range, and all the melting peaks are described above. It doesn't need to be.
  • the main peak is biodecomposed in accordance with DSC measurement (JIS K7121: 1987, 2012 “Plastic transition temperature measuring method” and JIS K7122: 1987, 2012 “Plastic transition heat measuring method”).
  • DSC7000X differential scanning calorimeter
  • AS-3 manufactured by Hitachi High-Tech Science Co., Ltd.
  • the temperature rises from 30 ° C to 200 ° C at a heating rate of 10 ° C / min.
  • DSC curve obtained when heating is performed the temperature is lowered from 200 ° C. to 30 ° C. at a temperature lowering rate of 10 ° C./min, and then the temperature is further heated again from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min (2).
  • DSC curve (2) it means that peak, and when there are multiple melting peaks, it means the peak with the highest peak height.
  • the main melting in the DSC curve (2) is among the two changing melting peaks based on the peak temperature of the melting peak in the DSC curve (2).
  • the melting peak on the low temperature side of the peak is referred to as the low temperature side peak, and the temperature at that time is referred to as the low temperature side peak temperature.
  • the melting peak on the high temperature side of the main melting peak is referred to as the high temperature side peak, and the temperature at that time is referred to as the high temperature side peak temperature.
  • the amount of heat of fusion of the high temperature side peak is the peak bottom between the low temperature side peak and the high temperature side peak (the apex of the DSC curve) and the point where the DSC curve passes the high temperature side peak and returns to the high temperature side baseline again. It is calculated from the straight line connecting the above and the part surrounded by the DSC curve.
  • the method of heat treatment is not particularly limited except for conditions that cause deterioration of the resin, but a warm air heating method is preferable. It is important to control the heating conditions within the temperature range of ⁇ 6 ° C (“Tm-6 ° C” to “Tm + 6 ° C”) of the main peak temperature of the biodegradable polyester resin, and the heating time is once. Although it depends on the amount to be treated, the temperature may be maintained at the set temperature for 30 minutes to 1 hour after confirming that the entire resin particles have reached the set temperature. If it is shorter than 30 minutes, unevenness of the heat treatment may occur between the central portion and the surface portion of the resin particles. The foamed particles obtained by pre-foaming such resin particles may be inferior in foamability.
  • the resin particles are cooled at a cooling rate of 5 ° C./min or less.
  • the cooling treatment at the cooling rate (0.1 ° C./min or more and 5 ° C./min or less) is preferably performed until the resin particles after the heat treatment are 50 ° C. or lower, and the resin particles are 30 ° C. or lower. It is more preferable to carry out until it becomes. As a result, a crystal structure characteristic of the heat-treated resin particles and the pre-foamed particles can be obtained.
  • the second step of impregnating the heat-treated resin particles prepared as described above with a foaming agent can be performed by using a pressure vessel such as an autoclave. Specifically, a method of bringing the heat-treated resin particles into contact with a volatile foaming agent in a pressure vessel such as an autoclave under a pressurized atmosphere can be mentioned. When carbon dioxide or the like is used as the volatile foaming agent, the impregnation of the foaming agent may be carried out under supercritical conditions exceeding the critical point.
  • the primary foaming step and the molding step are preferably performed under a temperature condition between the low temperature side peak temperature and the high temperature side peak temperature.
  • biodegradable polyester-based resin foamed particles that have crystallinity but exhibit good foamability are provided, and further, a biodegradable polyester-based resin that is lightweight and has excellent strength. Foam moldings are provided.
  • the above examples are given in the present embodiment, the present invention is not limited to the above examples.
  • the obtained PBS resin particles were heated from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter, and the melting peak of the PBS resin particles was obtained from the DSC curve (1).
  • the temperature of the peak top at the melting peak is determined, then the temperature is lowered from 200 ° C. to 30 ° C. at a temperature lowering rate of 10 ° C./min, and then further heated from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min.
  • the temperature of the melting peak and the peak top of the melting peak was determined from the DSC curve (2) obtained.
  • both the DSC curve (1) and the DSC curve (2) showed only a single melting peak, and the temperature at the peak top was 112.8 ° C. From this measurement, it was confirmed that the melting peak temperature (Tm) of PBS used for forming the resin particles was approximately 113 ° C.
  • PBS resin particles are heat-treated in an oven at 113 ° C. for 2 hours, and then cooled to 30 ° C. at a cooling rate of 1 ° C./min to be heat-treated, and are also referred to as “heat-treated resin particles”. ) was obtained.
  • the obtained heat-treated PBS resin particles are heated again from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter, and the melting peak is determined by the DSC curve (1) obtained. Upon confirmation, two peaks were observed, and the top temperatures of the peaks were 108.6 ° C and 120.5 ° C, respectively. The heat of fusion of the peak on the high temperature side was 61.5 J / g.
  • foam molding is performed from the DSC curve (2) obtained by lowering the temperature from 200 ° C. to 30 ° C. at a temperature lowering rate of 10 ° C./min and then heating from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min.
  • the melting peak and melting peak temperature of the body were determined, there was only one peak, and the temperature at the top of the peak was 113.0 ° C.
  • the carbon dioxide gas in the pressure vessel was slowly decompressed, and the foamable resin particles inside were taken out.
  • 100 parts by mass (1,000 g) of the foamable resin particles and 0.3 parts by mass (3 g) of calcium carbonate as a binding inhibitor were mixed.
  • the foamable resin particles are put into a foaming machine equipped with a stirrer, and foamed using 0.03 MPa of steam while stirring to foam the prefoamed particles (bulk density 130 kg / m 3 ) having a bulk factor of 10 times (bulk density 130 kg / m 3 ). Primary foam particles) were obtained.
  • the obtained prefoamed particles were put into a 10 L pressure vessel and sealed.
  • the inside of the closed pressure vessel was increased to a gauge pressure of 1 MPa using nitrogen gas, and then left for 24 hours to apply an internal pressure.
  • the nitrogen gas in the pressure vessel to which the internal pressure was applied was slowly decompressed, the preliminary foamed particles were taken out, and immediately foam molding was performed using a molding machine.
  • Pre-foamed particles are filled in a molding mold having a cavity of length 200 mm ⁇ width 200 mm ⁇ thickness 10 mm, and water vapor of 0.04 MPa to 0.05 MPa is introduced for 20 seconds to heat and cool, so that the foaming ratio is 9 times.
  • a resin foam molded product having a good appearance was obtained.
  • the DSC curve (1) obtained by heating the obtained resin foam molded product from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter
  • 2 One melting peak was observed, and the peak temperatures were 109.6 ° C and 121.0 ° C, respectively.
  • foam molding is performed from the DSC curve (2) obtained by lowering the temperature from 200 ° C. to 30 ° C. at a temperature lowering rate of 10 ° C./min and then heating from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min.
  • Example 2 The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 114 ° C. and 2 hours. As a result of obtaining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 110.1 ° C. and 120.3 ° C., respectively. The heat of fusion of the peak on the high temperature side was 52.6 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
  • Example 3 The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 116 ° C. and 2 hours. As a result of obtaining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 113.7 ° C and 122.6 ° C, respectively. The heat of fusion of the peak on the high temperature side was 29.9 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
  • Example 4 The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 118 ° C. and 2 hours. As a result of determining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 112.6 ° C and 121.2 ° C, respectively. The heat of fusion of the peak on the high temperature side was 25.5 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
  • Example 5 The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 110 ° C. and 2 hours. As a result of obtaining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 101.0 ° C. and 118.4 ° C., respectively. The heat of fusion of the peak on the high temperature side was 77.9 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
  • Example 6 The heat treatment of the PBS resin particles was carried out in the same manner as in Example 1 except that the heat treatment conditions were set to 108 ° C. and 2 hours. As a result of determining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 100.1 ° C and 117.4 ° C, respectively. The heat of fusion of the peak on the high temperature side was 71.8 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
  • Example 1 The procedure was the same as in Example 1 except that the PBS resin particles were not heat-treated. As a result of determining the DSC curve (1), no two melting peaks were observed. The bulk factor of the obtained resin foamed particles was as low as 1.2 times, and a resin foamed molded product could not be obtained.
  • Example 2 The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 120 ° C. and 2 hours. As a result of determining the DSC curve (1), no two melting peaks were observed. The bulk factor of the obtained resin foamed particles was as low as 1.2 times, and a resin foamed molded product could not be obtained. In addition, the particles were large and flat, and could not be used in practice.
  • Example 3 The method was the same as in Example 1 except that the heat treatment temperature of the PBS resin particles was set to 106 ° C. for 2 hours. As a result of determining the DSC curve (1), no two melting peaks were observed. The bulk factor of the obtained resin foamed particles was as low as 1.3 times, and a resin foamed molded product could not be obtained.
  • biodegradable polyester-based resin foamed particles that have crystallinity but exhibit good foamability are provided, and further, they are lightweight and excellent in strength.
  • a biodegradable polyester-based resin foam molded product is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

The present invention provides biodegradable polyester-based resin expanded particles having excellent expandability while having crystallinity, as a result of setting a biodegradable polyester-based resin having crystallinity into a specific crystal state. The present invention also provides a biodegradable polyester-based resin expanded molded article that is lightweight and has excellent strength.

Description

生分解性ポリエステル系樹脂発泡粒子、生分解性ポリエステル系樹脂発泡粒子の製造方法、生分解性ポリエステル系樹脂発泡成形体、及び、生分解性ポリエステル系樹脂発泡成形体の製造方法Method for producing biodegradable polyester-based resin foam particles, biodegradable polyester-based resin foamed particles, biodegradable polyester-based resin foam molded product, and method for producing biodegradable polyester-based resin foamed molded product.
本発明は、生分解性ポリエステル系樹脂発泡粒子及び生分解性ポリエステル系樹脂発泡成形体、並びにこれらの製造方法に関する。
 本願は、2019年3月29日に出願された日本国特願2019−067189号に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to biodegradable polyester-based resin foam particles and biodegradable polyester-based resin foam molded articles, and methods for producing these.
The present application claims priority based on Japanese Patent Application No. 2019-067189 filed on March 29, 2019, the contents of which are incorporated herein by reference.
従来、ポリ乳酸やポリブチレンサクシネートなどの生分解性ポリエステル系樹脂が広く知られている。
 該生分解性ポリエステル系樹脂としては、乳酸、ブチレンサクシネート、ブチレンアジペートなどとエチレンテレフタレートやカーボネートなどを構成単位とした共重合体なども知られている。
Conventionally, biodegradable polyester resins such as polylactic acid and polybutylene succinate are widely known.
As the biodegradable polyester resin, a copolymer containing lactic acid, butylene succinate, butylene adipate or the like and ethylene terephthalate or carbonate as a constituent unit is also known.
この種の生分解性ポリエステル系樹脂は、押出発泡成形体やビーズ発泡成形体の原材料として利用することが検討されている(下記特許文献1参照)。 It is being studied to use this kind of biodegradable polyester resin as a raw material for an extruded foam molded product or a bead foam molded product (see Patent Document 1 below).
日本国特開2001−098105号公報Japanese Patent Application Laid-Open No. 2001-098105
生分解性ポリエステル系樹脂を用いて樹脂発泡成形体を形成する場合、特許文献1の実施例にも記載されているとおり、樹脂が結晶性を示すことで発泡が阻害されるという問題を生じることがある。
 具体的には、特許文献1の実施例には、示差走査熱量計(DSC)での測定で融解熱量が観測されない実質的に完全非晶性の生分解性ポリエステル系樹脂では良好な発泡成形体が形成されるものの、融解熱量が「13.9J/g」の結晶性樹脂(試料P−1)では極端に発泡倍率の小さな発泡成形体しか得られないことが記載されている。
When a resin foam molded product is formed using a biodegradable polyester resin, as described in Examples of Patent Document 1, there is a problem that foaming is inhibited by the resin exhibiting crystallinity. There is.
Specifically, in the examples of Patent Document 1, a foamed molded product is good for a substantially completely amorphous biodegradable polyester resin in which the calorific value of melting is not observed by the measurement with a differential scanning calorimeter (DSC). However, it is described that only a foamed molded product having an extremely small expansion ratio can be obtained with a crystalline resin (Sample P-1) having a heat of fusion of "13.9 J / g".
しかしながら、生分解性ポリエステル系樹脂の結晶性は、生分解性ポリエステル系樹脂発泡成形体に優れた強度を発揮させる上で重要な要素となる。
 そのため、従来の生分解性ポリエステル系樹脂発泡成形体については、該発泡成形体に含まれる生分解性ポリエステル系樹脂に結晶性を発揮させながら、良好な発泡倍率となって軽量性が発揮されることが要望されているが、そのような要望が十分達成される状況には至っていない。
 そこで、本発明は、結晶性を有しながらも発泡性が良好な生分解性ポリエステル系樹脂発泡粒子及びその製造方法を提供し、更には、軽量で強度に優れた生分解性ポリエステル系樹脂発泡成形体及びその製造方法を提供することを課題としている。
However, the crystallinity of the biodegradable polyester resin is an important factor for exerting excellent strength in the biodegradable polyester resin foam molded product.
Therefore, with respect to the conventional biodegradable polyester resin foam molded product, the biodegradable polyester resin contained in the foam molded product exhibits crystallinity, and at the same time, a good foaming ratio is obtained and light weight is exhibited. However, such a request has not been fully achieved.
Therefore, the present invention provides biodegradable polyester-based resin foamed particles having crystallinity and good foamability, and a method for producing the same, and further, lightweight and highly strong biodegradable polyester-based resin foamed. An object of the present invention is to provide a molded product and a method for producing the same.
本発明者は、上記課題を解決するために鋭意検討を行い、結晶性を有する生分解性ポリエステル系樹脂を特定の結晶状態にすることで、生分解性ポリエステル系樹脂発泡粒子が良好な発泡状態となり、軽量性に優れた生分解性ポリエステル系樹脂発泡成形体の形成材料として有用なものとなり得ることを見出して本発明を完成させるに至った。 The present inventor has made diligent studies in order to solve the above problems, and by putting the biodegradable polyester resin having crystallinity into a specific crystalline state, the biodegradable polyester resin foamed particles are in a good foamed state. Therefore, the present invention has been completed by finding that it can be useful as a material for forming a biodegradable polyester resin foam molded product having excellent light weight.
上記課題を解決すべく、本発明は、
 生分解性ポリエステル系樹脂を含む生分解性ポリエステル系樹脂発泡粒子であって、
 示差走査熱量計を用いて、
 10℃/分の昇温速度での30℃から200℃までの第1の昇温と、
 10℃/分の降温速度での200℃から30℃までの降温と、
 10℃/分の昇温速度での30℃から200℃までの第2の昇温と、を順に実施したとき、
 前記第1の昇温で得られる第1のDSC曲線(1)で観察される融解ピークは、前記第2の昇温で得られる第2のDSC曲線(2)での融解ピークが高温側と低温側とに分かれた状態になっており、且つ、高温側のピークのトップと低温側のピークのトップとが前記第2のDSC曲線(2)での融解ピークのピークトップの±15℃の範囲内に位置する、生分解性ポリエステル系樹脂発泡粒子を提供する。
In order to solve the above problems, the present invention
Biodegradable polyester resin foamed particles containing biodegradable polyester resin.
Using a differential scanning calorimeter,
With the first temperature rise from 30 ° C to 200 ° C at a temperature rise rate of 10 ° C / min,
With a temperature drop rate of 10 ° C / min from 200 ° C to 30 ° C,
When the second temperature rise from 30 ° C. to 200 ° C. at a temperature rise rate of 10 ° C./min was carried out in order.
The melting peak observed on the first DSC curve (1) obtained by the first temperature rise is such that the melting peak on the second DSC curve (2) obtained by the second temperature rise is on the high temperature side. It is separated into the low temperature side, and the top of the peak on the high temperature side and the top of the peak on the low temperature side are ± 15 ° C. of the peak top of the melting peak in the second DSC curve (2). Provided are biodegradable polyester-based resin foam particles located within the range.
また、本発明は、このような生分解性ポリエステル系樹脂発泡粒子を製造するための生分解性ポリエステル系樹脂発泡粒子の製造方法であって、
 生分解性ポリエステル系樹脂を含む生分解性ポリエステル系樹脂粒子に対して、該生分解性ポリエステル系樹脂の融解ピーク温度(Tm)の±6℃の範囲内の温度で加熱処理を行った後、0.1℃/分以上5℃/分以下の冷却速度で前記融解ピーク温度(Tm)よりも50℃以上低い温度になるまで冷却する冷却処理をさらに行うことで、前記第1のDSC曲線(1)で前記高温側と前記低温側とに前記ピークが現れる熱処理済樹脂粒子を得、次いで該熱処理済樹脂粒子の前記低温側の前記ピークよりも低い温度で前記熱処理済樹脂粒子に発泡剤を含浸させて発泡性樹脂粒子を得た後、該発泡性樹脂粒子を加熱して発泡させる、生分解性ポリエステル系樹脂発泡粒子の製造方法を提供する。
Further, the present invention is a method for producing biodegradable polyester-based resin foamed particles for producing such biodegradable polyester-based resin foamed particles.
The biodegradable polyester resin particles containing the biodegradable polyester resin are heat-treated at a temperature within ± 6 ° C. of the melting peak temperature (Tm) of the biodegradable polyester resin, and then heat-treated. The first DSC curve (1) is obtained by further performing a cooling treatment of cooling at a cooling rate of 0.1 ° C./min or more and 5 ° C./min or less until the temperature becomes 50 ° C. or more lower than the melting peak temperature (Tm). In 1), the heat-treated resin particles in which the peaks appear on the high-temperature side and the low-temperature side are obtained, and then a foaming agent is applied to the heat-treated resin particles at a temperature lower than the peak on the low-temperature side of the heat-treated resin particles. Provided is a method for producing biodegradable polyester resin foam particles, which is impregnated to obtain foamable resin particles and then heated to foam the foamable resin particles.
また、本発明は、上記の生分解性ポリエステル系樹脂発泡粒子で一部又は全部が構成された生分解性ポリエステル系樹脂発泡成形体を提供する。 The present invention also provides a biodegradable polyester-based resin foam molded product, which is partially or wholly composed of the above-mentioned biodegradable polyester-based resin foamed particles.
さらに、本発明は、上記のような生分解性ポリエステル系樹脂発泡粒子を成形型のキャビティに収容し、該キャビティで生分解性ポリエステル系樹脂発泡粒子どうしを熱融着させることで、前記キャビティの形状に対応した生分解性ポリエステル系樹脂発泡成形体を製造する、生分解性ポリエステル系樹脂発泡成形体の製造方法を提供する。 Further, in the present invention, the biodegradable polyester-based resin foam particles as described above are housed in a mold cavity, and the biodegradable polyester-based resin foam particles are heat-sealed in the cavity, thereby forming the cavity. Provided is a method for producing a biodegradable polyester resin foam molded product, which produces a biodegradable polyester resin foam molded product corresponding to a shape.
本発明によれば、結晶性を有しながらも良好な発泡性を示す生分解性ポリエステル系樹脂発泡粒子及びその製造方法が提供され、更には、軽量で強度に優れた生分解性ポリエステル系樹脂発泡成形体及びその製造方法が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, a biodegradable polyester resin foamed particles that have good foamability while having crystallinity and a method for producing the same are provided, and further, a biodegradable polyester resin that is lightweight and has excellent strength. A foam molded product and a method for producing the same are provided.
実施例1におけるPBS樹脂粒子のDSC曲線(1)を示す図である。It is a figure which shows the DSC curve (1) of the PBS resin particle in Example 1. FIG. 比較例1におけるPBS樹脂粒子のDSC曲線(1)を示す図である。It is a figure which shows the DSC curve (1) of the PBS resin particle in the comparative example 1. FIG.
以下、本発明の実施の形態について説明する。
 本実施形態の生分解性ポリエステル系樹脂発泡粒子(以下、単に「樹脂発泡粒子」ともいう)は、例えば、ビーズ発泡成形体などの生分解性ポリエステル系樹脂発泡成形体(以下、単に「樹脂発泡成形体」ともいう)の原材料として用いられる。
Hereinafter, embodiments of the present invention will be described.
The biodegradable polyester-based resin foamed particles of the present embodiment (hereinafter, also simply referred to as “resin foamed particles”) are, for example, biodegradable polyester-based resin foamed molded products such as bead foamed molded products (hereinafter, simply “resin foamed”). It is also used as a raw material for "molded products").
まず、生分解性ポリエステル系樹脂発泡粒子を構成する樹脂組成物について説明する。
 本実施形態における前記樹脂組成物は、その主成分たる樹脂が生分解性ポリエステル系樹脂となっている。
 前記樹脂組成物は、生分解性ポリエステル系樹脂以外に、後述する添加剤等を含有してもよい。
First, the resin composition constituting the biodegradable polyester-based resin foamed particles will be described.
In the resin composition of the present embodiment, the resin as the main component thereof is a biodegradable polyester resin.
The resin composition may contain additives and the like described later in addition to the biodegradable polyester resin.
本実施形態に係る生分解性ポリエステル系樹脂としては、例えば、グリコールと脂肪族ジカルボン酸との重縮合などにより得られる脂肪族ポリエステル系樹脂などが挙げられる。
 該脂肪族ポリエステル系樹脂としては、例えば、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリヘキサメチレンサクシネート、ポリエチレンアジペート、ポリヘキサメチレンアジペート、ポリブチレンアジペート、ポリエチレンオキザレート、ポリブチレンオキザレート、ポリネオペンチルオキザレート、ポリエチレンセバケート、ポリブチレンセバケート、ポリヘキサメチレンセバケート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートカーボネート等が挙げられる。
Examples of the biodegradable polyester resin according to the present embodiment include an aliphatic polyester resin obtained by polycondensation of glycol and an aliphatic dicarboxylic acid.
Examples of the aliphatic polyester resin include polyethylene succinate, polybutylene succinate, polyhexamethylene succinate, polyethylene adipate, polyhexamethylene adipate, polybutylene adipate, polyethylene oxalate, polybutylene succinate, and poly. Examples thereof include neopentyl oxalate, polyethylene sebacate, polybutylene sebacate, polyhexamethylene sebacate, polybutylene succinate adipate, and polybutylene succinate carbonate.
本実施形態に係る生分解性ポリエステル系樹脂は、例えば、ポリグリコール酸やポリ乳酸などのポリ(α−ヒドロキシ酸)またはこれらの共重合体、ポリ(ε−カプロラクトン)やポリ(β−プロピオラクトン)のようなポリ(ω−ヒドロキシアルカノエート)、ポリ(3−ヒドロキシブチレート)、ポリ(3−ヒドロキシバリレート)、ポリ(3−ヒドロキシカプロレート)、ポリ(3−ヒドロキシヘプタノエート)、ポリ(3−ヒドロキシオクタノエート)のようなポリ(β−ヒドロキシアルカノエート)、及びポリ(4−ヒドロキシブチレート)などの脂肪族ポリエステル系樹脂であってもよい。 The biodegradable polyester resin according to the present embodiment is, for example, poly (α-hydroxy acid) such as polyglycolic acid or polylactic acid, or a copolymer thereof, poly (ε-caprolactone) or poly (β-propio). Poly (ω-hydroxyalkanoate) such as lactone), poly (3-hydroxybutyrate), poly (3-hydroxyvariate), poly (3-hydroxycaprolate), poly (3-hydroxyheptanoate) ), Poly (β-hydroxyalkanoate) such as poly (3-hydroxyoctanoate), and aliphatic polyester resins such as poly (4-hydroxybutyrate) may be used.
上記の生分解性ポリエステル系樹脂は、必要に応じて、分岐構造や架橋構造を形成させるような改質を施してもよい。
 生分解性ポリエステル系樹脂への分岐構造や架橋構造の導入には、カルボジイミドなどの鎖伸長剤などが用いられ得る。
 鎖伸長剤による改質は、アクリル系有機化合物、エポキシ系有機化合物、イソシアネート系有機化合物など、生分解性ポリエステル系樹脂の分子構造中に存在する水酸基やカルボキシル基と縮合反応させることが可能な官能基を1又は複数有する化合物を用いて行うことができる。
 即ち、前記改質は、アクリル系有機化合物、エポキシ系有機化合物、イソシアネート系有機化合物などを反応によって生分解性ポリエステル系樹脂に結合させる方法で実施することができる。
If necessary, the biodegradable polyester resin may be modified so as to form a branched structure or a crosslinked structure.
A chain extender such as carbodiimide can be used to introduce a branched structure or a crosslinked structure into a biodegradable polyester resin.
Modification with a chain extender is a functional that can be condensed with hydroxyl groups and carboxyl groups present in the molecular structure of biodegradable polyester resins such as acrylic organic compounds, epoxy organic compounds, and isocyanate organic compounds. This can be done using a compound having one or more groups.
That is, the modification can be carried out by a method of binding an acrylic organic compound, an epoxy organic compound, an isocyanate organic compound or the like to a biodegradable polyester resin by a reaction.
架橋構造や分岐構造による生分解性ポリエステル系樹脂の改質は、例えば、ラジカル開始剤によって生分解性ポリエステル系樹脂の分子どうしを反応させる方法などによって行うことができる。
 このような反応は、二軸押出機などの押出機を用いて実施することができる。
The modification of the biodegradable polyester resin by the crosslinked structure or the branched structure can be carried out by, for example, a method of reacting the molecules of the biodegradable polyester resin with a radical initiator.
Such a reaction can be carried out using an extruder such as a twin-screw extruder.
上記の改質方法の中では、改質後に他の成分が含まれることを抑制できる点で、生分解性ポリエステル系樹脂の分子どうしをラジカル開始剤で反応させることが好ましい。
 なお、適度な反応性を有するラジカル開始剤を用いて生分解性ポリエステル系樹脂の分子どうしを反応させると、押出機内での生分解性ポリエステル系樹脂の分解起点が前記ラジカル開始剤によって発生させたフリーラジカルによってアタックされ、当該箇所が架橋点(分岐点)となり安定化される。
 生分解性ポリエステル系樹脂は、このような改質がなされることで熱安定性が増し、押出機を通過する際に低分子量化され難くなる。
Among the above-mentioned modification methods, it is preferable to react the molecules of the biodegradable polyester resin with a radical initiator in that the inclusion of other components after the modification can be suppressed.
When the molecules of the biodegradable polyester resin were reacted with each other using a radical initiator having an appropriate reactivity, the decomposition starting point of the biodegradable polyester resin in the extruder was generated by the radical initiator. It is attacked by free radicals, and the site becomes a cross-linking point (branch point) and is stabilized.
The biodegradable polyester resin has increased thermal stability due to such modification, and it is difficult for the biodegradable polyester resin to have a low molecular weight when passing through an extruder.
前記ラジカル開始剤としては、例えば、有機過酸化物、アゾ化合物、ハロゲン分子などが挙げられる。
 これらの中では、有機過酸化物が好ましい。
 本実施形態で用いられる該有機過酸化物としては、例えば、パーオキシエステル、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシケタール、及びケトンパーオキサイド等が挙げられる。
Examples of the radical initiator include organic peroxides, azo compounds, halogen molecules and the like.
Of these, organic peroxides are preferred.
Examples of the organic peroxide used in the present embodiment include peroxyesters, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyketals, and ketone peroxides.
前記パーオキシエステルとしては、例えば、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシアセテート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、及びt−ブチルパーオキシイソプロピルモノカーボネート等が挙げられる。 Examples of the peroxy ester include t-butyl peroxy-2-ethylhexyl carbonate, t-hexyl peroxyisopropyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxybenzoate, and t-butyl peroxylaurate. , T-Butylperoxy-3,5,5-trimethylhexanoate, t-Butylperoxyacetate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, and t-butylperoxyisopropyl. Examples include monocarbonate.
前記ハイドロパーオキサイドとしては、例えば、パーメタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、及びt−ブチルハイドロパーオキサイド等が挙げられる。 Examples of the hydroperoxide include permethane hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide and the like.
前記ジアルキルパーオキサイドとしては、例えば、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、及び2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3等が挙げられる。 Examples of the dialkyl peroxide include dicumyl peroxide, di-t-butyl peroxide, and 2,5-dimethyl-2,5-di (t-butylperoxy) hexin-3.
前記ジアシルパーオキサイドとしては、例えば、ジベンゾイルパーキサイド、ジ(4−メチルベンゾイル)パーオキサイド、及びジ(3−メチルベンゾイル)パーオキサイド等が挙げられる。 Examples of the diacyl peroxide include dibenzoyl peroxide, di (4-methylbenzoyl) peroxide, and di (3-methylbenzoyl) peroxide.
前記パーオキシジカーボネートとしては、例えば、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等が挙げられる。 Examples of the peroxydicarbonate include di (2-ethylhexyl) peroxydicarbonate and diisopropylperoxydicarbonate.
前記パーオキシケタールとしては、例えば、1,1−ジ−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、1,1−ジ−t−ブチルパーオキシシクロヘキサン、2,2−ジ(t−ブチルパーオキシ)ブタン、n−ブチル4,4−ジ−(t−ブチルパーオキシ)バレレート、及び2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン等が挙げられる。 Examples of the peroxyketal include 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, and 2,2-di (t). -Butyl peroxy) butane, n-butyl 4,4-di- (t-butyl peroxy) valerate, 2,2-bis (4,5-di-t-butyl peroxycyclohexyl) propane and the like can be mentioned. ..
前記ケトンパーオキサイドとしては、例えば、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等が挙げられる。 Examples of the ketone peroxide include methyl ethyl ketone peroxide and acetylacetone peroxide.
前記有機過酸化物は、パーオキシエステルであることが好ましい。
 また、パーオキシエステルの中でも生分解性ポリエステル系樹脂の改質に用いられる有機過酸化物は、パーオキシカーボネート系有機過酸化物であることが好ましい。
 本実施形態において生分解性ポリエステル系樹脂の改質に用いられる有機過酸化物は、パーオキシカーボネート系有機過酸化物の中でもパーオキシモノカーボネート系有機過酸化物であることが好ましく、t−ブチルパーオキシイソプロピルモノカーボネートであることが特に好ましい。
The organic peroxide is preferably a peroxy ester.
Further, among the peroxyesters, the organic peroxide used for modifying the biodegradable polyester resin is preferably a peroxycarbonate-based organic peroxide.
The organic peroxide used for modifying the biodegradable polyester resin in the present embodiment is preferably a peroxymonocarbonate-based organic peroxide among the peroxycarbonate-based organic peroxides, and t-butyl. Peroxyisopropyl monocarbonate is particularly preferred.
上記のような有機過酸化物は、その分子量などにもよるが、通常、改質をする生分解性ポリエステル系樹脂100質量部に対して、0.1質量部以上の含有量で用いられる。
 前記有機過酸化物の含有量は、0.2質量部以上であることが好ましく、0.3質量部以上であることが特に好ましい。
 前記有機過酸化物の含有量は、2.0質量部以下であることが好ましく、1.5質量部以下であることがより好ましく、1.0質量部以下であることが特に好ましい。
 このような含有量で有機過酸化物を用いて生分解性ポリエステル系樹脂を改質することで、改質後の生分解性ポリエステル系樹脂を発泡に適したものにすることができる。
The above-mentioned organic peroxide is usually used in a content of 0.1 part by mass or more with respect to 100 parts by mass of the biodegradable polyester resin to be modified, although it depends on its molecular weight and the like.
The content of the organic peroxide is preferably 0.2 parts by mass or more, and particularly preferably 0.3 parts by mass or more.
The content of the organic peroxide is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and particularly preferably 1.0 part by mass or less.
By modifying the biodegradable polyester-based resin with an organic peroxide at such a content, the modified biodegradable polyester-based resin can be made suitable for foaming.
上記のような有機過酸化物は、その含有量を0.1質量部以上とすることにより、生分解性ポリエステル系樹脂に対して改質による効果をより確実に発揮することができる。
 また、有機過酸化物は、その含有量を2.0質量部以下とすることにより、改質後の生分解性ポリエステル系樹脂に多くのゲルが混在することを抑制することができる。
By setting the content of the organic peroxide as described above to 0.1 parts by mass or more, the effect of modification on the biodegradable polyester resin can be more reliably exhibited.
Further, by setting the content of the organic peroxide to 2.0 parts by mass or less, it is possible to prevent a large amount of gel from being mixed in the biodegradable polyester resin after modification.
前記生分解性ポリエステル系樹脂としては、長鎖分岐を有していないものが好ましい。
 本実施形態の生分解性ポリエステル系樹脂は、生分解性の観点から脂肪族ポリエステル系樹脂であることが好ましい。
 前記樹脂組成物に含まれる全ての生分解性ポリエステル系樹脂を100質量%とした場合、脂肪族ポリエステル系樹脂の割合は、85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。
 前記樹脂組成物に含まれる全ての生分解性ポリエステル系樹脂が脂肪族ポリエステル系樹脂であることがとりわけ好ましい。
The biodegradable polyester resin preferably does not have a long chain branch.
The biodegradable polyester resin of the present embodiment is preferably an aliphatic polyester resin from the viewpoint of biodegradability.
When all the biodegradable polyester resins contained in the resin composition are 100% by mass, the proportion of the aliphatic polyester resin is preferably 85% by mass or more, and preferably 90% by mass or more. More preferably, it is 95% by mass or more.
It is particularly preferable that all the biodegradable polyester resins contained in the resin composition are aliphatic polyester resins.
本実施形態で用いる生分解性ポリエステル系樹脂は、これらのなかでもポリブチレンサクシネートが特に好ましい。
 前記樹脂組成物に含まれる全ての生分解性ポリエステル系樹脂を100質量%とした場合、ポリブチレンサクシネートの割合は、85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。
 前記樹脂組成物に含まれる全ての生分解性ポリエステル系樹脂がポリブチレンサクシネートであることがとりわけ好ましい。
Of these, polybutylene succinate is particularly preferable as the biodegradable polyester resin used in the present embodiment.
When all the biodegradable polyester resins contained in the resin composition are 100% by mass, the proportion of polybutylene succinate is preferably 85% by mass or more, and more preferably 90% by mass or more. It is preferably 95% by mass or more, and more preferably 95% by mass or more.
It is particularly preferable that all the biodegradable polyester resins contained in the resin composition are polybutylene succinate.
なお、本実施形態においては、上記例示の生分解性脂肪族ポリエステル系樹脂のうち一種を選択して用いてもよく、上記例示の生分解性脂肪族ポリエステル系樹脂のうち複数種を混合して用いることもでき、上記例示以外の生分解性脂肪族ポリエステル系樹脂を用いてもよい。 In this embodiment, one of the above-exemplified biodegradable aliphatic polyester resins may be selected and used, and a plurality of of the above-exemplified biodegradable aliphatic polyester resins may be mixed and used. It can also be used, and a biodegradable aliphatic polyester resin other than the above examples may be used.
前記樹脂組成物に含まれる添加剤としては、生分解性ポリエステル系樹脂以外のポリマー、無機フィラーなどの無機物、各種ゴム・プラスチック薬剤などが挙げられる。 Examples of the additive contained in the resin composition include polymers other than biodegradable polyester resins, inorganic substances such as inorganic fillers, and various rubber / plastic agents.
前記樹脂組成物に含有し得る前記生分解性ポリエステル系樹脂以外のポリマーとしては、高分子型帯電防止剤、気泡調整剤として用いられるフッ素系樹脂、ゴム系改質剤などが挙げられる。 Examples of the polymer other than the biodegradable polyester resin that can be contained in the resin composition include a polymer-type antistatic agent, a fluorine-based resin used as a bubble modifier, and a rubber-based modifier.
樹脂発泡粒子や樹脂発泡成形体に優れた生分解性を発揮させるうえで、樹脂発泡粒子を構成する樹脂組成物に含まれる全てのポリマーに占める生分解性ポリエステル系樹脂の割合は、85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。 The ratio of the biodegradable polyester resin to all the polymers contained in the resin composition constituting the resin foam particles is 85% by mass in order to make the resin foam particles and the resin foam molded body exhibit excellent biodegradability. The above is preferable, 90% by mass or more is more preferable, and 95% by mass or more is further preferable.
前記樹脂組成物は、その発泡成形性をより向上させる目的で収縮防止剤等の添加剤を任意に含むことができる。
 添加剤の含有量としては、生分解性ポリエステル系樹脂100質量部に対して、0.05質量部以上5質量部以下の範囲内であることが好ましい。
The resin composition may optionally contain additives such as shrinkage inhibitors for the purpose of further improving its foam moldability.
The content of the additive is preferably in the range of 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the biodegradable polyester resin.
前記収縮防止剤としては、例えば、ラウリン酸モノグリセライド、パルミチン酸モノグリセライド、ステアリン酸モノグリセライド、ペンタエリスリットモノカプレート、ペンタエリスリットモノオレエート、ペンタエリスリットモノラウレート、ジペンタエリスリットジステアレート、ソルビタンモノオレエート、ソルビタンセスキ糖油脂肪酸エステル、ソルビタンモノパルミテート、ソルビタンモノラウレート、ソルビタンモノステアレート、マンニタンモノオレエート、マンニタンモノラウレートなどの多価アルコールと高級脂肪酸とのエステル化合物の他、高級アルキルアミン、脂肪酸アミド、高級脂肪酸の完全エステルなどが挙げられる。 Examples of the shrinkage inhibitor include laurate monoglyceride, palmitate monoglyceride, stearic acid monoglyceride, pentaerythlit monocaplate, pentaerythlit monooleate, pentaerythlit monolaurate, dipentaerythlit distearate, and sorbitan. Monooleate, sorbitanseski sugar oil fatty acid ester, sorbitan monopalmitate, sorbitan monolaurate, sorbitan monostearate, mannitan monooleate, mannitan monolaurate and other polyhydric alcohols and ester compounds of higher fatty acids Other examples include higher alkylamines, fatty acid amides, and complete esters of higher fatty acids.
収縮防止剤は、上記例示のもののうち一種を選択して用いてもよく、上記例示の収縮防止剤のうち複数種を混合して用いることもでき、上記例示以外の収縮防止剤として公知のものを用いてもよい。その中でもステアリン酸モノグリセライドが特に好ましい。 As the shrinkage inhibitor, one of the above-exemplified ones may be selected and used, or a plurality of types of the above-exemplified shrinkage inhibitor may be mixed and used, and those known as shrinkage inhibitors other than the above-mentioned examples are known. May be used. Of these, monoglyceride stearate is particularly preferable.
前記樹脂組成物は、発泡時に良好な気泡構造を形成する目的で、一般的に使用される気泡調整剤を使用することができる。該気泡調整剤としては、例えば、ポリテトラフルオロエチレンなどのフッ素系樹脂の微粉末、タルク、水酸化アルミニウム、シリカなどが挙げられる。
 更に後述する分解型発泡剤は、揮発性発泡剤と併用することで、発泡状態を調整することができ、気泡調整剤として用いることもできる。
As the resin composition, a commonly used bubble adjusting agent can be used for the purpose of forming a good bubble structure at the time of foaming. Examples of the bubble adjusting agent include fine powder of a fluorine-based resin such as polytetrafluoroethylene, talc, aluminum hydroxide, silica and the like.
Further, the decomposition-type foaming agent described later can be used as a bubble adjusting agent because the foaming state can be adjusted by using it in combination with a volatile foaming agent.
前記樹脂組成物で樹脂発泡粒子を構成させる際に用いられる発泡剤としては、特に限定されないが、常温(23℃)、常圧(1atm)において気体となる揮発性発泡剤、熱分解によって気体を発生させる分解型発泡剤を採用することができ、前記揮発性発泡剤としては、例えば、不活性ガス、脂肪族炭化水素、脂環族炭化水素等が採用可能である。
 前記不活性ガスとしては、例えば、二酸化炭酸、窒素等が挙げられ、脂肪族炭化水素としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン等が挙げられ、前記脂環族炭化水素としては、例えば、シクロペンタン、シクロヘキサン等が挙げられる。
 本実施形態においては、上記の中でも特に二酸化炭素が好ましく用いられる。
The foaming agent used when forming the resin foam particles in the resin composition is not particularly limited, but is a volatile foaming agent that becomes a gas at normal temperature (23 ° C.) and normal pressure (1 atm), and a gas by thermal decomposition. A decomposing foaming agent to be generated can be adopted, and as the volatile foaming agent, for example, an inert gas, an aliphatic hydrocarbon, an alicyclic hydrocarbon, or the like can be adopted.
Examples of the inert gas include carbon dioxide, nitrogen and the like, and examples of the aliphatic hydrocarbon include propane, normal butane, isobutane, normal pentane, isopentane and the like, and the aliphatic hydrocarbon includes the alicyclic hydrocarbon. For example, cyclopentane, cyclohexane and the like can be mentioned.
Among the above, carbon dioxide is particularly preferably used in the present embodiment.
前記樹脂組成物に含まれる全ての生分解性ポリエステル系樹脂を100質量%とした場合、発泡剤の割合は、1質量%~8質量%、好ましくは1質量%~7質量%、更に好ましくは、2質量%~7質量%である。 When all the biodegradable polyester resins contained in the resin composition are 100% by mass, the proportion of the foaming agent is 1% by mass to 8% by mass, preferably 1% by mass to 7% by mass, and more preferably. 2, 2% by mass to 7% by mass.
前記分解型発泡剤としては、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、重炭素ナトリウム又はクエン酸のような有機酸もしくはその塩と重炭酸塩との混合物などが挙げられる。 Examples of the decomposing foaming agent include organic acids such as azodicarbonamide, dinitrosopentamethylenetetramine, sodium bicarbonate or citric acid, or a mixture thereof and a bicarbonate.
前記樹脂組成物に含有し得る前記添加剤としては、例えば、滑剤、酸化防止剤、帯電防止剤、難燃剤、紫外線吸収剤、光安定剤、着色剤、無機充填剤等が挙げられる。また、前記樹脂組成物は、これら以外の添加剤も適宜含有してもよい。 Examples of the additive that can be contained in the resin composition include lubricants, antioxidants, antistatic agents, flame retardants, ultraviolet absorbers, light stabilizers, colorants, and inorganic fillers. In addition, the resin composition may appropriately contain additives other than these.
前記樹脂発泡粒子は、ポリスチレン樹脂発泡粒子などの製造に利用される一般的な発泡機を用いて作製でき、水蒸気加熱、又は熱風加熱などを用いて、前記樹脂組成物からなる樹脂粒子を発泡させることで形成することができる。 The resin foamed particles can be produced by using a general foaming machine used for producing polystyrene resin foamed particles or the like, and the resin particles made of the resin composition are foamed by steam heating, hot air heating, or the like. Can be formed by
前記樹脂発泡粒子は、生分解性ポリエステル系樹脂を含有する前記樹脂組成物で構成された樹脂粒子(以下、「原粒」ともいう)を用意し、この樹脂粒子(原粒)に前述の発泡剤を含浸させ、帯電防止剤、結合防止剤等を粒子表面に展着させ、発泡機内に投入して所望の嵩密度になるまで加熱を行うことで所定の発泡度に調製し得る。 As the resin foaming particles, resin particles (hereinafter, also referred to as “raw grains”) composed of the resin composition containing a biodegradable polyester resin are prepared, and the above-mentioned foaming is performed on the resin particles (raw grains). A predetermined degree of foaming can be prepared by impregnating the agent, spreading an antistatic agent, an antibonding agent, or the like on the surface of the particles, putting the agent into a foaming machine, and heating until a desired bulk density is reached.
本実施形態における樹脂発泡粒子の嵩密度としては、12kg/m以上500kg/m以下、好ましくは30kg/cm以上500kg/m以下である。
 樹脂発泡粒子の嵩密度が12kg/m未満では、発泡成形時に収縮が発生し易くなり、得られた樹脂発泡成形体の強度面が十分良好なものにならない場合がある。
 一方、樹脂発泡粒子の嵩密度が500kg/mを超えると、樹脂発泡成形体が十分軽量にならない場合がある。
 樹脂発泡粒子の嵩密度は、例えば、以下のとおり求めることができる。
The bulk density of the resin foam particles in the present embodiment is 12 kg / m 3 or more and 500 kg / m 3 or less, preferably 30 kg / cm 3 or more and 500 kg / m 3 or less.
If the bulk density of the resin foam particles is less than 12 kg / m 3 , shrinkage is likely to occur during foam molding, and the strength of the obtained resin foam molded product may not be sufficiently good.
On the other hand, if the bulk density of the resin foam particles exceeds 500 kg / m 3 , the resin foam molded product may not be sufficiently lightweight.
The bulk density of the resin foam particles can be determined, for example, as follows.
(嵩密度の測定方法)
 約1,000cmの樹脂発泡粒子を用意し、該樹脂発泡粒子をメスシリンダー内に1,000cmの目盛りまで充填する。
 なお、メスシリンダーを水平方向から目視し、樹脂発泡粒子が1つでも1,000cmの目盛りに達していれば、その時点で樹脂発泡粒子のメスシリンダー内への充填を終了する。
 次に、メスシリンダー内に充填した樹脂発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。そして、下記式により発泡粒子の嵩密度は求められる。
 嵩密度(kg/m)=W
(Measuring method of bulk density)
Approximately 1,000 cm 3 of resin foam particles are prepared, and the resin foam particles are filled in a graduated cylinder up to a scale of 1,000 cm 3 .
The graduated cylinder is visually observed from the horizontal direction, and if even one of the resin foam particles reaches the scale of 1,000 cm 3 , the filling of the resin foam particles into the graduated cylinder is completed at that point.
Next, the mass of the resin foamed particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g). Then, the bulk density of the foamed particles can be obtained by the following formula.
Bulk density (kg / m 3 ) = W
本実施形態における樹脂発泡粒子の嵩倍数としては、2倍以上50倍以下、好ましくは3倍以上45倍以下、更に好ましくは4倍以上40倍以下である。
 ここで、嵩倍数とは、嵩密度の逆数に樹脂密度を積算した値のことを意味する。
The bulk factor of the resin foamed particles in the present embodiment is 2 times or more and 50 times or less, preferably 3 times or more and 45 times or less, and more preferably 4 times or more and 40 times or less.
Here, the bulk multiple means a value obtained by integrating the resin density with the reciprocal of the bulk density.
また、本実施形態における樹脂発泡粒子の平均気泡径としては、30μm以上300μm以下の範囲の何れかであることが好ましい。
 樹脂発泡粒子の平均気泡径は、50μm以上250μm以下であることがより好ましく、50μm以上200μm以下であることがさらに好ましい。
The average bubble diameter of the resin foam particles in the present embodiment is preferably in the range of 30 μm or more and 300 μm or less.
The average cell diameter of the resin foamed particles is more preferably 50 μm or more and 250 μm or less, and further preferably 50 μm or more and 200 μm or less.
(平均気泡径の測定方法)
 樹脂発泡粒子の平均気泡径は、当該樹脂発泡粒子を概ね中心部で2分割するように切断した断面を走査型電子顕微鏡により撮影し、該撮影で得られた画像に基づいて測定することができる。
 具体的には、前記断面の写真を走査型電子顕微鏡(例えば、(株)日立製作所製「S−3000N」、(株)日立ハイテクノロジーズ製「S−3400N」)を用いて撮影する。
 樹脂発泡成形体において平均気泡径を求める場合、撮影は、概ね中心部で2分割するように切断されているとみられる樹脂発泡粒子から無作為に選択した2つの樹脂発泡粒子のそれぞれ中央部を撮影する。
 撮影は、気泡が比較的長く伸びている方向を縦方向とし、この方向に直交する方向を横方向として1か所について2枚の写真を撮影する。
 撮影した写真をA4用紙上に縦横2画像ずつ、合計4画像印刷し、縦横方向に平行な任意の一直線上(長さ60mm)にある気泡数から、気泡の平均弦長(t)を下記式により算出する。
 ただし、任意の直線は、可能な限り気泡が接点でのみ接しないようにして描くこととする(接してしまう場合は、気泡数に含める)。
 計測は、縦横それぞれ6ヶ所ずつとする。
 平均弦長t(mm)=60/(気泡数×画像の倍率)
 そして、下記式により各方向における気泡径を算出する。
 D(mm)=t/0.616
 さらに、それらの積の2乗根を平均気泡径とする。
 平均気泡径(mm)=(D縦×D横)1/2
(Measuring method of average cell diameter)
The average cell diameter of the resin foamed particles can be measured based on an image obtained by photographing a cross section of the resin foamed particles cut so as to be roughly divided into two at the center with a scanning electron microscope. ..
Specifically, a photograph of the cross section is taken using a scanning electron microscope (for example, "S-3000N" manufactured by Hitachi, Ltd., "S-3400N" manufactured by Hitachi High-Technologies Corporation).
When determining the average cell diameter in a resin foam molded product, photography was performed by photographing the central portion of each of two resin foam particles randomly selected from the resin foam particles that are considered to be cut so as to be roughly divided into two at the central portion. To do.
In the photographing, the direction in which the bubbles are relatively long is the vertical direction, and the direction orthogonal to this direction is the horizontal direction, and two photographs are taken at one place.
A total of 4 images are printed on A4 paper, 2 images in each of the vertical and horizontal directions, and the average chord length (t) of the bubbles is calculated from the number of bubbles on an arbitrary straight line (length 60 mm) parallel to the vertical and horizontal directions. Calculated by
However, any straight line should be drawn so that the bubbles do not touch only at the contact points as much as possible (if they do, they are included in the number of bubbles).
The measurement shall be performed at 6 locations each in the vertical and horizontal directions.
Average string length t (mm) = 60 / (number of bubbles x image magnification)
Then, the bubble diameter in each direction is calculated by the following formula.
D (mm) = t / 0.616
Further, the square root of the product is taken as the average cell diameter.
Average bubble diameter (mm) = (D length x D width) 1/2
前記樹脂発泡粒子は、小粒化されていることが好ましく、円柱状、略球状、球状の形態が可能であるが、成形型などへの充填性から、略球状及び球状が好ましい。
 前記樹脂発泡粒子を得るための前記原粒は、特に限定されないが、1粒子当たりの体積で0.5mm以上30mm以下であることが好ましく、特に1mm以上10mm以下であることが好ましい。
The resin foam particles are preferably made into small particles and can be in the form of a columnar shape, a substantially spherical shape, or a spherical shape, but the substantially spherical shape or a spherical shape is preferable from the viewpoint of filling property into a molding die or the like.
The raw grains for obtaining the resin foamed particles are not particularly limited, but the volume per particle is preferably 0.5 mm 3 or more and 30 mm 3 or less, and particularly preferably 1 mm 3 or more and 10 mm 3 or less. ..
前記原粒として小粒化されたものを得る方法としては、特に限定されないが、一般的に使用できる溶融押出後にカットして小粒子化する方法、粉砕法が挙げられる。
 本実施形態においては、融押出後にカットして小粒子化する方法がより好ましい。
The method for obtaining small particles as the raw particles is not particularly limited, and examples thereof include a generally usable method of cutting after melt extrusion to make small particles, and a pulverization method.
In the present embodiment, a method of cutting into small particles after melt extrusion is more preferable.
次いで、樹脂発泡粒子及び樹脂発泡成形体(ビーズ発泡成形体)の製造方法について説明する。
 本実施形態の製造方法は、原粒を調製する工程(原粒調製工程)と、該原粒を一次発泡させて予備発泡粒子を調製する工程(一次発泡工程)と、内部に所定の成形空間(キャビティ)が形成されている成形型を用意し、前記予備発泡粒子を成形型に充填し、該成形型内で予備発泡粒子を加熱して予備発泡粒子を二次発泡させるとともに、予備発泡粒子どうしを熱融着させて複数の樹脂発泡粒子が一体化し且つ前記キャビティに対応した形状を有するビーズ発泡成形体を作製する工程(成形工程)とを備える。
Next, a method for producing the resin foam particles and the resin foam molded product (bead foam molded product) will be described.
The manufacturing method of the present embodiment includes a step of preparing raw grains (raw grain preparation step), a step of primary foaming the raw grains to prepare preliminary foamed particles (primary foaming step), and a predetermined molding space inside. A molding die in which a (cavity) is formed is prepared, the pre-foamed particles are filled in the molding die, and the pre-foamed particles are heated in the molding die to cause secondary foaming of the pre-foamed particles and the pre-foamed particles. The present invention includes a step (molding step) of heat-sealing each other to produce a bead-foamed molded product in which a plurality of resin foam particles are integrated and has a shape corresponding to the cavity.
本実施形態においては、前記一次発泡や前記二次発泡において良好な発泡性を発揮させるために、原粒に含まれる生分解性ポリエステル系樹脂の結晶構造を最適化する。
 具体的には、本実施形態では、前記予備発泡粒子を以下の工程を実施して調製する。
 (a)生分解性ポリエステル系樹脂を含み、該生分解性ポリエステル系樹脂の融解ピーク温度(Tm)の±6℃の範囲内の温度で加熱処理を行った後、0.1℃/分以上5℃/分以下の冷却速度で前記融解ピーク温度(Tm)よりも50℃以上低い温度になるまで冷却する冷却処理をさらに行うことで、熱処理済樹脂粒子を調製する第1工程。
 (b)前記第1工程で得られた熱処理済樹脂粒子の第1のDSC曲線(1)に現れる低温側のピーク温度よりも低い温度で発泡剤を含浸させて発泡性樹脂粒子を得る第2工程。
 (c)該第2工程で得られた前記発泡性樹脂粒子を加熱して発泡させることによって予備発泡粒子として用いられる樹脂発泡粒子を得る第3工程。
In the present embodiment, the crystal structure of the biodegradable polyester resin contained in the raw grains is optimized in order to exhibit good foamability in the primary foaming and the secondary foaming.
Specifically, in the present embodiment, the preliminary foamed particles are prepared by carrying out the following steps.
(A) After heat treatment containing a biodegradable polyester resin at a temperature within ± 6 ° C. of the melting peak temperature (Tm) of the biodegradable polyester resin, 0.1 ° C./min or more The first step of preparing the heat-treated resin particles by further performing a cooling treatment of cooling at a cooling rate of 5 ° C./min or less until the temperature becomes 50 ° C. or more lower than the melting peak temperature (Tm).
(B) The second step of impregnating the heat-treated resin particles obtained in the first step with a foaming agent at a temperature lower than the peak temperature on the low temperature side appearing in the first DSC curve (1) to obtain foamable resin particles. Process.
(C) A third step of obtaining resin foamed particles to be used as preliminary foamed particles by heating and foaming the foamable resin particles obtained in the second step.
前記第1工程は、例えば、ホットカット造粒法などの溶融状態の樹脂組成物から直接的に樹脂粒子を得、該樹脂粒子に対して前記加熱処理及び前記冷却処理を行う方法により実施することができる。また、前記第1工程は、例えば、溶融状態の樹脂組成物を一旦樹脂シートや樹脂ストランドとし、該樹脂シートや前記樹脂ストランドに対して前記加熱処理及び前記冷却処理を行った後、前記樹脂シートや前記樹脂ストランドをペレタイザーなどを用いて切断する方法によっても実施することができる。 The first step is carried out by, for example, a method of directly obtaining resin particles from a molten resin composition such as a hot-cut granulation method, and performing the heat treatment and the cooling treatment on the resin particles. Can be done. Further, in the first step, for example, the molten resin composition is once made into a resin sheet or a resin strand, and the resin sheet or the resin strand is subjected to the heat treatment and the cooling treatment, and then the resin sheet. It can also be carried out by a method of cutting the resin strand using a pelletizer or the like.
上記のような加熱処理及び冷却処理を行うことにより、熱処理済樹脂粒子、及び該熱処理済樹脂粒子を発泡させてなる予備発泡粒子が特徴的な結晶状態となる。
 これらの結晶状態は示差走査熱量計(DSC)によって確認することができる。
By performing the heat treatment and the cooling treatment as described above, the heat-treated resin particles and the pre-foamed particles obtained by foaming the heat-treated resin particles are in a characteristic crystalline state.
These crystalline states can be confirmed by a differential scanning calorimetry (DSC).
即ち、上記のような加熱処理及び冷却処理を行うことにより、熱処理済樹脂粒子及び予備発泡粒子は、示差走査熱量計を用いて、10℃/分の昇温速度での30℃から200℃までの第1の昇温(ファーストスキャン)と、10℃/分の降温速度での200℃から30℃までの降温と、10℃/分の昇温速度での30℃から200℃までの第2の昇温(セカンドスキャン)と、を順に実施したとき、前記第2の昇温で得られる第2のDSC曲線(2)での融解ピークでは、生分解性ポリエステル系樹脂の融解ピーク温度(Tm)にピークトップを有する単一のピークが観測されるが、前記第1の昇温で得られる第1のDSC曲線(1)では、このピークが高温側と低温側とに分かれた状態で観察され、且つ、高温側のピークのトップと低温側のピークのトップとが前記第2のDSC曲線(2)での融解ピークのピークトップの±15℃の範囲内(「Tm−15℃」~「Tm+15℃」)に位置する状態となり得る。 That is, by performing the heat treatment and the cooling treatment as described above, the heat-treated resin particles and the prefoamed particles are processed from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter. First temperature increase (first scan), temperature decrease from 200 ° C to 30 ° C at a temperature decrease rate of 10 ° C / min, and second temperature decrease from 30 ° C to 200 ° C at a temperature decrease rate of 10 ° C / min. When the temperature rise (second scan) of No. 1 was carried out in order, the melting peak on the second DSC curve (2) obtained by the second temperature rise was the melting peak temperature (Tm) of the biodegradable polyester resin. ), A single peak with a peak top is observed, but in the first DSC curve (1) obtained by the first temperature rise, this peak is observed in a state where it is divided into a high temperature side and a low temperature side. Moreover, the top of the peak on the high temperature side and the top of the peak on the low temperature side are within ± 15 ° C. of the peak top of the melting peak in the second DSC curve (2) (“Tm-15 ° C.” ~. It can be in a state of being located at "Tm + 15 ° C.").
本実施形態における熱処理済樹脂粒子及び予備発泡粒子は、加熱処理や冷却処理を実施する前の状態では、第2の昇温(セカンドスキャン)のように融解時における融解ピークが単一であるが、上記のような加熱処理及び冷却処理によって第1の昇温(ファーストスキャン)で見られるように融解ピークが二股に分かれた状態とすることができる。 The heat-treated resin particles and the prefoamed particles in the present embodiment have a single melting peak at the time of melting as in the second temperature rise (second scan) in the state before the heat treatment or the cooling treatment is performed. By the heat treatment and cooling treatment as described above, the melting peak can be in a bifurcated state as seen in the first temperature rise (first scan).
なお、このとき熱処理済樹脂粒子及び予備発泡粒子は、高温側のピークの融解熱量が20J/g以上となるように調製されることが好ましい。
 このことにより熱処理済樹脂粒子及び予備発泡粒子は、それぞれ一次発泡及び二次発泡に際して良好な発泡性を発揮する。
 しかも、このような融解ピークを示すことからも明らかなように、熱処理済樹脂粒子及び予備発泡粒子は、結晶性を有しており、樹脂発泡成形体に対して優れた強度を発揮することができる。
At this time, the heat-treated resin particles and the prefoamed particles are preferably prepared so that the amount of heat of fusion at the peak on the high temperature side is 20 J / g or more.
As a result, the heat-treated resin particles and the pre-foamed particles exhibit good foamability during primary foaming and secondary foaming, respectively.
Moreover, as is clear from showing such a melting peak, the heat-treated resin particles and the pre-foamed particles have crystallinity and can exhibit excellent strength with respect to the resin foamed molded product. it can.
熱処理済樹脂粒子や予備発泡粒子が融解時に複数の融解ピークを有する場合、上記のようなピークの分かれ方をするのは、融解温度域での主ピークだけでよく、全ての融解ピークが上記のようになることを要しない。 When the heat-treated resin particles and the prefoamed particles have a plurality of melting peaks at the time of melting, it is only necessary to divide the peaks as described above only in the main peak in the melting temperature range, and all the melting peaks are described above. It doesn't need to be.
ここで、主ピークとは、DSC測定(JIS K7121:1987、2012の「プラスチックの転移温度測定方法」、及びJIS K7122:1987、2012の「プラスチックの転移熱測定方法」)に準拠し、生分解性ポリエステル系樹脂からなる粒子5~7mgを示差走査熱量計((株)日立ハイテクサイエンス製「DSC7000X、AS−3」)を用いて、10℃/分の昇温速度で30℃から200℃まで加熱し、10℃/分の降温速度で200℃から30℃まで降温した後、さらに、10℃/分の昇温速度で30℃から200℃まで再び加熱したときに得られるDSC曲線(2)から求められ、DSC曲線(2)において融解ピークが1つのみあるときはそのピークを意味し、融解ピークが複数ある場合は最もピーク高さの高いピークをいう。 Here, the main peak is biodecomposed in accordance with DSC measurement (JIS K7121: 1987, 2012 "Plastic transition temperature measuring method" and JIS K7122: 1987, 2012 "Plastic transition heat measuring method"). Using a differential scanning calorimeter (“DSC7000X, AS-3” manufactured by Hitachi High-Tech Science Co., Ltd.) with 5 to 7 mg of particles made of a sex polyester resin, the temperature rises from 30 ° C to 200 ° C at a heating rate of 10 ° C / min. DSC curve obtained when heating is performed, the temperature is lowered from 200 ° C. to 30 ° C. at a temperature lowering rate of 10 ° C./min, and then the temperature is further heated again from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min (2). When there is only one melting peak in the DSC curve (2), it means that peak, and when there are multiple melting peaks, it means the peak with the highest peak height.
なお、以下においては、DSC曲線(1)における融解ピークのうち、DSC曲線(2)の融解ピークのピーク温度を基準として、変化する2つの融解ピークの中で、DSC曲線(2)における主融解ピークの低温側にある融解ピークを低温側ピークとし、そのときの温度を低温側ピーク温度と称する。
 また、主融解ピークの高温側にある融解ピークを高温側ピークとし、そのときの温度を高温側ピーク温度と称する。
In the following, among the melting peaks in the DSC curve (1), the main melting in the DSC curve (2) is among the two changing melting peaks based on the peak temperature of the melting peak in the DSC curve (2). The melting peak on the low temperature side of the peak is referred to as the low temperature side peak, and the temperature at that time is referred to as the low temperature side peak temperature.
Further, the melting peak on the high temperature side of the main melting peak is referred to as the high temperature side peak, and the temperature at that time is referred to as the high temperature side peak temperature.
なお、高温側ピークの融解熱量は、低温側ピークと高温側ピークとの間のピークボトム(DSC曲線の頂点)と、DSC曲線が高温側ピークを過ぎて再び高温側のベースラインへ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分から算出される。 The amount of heat of fusion of the high temperature side peak is the peak bottom between the low temperature side peak and the high temperature side peak (the apex of the DSC curve) and the point where the DSC curve passes the high temperature side peak and returns to the high temperature side baseline again. It is calculated from the straight line connecting the above and the part surrounded by the DSC curve.
加熱処理の方法としては、樹脂の劣化を引き起こすような条件以外には特に限定されないが、温風加熱式が好ましい。
 加熱条件については、生分解性ポリエステル系樹脂の主ピーク温度の±6℃の温度範囲内(「Tm−6℃」~「Tm+6℃」)で管理することが重要であり、加熱時間は1回に処理する量にもよるが、樹脂粒子全体が概ね設定温度に達していることを確認した後、30分から1時間設定温度に維持すればよい。
 30分より短いと、樹脂粒子の中心部分と表面部分との間に加熱処理のむらが発生する場合がある。
 このような樹脂粒子を予備発泡して得られる発泡粒子は、発泡性に劣るおそれがある。
The method of heat treatment is not particularly limited except for conditions that cause deterioration of the resin, but a warm air heating method is preferable.
It is important to control the heating conditions within the temperature range of ± 6 ° C (“Tm-6 ° C” to “Tm + 6 ° C”) of the main peak temperature of the biodegradable polyester resin, and the heating time is once. Although it depends on the amount to be treated, the temperature may be maintained at the set temperature for 30 minutes to 1 hour after confirming that the entire resin particles have reached the set temperature.
If it is shorter than 30 minutes, unevenness of the heat treatment may occur between the central portion and the surface portion of the resin particles.
The foamed particles obtained by pre-foaming such resin particles may be inferior in foamability.
冷却処理では、上記のとおり、加熱処理温度から少なくとも生分解性ポリエステル系樹脂の融解ピーク温度(Tm)よりも50℃低い温度(Tm−50℃)までの間は、0.1℃/分以上5℃/分以下の冷却速度で樹脂粒子を冷却する。
 前記冷却速度(0.1℃/分以上5℃/分以下)での冷却処理は、加熱処理後の前記樹脂粒子が50℃以下になるまで行うことが好ましく、前記樹脂粒子が30℃以下になるまで行うことがより好ましい。
 このことで熱処理済樹脂粒子や予備発泡粒子に特徴的な結晶構造が得られる。
 冷却速度は、0.1℃/分以上とすることで、良好な生産性が発揮される。
 また、冷却速度が5℃/分以下とすることで、粒子間の結晶構造にばらつきが発生することを抑制することができる。
 更に、この加熱処理及び冷却処理は予備発泡粒子に対して行っても有効である。
In the cooling treatment, as described above, 0.1 ° C./min or more from the heat treatment temperature to at least a temperature 50 ° C. lower than the melting peak temperature (Tm) of the biodegradable polyester resin (Tm-50 ° C.). The resin particles are cooled at a cooling rate of 5 ° C./min or less.
The cooling treatment at the cooling rate (0.1 ° C./min or more and 5 ° C./min or less) is preferably performed until the resin particles after the heat treatment are 50 ° C. or lower, and the resin particles are 30 ° C. or lower. It is more preferable to carry out until it becomes.
As a result, a crystal structure characteristic of the heat-treated resin particles and the pre-foamed particles can be obtained.
Good productivity is exhibited by setting the cooling rate to 0.1 ° C./min or more.
Further, by setting the cooling rate to 5 ° C./min or less, it is possible to suppress the occurrence of variation in the crystal structure between the particles.
Further, this heat treatment and cooling treatment are also effective when performed on the pre-foamed particles.
上記のとおり調製された熱処理済樹脂粒子に発泡剤を含浸させる前記第2工程は、オートクレーブのような圧力容器を用いることで行うことができる。
 具体的には、オートクレーブなどの圧力容器中で、熱処理済樹脂粒子と揮発性発泡剤とを加圧雰囲気下で接触させる方法が挙げられる。
 前記揮発性発泡剤として、二酸化炭素などを用いる場合、発泡剤の含浸は、臨界点を超えた超臨界条件下で行ってもよい。
The second step of impregnating the heat-treated resin particles prepared as described above with a foaming agent can be performed by using a pressure vessel such as an autoclave.
Specifically, a method of bringing the heat-treated resin particles into contact with a volatile foaming agent in a pressure vessel such as an autoclave under a pressurized atmosphere can be mentioned.
When carbon dioxide or the like is used as the volatile foaming agent, the impregnation of the foaming agent may be carried out under supercritical conditions exceeding the critical point.
前記一次発泡工程や前記成形工程は、前記低温側ピーク温度と前記高温側ピーク温度との間の温度条件で行うことが好ましい。
 低温側ピーク温度よりも高い温度で成形工程を行うことで、外観のきれいな樹脂発泡成形体が得られ易く、強度にも優れた樹脂発泡成形体が得られ易い。
 また、高温側ピーク温度よりも低い温度で成形工程を行うと、得られる樹脂発泡成形体に収縮が生じ難く、キャビティの形状が精度よく反映された外観の良好な樹脂発泡成形体が得られ易くなる。
The primary foaming step and the molding step are preferably performed under a temperature condition between the low temperature side peak temperature and the high temperature side peak temperature.
By performing the molding process at a temperature higher than the peak temperature on the low temperature side, it is easy to obtain a resin foam molded product having a beautiful appearance, and it is easy to obtain a resin foam molded product having excellent strength.
Further, when the molding process is performed at a temperature lower than the peak temperature on the high temperature side, the obtained resin foam molded product is less likely to shrink, and it is easy to obtain a resin foam molded product having a good appearance in which the shape of the cavity is accurately reflected. Become.
上記のとおり、本実施形態においては、結晶性を有しながらも良好な発泡性を示す生分解性ポリエステル系樹脂発泡粒子が提供され、更には、軽量で強度に優れた生分解性ポリエステル系樹脂発泡成形体が提供される。
 なお、本実施形態においては、上記のような例示を行っているが、本発明は上記例示に何等限定されるものではない。
As described above, in the present embodiment, biodegradable polyester-based resin foamed particles that have crystallinity but exhibit good foamability are provided, and further, a biodegradable polyester-based resin that is lightweight and has excellent strength. Foam moldings are provided.
Although the above examples are given in the present embodiment, the present invention is not limited to the above examples.
以下、実施例を示して樹脂発泡粒子や樹脂発泡成形体の製造例を具体的に説明するが、本発明は以下の例示にも限定されるものではない。 Hereinafter, examples of producing the resin foam particles and the resin foam molded product will be specifically described with reference to Examples, but the present invention is not limited to the following examples.
(実施例1)
 ポリブチレンサクシネート(以下、「PBS」と称する)(PTT MCC Biochem社製、商品名「BioPBS、FZ91」、密度=1,260kg/m)を押出機にて樹脂温度208℃で押出して造粒し、L/D=0.9、平均粒径0.8mmの略球状のPBS樹脂粒子を得た。
(Example 1)
Polybutylene succinate (hereinafter referred to as "PBS") (manufactured by PTT MCC Biochem, trade name "BioPBS, FZ91", density = 1,260 kg / m 3 ) is extruded at a resin temperature of 208 ° C. The particles were granulated to obtain substantially spherical PBS resin particles having L / D = 0.9 and an average particle size of 0.8 mm.
次いで、得られたPBS樹脂粒子について、示差走査熱量計を用いて、10℃/分の昇温速度で30℃から200℃まで加熱して得られるDSC曲線(1)からPBS樹脂粒子の融解ピークおよび融解ピークでのピークトップの温度を求め、次いで10℃/分の降温速度で200℃から30℃まで降温した後、さらに、10℃/分の昇温速度で30℃から200℃まで加熱して得られるDSC曲線(2)から融解ピークおよび融解ピークのピークトップの温度を求めた。
 その結果、DSC曲線(1)もDSC曲線(2)も単一の融解ピークのみ示しており、いずれもピークトップの温度は、112.8℃であった。
 この測定により、樹脂粒子の形成に用いたPBSの融解ピーク温度(Tm)が概ね113℃であることが確認できた。
Next, the obtained PBS resin particles were heated from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter, and the melting peak of the PBS resin particles was obtained from the DSC curve (1). The temperature of the peak top at the melting peak is determined, then the temperature is lowered from 200 ° C. to 30 ° C. at a temperature lowering rate of 10 ° C./min, and then further heated from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min. The temperature of the melting peak and the peak top of the melting peak was determined from the DSC curve (2) obtained.
As a result, both the DSC curve (1) and the DSC curve (2) showed only a single melting peak, and the temperature at the peak top was 112.8 ° C.
From this measurement, it was confirmed that the melting peak temperature (Tm) of PBS used for forming the resin particles was approximately 113 ° C.
このPBS樹脂粒子をオーブン中で113℃、2時間熱処理を行った後、冷却速度1℃/分にて30℃まで冷却し、熱処理済みのPBS樹脂粒子(以下、「熱処理済樹脂粒子」ともいう)を得た。 These PBS resin particles are heat-treated in an oven at 113 ° C. for 2 hours, and then cooled to 30 ° C. at a cooling rate of 1 ° C./min to be heat-treated, and are also referred to as “heat-treated resin particles”. ) Was obtained.
得られた熱処理済みのPBS樹脂粒子について、再度、示差走査熱量計を用いて、10℃/分の昇温速度で30℃から200℃まで加熱して得られるDSC曲線(1)で融解ピークを確認したところ、2つのピークが観測され、それぞれのピークトップの温度は、108.6℃及び120.5℃であった。また、高温側ピークの融解熱量は、61.5J/gであった。次いで、10℃/分の降温速度で200℃から30℃まで降温した後、さらに、10℃/分の昇温速度で30℃から200℃まで加熱して得られるDSC曲線(2)から発泡成形体の融解ピークおよび融解ピーク温度を求めたところ、ピークは1つとなり、そのピークトップの温度は、113.0℃であった。 The obtained heat-treated PBS resin particles are heated again from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter, and the melting peak is determined by the DSC curve (1) obtained. Upon confirmation, two peaks were observed, and the top temperatures of the peaks were 108.6 ° C and 120.5 ° C, respectively. The heat of fusion of the peak on the high temperature side was 61.5 J / g. Next, foam molding is performed from the DSC curve (2) obtained by lowering the temperature from 200 ° C. to 30 ° C. at a temperature lowering rate of 10 ° C./min and then heating from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min. When the melting peak and melting peak temperature of the body were determined, there was only one peak, and the temperature at the top of the peak was 113.0 ° C.
次いで、熱処理済樹脂粒子100質量部(1,000g)を密閉可能な10Lの圧力容器に投入し、二酸化炭素を用いて圧力容器内をゲージ圧3MPaまで昇圧させた後、室温(約20℃)の環境下で24時間保持して発泡剤の二酸化炭素を熱処理済樹脂粒子に含浸させて発泡性樹脂粒子を調製した。 Next, 100 parts by mass (1,000 g) of the heat-treated resin particles were put into a sealable 10 L pressure vessel, and the inside of the pressure vessel was pressurized to a gauge pressure of 3 MPa using carbon dioxide, and then at room temperature (about 20 ° C.). The heat-treated resin particles were impregnated with carbon dioxide as a foaming agent for 24 hours in the above environment to prepare foamable resin particles.
含浸終了後、圧力容器内の炭酸ガスをゆっくりと除圧し、内部の発泡性樹脂粒子を取出した。発泡性樹脂粒子を取出した直後、該発泡性樹脂粒子100質量部(1,000g)と、結合防止剤としての0.3質量部(3g)の炭酸カルシウムとを混合した。
 その後、撹拌機付きの発泡機に発泡性樹脂粒子を投入し、撹拌しながら0.03MPaの水蒸気を用いて発泡させることで、嵩倍数10倍(嵩密度130kg/m)の予備発泡粒子(一次発泡粒子)を得た。
After the impregnation was completed, the carbon dioxide gas in the pressure vessel was slowly decompressed, and the foamable resin particles inside were taken out. Immediately after taking out the foamable resin particles, 100 parts by mass (1,000 g) of the foamable resin particles and 0.3 parts by mass (3 g) of calcium carbonate as a binding inhibitor were mixed.
After that, the foamable resin particles are put into a foaming machine equipped with a stirrer, and foamed using 0.03 MPa of steam while stirring to foam the prefoamed particles (bulk density 130 kg / m 3 ) having a bulk factor of 10 times (bulk density 130 kg / m 3 ). Primary foam particles) were obtained.
得られた予備発泡粒子を10Lの圧力容器に投入し、密閉した。
 窒素ガスを用いて密閉した圧力容器内をゲージ圧1MPaまで昇圧させた後、24時間放置して内圧を付与した。
 内圧を付与した圧力容器内の窒素ガスをゆっくり除圧し、予備発泡粒子を取出し、直ちに成形機を用いて発泡成形を行った。
 縦200mm×横200mm×厚10mmのキャビティを有する成形型内に予備発泡粒子を充填し、0.04MPa~0.05MPaの水蒸気を20秒導入して加熱し、冷却することで、発泡倍率9倍の外観良好な樹脂発泡成形体を得た。
The obtained prefoamed particles were put into a 10 L pressure vessel and sealed.
The inside of the closed pressure vessel was increased to a gauge pressure of 1 MPa using nitrogen gas, and then left for 24 hours to apply an internal pressure.
The nitrogen gas in the pressure vessel to which the internal pressure was applied was slowly decompressed, the preliminary foamed particles were taken out, and immediately foam molding was performed using a molding machine.
Pre-foamed particles are filled in a molding mold having a cavity of length 200 mm × width 200 mm × thickness 10 mm, and water vapor of 0.04 MPa to 0.05 MPa is introduced for 20 seconds to heat and cool, so that the foaming ratio is 9 times. A resin foam molded product having a good appearance was obtained.
得られた樹脂発泡成形体について、示差走査熱量計を用いて、10℃/分の昇温速度で30℃から200℃まで加熱して得られるDSC曲線(1)を求めた結果、ここでも2つの融解ピークが認められ、それぞれのピーク温度は、109.6℃及び121.0℃であった。
 次いで、10℃/分の降温速度で200℃から30℃まで降温した後、さらに、10℃/分の昇温速度で30℃から200℃まで加熱して得られるDSC曲線(2)から発泡成形体の融解ピークおよび融解ピーク温度を求めたところ、ピークは1つとなり、そのピークトップの温度は、113.0℃であった。
 このような測定により、最初の原粒の状態で行った熱処理による結晶状態が最後の樹脂発泡成形体まで存続していることを確認することができた。
As a result of obtaining the DSC curve (1) obtained by heating the obtained resin foam molded product from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter, 2 One melting peak was observed, and the peak temperatures were 109.6 ° C and 121.0 ° C, respectively.
Next, foam molding is performed from the DSC curve (2) obtained by lowering the temperature from 200 ° C. to 30 ° C. at a temperature lowering rate of 10 ° C./min and then heating from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min. When the melting peak and melting peak temperature of the body were determined, there was only one peak, and the temperature at the top of the peak was 113.0 ° C.
By such measurement, it was confirmed that the crystalline state by the heat treatment performed in the state of the first raw grain persisted until the final resin foam molded product.
(実施例2)
 PBS樹脂粒子の熱処理条件を114℃、2時間とした以外は、実施例1と同様の方法で行った。DSC曲線(1)を求めた結果、2つの融解ピークが認められ、それぞれのピーク温度は、110.1℃及び120.3℃であった。また、高温側ピークの融解熱量は、52.6J/gであった。なお、ここで得られた樹脂発泡成形体は、実施例1と同様に良好な外観を示すものであった。
(Example 2)
The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 114 ° C. and 2 hours. As a result of obtaining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 110.1 ° C. and 120.3 ° C., respectively. The heat of fusion of the peak on the high temperature side was 52.6 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
(実施例3)
 PBS樹脂粒子の熱処理条件を116℃、2時間とした以外は、実施例1と同様の方法で行った。DSC曲線(1)を求めた結果、2つの融解ピークが認められ、それぞれのピーク温度は、113.7℃及び122.6℃であった。また、高温側ピークの融解熱量は、29.9J/gであった。なお、ここで得られた樹脂発泡成形体は、実施例1と同様に良好な外観を示すものであった。
(Example 3)
The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 116 ° C. and 2 hours. As a result of obtaining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 113.7 ° C and 122.6 ° C, respectively. The heat of fusion of the peak on the high temperature side was 29.9 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
(実施例4)
 PBS樹脂粒子の熱処理条件を118℃、2時間とした以外は、実施例1と同様の方法で行った。DSC曲線(1)を求めた結果、2つの融解ピークが認められ、それぞれのピーク温度は、112.6℃及び121.2℃であった。また、高温側ピークの融解熱量は、25.5J/gであった。なお、ここで得られた樹脂発泡成形体は、実施例1と同様に良好な外観を示すものであった。
(Example 4)
The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 118 ° C. and 2 hours. As a result of determining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 112.6 ° C and 121.2 ° C, respectively. The heat of fusion of the peak on the high temperature side was 25.5 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
(実施例5)
 PBS樹脂粒子の熱処理条件を110℃、2時間とした以外は、実施例1と同様の方法で行った。DSC曲線(1)を求めた結果、2つの融解ピークが認められ、それぞれのピーク温度は、101.0℃及び118.4℃であった。また、高温側ピークの融解熱量は、77.9J/gであった。なお、ここで得られた樹脂発泡成形体は、実施例1と同様に良好な外観を示すものであった。
(Example 5)
The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 110 ° C. and 2 hours. As a result of obtaining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 101.0 ° C. and 118.4 ° C., respectively. The heat of fusion of the peak on the high temperature side was 77.9 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
(実施例6)
 PBS樹脂粒子の熱処理条件を108℃、2時間とした以外は、実施例1と同様の方法で行った。DSC曲線(1)を求めた結果、2つの融解ピークが認められ、それぞれのピーク温度は、100.1℃及び117.4℃であった。また、高温側ピークの融解熱量は、71.8J/gであった。なお、ここで得られた樹脂発泡成形体は、実施例1と同様に良好な外観を示すものであった。
(Example 6)
The heat treatment of the PBS resin particles was carried out in the same manner as in Example 1 except that the heat treatment conditions were set to 108 ° C. and 2 hours. As a result of determining the DSC curve (1), two melting peaks were observed, and the peak temperatures were 100.1 ° C and 117.4 ° C, respectively. The heat of fusion of the peak on the high temperature side was 71.8 J / g. The resin foam molded product obtained here showed a good appearance as in Example 1.
(比較例1)
 PBS樹脂粒子の熱処理を行わなかったこと以外は、実施例1と同様の方法で行った。DSC曲線(1)を求めた結果、2つの融解ピークは認められなかった。得られた樹脂発泡粒子の嵩倍数が1.2倍と非常に低く、樹脂発泡成形体を得ることができなかった。
(Comparative Example 1)
The procedure was the same as in Example 1 except that the PBS resin particles were not heat-treated. As a result of determining the DSC curve (1), no two melting peaks were observed. The bulk factor of the obtained resin foamed particles was as low as 1.2 times, and a resin foamed molded product could not be obtained.
(比較例2)
 PBS樹脂粒子の熱処理条件を120℃、2時間とした以外は、実施例1と同様の方法で行った。DSC曲線(1)を求めた結果、2つの融解ピークは認められなかった。得られた樹脂発泡粒子の嵩倍数が1.2倍と非常に低く、樹脂発泡成形体を得ることができなかった。また、粒子が大きく扁平し、実使用できないものであった。
(Comparative Example 2)
The method was the same as in Example 1 except that the heat treatment conditions for the PBS resin particles were 120 ° C. and 2 hours. As a result of determining the DSC curve (1), no two melting peaks were observed. The bulk factor of the obtained resin foamed particles was as low as 1.2 times, and a resin foamed molded product could not be obtained. In addition, the particles were large and flat, and could not be used in practice.
(比較例3)
 PBS樹脂粒子の熱処理温度を106℃、2時間とした以外は、実施例1と同様の方法で行った。DSC曲線(1)を求めた結果、2つの融解ピークは認められなかった。得られた樹脂発泡粒子の嵩倍数が1.3倍と非常に低く、樹脂発泡成形体を得ることができなかった。
(Comparative Example 3)
The method was the same as in Example 1 except that the heat treatment temperature of the PBS resin particles was set to 106 ° C. for 2 hours. As a result of determining the DSC curve (1), no two melting peaks were observed. The bulk factor of the obtained resin foamed particles was as low as 1.3 times, and a resin foamed molded product could not be obtained.
上記のことからも明らかなように、本発明によれば、結晶性を有しながらも良好な発泡性を示す生分解性ポリエステル系樹脂発泡粒子が提供され、更には、軽量で強度に優れた生分解性ポリエステル系樹脂発泡成形体が提供される。 As is clear from the above, according to the present invention, biodegradable polyester-based resin foamed particles that have crystallinity but exhibit good foamability are provided, and further, they are lightweight and excellent in strength. A biodegradable polyester-based resin foam molded product is provided.

Claims (9)

  1.  生分解性ポリエステル系樹脂を含む生分解性ポリエステル系樹脂発泡粒子であって、
     示差走査熱量計を用いて、
     10℃/分の昇温速度での30℃から200℃までの第1の昇温と、
     10℃/分の降温速度での200℃から30℃までの降温と、
     10℃/分の昇温速度での30℃から200℃までの第2の昇温と、
    を順に実施したとき、
     前記第1の昇温で得られる第1のDSC曲線(1)で観察される融解ピークは、前記第2の昇温で得られる第2のDSC曲線(2)での融解ピークが高温側と低温側とに分かれた状態になっており、且つ、高温側のピークのトップと低温側のピークのトップとが前記第2のDSC曲線(2)での融解ピークのピークトップの±15℃の範囲内に位置する、生分解性ポリエステル系樹脂発泡粒子。
    Biodegradable polyester resin foamed particles containing biodegradable polyester resin.
    Using a differential scanning calorimeter,
    With the first temperature rise from 30 ° C to 200 ° C at a temperature rise rate of 10 ° C / min,
    With a temperature drop rate of 10 ° C / min from 200 ° C to 30 ° C,
    A second temperature rise from 30 ° C to 200 ° C at a temperature rise rate of 10 ° C / min,
    When you carry out in order
    The melting peak observed on the first DSC curve (1) obtained by the first temperature rise is such that the melting peak on the second DSC curve (2) obtained by the second temperature rise is on the high temperature side. It is separated into the low temperature side, and the top of the peak on the high temperature side and the top of the peak on the low temperature side are ± 15 ° C. of the peak top of the melting peak in the second DSC curve (2). Biodegradable polyester resin foam particles located within the range.
  2.  前記第1のDSC曲線(1)での前記高温側のピークの融解熱量が20J/g以上である、請求項1に記載の生分解性ポリエステル系樹脂発泡粒子。 The biodegradable polyester-based resin foamed particles according to claim 1, wherein the heat of fusion of the peak on the high temperature side in the first DSC curve (1) is 20 J / g or more.
  3.  前記生分解性ポリエステル系樹脂の一部又は全部が脂肪族ポリエステル系樹脂である、請求項1に記載の生分解性ポリエステル系樹脂発泡粒子。 The biodegradable polyester resin foamed particles according to claim 1, wherein part or all of the biodegradable polyester resin is an aliphatic polyester resin.
  4.  嵩倍数が2倍以上50倍以下であり、平均気泡径が30μm以上300μm以下である、請求項1に記載の生分解性ポリエステル系樹脂発泡粒子。 The biodegradable polyester resin foamed particles according to claim 1, wherein the bulk multiple is 2 times or more and 50 times or less, and the average cell diameter is 30 μm or more and 300 μm or less.
  5.  前記生分解性ポリエステル系樹脂の一部又は全部がポリブチレンサクシネートである、請求項1に記載の生分解性ポリエステル系樹脂発泡粒子。 The biodegradable polyester resin foamed particles according to claim 1, wherein part or all of the biodegradable polyester resin is polybutylene succinate.
  6.  請求項1に記載の生分解性ポリエステル系樹脂発泡粒子を製造する生分解性ポリエステル系樹脂発泡粒子の製造方法であって、
     生分解性ポリエステル系樹脂を含む生分解性ポリエステル系樹脂粒子に対して、該生分解性ポリエステル系樹脂の融解ピーク温度(Tm)の±6℃の範囲内の温度で加熱処理を行った後、0.1℃/分以上5℃/分以下の冷却速度で前記融解ピーク温度(Tm)よりも50℃以上低い温度になるまで冷却する冷却処理をさらに行うことで、前記第1のDSC曲線(1)で前記高温側と前記低温側とに前記ピークが現れる熱処理済樹脂粒子を得、次いで該熱処理済樹脂粒子の前記低温側の前記ピークよりも低い温度で前記熱処理済樹脂粒子に発泡剤を含浸させて発泡性樹脂粒子を得た後、該発泡性樹脂粒子を加熱して発泡させる、生分解性ポリエステル系樹脂発泡粒子の製造方法。
    A method for producing biodegradable polyester-based resin foamed particles according to claim 1, wherein the biodegradable polyester-based resin foamed particles are produced.
    The biodegradable polyester resin particles containing the biodegradable polyester resin are heat-treated at a temperature within ± 6 ° C. of the melting peak temperature (Tm) of the biodegradable polyester resin, and then heat-treated. The first DSC curve (1) is obtained by further performing a cooling treatment of cooling at a cooling rate of 0.1 ° C./min or more and 5 ° C./min or less until the temperature becomes 50 ° C. or more lower than the melting peak temperature (Tm). In 1), the heat-treated resin particles in which the peaks appear on the high-temperature side and the low-temperature side are obtained, and then a foaming agent is applied to the heat-treated resin particles at a temperature lower than the peak on the low-temperature side of the heat-treated resin particles. A method for producing biodegradable polyester-based resin foam particles, which is impregnated to obtain foamable resin particles and then heated to foam the foamable resin particles.
  7.  前記発泡剤が二酸化炭素である、請求項6に記載の生分解性ポリエステル系樹脂発泡粒子の製造方法。 The method for producing biodegradable polyester-based resin foamed particles according to claim 6, wherein the foaming agent is carbon dioxide.
  8.  請求項1に記載の生分解性ポリエステル系樹脂発泡粒子で一部又は全部が構成された生分解性ポリエステル系樹脂発泡成形体。 A biodegradable polyester resin foam molded product partially or wholly composed of the biodegradable polyester resin foam particles according to claim 1.
  9.  請求項1に記載の生分解性ポリエステル系樹脂発泡粒子を成形型のキャビティに収容し、該キャビティで生分解性ポリエステル系樹脂発泡粒子どうしを熱融着させることで、前記キャビティの形状に対応した生分解性ポリエステル系樹脂発泡成形体を製造する、生分解性ポリエステル系樹脂発泡成形体の製造方法。 The biodegradable polyester-based resin foam particles according to claim 1 are housed in a molding cavity, and the biodegradable polyester-based resin foam particles are heat-sealed in the cavity to correspond to the shape of the cavity. A method for producing a biodegradable polyester resin foam molded product, which comprises producing a biodegradable polyester resin foam molded product.
PCT/IB2020/052840 2019-03-29 2020-03-26 Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article WO2020201935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067189 2019-03-29
JP2019067189A JP2020164676A (en) 2019-03-29 2019-03-29 Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article

Publications (1)

Publication Number Publication Date
WO2020201935A1 true WO2020201935A1 (en) 2020-10-08

Family

ID=72666339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/052840 WO2020201935A1 (en) 2019-03-29 2020-03-26 Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article

Country Status (3)

Country Link
JP (1) JP2020164676A (en)
TW (1) TW202041564A (en)
WO (1) WO2020201935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116675960A (en) * 2023-07-03 2023-09-01 美瑞新材料创新中心(山东)有限公司 Degradable polyester material capable of being used for foaming and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189102A1 (en) * 2022-03-30 2023-10-05 株式会社カネカ Method for producing aliphatic polyester-based foam particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321568A (en) * 2002-04-26 2003-11-14 Kanegafuchi Chem Ind Co Ltd Prefoamed particle of non-crosslinked biodegradable polyester-based resin, molded product thereof, and method for producing the prefoamed particle
WO2012086305A1 (en) * 2010-12-21 2012-06-28 株式会社ジェイエスピー Polylactic acid resin foam particle and polylactic acid resin foam particle molding
JP2015212323A (en) * 2014-05-01 2015-11-26 株式会社ジェイエスピー Foamed particle molded product
JP2016519706A (en) * 2013-03-28 2016-07-07 シンブラ・テクノロジー・ベスローテン・フエンノートシヤツプ Method for adjusting PLA bead foam
WO2019146555A1 (en) * 2018-01-26 2019-08-01 株式会社カネカ Poly(3-hydroxyalkanoate) foam particles and poly(3-hydroxyalkanoate) foam molded body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321568A (en) * 2002-04-26 2003-11-14 Kanegafuchi Chem Ind Co Ltd Prefoamed particle of non-crosslinked biodegradable polyester-based resin, molded product thereof, and method for producing the prefoamed particle
WO2012086305A1 (en) * 2010-12-21 2012-06-28 株式会社ジェイエスピー Polylactic acid resin foam particle and polylactic acid resin foam particle molding
JP2016519706A (en) * 2013-03-28 2016-07-07 シンブラ・テクノロジー・ベスローテン・フエンノートシヤツプ Method for adjusting PLA bead foam
JP2015212323A (en) * 2014-05-01 2015-11-26 株式会社ジェイエスピー Foamed particle molded product
WO2019146555A1 (en) * 2018-01-26 2019-08-01 株式会社カネカ Poly(3-hydroxyalkanoate) foam particles and poly(3-hydroxyalkanoate) foam molded body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TERRAMAC, 21 June 2013 (2013-06-21), XP055745951, Retrieved from the Internet <URL:https://www.unitika.co.jp/plastics/products/terramac/tm-02.html> [retrieved on 20200608] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116675960A (en) * 2023-07-03 2023-09-01 美瑞新材料创新中心(山东)有限公司 Degradable polyester material capable of being used for foaming and preparation method and application thereof

Also Published As

Publication number Publication date
JP2020164676A (en) 2020-10-08
TW202041564A (en) 2020-11-16

Similar Documents

Publication Publication Date Title
TWI398471B (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
JP2012007180A (en) Method of manufacturing polylactic acid resin foamed molding
JP2006103098A (en) Foamed multi-layer polylactic acid resin and foamed multi-layer polylactic acid resin molding
WO2007099833A1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
WO2020201935A1 (en) Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article
WO2012086305A1 (en) Polylactic acid resin foam particle and polylactic acid resin foam particle molding
US20180148559A1 (en) Manufacture of Polylactic Acid Foams Using Liquid Carbon Dioxide
EP2380922A1 (en) Polylactic acid foam composition
JP4820623B2 (en) Method for producing foamable polylactic acid resin
JPH0386736A (en) Production of foamed polyolefin resin particle
CA3134008A1 (en) Amorphous polyester composition and method of making
JP3732418B2 (en) Expandable styrene resin particles
US20220162377A1 (en) Foam sheet, product, and method for producing foam sheet
JP3730805B2 (en) Aliphatic polyester resin pre-expanded particles having biodegradability, molded product thereof and method for producing the pre-expanded particles
JP5044337B2 (en) Polylactic acid-based resin expanded particles and the expanded particles molded body
JP2004359910A (en) Polylactic acid resin foamed sheet for thermal forming and polylactic acid resin formed foam
JP2003268143A (en) Aliphatic polyester resin for producing foam and foam produced thereby
JP6583909B2 (en) Polylactic acid resin foamed molded article
US20050043419A1 (en) Method for producing foamed products based on aromatic polyester resin with low melting point
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP4582871B2 (en) Non-crosslinked resin foamable particles
JP2011068734A (en) Polylactic acid resin foam, method for producing the same, and expansion-molded product obtained by molding the same
JP5536357B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam
ES2976634T3 (en) Process for producing expandable or at least partially expanded polymer particles based on polylactide and polymer particles produced accordingly
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784597

Country of ref document: EP

Kind code of ref document: A1