JP6583909B2 - Polylactic acid resin foamed molded article - Google Patents

Polylactic acid resin foamed molded article Download PDF

Info

Publication number
JP6583909B2
JP6583909B2 JP2015110220A JP2015110220A JP6583909B2 JP 6583909 B2 JP6583909 B2 JP 6583909B2 JP 2015110220 A JP2015110220 A JP 2015110220A JP 2015110220 A JP2015110220 A JP 2015110220A JP 6583909 B2 JP6583909 B2 JP 6583909B2
Authority
JP
Japan
Prior art keywords
particles
resin
polylactic acid
foamed
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015110220A
Other languages
Japanese (ja)
Other versions
JP2016222807A (en
Inventor
琢也 千葉
琢也 千葉
佐々木 秀浩
秀浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2015110220A priority Critical patent/JP6583909B2/en
Publication of JP2016222807A publication Critical patent/JP2016222807A/en
Application granted granted Critical
Publication of JP6583909B2 publication Critical patent/JP6583909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリ乳酸系樹脂発泡粒子成形体に関する。   The present invention relates to a polylactic acid-based resin expanded particle molded body.

近年、地球環境に対する意識が高まっており、従来の石油資源を原料とする汎用樹脂に代わる、カーボンニュートラルな材料としてポリ乳酸が注目されている。ポリ乳酸は、とうもろこし等の植物を出発原料として作られるものであり、カーボンニュートラルの観点から環境低負荷型の熱可塑性樹脂である。かかるポリ乳酸は、環境に優しい植物由来の発泡用汎用樹脂として用いられることが期待されており、ポリ乳酸を原料とする発泡体の研究が行われている。其の中でも、ポリ乳酸発泡粒子成形体は、従来のポリスチレン発泡粒子成形体やポリオレフィン発泡粒子成形体と同様に形状的な制約を受けずに所望の形状の発泡体を型内成形により得ることができ、軽量性、緩衝性、断熱性などの目的に応じた物性設計も容易にできる可能性を有するものとして特に有望である。   In recent years, awareness of the global environment has increased, and polylactic acid has attracted attention as a carbon-neutral material that can replace conventional resins made from petroleum resources. Polylactic acid is made from a plant such as corn as a starting material, and is a low environmental load thermoplastic resin from the viewpoint of carbon neutral. Such polylactic acid is expected to be used as an environmentally friendly plant-derived general-purpose resin for foaming, and foams using polylactic acid as a raw material have been studied. Among them, the polylactic acid foamed particle molded body can obtain a foamed body having a desired shape by in-mold molding without being restricted in shape as in the conventional polystyrene foamed particle molded body and polyolefin foamed particle molded body. It is particularly promising as having the possibility of being able to easily design physical properties in accordance with purposes such as lightness, shock-absorbing properties, and heat insulating properties.

しかし、実用に供されるポリ乳酸発泡粒子成形体には耐熱性が要求されることから、ポリ乳酸系樹脂発泡粒子成形体の基材樹脂として結晶性のポリ乳酸系樹脂を用いる必要がある。しかし、結晶性ポリ乳酸系樹脂発泡粒子は、ポリスチレン系樹脂発泡粒子などと比較すると、型内成形時に融着させることが難しく、融着性について課題を有していた。   However, since heat resistance is required for the polylactic acid foamed particle molded body that is put to practical use, it is necessary to use a crystalline polylactic acid resin as a base resin of the polylactic acid resin foamed particle molded body. However, the crystalline polylactic acid-based resin expanded particles are difficult to fuse at the time of in-mold molding as compared with the polystyrene-based resin expanded particles, and thus have a problem with respect to the fusibility.

結晶性ポリ乳酸系樹脂発泡粒子の融着性を向上させるための技術として、特許文献1〜4のような発明がなされている。特許文献1には、結晶化が十分に進んでいない状態のポリ乳酸系樹脂からなる発泡粒子が開示されている。特許文献2には、結晶構造の制御により二次発泡性を最適化したポリ乳酸系樹脂発泡粒子が開示されている。特許文献3及び4には、発泡粒子表面を融着性に優れる樹脂で被覆した発泡粒子が開示されている。これらの技術により、ポリ乳酸系樹脂発泡粒子の融着性は向上し、型内成形性が大幅に改善された。   As a technique for improving the fusing property of crystalline polylactic acid-based resin expanded particles, inventions such as Patent Documents 1 to 4 have been made. Patent Document 1 discloses foamed particles made of a polylactic acid-based resin in a state where crystallization has not progressed sufficiently. Patent Document 2 discloses polylactic acid-based resin expanded particles in which secondary foamability is optimized by controlling the crystal structure. Patent Documents 3 and 4 disclose foamed particles in which the surface of the foamed particles is coated with a resin having excellent fusion properties. With these technologies, the fusibility of the polylactic acid-based resin expanded particles is improved, and the in-mold moldability is greatly improved.

特開2004−83890号公報JP 2004-83890 A 国際公開WO2012/086305International Publication WO2012 / 086305 国際公開WO2011/145391International Publication WO2011 / 145391 特表2010−525099号公報Special table 2010-525099 gazette

発泡粒子成形体には、薄肉部や嵌合部などを有する様々な形状のものがある。薄肉部や嵌合部を形成するには、狭い金型空間に発泡粒子を充填しなければならないことから、粒子径の小さな発泡粒子を用いる必要がある。しかし、上記特許文献1〜4では、小粒子径のポリ乳酸系樹脂発泡粒子の型内成形性については何ら検討されていなかった。   The foamed particle molded body has various shapes having a thin wall portion, a fitting portion, and the like. In order to form a thin part and a fitting part, it is necessary to use foamed particles with a small particle diameter because the narrow mold space must be filled with foamed particles. However, in the above Patent Documents 1 to 4, no consideration has been given to the in-mold moldability of the polylactic acid-based resin expanded particles having a small particle diameter.

本発明は、前記従来技術の問題点に鑑み、微小なポリ乳酸系樹脂発泡粒子の型内成形体において、発泡粒子相互が十分に融着しておりかつ発泡粒子間に空隙がなく平滑な表面を有するポリ乳酸系樹脂発泡粒子成形体を提供することを、課題とするものである。   In view of the above-mentioned problems of the prior art, the present invention provides a molded surface of fine polylactic acid-based resin foamed particles, in which the foamed particles are sufficiently fused with each other, and there are no voids between the foamed particles. It is an object of the present invention to provide a polylactic acid-based resin expanded particle molded body having the following.

本発明によれば、以下に示すポリ乳酸系樹脂発泡粒子成形体が提供される。
[1]結晶性ポリ乳酸系樹脂を含む発泡粒子を型内成形してなる、見掛け密度15〜68kg/m 発泡粒子成形体において、
該発泡粒子成形体を構成する発泡粒子の平面視における数が、単位面積[cm]当たり15個以上であり、該発泡粒子の1個当たりの平均重量が0.1〜1.5mgであり、発泡粒子成形体の見掛け密度[kg/m]に対する引張強さ[kPa]の比(引張強さ/見掛け密度)が10[kPa・m/kg]以上であり、型内成形に用いられる該発泡粒子が、該発泡粒子1〜2mgを測定試料として、JIS K7122−1987に記載されている熱流束示差走査熱量測定法に基づいて、加熱速度10℃/minにて23℃から融解ピーク終了時よりも30℃高い温度まで加熱溶融させる際に得られる1回目のDSC曲線と、次いで該融解ピーク終了時よりも30℃高い温度にて10分間保った後、冷却速度10℃/minにて40℃まで冷却し、再度、加熱速度10℃/minにて融解ピーク終了時よりも30℃高い温度まで加熱溶融させる際に得られる2回目のDSC曲線において、該1回目のDSC曲線には、2回目のDSC曲線の融解ピークの頂点温度を基準に、該基準の頂点温度よりも高温側(該基準の頂点温度を含まず)に頂点温度を有する融解ピークが現れない結晶構造を有する、又は該基準の頂点温度よりも高温側(該基準の頂点温度を含まず)に頂点温度を有する融解ピークが現れ、かつ該融解ピーク熱量が1J/g未満である結晶構造を有すると共に、該発泡粒子の結晶化度が20%以上であり、且つ発泡粒子の表面に融着性向上層を有することを特徴とするポリ乳酸系樹脂発泡粒子成形体。
[2]前記発泡粒子成形体が厚み10mm以下の薄肉部を有することを特徴とする前記1に記載のポリ乳酸系樹脂発泡粒子成形体。
According to this invention, the polylactic acid-type resin expanded particle molded object shown below is provided.
[1] In a foamed particle molded body having an apparent density of 15 to 68 kg / m 3 formed by in-mold molding of foamed particles containing a crystalline polylactic acid resin,
The number of the expanded particles constituting the expanded particle molded body in a plan view is 15 or more per unit area [cm 2 ], and the average weight per expanded particle is 0.1 to 1.5 mg. state, and it is specific (tensile strength / apparent density) is 10 [kPa · m 3 / kg ] or the apparent density of PP bead molding [kg / m 3] tensile strength to [kPa], the mold molding The foamed particles used are melted from 23 ° C. at a heating rate of 10 ° C./min based on the heat flux differential scanning calorimetry described in JIS K7122-1987, using 1-2 mg of the foamed particles as a measurement sample. A first DSC curve obtained when heating and melting to a temperature 30 ° C. higher than the end of the peak, and then maintaining for 10 minutes at a temperature 30 ° C. higher than the end of the melting peak, followed by a cooling rate of 10 ° C./min At 40 In the second DSC curve obtained when cooled to 30 ° C. and heated again to a temperature 30 ° C. higher than the end of the melting peak at a heating rate of 10 ° C./min, the first DSC curve includes 2 Having a crystal structure in which a melting peak having an apex temperature does not appear on the higher temperature side (excluding the reference apex temperature) than the reference apex temperature based on the apex temperature of the melting peak of the second DSC curve, or A melting peak having an apex temperature appears on a higher temperature side (excluding the reference apex temperature) than the reference apex temperature, and the melting peak calorie has a crystal structure of less than 1 J / g; crystallinity is not less than 20%, and polylactic acid resin foamed bead molded article, wherein Rukoto which have a fusion-enhancing layers on the surface of the expanded beads.
[2] The polylactic acid-based resin expanded particle molded article according to 1 above, wherein the expanded foam molded article has a thin portion having a thickness of 10 mm or less.

本発明のポリ乳酸系樹脂発泡粒子成形体は、結晶性ポリ乳酸系樹脂を含む発泡粒子を型内成形して得られるものであり、発泡粒子成形体を構成する発泡粒子の平面視における数が特定数以上であると共に、見掛け密度[kg/m]に対する引張強さ[kPa]の比(引張強さ/見掛け密度)が特定値以上であることにより、発泡粒子相互が十分に融着しておりかつ発泡粒子間に空隙(ボイド)がないことから平滑な表面を有する。その結果、小粒子径のポリ乳酸系樹脂発泡粒子を用いて、十分な機械的強度を示す薄肉部や、滑らかに嵌めこむことが可能な嵌合部を有する発泡粒子成形体の形成が可能となる。 The polylactic acid-based resin expanded particle molded body of the present invention is obtained by in-mold molding of expanded particles containing a crystalline polylactic acid-based resin, and the number of expanded particles constituting the expanded particle molded body in plan view is When the ratio is not less than the specific number and the ratio of the tensile strength [kPa] to the apparent density [kg / m 3 ] (tensile strength / apparent density) is not less than the specific value, the expanded particles are sufficiently fused to each other. And has a smooth surface since there are no voids between the expanded particles. As a result, it is possible to form a foamed particle molded body having a thin-walled portion exhibiting sufficient mechanical strength and a fitting portion that can be smoothly fitted using a polylactic acid resin foamed particle having a small particle diameter. Become.

図1は、熱流束示差走査熱量測定により求められる発泡粒子の1回目のDSC曲線(I)の例示である。FIG. 1 is an illustration of the first DSC curve (I) of expanded particles obtained by heat flux differential scanning calorimetry. 図2は、熱流束示差走査熱量測定により求められる発泡粒子の2回目のDSC曲線(I)の例示である。FIG. 2 is an illustration of the second DSC curve (I) of the expanded particles obtained by heat flux differential scanning calorimetry. 図3は、熱流束示差走査熱量測定により求められる測定試料の吸熱量(Br:endo)を示す2回目のDSC曲線(II)の例示である。FIG. 3 is an illustration of the second DSC curve (II) showing the endothermic amount (Br: endo) of the measurement sample obtained by heat flux differential scanning calorimetry. 図4は、熱流束示差走査熱量測定により求められる測定試料の吸熱量(Br:endo)を示す2回目のDSC曲線(II)の例示である。FIG. 4 is an example of the second DSC curve (II) showing the endothermic amount (Br: endo) of the measurement sample obtained by heat flux differential scanning calorimetry. 図5は、熱流束示差走査熱量測定により求められる測定試料の発熱量(Bf:exo)及び吸熱量(Bf:endo)を示す1回目のDSC曲線(II)の例示である。FIG. 5 is an example of the first DSC curve (II) showing the calorific value (Bf: exo) and the endothermic amount (Bf: endo) of the measurement sample obtained by heat flux differential scanning calorimetry. 図6は、熱流束示差走査熱量測定により求められる測定試料の発熱量(Bf:exo)及び吸熱量(Bf:endo)を示す1回目のDSC曲線(II)の例示である。FIG. 6 is an example of the first DSC curve (II) showing the calorific value (Bf: exo) and the endothermic amount (Bf: endo) of the measurement sample obtained by heat flux differential scanning calorimetry. 図7は、熱流束示差走査熱量測定により求められる測定試料の発熱量(Bf:exo)及び吸熱量(Bf:endo)を示す1回目のDSC曲線(II)の例示である。FIG. 7 is an example of the first DSC curve (II) showing the calorific value (Bf: exo) and the endothermic amount (Bf: endo) of the measurement sample obtained by heat flux differential scanning calorimetry.

以下、本発明のポリ乳酸系樹脂発泡粒子成形体について詳細に説明する。
本発明のポリ乳酸系樹脂発泡粒子成形体(以下、単に「発泡粒子成形体」ともいう。)は、結晶性ポリ乳酸系樹脂を含む発泡粒子を型内成形してなる発泡粒子成形体であり、粒子径が小さな発泡粒子から形成されている。
Hereinafter, the polylactic acid-based resin expanded particle molded body of the present invention will be described in detail.
The polylactic acid-based resin expanded particle molded body of the present invention (hereinafter, also simply referred to as “foamed particle molded body”) is an expanded particle molded body formed by in-mold molding of expanded particles containing a crystalline polylactic acid-based resin. It is formed from expanded particles having a small particle diameter.

本発明の発泡粒子成形体を構成するポリ乳酸系樹脂発泡粒子(以下、単に発泡粒子ともいう。)はポリ乳酸系樹脂を基材樹脂とするものである。
該ポリ乳酸系樹脂は、乳酸に由来する成分単位を50モル%以上含むポリマーであることが好ましい。該ポリ乳酸系樹脂としては、例えば(a)乳酸の重合体、(b)乳酸と他の脂肪族ヒドロキシカルボン酸とのコポリマー、(c)乳酸と脂肪族多価アルコールと脂肪族多価カルボン酸とのコポリマー、(d)乳酸と脂肪族多価カルボン酸とのコポリマー、(e)乳酸と脂肪族多価アルコールとのコポリマー、(f)これら(a)〜(e)の何れかの組合せによる混合物等が包含される。また、該ポリ乳酸には、ステレオコンプレックスポリ乳酸、ステレオブロックポリ乳酸と呼ばれるものも包含される。なお、乳酸の具体例としては、L−乳酸、D−乳酸、DL−乳酸又はそれらの環状2量体であるL−ラクチド、D−ラクチド、DL−ラクチド又はそれらの混合物が挙げられる。
The polylactic acid-based resin expanded particles (hereinafter also simply referred to as expanded particles) constituting the expanded particle molded body of the present invention have a polylactic acid-based resin as a base resin.
The polylactic acid resin is preferably a polymer containing 50 mol% or more of component units derived from lactic acid. Examples of the polylactic acid-based resin include (a) a polymer of lactic acid, (b) a copolymer of lactic acid and another aliphatic hydroxycarboxylic acid, and (c) lactic acid, an aliphatic polyhydric alcohol, and an aliphatic polyvalent carboxylic acid. (D) a copolymer of lactic acid and an aliphatic polyhydric carboxylic acid, (e) a copolymer of lactic acid and an aliphatic polyhydric alcohol, (f) depending on any combination of these (a) to (e) Mixtures and the like are included. The polylactic acid also includes what are called stereocomplex polylactic acid and stereoblock polylactic acid. Specific examples of lactic acid include L-lactic acid, D-lactic acid, DL-lactic acid or their cyclic dimer L-lactide, D-lactide, DL-lactide or a mixture thereof.

前記(b)における他の脂肪族ヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられる。また、前記(c)及び(e)における脂肪族多価アルコールとしては、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、デカメチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリトリット等が挙げられる。また、前記(c)及び(d)における脂肪族多価カルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジカルボン酸、無水コハク酸、無水アジピン酸、トリメシン酸、プロパントリカルボン酸、ピロメリット酸、無水ピロメリット酸等が挙げられる。   Examples of the other aliphatic hydroxycarboxylic acid in (b) include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, and hydroxyheptanoic acid. Examples of the aliphatic polyhydric alcohol in (c) and (e) include ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, decamethylene. Examples include glycol, glycerin, trimethylolpropane, and pentaerythritol. Examples of the aliphatic polyvalent carboxylic acid in (c) and (d) include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedicarboxylic acid, succinic anhydride, adipic anhydride, trimesic acid, and propanetricarboxylic acid. , Pyromellitic acid, pyromellitic anhydride and the like.

本発明で用いられるポリ乳酸の製造方法の具体例としては、例えば、乳酸又は乳酸と脂肪族ヒドロキシカルボン酸の混合物を原料として、直接脱水重縮合する方法(例えば、米国特許第5310865号に示されている製造方法)、乳酸の環状二量体(ラクチド)を重合する開環重合法(例えば、米国特許2758987号に開示されている製造方法)、乳酸と脂肪族ヒドロキシカルボン酸の環状2量体、例えば、ラクチドやグリコリドとε−カプロラクトンを、触媒の存在下、重合する開環重合法(例えば、米国特許4057537号に開示されている製造方法)、乳酸と脂肪族二価アルコールと脂肪族二塩基酸の混合物を、直接脱水重縮合する方法(例えば、米国特許第5428126号に開示されている製造方法)、乳酸と脂肪族二価アルコールと脂肪族二塩基酸とポリマーを、有機溶媒存在下に縮合する方法(例えば、欧州特許公報第0712880 A2号に開示されている製造方法)、乳酸重合体を触媒の存在下、脱水重縮合反応を行うことによりポリエステル重合体を製造するに際し、少なくとも一部の工程で、固相重合を行う方法、等を挙げることができるが、その製造方法は、特に限定されない。また、少量のグリセリンのような脂肪族多価アルコール、ブタンテトラカルボン酸のような脂肪族多塩基酸、多糖類等のような多価アルコール類を共存させて、共重合させても良く、又ポリイソシアネート化合物等のような結合剤(高分子鎖延長剤)を用いて分子量を上げてもよい。また、ペンタエリスリット等の多価脂肪族アルコールに代表される分岐化剤にて分岐化させたものであってもよい。
Specific examples of the method for producing polylactic acid used in the present invention include, for example, a method of direct dehydration polycondensation using lactic acid or a mixture of lactic acid and aliphatic hydroxycarboxylic acid as a raw material (for example, disclosed in US Pat. No. 5,310,865). Production method), ring-opening polymerization method for polymerizing cyclic dimer (lactide) of lactic acid (for example, production method disclosed in US Pat. No. 2,758,987), cyclic dimer of lactic acid and aliphatic hydroxycarboxylic acid For example, a ring-opening polymerization method in which lactide or glycolide and ε-caprolactone are polymerized in the presence of a catalyst (for example, a production method disclosed in US Pat. No. 4,057,537), lactic acid, aliphatic dihydric alcohol, and aliphatic dihydric acid. A method of directly dehydrating polycondensation of a mixture of basic acids (for example, the production method disclosed in US Pat. No. 5,428,126), lactic acid and aliphatic divalent A method of condensing alcohol, an aliphatic dibasic acid and a polymer in the presence of an organic solvent (for example, a production method disclosed in European Patent Publication No. 071880 A2), dehydration polycondensation of a lactic acid polymer in the presence of a catalyst In producing a polyester polymer by carrying out the reaction, there can be mentioned, for example, a method of performing solid phase polymerization in at least a part of the steps, but the production method is not particularly limited. In addition, a small amount of an aliphatic polyhydric alcohol such as glycerin, an aliphatic polybasic acid such as butanetetracarboxylic acid, a polyhydric alcohol such as a polysaccharide may be coexisted and copolymerized. The molecular weight may be increased by using a binder (polymer chain extender) such as a polyisocyanate compound. Further, it may be branched by a branching agent typified by a polyhydric aliphatic alcohol such as pentaerythlit.

本発明で用いられる発泡粒子を構成するポリ乳酸系樹脂は、結晶性ポリ乳酸系樹脂を含むものである。具的には、(i)結晶性のポリ乳酸のみからなるもの、(ii)結晶性ポリ乳酸と非結晶性ポリ乳酸とのポリ乳酸混合物からなるものが挙げられる。
ここで結晶性ポリ乳酸とは、L−ラクチドまたはD−ラクチドを主成分とすることにより結晶性構造を有するものであって、下記測定方法により熱処理後に測定される吸熱量(Br:endo)が好ましくは25J/g以上のものをいい、より好ましくは30J/g以上、更に35J/g以上である。また、(Br:endo)の上限は、概ね70J/g、好ましくは60J/gである。
The polylactic acid resin constituting the expanded particles used in the present invention contains a crystalline polylactic acid resin. Specifically, (i) what consists only of crystalline polylactic acid, and (ii) what consists of a polylactic acid mixture of crystalline polylactic acid and non-crystalline polylactic acid are mentioned.
Here, the crystalline polylactic acid has a crystalline structure by containing L-lactide or D-lactide as a main component, and has an endotherm (Br: endo) measured after heat treatment by the following measurement method. Preferably it is 25 J / g or more, more preferably 30 J / g or more, and further 35 J / g or more. The upper limit of (Br: endo) is approximately 70 J / g, preferably 60 J / g.

前記吸熱量(Br:endo)の測定は、JIS K7122−1987に記載されている熱流束示差走査熱量測定法に準拠して、1〜2mgの吸熱量測定用ポリ乳酸系樹脂を融解ピーク終了温度より30℃高い温度まで加熱溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時よりも30℃高い温度まで加熱溶融させる際に得られるDSC曲線(以下、2回目のDSC曲線(II)ともいう。)に基づいて求められる値とする。2回目のDSC曲線(II)の一例を図3に示す。
The endothermic amount ( Br: endo) is measured in accordance with a heat flux differential scanning calorimetry method described in JIS K7122-1987. After heating and melting to a temperature higher by 30 ° C., maintaining at that temperature for 10 minutes, cooling to 110 ° C. at a cooling rate of 2 ° C./min, holding at that temperature for 120 minutes, then at a cooling rate of 2 ° C./min After the heat treatment cooled to 40 ° C., the DSC curve (hereinafter referred to as the second DSC curve (II) obtained at the time of heating and melting again to a temperature 30 ° C. higher than the end of the melting peak at a heating rate of 2 ° C./min. It is a value obtained based on. An example of the second DSC curve (II) is shown in FIG.

なお、吸熱量(Br:endo)は、図3に示すように、2回目のDSC曲線(II)の融解ピークの低温側のベースラインから融解ピークが離れる点を点aとし、融解ピークが高温側のベースラインへ戻る点を点bとして、点aと点bとを結ぶ直線と、DSC曲線に囲まれる吸熱量を示す部分の面積から求められる値とする。また、ベースラインはできるだけ直線になるように装置を調節することとし、どうしても図4に示すようにベースラインが湾曲してしまう場合には、融解ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから融解ピークが離れる点を点a、融解ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ融解ピークが戻る点を点bとする。   As shown in FIG. 3, the endothermic amount (Br: endo) is a point a where the melting peak departs from the low-temperature side baseline of the melting peak of the second DSC curve (II), and the melting peak is high. A point returning to the base line on the side is a point b, and a value obtained from a straight line connecting the point a and the point b and an area of the endothermic amount surrounded by the DSC curve. Also, the apparatus should be adjusted so that the baseline is as straight as possible, and if the baseline is inevitably curved as shown in FIG. 4, the curved baseline on the low temperature side of the melting peak should be The drawing is performed while maintaining the curved state and extending to the high temperature side, the point at which the melting peak moves away from the curved low temperature side baseline is point a, and the curved baseline at the high temperature side of the melting peak is the curved state of the curved line. A point where the melting peak returns to the curved high temperature side baseline is set as a point b.

なお、(Br:endo)の測定において、測定試料のDSC曲線の測定条件として、110℃での120分間の保持、2℃/minの冷却速度および2℃/minの加熱速度を採用する理由は、ポリ乳酸系樹脂からなる測定試料の結晶化を極力進ませた状態での吸熱量(Br:endo)を求めることを目的としている為である。   In addition, in the measurement of (Br: endo), the reason why the holding condition at 110 ° C. for 120 minutes, the cooling rate of 2 ° C./min and the heating rate of 2 ° C./min are adopted as the measurement conditions of the DSC curve of the measurement sample. This is because the purpose is to obtain the endothermic amount (Br: endo) in a state where the crystallization of the measurement sample made of polylactic acid resin is advanced as much as possible.

また、本発明において上記ポリ乳酸には、本発明の目的、効果を阻害しない範囲において他の樹脂を混合することができる。ポリ乳酸と他の樹脂との混合樹脂中にはポリ乳酸が50重量%以上、好ましくは70重量%以上、更に好ましくは90重量%以上含まれる。
尚、ポリ乳酸と混合できる他の樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリ乳酸系樹脂以外のポリエステル系樹脂等が挙げられ、中でも脂肪族エステル成分単位を少なくとも35モル%含む生分解性脂肪族ポリエステル系樹脂が好ましい。この場合の脂肪族ポリエステル系樹脂には、上記ポリ乳酸以外のヒドロキシ酸重縮合物、ポリカプロラクトン等のラクトンの開環重合物、及びポリブチレンサクシネート,ポリブチレンアジペート,ポリブチレンサクシネートアジペート,ポリ(ブチレンアジペート/テレフタレート)等の脂肪族多価アルコールと脂肪族多価カルボン酸との重縮合物等が挙げられる。
In the present invention, the polylactic acid can be mixed with other resins within a range that does not impair the objects and effects of the present invention. Polylactic acid is contained in a mixed resin of polylactic acid and another resin in an amount of 50% by weight or more, preferably 70% by weight or more, and more preferably 90% by weight or more.
Examples of other resins that can be mixed with polylactic acid include polyethylene-based resins, polypropylene-based resins, polystyrene-based resins, polyester-based resins other than polylactic acid-based resins, and the like. Among them, aliphatic ester component units are at least 35 mol%. A biodegradable aliphatic polyester-based resin is preferable. In this case, the aliphatic polyester resins include hydroxy acid polycondensates other than polylactic acid, ring-opening polymers of lactones such as polycaprolactone, polybutylene succinate, polybutylene adipate, polybutylene succinate adipate, poly Examples include polycondensates of aliphatic polyhydric alcohols such as (butylene adipate / terephthalate) and aliphatic polycarboxylic acids.

また、本発明で用いられるポリ乳酸は、分子鎖末端が封鎖されていることが好ましい。これにより、ポリ乳酸系樹脂発泡粒子の製造過程での加水分解をより一層確実に抑制することができ、後述する分散媒放出発泡が容易になることから、樹脂の物性低下に繋がる加水分解に大きく囚われることなく、高温ピークの発生を確実に抑え、型内成形時の樹脂の加水分解にも耐え得る前記ポリ乳酸系樹脂発泡粒子が得られやすくなる。更には型内成形により得られるポリ乳酸系樹脂発泡粒子成形体の耐久性が向上する。   The polylactic acid used in the present invention is preferably blocked at the molecular chain end. As a result, hydrolysis during the production process of the polylactic acid-based resin foamed particles can be more reliably suppressed, and the dispersion medium release foaming described later is facilitated. Without being trapped, it is easy to obtain the polylactic acid-based resin expanded particles that reliably suppress the occurrence of high temperature peaks and can withstand hydrolysis of the resin during molding in the mold. Furthermore, the durability of the polylactic acid-based resin expanded particle molded body obtained by in-mold molding is improved.

前記末端封鎖剤としては、例えばカルボジイミド化合物、オキサゾリン化合物、イソシアネート化合物、エポキシ化合物等を用いることができる。これらの中でも、カルボジイミド化合物が好ましい。
具体的には、ビス(ジプロピルフェニル)カルボジイミドなどの芳香族モノカルボジイミド(例えば、ラインケミー社製Stabaxol 1−LF)、芳香族ポリカルボジイミド(例えば、ラインケミー社製Stabaxol P、ラインケミー社製Stabaxol P400など)、ポリ(4−4’−ジシクロヘキシルメタンカルボジイミド)などの脂肪族ポリカルボジイミド(例えば、日清紡ケミカル(株)製カルボジライトLA−1)などが挙げられる。
これらの末端封鎖剤は単独で使用しても良く、あるいは2種以上を組み合わせて使用しても良い。
また、末端封鎖剤の配合量は、ポリ乳酸100重量部あたりに0.1〜5重量部が好ましく、0.5〜3重量部がより好ましい。
As said terminal blocker, a carbodiimide compound, an oxazoline compound, an isocyanate compound, an epoxy compound etc. can be used, for example. Of these, carbodiimide compounds are preferred.
Specifically, aromatic monocarbodiimides such as bis (dipropylphenyl) carbodiimide (eg, Stabaxol 1-LF manufactured by Rhein Chemie), aromatic polycarbodiimides (eg, Stabaxol P manufactured by Rhein Chemie, Stabaxol P400 manufactured by Rhein Chemie) And aliphatic polycarbodiimides such as poly (4-4′-dicyclohexylmethanecarbodiimide) (for example, Carbodilite LA-1 manufactured by Nisshinbo Chemical Co., Ltd.).
These end-capping agents may be used alone or in combination of two or more.
Moreover, 0.1-5 weight part is preferable per 100 weight part of polylactic acids, and, as for the compounding quantity of terminal blocker, 0.5-3 weight part is more preferable.

このように、本発明で用いられるポリ乳酸は、カルボジイミド化合物、エポキシ化合物、及びイソシアナート化合物等から選ばれる1種以上の改質剤にて改質された変性ポリ乳酸系樹脂であることが好ましく、カルボジイミド化合物にて改質された変性ポリ乳酸であることがより好ましい。   Thus, the polylactic acid used in the present invention is preferably a modified polylactic acid resin modified with one or more modifiers selected from carbodiimide compounds, epoxy compounds, isocyanate compounds, and the like. More preferred is a modified polylactic acid modified with a carbodiimide compound.

また、本発明の発泡粒子を構成する基材樹脂には、本発明の目的、効果を阻害しない範囲において前記のとおり他の樹脂を混合することができる。なおこの場合、本発明における後述する吸熱量や発熱量についての構成は、他の樹脂を混合することにより値が変動するため、ポリ乳酸と他の樹脂との混合樹脂を基材樹脂とする場合の本発明における吸熱量や発熱量の構成に関しては、混合樹脂からなる基材樹脂ではなく、基材樹脂を構成しているポリ乳酸と他の樹脂の内、ポリ乳酸のみが本発明における後述する吸熱量や発熱量の構成を満足していればよい。   Further, the base resin constituting the expanded particles of the present invention can be mixed with other resins as described above within a range not impairing the objects and effects of the present invention. In this case, since the values of the heat absorption amount and the heat generation amount described later in the present invention vary when other resins are mixed, a mixed resin of polylactic acid and another resin is used as a base resin. Regarding the constitution of the endothermic amount and the calorific value in the present invention, not the base resin composed of the mixed resin but only polylactic acid among the polylactic acid and other resins constituting the base resin will be described later in the present invention. It is only necessary to satisfy the configuration of the endothermic amount and the calorific value.

また、本発明の発泡粒子に配合することのできる添加剤としては、着色剤、難燃剤、帯電防止剤、耐候剤、導電性付与剤等が挙げられる。   Examples of additives that can be added to the expanded particles of the present invention include colorants, flame retardants, antistatic agents, weathering agents, and conductivity-imparting agents.

また、基材樹脂に添加剤を配合する場合には、添加剤をそのまま基材樹脂に練り込むこともできるが、通常は添加剤の基材樹脂中での分散性等を考慮して添加剤のマスターバッチを作製し、それと基材樹脂とを混練することが好ましい。
前記添加剤の配合量は、添加剤の種類によっても異なるが、通常、基材樹脂100重量部に対して0.001〜20重量部、更に0.01〜5重量部とすることが好ましい。
In addition, when an additive is added to the base resin, the additive can be kneaded into the base resin as it is, but usually the additive is taken into consideration for the dispersibility of the additive in the base resin. It is preferable to prepare a master batch and knead it with the base resin.
Although the compounding quantity of the said additive changes with kinds of additive, it is preferable normally to be 0.001-20 weight part with respect to 100 weight part of base resin, and also 0.01-5 weight part.

本発明の発泡粒子成形体においては、発泡粒子の平面視における数は、単位面積[cm]当たり10個以上である。すなわち、本発明の発泡粒子成形体は、微小な発泡粒子から構成されている。厚み10mm以下、更に5mm以下の薄肉部を有する発泡粒子成形体を得るためには、12個以上が好ましく、15個以上がより好ましい。なお、その上限は概ね100個程度であり、好ましくは50個である。 In the foamed particle molded body of the present invention, the number of the foamed particles in a plan view is 10 or more per unit area [cm 2 ]. That is, the foamed particle molded body of the present invention is composed of fine foamed particles. In order to obtain a foamed particle molded body having a thin part with a thickness of 10 mm or less and further 5 mm or less, 12 or more are preferable, and 15 or more are more preferable. The upper limit is about 100, preferably 50.

本明細書において、発泡粒子の平面視における数とは、発泡粒子成形体を外部から観察した場合に単位面積[cm]当たりの表面に現れている発泡粒子の数をいう。その測定方法は、4cm×4cmの平面に現れている発泡粒子数を数え、1cm当たりに換算して求める。4cm×4cmの平面がとれない場合は、最低でも1cm以上の面積について測定する。測定面の各辺と交差している発泡粒子については、隣合う2辺については数え、他の隣合う2辺については数えないこととする。例えば、上辺と右辺との2片について、これらの片と交差している発泡粒子の数を計測した場合には、下辺と左辺との2片について、これらの片と交差している発泡粒子の数は計測しない。表面に現れている発泡粒子の数を数えられない場合には、切断面について測定することもできる。 In this specification, the number of the expanded particles in a plan view refers to the number of expanded particles appearing on the surface per unit area [cm 2 ] when the expanded molded article is observed from the outside. The measuring method is obtained by counting the number of expanded particles appearing on a 4 cm × 4 cm plane and converting the number per 1 cm 2 . When a plane of 4 cm × 4 cm cannot be taken, the measurement is performed for an area of at least 1 cm 2 or more. Regarding the expanded particles crossing each side of the measurement surface, the two adjacent sides are counted and the other two adjacent sides are not counted. For example, for the two pieces of the upper side and the right side, when the number of expanded particles intersecting with these pieces is measured, the two pieces of the lower side and the left side of the expanded particles intersecting with these pieces The number is not measured. When the number of expanded particles appearing on the surface cannot be counted, it is possible to measure the cut surface.

本発明で用いられる発泡粒子は前記のとおり微小なものであり、その1個当たりの平均重量は0.1mg以上2mg未満であることが好ましく、より好ましい下限は0.3mg、さらに好ましくは0.5mgであり、より好ましい上限は1.5mg、さらに好ましくは1.2mgである。
なお、発泡粒子は後記ポリ乳酸系樹脂粒子を発泡させることにより得られるものであり、発泡粒子の1個当たりの平均重量は樹脂粒子1個当たりの平均重量と等しくなる。

As described above, the expanded particles used in the present invention are fine particles, and the average weight per particle is preferably 0.1 mg or more and less than 2 mg, more preferably lower limit is 0.3 mg, and still more preferably 0.2 mg. The upper limit is more preferably 1.5 mg, and even more preferably 1.2 mg.
Incidentally, the foamed particles are those obtained by foaming the below polylactic acid-based resins grain child, average weight per one of the expanded beads is equal to the average weight per resin particles.

通常、熱可塑性樹脂発泡粒子の型内成形は、発泡粒子を成形キャビティに充填してスチームなどの加熱媒体により加熱し、発泡粒子の表面を溶融させ、その後に圧力開放することで二次発泡させて発泡粒子相互を融着させることにより行なわれる。発泡粒子の粒子径が小さい場合、発泡粒子の比表面積が大きくなるため、圧力解放時に発泡粒子内の熱媒体散逸速度が速くなるため、二次発泡速度が遅くなる傾向にあり、発泡粒子間の間隙が大きくなりやすく、発泡粒子群を均一に融着させることが難しくなる。
結晶性ポリ乳酸系樹脂を含む発泡粒子においては、小粒子化した場合、二次発泡性と融着性とのバランスを両立することが特に難しく、二次発泡性を抑制しすぎると、発泡粒子は融着しても発泡粒子間に空隙が多く残ってしまい、二次発泡性が良すぎても、発泡粒子群を均一に加熱できず、また、成形可能な温度まで発泡粒子を加熱してしまうと気泡が破泡してしまうため、従来の技術では、小粒子径の結晶性ポリ乳酸系樹脂を含む発泡粒子を型内成形して、良好な発泡粒子成形体を得ることは困難であった。
Usually, in-mold molding of thermoplastic resin foam particles is performed by filling the foam particles into a molding cavity and heating them with a heating medium such as steam to melt the surface of the foam particles and then releasing the pressure for secondary foaming. This is done by fusing the expanded particles together. When the particle size of the expanded particles is small, the specific surface area of the expanded particles increases, so the heat medium dissipation rate in the expanded particles increases at the time of pressure release, and therefore the secondary expansion rate tends to decrease. The gap tends to be large, and it becomes difficult to fuse the expanded particles uniformly.
In expanded particles containing a crystalline polylactic acid-based resin, when the particle size is reduced, it is particularly difficult to achieve a balance between the secondary expandability and the fusion property, and if the secondary expandability is suppressed too much, the expanded particles Even if they are fused, many voids remain between the expanded particles, and even if the secondary expandability is too good, the expanded particles cannot be heated uniformly, and the expanded particles are heated to a moldable temperature. In this case, it is difficult for the conventional technology to obtain a foamed molded article having good foamed particle shape by molding the foamed particle containing a crystalline polylactic acid resin having a small particle diameter. It was.

本発明の発泡粒子成形体においては、発泡粒子成形体の見掛け密度[kg/m]に対する引張強さ[kPa]の比(引張強さ/見掛け密度)が10[kPa・m/kg]以上であり、12[kPa・m/kg]以上であることが好ましく、14[kPa・m/kg]以上であることがより好ましい。前記範囲の比(引張強さ/見掛け密度)は、発泡粒子同士が十分に融着しており、かつ発泡粒子成形体の表面に発泡粒子間の空隙が少ないことにより達成される。一方、その上限は、概ね20[kPa・m/kg]程度である。 In the foamed particle molded body of the present invention, the ratio of the tensile strength [kPa] to the apparent density [kg / m 3 ] (tensile strength / apparent density) of the foamed particle molded body is 10 [kPa · m 3 / kg]. or more, it is preferably 12 [kPa · m 3 / kg ] or more, and more preferably 14 [kPa · m 3 / kg ] or more. The ratio in the above range (tensile strength / apparent density) is achieved by the fact that the expanded particles are sufficiently fused together and there are few voids between the expanded particles on the surface of the expanded particle molded body. On the other hand, the upper limit is about 20 [kPa · m 3 / kg].

発泡粒子成形体の見掛け密度は、軽量性と機械的強度とのバランスから、15〜250kg/mであることが好ましい。その下限は20kg/mが好ましく、30kg/mがより好ましく、その上限は150kg/mが好ましく、100kg/mがより好ましい。 The apparent density of the foamed particle molded body is preferably 15 to 250 kg / m 3 from the balance between lightness and mechanical strength. Its lower limit is preferably 20 kg / m 3, more preferably 30kg / m 3, the upper limit is preferably 150kg / m 3, 100kg / m 3 and more preferably.

また、発泡粒子成形体の引張強さは、390〜2800kPaであることが好ましい。その下限は450kPaがより好ましく、500kPaがさらに好ましく、その上限は1800kPaがより好ましく、1200kPaがさらに好ましい。   Moreover, it is preferable that the tensile strength of a foamed particle molded object is 390-2800 kPa. The lower limit thereof is more preferably 450 kPa, further preferably 500 kPa, and the upper limit thereof is more preferably 1800 kPa, further preferably 1200 kPa.

本明細書における発泡粒子の嵩密度は、次のようにして算出する。
発泡粒子を大気圧下、相対湿度50%、23℃の条件の恒温室内にて10日間放置する。次に、同恒温室内にて、10日間放置した約500mlの発泡粒子群の重量W1(g)を測定し、重量を測定した発泡粒子群を金網などの道具を使用して温度23℃の水の入ったメスシリンダー中に沈める。次に、金網等の道具の体積を差し引いた、水位上昇分より読みとられる発泡粒子群の容積V1(L)を測定し、メスシリンダーに入れた発泡粒子群の重量W1を容積V1で割り算(W1/V1)することにより見掛け密度を求める。この見掛け密度を1.6で割算して発泡粒子の嵩密度を求める。
The bulk density of the expanded particles in the present specification is calculated as follows.
The expanded particles are allowed to stand for 10 days in a temperature-controlled room under conditions of atmospheric pressure, relative humidity 50%, and 23 ° C. Next, the weight W1 (g) of the expanded particle group of about 500 ml left in the same constant temperature room for 10 days is measured, and the measured expanded particle group is water having a temperature of 23 ° C. using a tool such as a wire mesh. Sink into a measuring cylinder containing. Next, the volume V1 (L) of the expanded particle group read from the rise in the water level, after subtracting the volume of the tool such as a wire mesh, is measured, and the weight W1 of the expanded particle group placed in the measuring cylinder is divided by the volume V1 ( W1 / V1) to obtain the apparent density. The apparent density is divided by 1.6 to obtain the bulk density of the expanded particles.

引張強さは、JIS K6767:1999に記載の引張試験方法に基づき、切断にいたるまでの最大荷重を試験片の断面積(試験片の幅×試験片の厚さ)で割算することにより求める。   The tensile strength is obtained by dividing the maximum load up to cutting by the cross-sectional area of the test piece (the width of the test piece × the thickness of the test piece) based on the tensile test method described in JIS K6767: 1999. .

本発明で用いられる発泡粒子は、該発泡粒子1〜2mgを測定試料として、JIS K7122−1987に記載されている熱流束示差走査熱量測定法に基づいて、加熱速度10℃/minにて23℃から融解ピーク終了時よりも30℃高い温度まで加熱溶融させる際に得られる1回目のDSC曲線と、次いで該融解ピーク終了時よりも30℃高い温度にて10分間保った後、冷却速度10℃/minにて40℃まで冷却し、再度、加熱速度10℃/minにて融解ピーク終了時よりも30℃高い温度まで加熱溶融させる際に得られる2回目のDSC曲線において、該1回目のDSC曲線には、2回目のDSC曲線の融解ピークの頂点温度を基準に、該基準の頂点温度よりも高温側(該基準の頂点温度を含まず)に頂点温度を有する融解ピーク(以下、「高温ピーク」ともいう。)を実質的に有しない結晶構造を有するものである。具体的には、高温ピークが現れても高温ピーク熱量が1J/g未満であることが好ましく、より好ましくは0.5J/g以下であり、高温ピークが現れないことが特に好ましい。   The expanded particles used in the present invention are 23 ° C. at a heating rate of 10 ° C./min based on the heat flux differential scanning calorimetry described in JIS K7122-1987, using 1-2 mg of the expanded particles as a measurement sample. From the first DSC curve obtained when heating and melting to 30 ° C. higher than the end of the melting peak, and then maintained for 10 minutes at a temperature 30 ° C. higher than the end of the melting peak, followed by a cooling rate of 10 ° C. In the second DSC curve obtained by cooling to 40 ° C./min and again heating and melting to a temperature 30 ° C. higher than the end of the melting peak at a heating rate of 10 ° C./min, the first DSC The curve is based on the peak temperature of the melting peak of the second DSC curve, and has a melting peak having a peak temperature higher than the reference peak temperature (excluding the reference peak temperature). (Hereinafter, also referred to as "high-temperature peak".) Are those having substantially no crystal structure. Specifically, even if a high temperature peak appears, the high temperature peak heat amount is preferably less than 1 J / g, more preferably 0.5 J / g or less, and particularly preferably no high temperature peak appears.

本発明で用いられる発泡粒子は、後述するように型内成形時の耐熱性を向上させて破泡することを防いで型内成形時に良好に発泡させつつ、さらに熱成形後の収縮を防いで所望される寸法の発泡粒子成形体を得るために、発泡粒子の結晶化度を高める必要がある。結晶化度を高めた上に、高温ピークが存在すると、型内成形時の二次発泡が過度に阻害され、型内成形時に発泡粒子同士を押圧する力が弱くなるため発泡粒子同士の融着性が低下してしまうおそれがある。また、発泡粒子を十分に二次発泡させようと、発泡粒子をさらに加熱すると、発泡粒子の気泡が破壊されてしまい、やはり良好な発泡粒子成形体が得られなくなるおそれがある。   As will be described later, the expanded particles used in the present invention improve the heat resistance at the time of in-mold molding to prevent foam breakage and foam well, and further prevent shrinkage after thermoforming. In order to obtain a foamed particle molded body having a desired size, it is necessary to increase the crystallinity of the foamed particles. When the crystallinity is increased and a high temperature peak exists, secondary foaming at the time of in-mold molding is excessively inhibited, and the force for pressing the foam particles at the time of in-mold molding becomes weak, so that the foam particles are fused. May deteriorate. Further, if the foamed particles are further heated so as to sufficiently secondary-foam the foamed particles, bubbles of the foamed particles are destroyed, and there is a possibility that a good foamed particle molded body cannot be obtained.

本発明のポリ乳酸系樹脂発泡粒子は、前記の通り、高温ピークを実質的に現れない結晶構造を有するものである。次に、高温ピークについて詳しく説明する。発泡粒子を、JIS K7122(1987)に記載されている熱流束示差走査熱量測定法に基づいて23℃から融解ピーク終了時よりも30℃高い温度まで10℃/minで昇温して求められる1回目のDSC曲線(以下、1回目のDSC曲線(I)ともいう。)と、次いで該融解ピーク終了時よりも30℃高い温度にて10分間保った後、冷却速度10℃/minにて40℃まで冷却し、再度、加熱速度10℃/minにて融解ピーク終了時よりも30℃高い温度まで加熱溶融させる際に得られる2回目のDSC曲線(以下、2回目のDSC曲線(I)ともいう。)において、2回目のDSC曲線の融解ピークの頂点温度(但し、2回目のDSC曲線(I)に、複数の融解ピークが現れる場合や融解ピークの高温側にショルダー部が現れる場合は、それらの融解ピークの頂点やショルダー部の変曲点のうち、最も高温側の、融解ピークの頂点温度またはショルダー部の変曲点温度を、2回目のDSC曲線(I)の融解ピークの頂点温度とする。)を基準に、該基準の頂点温度よりも高温側(該基準の頂点温度を含まず)に頂点温度を有する融解ピークが高温ピークである。なお、該基準の頂点温度よりも低温側(該基準の頂点温度を含む)に頂点温度を有する融解ピークを低温ピークともいう。高温ピークと低温ピークとが、各々1つ以上現れる。   As described above, the polylactic acid-based resin expanded particles of the present invention have a crystal structure that does not substantially exhibit a high temperature peak. Next, the high temperature peak will be described in detail. 1 obtained by raising the foamed particles at a rate of 10 ° C./min from 23 ° C. to 30 ° C. higher than the end of the melting peak, based on the heat flux differential scanning calorimetry described in JIS K7122 (1987) The first DSC curve (hereinafter also referred to as the first DSC curve (I)) and then maintained at a temperature 30 ° C. higher than the end of the melting peak for 10 minutes, and then at a cooling rate of 10 ° C./min. The second DSC curve (hereinafter referred to as the second DSC curve (I)) obtained when cooled to 30 ° C. and heated to 30 ° C. higher than the end of the melting peak at a heating rate of 10 ° C./min. The peak temperature of the melting peak of the second DSC curve (however, when a plurality of melting peaks appear in the second DSC curve (I) or a shoulder portion appears on the high temperature side of the melting peak). In the case of the melting peak apex and shoulder inflection points, the melting peak apex temperature or shoulder inflection temperature on the highest temperature side is the melting peak of the second DSC curve (I). The melting peak having an apex temperature on the higher temperature side (excluding the reference apex temperature) than the reference apex temperature is a high temperature peak. A melting peak having a peak temperature on the lower temperature side (including the reference peak temperature) than the reference peak temperature is also referred to as a low temperature peak. One or more high temperature peaks and low temperature peaks each appear.

なお、前記高温ピークは、前記示差走査熱量測定によって得られる発泡粒子の1回目のDSC曲線(I)にのみに現れ、2回目のDSC曲線(I)には、現れることがないものである。高温ピークの出現の有無は、後述する熱処理を行ってポリ乳酸系樹脂の結晶を成長させれば発泡粒子の1回目のDSC曲線(I)に出現し、結晶の成長を抑えるように熱処理を行えば出現しなくなる。なお、発泡粒子の1回目のDSC曲線(I)に現れる低温ピークは、ポリ乳酸系樹脂の普通の成形加工において出現する、固有の結晶構造に起因する融解ピークである。
このような発泡粒子の1回目のDSC曲線(I)に高温ピークが現れたり、現れなくなったりする現象は、樹脂粒子を発泡させて発泡粒子を得る際の熱履歴により形成される二次結晶に起因するものであると考えることができる。
The high temperature peak appears only in the first DSC curve (I) of the expanded particles obtained by the differential scanning calorimetry, and does not appear in the second DSC curve (I). The presence or absence of the high temperature peak appears in the first DSC curve (I) of the expanded particles when a polylactic acid resin crystal is grown by performing the heat treatment described later, and the heat treatment is performed so as to suppress the crystal growth. For example, it will not appear. The low temperature peak appearing in the first DSC curve (I) of the expanded particles is a melting peak due to an inherent crystal structure that appears in ordinary molding processing of a polylactic acid resin.
The phenomenon that a high temperature peak appears or disappears in the first DSC curve (I) of such expanded particles is caused by secondary crystals formed by thermal history when the expanded particles are obtained by expanding the resin particles. It can be considered that it is caused.

前記1回目のDSC曲線(I)の一例を図1に、2回目のDSC曲線(I)の一例を図2に示す。図1と図2の対比から、図2の二つの融解ピークの最も高温側の融解ピークの頂点温度を基準にして、図1において該基準の頂点温度よりも高温側に頂点温度を有する融解ピークが高温ピークであり、該基準の頂点温度よりも低温側に頂点温度を有する融解ピークが低温ピークということになる。したがって、図1において、融解ピークaが低温ピークであり、融解ピークbが高温ピークである。
また、本明細書において前記2回目のDSC曲線(I)における最も面積の大きな融解ピークの頂点温度、即ち融解ピークcの頂点温度をポリ乳酸系樹脂の融点(Tm)、融解ピークの高温側の裾がベースラインに戻った点の温度を融解終了温度(Te)とする。
An example of the first DSC curve (I) is shown in FIG. 1, and an example of the second DSC curve (I) is shown in FIG. From the comparison between FIG. 1 and FIG. 2, the melting peak having the apex temperature on the higher temperature side than the reference apex temperature in FIG. 1 on the basis of the apex temperature of the melting peak on the highest temperature side of the two melting peaks in FIG. 2. Is a high temperature peak, and a melting peak having a peak temperature on the lower temperature side than the reference peak temperature is a low temperature peak. Therefore, in FIG. 1, the melting peak a is a low temperature peak and the melting peak b is a high temperature peak.
In the present specification, the peak temperature of the melting peak having the largest area in the second DSC curve (I), that is, the peak temperature of the melting peak c is defined as the melting point (Tm) of the polylactic acid resin, The temperature at which the skirt returns to the baseline is defined as the melting end temperature (Te).

なお、図1には2つの融解ピークa,bが滑らかな曲線で描かれているが、DSC曲線は必ずしもこのように滑らかな曲線になるとは限らず、複数の融解ピークの重なりがDSC曲線に現れ、全体として、複数の低温ピークや複数の高温ピークが、DSC曲線上に現れる場合もある。   In FIG. 1, the two melting peaks a and b are drawn with smooth curves. However, the DSC curve is not necessarily a smooth curve as described above, and the overlapping of a plurality of melting peaks becomes a DSC curve. As a whole, a plurality of low temperature peaks and a plurality of high temperature peaks may appear on the DSC curve.

高温ピーク熱量(J/g)は、図1に示すように、1回目のDSC曲線(I)の融解ピークの低温側のベースラインから融解ピークが離れる点を点αとし、融解ピークが高温側のベースラインへ戻る点を点βとし、低温ピークaと高温ピークbとの間の谷部にあたるDSC曲線上の点γから、点αと点βを結ぶ直線へ、グラフの縦軸に平行な線を引き、その交点を点δとした場合、点γと点δとを結ぶ直線、点δと点βとを結ぶ直線、およびDSC曲線(I)によって囲まれる部分(図1の斜線部分)の面積に対応する吸熱量である。なお、図1には現れてはいないが、融解ピークaの低温側に該融解ピークaと連続して発熱ピークが現れる場合があり、そのような場合は、前記のように、融解ピークの低温側のベースラインから融解ピークが離れる点として点αを定めることが困難となる為、その場合は、低温側のベースラインから該発熱ピークが離れる点を点αとする。
As shown in FIG. 1, the high temperature peak calorific value (J / g) is defined as a point α where the melting peak departs from the low temperature side baseline of the melting peak of the first DSC curve (I), and the melting peak is on the high temperature side. The point that returns to the baseline of the graph is point β, and the point γ on the DSC curve corresponding to the valley between the low temperature peak a and the high temperature peak b is parallel to the vertical axis of the graph from the point γ to the straight line connecting the point α and the point β. When a line is drawn and the intersection is point δ, a straight line connecting point γ and point δ, a straight line connecting point δ and point β, and a portion surrounded by DSC curve (I) (shaded portion in FIG. 1) The endothermic amount corresponding to the area. Although not shown in FIG. 1, an exothermic peak may appear continuously with the melting peak a on the low temperature side of the melting peak a. In such a case, as described above, the melting peak has a low temperature. Since it is difficult to determine the point α as the point where the melting peak is separated from the base line on the side, in that case, the point where the exothermic peak is separated from the base line on the low temperature side is defined as the point α.

本発明で用いられる発泡粒子は、結晶化度が20%以上であることが好ましく、より好ましくは25%以上である。その上限は、概ね35%であり、好ましくは30%である。
結晶化度が小さすぎると、型内成形時にスチーム加熱により破泡しやすくなったり、発泡粒子成形体が得られても型内成形後の収縮が大きくなり、所望される寸法精度のものが得られないおそれがある。
The expanded particles used in the present invention preferably have a crystallinity of 20% or more, more preferably 25% or more. The upper limit is approximately 35%, preferably 30%.
If the degree of crystallinity is too small, foaming tends to break due to steam heating during in-mold molding, and even if a foamed particle molded body is obtained, shrinkage after in-mold molding becomes large, and the desired dimensional accuracy is obtained. There is a risk of not being able to.

結晶化度は、下記(1)式により求められる。
結晶化度=[(Bf:endo)−(Bf:exo)]/93×100 (1)
ここで、(Bf:endo)は発泡粒子についての1回目のDSC曲線における総吸熱量であり、(Bf:exo)は発泡粒子についての1回目のDSC曲線における総発熱量である。
The degree of crystallinity is determined by the following equation (1).
Crystallinity = [(Bf: endo) − (Bf: exo)] / 93 × 100 (1)
Here, (Bf: endo) is the total heat absorption amount in the first DSC curve for the expanded particles, and (Bf: exo) is the total heat generation amount in the first DSC curve for the expanded particles.

なお、前記[(Bf:endo)−(Bf:exo)]は、熱流束示差走査熱量測定を行う際に既に発泡粒子が有していた結晶部分と、該測定時の昇温過程において発泡粒子が結晶化した部分とが融解する際に吸収するエネルギーである吸熱量(Bf:endo)と、熱流束示差走査熱量測定の昇温過程において発泡粒子が結晶化することにより放出されるエネルギーである発熱量(Bf:exo)との差を表し、該差が大きくて吸熱量(Bf:endo)の値に近いほど、発泡粒子の結晶化が該測定前において進んでいた(結晶化度が大きい)ことを意味する。   Note that [(Bf: endo)-(Bf: exo)] is the crystal part that the foamed particles already had when performing the heat flux differential scanning calorimetry, and the foamed particles in the temperature rising process during the measurement. Endotherm (Bf: endo), which is energy absorbed when the crystallized part melts, and energy released by the crystallization of the foamed particles in the temperature rising process of the heat flux differential scanning calorimetry This represents the difference from the calorific value (Bf: exo), and the larger the difference is, the closer to the value of the endothermic amount (Bf: endo), the more the crystallization of the expanded particles progressed before the measurement (the degree of crystallinity is large). ) Means.

前記吸熱量(Bf:endo)は20〜50J/gであることが好ましい。この吸熱量(Bf:endo)が大きいほど発泡粒子を構成するポリ乳酸系樹脂が熱処理によって結晶化度が高くなるものであり、最終的に発泡粒子成形体の機械的強度が高いものに調整することが出来る。一方、該吸熱量(Bf:endo)が小さすぎる場合には、最終的に発泡粒子成形体の機械的強度、特に高温条件下での機械的強度が不十分なものとなる虞がある。この観点から、(Bf:endo)は、更に25J/g以上、特に30J/g以上が好ましい。また、(Bf:endo)の上限は、概ね45J/g、好ましくは40J/gである。   The endothermic amount (Bf: endo) is preferably 20 to 50 J / g. The larger the endothermic amount (Bf: endo), the higher the degree of crystallinity of the polylactic acid resin constituting the expanded particles by heat treatment, and finally the expanded particle molded body is adjusted to have a high mechanical strength. I can do it. On the other hand, when the endothermic amount (Bf: endo) is too small, there is a possibility that the mechanical strength of the foamed particle molded body, particularly the mechanical strength under high temperature conditions, may be insufficient. In this respect, (Bf: endo) is more preferably 25 J / g or more, and particularly preferably 30 J / g or more. The upper limit of (Bf: endo) is approximately 45 J / g, preferably 40 J / g.

尚、本明細書において発泡粒子の発熱量(Bf:exo)および吸熱量(Bf:endo)は、前記条件によって求められる値であり、発熱量(Bf:exo)および吸熱量(Bf:endo)の測定は次の基準で行なわれる。
発泡粒子の発熱量(Bf:exo)は1回目のDSC曲線(II)の発熱ピーク(結晶化ピークと同義)の低温側のベースラインから発熱ピークが離れる点を点cとし、発熱ピークが高温側のベースラインへ戻る点を点dとして、点cと点dとを結ぶ直線と、DSC曲線に囲まれる発熱量を示す部分の面積から求められる値とする。また、発泡粒子の吸熱量(Bf:endo)は、1回目のDSC曲線(II)の融解ピーク(吸熱ピークと同義)の低温側のベースラインから融解ピークが離れる点を点eとし、融解ピークが高温側のベースラインへ戻る点を点fとして、点eと点fとを結ぶ直線と、DSC曲線に囲まれる吸熱量を示す部分の面積から求められる値とする。但し、1回目のDSC曲線(II)におけるベースラインはできるだけ直線になるように装置を調節することとする。また、どうしてもベースラインが湾曲してしまう場合は、発熱ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから発熱ピークが離れる点を点c、発熱ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ発熱ピークが戻る点を点dとする。更に、融解ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから融解ピークが離れる点を点e、融解ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ融解ピークが戻る点を点fとする。
In the present specification, the exothermic amount (Bf: exo) and endothermic amount (Bf: endo) of the expanded particles are values determined by the above conditions, and the exothermic amount (Bf: exo) and endothermic amount (Bf: endo). The measurement of is performed according to the following criteria.
The exothermic amount (Bf: exo) of the expanded particles is a point c where the exothermic peak departs from the low temperature side baseline of the exothermic peak (synonymous with the crystallization peak) of the first DSC curve (II), and the exothermic peak is high. The point returning to the base line on the side is a point d, and is a value obtained from the straight line connecting the point c and the point d and the area of the portion showing the heat generation amount surrounded by the DSC curve. In addition, the endothermic amount (Bf: endo) of the expanded particles is a melting peak at a point where the melting peak departs from the low temperature side baseline of the melting peak (synonymous with the endothermic peak) of the first DSC curve (II). The point at which the point returns to the base line on the high temperature side is a point f, and is a value obtained from the straight line connecting the point e and the point f and the area of the portion showing the endothermic amount surrounded by the DSC curve. However, the apparatus is adjusted so that the baseline in the first DSC curve (II) is as straight as possible. If the baseline is inevitably curved, the curved baseline on the low temperature side of the exothermic peak is extended to the high temperature side while maintaining the curved state of the curve. The point at which the exothermic peak deviates from the point c, and the curved base line on the high temperature side of the exothermic peak is extended to the low temperature side while maintaining the curved state of the curve, and the exothermic peak appears on the curved high temperature side baseline Let the point to return be a point d. Further, the curved base line on the low temperature side of the melting peak is drawn to extend to the high temperature side while maintaining the curved state of the curved line, and the point where the melting peak moves away from the curved low temperature side baseline is point e. Drawing is performed to extend the curved base line on the high temperature side of the peak to the low temperature side while maintaining the curved state of the curve, and the point at which the melting peak returns to the curved high temperature side baseline is defined as a point f.

例えば、図5に示す場合には、前記のとおり定められる点cと点dとを結ぶ直線とDSC曲線に囲まれる発熱量を示す部分の面積から発泡粒子の発熱量(Bf:exo)を求め、前記のとおり定められる点eと点fとを結ぶ直線とDSC曲線に囲まれる吸熱量を示す部分の面積から発泡粒子の吸熱量(B:endo)を求める。また、図6に示すような場合には、前記のように点dと点eを定めることが困難である為、前記のとおり定められる点cと点fとを結ぶ直線とDSC曲線との交点を、点d(点e)と定めることにより、発泡粒子の発熱量(Bf:exo)及び吸熱量(Bf:endo)を求める。また、図7に示すように、融解ピークの低温側にも小さな発熱ピークが発生するような場合には、発泡粒子の発熱量(Bf:exo)は、図7中の第1の発熱ピークの面積Aと第2の発熱ピークの面積Bとの和から求められる。即ち、該面積Aは第1の発熱ピークの低温側のベースラインから発熱ピークが離れる点を点cとし、第1の発熱ピークが高温側のベースラインへ戻る点を点dとして、点cと点dとを結ぶ直線とDSC曲線に囲まれる発熱量を示す部分の面積Aとする。そして、該面積Bは第2の発熱ピークの低温側のベースラインから第2の発熱ピークが離れる点を点gとし、融解ピークが高温側のベースラインへ戻る点を点fとして、点gと点fとを結ぶ直線とDSC曲線との交点を、点eと定め、点gと点eとを結ぶ直線とDSC曲線に囲まれる発熱量を示す部分の面積Bとする。一方、図7において、発泡粒子の吸熱量(Bf:endo)は点eと点fとを結ぶ直線とDSC曲線に囲まれる吸熱量を示す部分の面積から求められる値とする。   For example, in the case shown in FIG. 5, the calorific value (Bf: exo) of the expanded particles is obtained from the area of the portion showing the calorific value surrounded by the straight line connecting the points c and d defined as described above and the DSC curve. The endothermic amount (B: endo) of the expanded particles is obtained from the area of the portion indicating the endothermic amount surrounded by the straight line connecting the points e and f and the DSC curve defined as described above. In the case shown in FIG. 6, since it is difficult to determine the point d and the point e as described above, the intersection of the straight line connecting the point c and the point f determined as described above and the DSC curve. Is determined as point d (point e) to determine the heat generation amount (Bf: exo) and the heat absorption amount (Bf: endo) of the expanded particles. In addition, as shown in FIG. 7, when a small exothermic peak occurs on the low temperature side of the melting peak, the exothermic amount (Bf: exo) of the expanded particles is the first exothermic peak in FIG. It is obtained from the sum of the area A and the area B of the second exothermic peak. That is, the area A is defined as a point c where the exothermic peak moves away from the low temperature side baseline of the first exothermic peak, and a point d where the first exothermic peak returns to the high temperature side baseline. It is assumed that the area A of the portion showing the heat generation amount surrounded by the straight line connecting the point d and the DSC curve. The area B is defined as a point g where the second exothermic peak moves away from the low temperature side baseline of the second exothermic peak, a point f where the melting peak returns to the high temperature side baseline, and point g The intersection of the straight line connecting the point f and the DSC curve is defined as a point e, and is defined as the area B of the portion showing the heat generation amount surrounded by the straight line connecting the point g and the point e and the DSC curve. On the other hand, in FIG. 7, the endothermic amount (Bf: endo) of the expanded particles is a value obtained from the area of the portion indicating the endothermic amount surrounded by the straight line connecting the points e and f and the DSC curve.

本発明で用いられる発泡粒子の嵩密度は、15〜250kg/mであることが好ましい。 The bulk density of the expanded particles used in the present invention is preferably 15 to 250 kg / m 3 .

また、本発明のポリ乳酸系樹脂発泡粒子の平均気泡径は、型内成形性、得られる発泡粒子成形体の外観が更に向上するという観点から、30〜500μmであることが好ましく、50〜250μmであることがより好ましい。   In addition, the average cell diameter of the polylactic acid-based resin expanded particles of the present invention is preferably 30 to 500 μm, more preferably 50 to 250 μm, from the viewpoint of further improving the in-mold moldability and the appearance of the obtained expanded foam molded body. It is more preferable that

発泡粒子の平均気泡径は、次のようにして測定される。
発泡粒子を略二等分した切断面を顕微鏡で撮影した拡大写真に基づき、以下のとおり求めることができる。発泡粒子の切断面拡大写真において発泡粒子の一方の表面から他方の表面に亘って、気泡切断面の略中心を通る4本の線分を引く。ただし、該線分は、気泡切断面の略中心から切断粒子表面へ等間隔の8方向に伸びる放射状の直線を形成するように引くこととする。次いで前記4本の線分と交わる気泡の数の総数N(個)を求める。4本の各線分の長さの総和L(μm)を求め、総和Lを総和Nで除した値(L/N)を発泡粒子1個の平均気泡径とする。この作業を10個の発泡粒子について行い、各発泡粒子の平均気泡径を相加平均した値を発泡粒子の平均気泡径とする。
The average cell diameter of the expanded particles is measured as follows.
Based on an enlarged photograph obtained by photographing a cut surface obtained by dividing the expanded particle into approximately equal parts by a microscope, it can be obtained as follows. In the enlarged photograph of the cut surface of the expanded particle, four line segments passing through the approximate center of the bubble cut surface are drawn from one surface of the expanded particle to the other surface. However, the line segments are drawn so as to form radial straight lines extending in eight directions at equal intervals from the approximate center of the bubble cut surface to the cut particle surface. Next, the total number N of bubbles that intersect the four line segments is determined. A total sum L (μm) of the lengths of the four line segments is obtained, and a value (L / N) obtained by dividing the total L by the total N is defined as an average cell diameter of one expanded particle. This operation is carried out for 10 expanded particles, and the value obtained by arithmetically averaging the average cell diameter of each expanded particle is taken as the average cell diameter of the expanded particles.

また、発泡粒子の独立気泡率は、80%以上が好ましく、より好ましくは85%以上、さらに好ましくは90%以上である。独立気泡率が小さすぎると、発泡粒子の二次発泡性が劣るとともに、得られる発泡粒子成形体の機械的物性も劣ったものとなりやすい。   The closed cell ratio of the expanded particles is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more. If the closed cell ratio is too small, the secondary foamability of the foamed particles tends to be inferior, and the mechanical properties of the resulting foamed particle molded body tend to be inferior.

発泡粒子の独立気泡率は、次のようにして測定される。
発泡粒子を大気圧下、相対湿度50%、23℃の条件の恒温室内にて10日間放置し養生する。次に同恒温室内にて、嵩体積約20cmの養生後の発泡粒子を測定用サンプルとし下記の通り水没法により正確に見かけの体積Vaを測定する。見かけの体積Vaを測定した測定用サンプルを十分に乾燥させた後、ASTM−D2856−70に記載されている手順Cに準じ、東芝・ベックマン株式会社製空気比較式比重計930により測定される測定用サンプルの真の体積Vxを測定する。そして、これらの体積Va及びVxを基に、下記の(2)式により独立気泡率を計算し、N=5の平均値を発泡粒子の独立気泡率とする。

独立気泡率(%)=(Vx−W/ρ)×100/(Va−W/ρ) (2)
ただし、
Vx:上記方法で測定される発泡粒子の真の体積、即ち、発泡粒子を構成する樹脂の容積と、発泡粒子内の独立気泡部分の気泡全容積との和(cm
Va:発泡粒子を、水の入ったメスシリンダーに沈めて、水位上昇分から測定される発泡粒子の見かけの体積(cm
W:発泡粒子測定用サンプルの重量(g)
ρ:発泡粒子を構成する樹脂の密度(g/cm
The closed cell ratio of the expanded particles is measured as follows.
The expanded particles are allowed to stand for 10 days in a temperature-controlled room at atmospheric pressure, relative humidity of 50% and 23 ° C. Next, in the same constant temperature room, the apparent volume Va is accurately measured by the submersion method as follows using the foamed particles after curing having a bulk volume of about 20 cm 3 as a measurement sample. After the sample for measurement in which the apparent volume Va is measured is sufficiently dried, the measurement is performed by an air comparison type hydrometer 930 manufactured by Toshiba Beckman Co., Ltd. according to the procedure C described in ASTM-D2856-70. The true volume Vx of the working sample is measured. And based on these volumes Va and Vx, the closed cell ratio is calculated by the following formula (2), and the average value of N = 5 is set as the closed cell ratio of the expanded particles.

Closed cell ratio (%) = (Vx−W / ρ) × 100 / (Va−W / ρ) (2)
However,
Vx: the sum of the true volume of the expanded particles measured by the above method, that is, the volume of the resin constituting the expanded particles and the total volume of bubbles in the closed cell portion in the expanded particles (cm 3 )
Va: The apparent volume of the expanded particles (cm 3 ) measured from the rise in the water level after the expanded particles are submerged in a graduated cylinder containing water.
W: Weight of the foam particle measurement sample (g)
ρ: Density of resin constituting expanded particles (g / cm 3 )

本発明で用いられる発泡粒子は表面に融着性向上層を有することが好ましい。本発明の発泡粒子において、融着性向上層を有しない発泡粒子と比べて、融着性が向上していれば、該融着性向上層が発泡粒子全体を覆っている必要はない。
なお、融着性向上層は、例えば、ポリ酢酸ビニル、ポリビニルアルコール、ポリエステル、ポリエステルアミド等の、発泡粒子を構成している結晶性ポリ乳酸系樹脂よりも、融点又は軟化温度の低い重合体により構成されていることが好ましい。発泡粒子への融着性向上層の形成方法は特に限定されるものではなく、発泡粒子の表面を融着性向上層で被覆してもよく、発泡前の樹脂粒子の表面を融着性向上層で被覆し、その樹脂粒子を発泡することにより発泡粒子の表面に融着性向上層を形成してもよい。
The expanded particles used in the present invention preferably have a fusibility improving layer on the surface. In the expanded particles of the present invention, if the fusing property is improved as compared with the expanded particles not having the fusing property improving layer, the fusing property improving layer does not need to cover the whole expanded particle.
The fusing property improving layer is made of, for example, a polymer having a melting point or a softening temperature lower than that of the crystalline polylactic acid resin constituting the expanded particles, such as polyvinyl acetate, polyvinyl alcohol, polyester, and polyesteramide. It is preferable to be configured. The method for forming the fusibility improving layer on the foam particles is not particularly limited, and the surface of the foam particles may be coated with the fusibility improving layer, and the surface of the resin particles before foaming may be improved. A fusible layer may be formed on the surface of the foamed particles by covering with a layer and foaming the resin particles.

次に、ポリ乳酸系樹脂から構成される融着性向上層で表面を被覆した結晶性ポリ乳酸を含む樹脂粒子を発泡させることにより得られる、表面に融着性向上層を有する発泡粒子(以下、多層発泡粒子ともいう。)について詳しく説明する。   Next, foamed particles having a fusibility-improving layer on the surface (hereinafter referred to as “foamed particles”) obtained by foaming resin particles containing crystalline polylactic acid whose surface is covered with a fusibility-improving layer composed of a polylactic acid-based resin. , Also referred to as multilayer expanded particles).

該多層発泡粒子においては、該融着性向上層を構成するポリ乳酸系樹脂の軟化点(B)[℃]は、多層発泡粒子の発泡層部分(以下、発泡芯層ともいう。)を構成するポリ乳酸系樹脂の軟化点(A)[℃]よりも低く、かつ該軟化点(A)と該軟化点(B)との差[(A)−(B)]が0℃を超え105℃以下であることが好ましく、より好ましくは該差が15〜105℃であり、更に好ましくは20〜105℃である。該差がこの範囲内である発泡粒子は、融着性向上層と発泡芯層とを構成する軟化点(B)と軟化点(A)を示すポリ乳酸系樹脂を共押出法する等の後述する方法にて得ることができ、該方法により、多層発泡粒子を効率良く得ることができ、このようにして得られた発泡粒子は一層安定して型内成形時に優れた熱融着性を示す発泡粒子となる。
なお、融着性向上層を構成するポリ乳酸系樹脂の軟化点(B)は、発泡粒子の取り扱い性および得られる発泡粒子成形体の高温時の機械的強度の観点から、芯層を構成するポリ乳酸系樹脂の軟化点(A)との関係が上記範囲であると共に、50℃以上、更に55℃以上、特に65℃以上が好ましい。
In the multilayer foamed particles, the softening point (B) [° C.] of the polylactic acid resin constituting the fusibility improving layer constitutes a foamed layer portion (hereinafter also referred to as a foam core layer) of the multilayer foamed particles. Lower than the softening point (A) [° C.] of the polylactic acid based resin, and the difference [(A) − (B)] between the softening point (A) and the softening point (B) exceeds 0 ° C. The difference is preferably not higher than ° C., more preferably the difference is 15 to 105 ° C., and further preferably 20 to 105 ° C. Expanded particles having this difference within this range are described later, such as a co-extrusion method of a polylactic acid-based resin showing a softening point (B) and a softening point (A) constituting the fusibility improving layer and the foam core layer. By this method, it is possible to efficiently obtain multi-layer foamed particles, and the foamed particles obtained in this way are more stable and exhibit excellent heat-fusibility during in-mold molding. It becomes foamed particles.
The softening point (B) of the polylactic acid-based resin constituting the fusibility improving layer constitutes the core layer from the viewpoint of the handleability of the foamed particles and the mechanical strength at high temperatures of the obtained foamed particle molded body. The relationship with the softening point (A) of the polylactic acid resin is in the above range, and is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, and particularly preferably 65 ° C. or higher.

本明細書における軟化点とは、JIS K7206(1999年)に基づく、A50法で測定されたビカット軟化温度を意味する。測定試験片としては、ポリ乳酸系樹脂を、真空オーブンを使用して充分に乾燥させた後、200℃、20MPaの条件下で加圧し、必要に応じて空気抜き操作を行い気泡が混入しないようにして縦20mm×横20mm×厚み4mmの試験片を作製し、該試験片を80℃のオーブン内で24時間アニーリング処理した後に測定に用いる。測定装置としては、株式会社上島製作所製「HDT/VSPT試験装置 MODEL TM−4123」などを使用することができる。   The softening point in this specification means the Vicat softening temperature measured by the A50 method based on JIS K7206 (1999). As a measurement test piece, after the polylactic acid resin is sufficiently dried using a vacuum oven, it is pressurized under the conditions of 200 ° C. and 20 MPa, and an air venting operation is performed as necessary so that bubbles are not mixed. A test piece having a length of 20 mm × width of 20 mm × thickness of 4 mm is prepared, and the test piece is annealed in an oven at 80 ° C. for 24 hours and used for measurement. As a measuring apparatus, “HDT / VSPT test apparatus MODEL TM-4123” manufactured by Ueshima Seisakusho Co., Ltd. can be used.

本発明の発泡芯層と融着性向上層とからなる発泡粒子においては、発泡芯層を形成している樹脂と融着性向上層を形成している樹脂の重量比が99.9:0.1〜80:20であることが好ましく、より好ましくは99.7:0.3〜90:10、更に好ましくは99.5:0.5〜92:8である。
発泡粒子の芯層を形成している樹脂と融着性向上層を形成している樹脂との重量比が前記範囲内にあることにより、発泡粒子間の融着強度が強くなることから、得られる発泡粒子成形体は機械的物性に特に優れたものとなり、また、発泡粒子の物性向上に寄与する発泡芯層の割合が大きくなることにより更に機械的物性に優れたものとなる。
なお、発泡粒子における発泡芯層を形成している樹脂と融着性向上層を形成している樹脂の重量比の調整は、後記ポリ乳酸系樹脂粒子(以下、樹脂粒子ともいう。)の芯層を形成している樹脂と融着性向上層を形成している樹脂の重量比を調整することにより行なわれる。
In the foamed particles comprising the foam core layer and the fusing property improving layer of the present invention, the weight ratio of the resin forming the foam core layer and the resin forming the fusing property improving layer is 99.9: 0. 0.1 to 80:20, preferably 99.7: 0.3 to 90:10, and more preferably 99.5: 0.5 to 92: 8.
Since the weight ratio between the resin forming the core layer of the foamed particles and the resin forming the fusibility improving layer is within the above range, the fusion strength between the foamed particles is increased. The foamed particle molded article obtained is particularly excellent in mechanical properties, and the mechanical properties are further improved by increasing the ratio of the foam core layer that contributes to improving the physical properties of the expanded particles.
In addition, the adjustment of the weight ratio of the resin forming the foam core layer and the resin forming the fusibility improving layer in the foam particles is the core of polylactic acid resin particles (hereinafter also referred to as resin particles). This is done by adjusting the weight ratio of the resin forming the layer and the resin forming the fusing property improving layer.

本発明では、発泡粒子を構成するポリ乳酸系樹脂への前記末端封鎖剤は、少なくとも発泡芯層に添加されていることが好ましく、発泡芯層及び融着性向上層の双方に添加されていることがより好ましい。少なくとも発泡芯層、好ましくは発泡芯層及び融着性向上層の双方を構成するポリ乳酸系樹脂が末端封鎖処理されていることで、該樹脂の発泡粒子製造時の加水分解が抑制でき、安定して発泡粒子を製造できるようになる。更には、発泡粒子成形体製造時の加水分解も抑制でき、発泡粒子成形体の安定生産にも繋がるとともに、製品として使用される際においても高温多湿下での使用に耐え得るようになるなど、耐久性の向上が期待できる。   In this invention, it is preferable that the said end blocker to the polylactic acid-type resin which comprises a foamed particle is added to the foam core layer at least, and it is added to both a foam core layer and a fusibility improvement layer. It is more preferable. Since the polylactic acid-based resin constituting at least the foam core layer, preferably both the foam core layer and the fusion-improving layer, is end-capped, hydrolysis during the production of the foamed particles of the resin can be suppressed and stable. As a result, expanded particles can be produced. Furthermore, hydrolysis during foamed particle molded body production can be suppressed, leading to stable production of the foamed particle molded body, and being able to withstand use under high temperature and humidity even when used as a product, etc. Durability improvement can be expected.

発泡粒子の融着性向上層の厚みについては、融着性向上層に気泡が生じ難くなること、また、発泡粒子成形体の機械的物性が向上することから、厚みが薄い方が好ましい。発泡粒子の融着性向上層の平均厚みは、0.1〜20μm、更に0.2〜10μm、特に0.3〜5μmであることが好ましい。発泡粒子の融着性向上層の平均厚みが前記範囲となるように調整するには、樹脂粒子の段階での融着性向上層と芯層の重量比を調整して樹脂粒子の融着性向上層の平均厚みを調整すればよい。なお、樹脂粒子の融着性向上層の平均厚みは、樹脂粒子の重量、発泡倍率などによっても異なるが、2〜100μm、更に3〜70μm、特に5〜50μmが好ましい。なお、本発明においては、融着性向上層を形成している樹脂が発泡していることを必ずしも排除するものではない。   Regarding the thickness of the fusibility improving layer of the expanded particles, it is preferable that the thickness is thinner because bubbles are less likely to be generated in the fusible improving layer and the mechanical properties of the expanded foam molded body are improved. The average thickness of the fusibility improving layer of the expanded particles is preferably 0.1 to 20 μm, more preferably 0.2 to 10 μm, and particularly preferably 0.3 to 5 μm. In order to adjust the average thickness of the fusibility improvement layer of the expanded particles to be within the above range, the weight ratio of the fusibility improvement layer and the core layer at the resin particle stage is adjusted to adjust the fusibility of the resin particles. What is necessary is just to adjust the average thickness of an improvement layer. The average thickness of the resin particle fusibility improving layer varies depending on the weight of the resin particles, the expansion ratio, etc., but is preferably 2 to 100 μm, more preferably 3 to 70 μm, and particularly preferably 5 to 50 μm. In the present invention, it is not necessarily excluded that the resin forming the fusibility improving layer is foamed.

前記発泡粒子の融着性向上層の平均厚みは以下により測定される。発泡粒子を略二等分し、その拡大断面の写真から、該断面の上下左右の4箇所の融着性向上層の厚みを求め、その平均を一つの発泡粒子の融着性向上層の厚さとする。この作業を10個の発泡粒子について行い、各発泡粒子の融着性向上層の厚さを相加平均した値を発泡粒子における融着性向上層の平均厚みとする。樹脂粒子の融着性向上層の平均厚みにおいても、同様の方法で測定する。なお、融着性向上層が発泡芯層の周囲に部分的に形成されている場合は、上記4箇所の融着性向上層の厚みをどうしても測定できない場合があるが、その場合は無作為に測定できる4箇所の融着性向上層厚みを求め、その平均を一つの発泡粒子、或いは樹脂粒子の融着性向上層の厚さとする。また、発泡粒子の融着性向上層の厚みが分かり難いときには、予め融着性向上層を構成する樹脂に着色剤を添加して樹脂粒子を製造することが好ましい。   The average thickness of the fusibility improving layer of the foamed particles is measured as follows. Divide the expanded particles roughly in half, and from the enlarged cross-sectional photograph, obtain the thickness of the four layers of the fusion-improving layer at the top, bottom, left, and right of the cross-section. Say it. This operation is performed for 10 expanded particles, and the value obtained by arithmetically averaging the thicknesses of the fusibility improving layers of the respective expanded particles is defined as the average thickness of the fusibility improving layers in the expanded particles. The average thickness of the resin particle fusibility improving layer is also measured by the same method. In addition, when the fusibility improving layer is partially formed around the foam core layer, the thickness of the four fusibility improving layers may not be measured by any means. The thicknesses of the four fusibility improving layers that can be measured are obtained, and the average is defined as the thickness of the one fusible particle or resin particle fusibility improving layer. Moreover, when it is difficult to understand the thickness of the fusibility improving layer of the expanded particles, it is preferable to add resin to the resin constituting the fusibility improving layer in advance to produce the resin particles.

本発明の発泡粒子を用いて型内成形をすることにより、ポリ乳酸系樹脂発泡粒子成形体が得られる。その形状は特に制約されず、板状、柱状、容器状、ブロック状は、もとより三次元の複雑な形状のものや、特に厚みの薄い薄肉部を有するものや嵌合部を有するものを安定して得ることができる。   By performing in-mold molding using the foamed particles of the present invention, a polylactic acid resin foamed particle molded body is obtained. The shape is not particularly limited, and plate-like, columnar, container-like, and block-like shapes are naturally stable in three-dimensional complicated shapes, particularly those having thin thin portions or fitting portions. Can be obtained.

該発泡粒子成形体は、熱処理して、ポリ乳酸系樹脂の結晶化をさらに進めることにより剛性、高温時の圧縮強さ、寸法安定性などの耐熱性に優れる発泡粒子成形体となる。   The foamed particle molded body becomes a foamed particle molded body having excellent heat resistance such as rigidity, compressive strength at high temperature, and dimensional stability by further heat treatment and further crystallization of the polylactic acid resin.

前記のようにして得られる発泡粒子成形体は、前記の通り、軽量であると共に機械的物性に優れるものであり、微小な発泡粒子を用いることから、薄肉部や勘合部を設けることができる。薄肉部の厚みは、10mm以下であることが好ましく、より好ましくは5mm以下である。   As described above, the foamed particle molded body obtained as described above is lightweight and excellent in mechanical properties, and since fine foam particles are used, a thin portion and a fitting portion can be provided. The thickness of the thin portion is preferably 10 mm or less, more preferably 5 mm or less.

圧縮物性などの機械的強度の観点から、該発泡粒子成形体の独立気泡率は、60%以上が好ましく、より好ましくは70%以上、さらに好ましくは80%以上である。   From the viewpoint of mechanical strength such as compression properties, the closed cell ratio of the foamed particle molded body is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more.

発泡粒子成形体の独立気泡率測定は、発泡粒子成形体中央部より25×25×30mmのサンプルを切出し(スキンはすべて切り落とす)、測定用サンプルとする他は、前記発泡粒子の独立気泡率の測定と同様にして求めることができる。なお、上記サイズのサンプルが切り出せない場合には、サンプルの体積の合計が18750mmに近づくように、複数のサンプルを切り出して測定に用いればよい。 The measurement of the closed cell ratio of the foamed particle molded body was performed by cutting a sample of 25 × 25 × 30 mm from the center of the foamed particle molded body (cutting off all skin) and using it as a measurement sample. It can be obtained in the same manner as the measurement. If a sample of the above size cannot be cut out, a plurality of samples may be cut out and used for measurement so that the total volume of the samples approaches 18750 mm 3 .

本発明の発泡粒子成形体は発泡粒子同士の融着性に優れるものであり、その融着率は50%以上更に60%以上、特に80%以上であることが好ましい。融着率が高い発泡粒子成形体は機械的物性、特に曲げ強度に優れる。
なお、該融着率は、発泡粒子成形体を破断した際の破断面発泡粒子の個数に基づく材料破壊率を意味し、融着していない部分は材料破壊せず、発泡粒子の界面で剥離する。なお、融着率の測定方法については後述する。
The foamed particle molded body of the present invention is excellent in the fusion property between the foamed particles, and the fusion rate is preferably 50% or more, more preferably 60% or more, and particularly preferably 80% or more. A foamed particle molded body having a high fusion rate is excellent in mechanical properties, particularly bending strength.
The fusing rate means a material destruction rate based on the number of fractured surface foamed particles when the foamed particle molded body is ruptured. The unfused part does not break the material and peels at the interface of the foamed particles. To do. A method for measuring the fusion rate will be described later.

次に、本発明のポリ乳酸系樹脂発泡粒子成形体の製造方法について説明する。
まず、本発明における発泡粒子の製造方法としては、押出発泡方法、ガス含浸予備発泡方法、分散媒放出発泡方法、或いはこれらの方法、原理を基本としたその他の発泡方法が挙げられる。
Next, the manufacturing method of the polylactic acid-type resin expanded particle molded object of this invention is demonstrated.
First, examples of the method for producing foamed particles in the present invention include an extrusion foaming method, a gas impregnation prefoaming method, a dispersion medium discharge foaming method, and other foaming methods based on these methods and principles.

押出発泡方法は、例えば、ポリ乳酸系樹脂を押出機内で溶融混練し、更に物理発泡剤を押出機内に圧入して混練することにより発泡性溶融樹脂を得、該発泡性溶融樹脂を多孔ダイより押出すことにより得られるストランド状発泡体を切断して、発泡粒子を製造する方法である。この方法においては、樹脂粒子製造工程、発泡剤含浸工程、発泡工程が一の押出装置を用いて、一の工程として行なわれる。該方法については、特開2007−100025号公報や国際公開公報WO2008/123367等を参照されたい。なお、本発明における発泡粒子を押出発泡方法にて得る場合は、共押出発泡方法により発泡粒子の表面に融着性向上層を形成することが出来る。   The extrusion foaming method includes, for example, melt-kneading a polylactic acid resin in an extruder, press-fitting a physical foaming agent into the extruder, and kneading to obtain a foamable molten resin. This is a method for producing expanded particles by cutting a strand-like foam obtained by extrusion. In this method, the resin particle production process, the foaming agent impregnation process, and the foaming process are performed as one process using one extruder. Regarding this method, refer to JP2007-100025A and International Publication WO2008 / 123367. In addition, when obtaining the foamed particles in the present invention by an extrusion foaming method, a fusibility improving layer can be formed on the surface of the foamed particles by a coextrusion foaming method.

ガス含浸予備発泡方法は、例えば、ポリ乳酸系樹脂を押出機にて溶融混練した後、ストランド状に押出して切断するなどして樹脂粒子を作製し、耐圧密閉容器内に該樹脂粒子を充填し、物理発泡剤を上記耐圧容器内に圧入することにより樹脂粒子に発泡剤を含浸させて発泡性樹脂粒子を作製し、該発泡性樹脂粒子を予備発泡機に投入し、水蒸気、熱風、或いはそれらの混合物などの加熱媒体にて加熱することにより発泡性樹脂粒子を発泡させて発泡粒子を得る方法である。物理発泡剤を上記耐圧容器内に圧入することにより樹脂粒子に発泡剤を含浸させる工程においては、液相含浸法や気相含浸法を適宜選択できる。ガス含浸予備発泡方法においては、樹脂粒子製造工程、発泡剤含浸工程、発泡工程が別々の工程として行なわれる。該方法については、特開2000−136261号公報、特開2006−282750号公報等を参照されたい。なお、本発明における発泡粒子をガス含浸予備発泡方法にて得る場合は、後述する共押出成形法により芯層の表面に融着性向上層が形成された樹脂粒子を作製し、該樹脂粒子を発泡させることにより、発泡粒子の表面に融着性向上層を形成することが出来る。   The gas impregnation pre-foaming method, for example, melts and kneads a polylactic acid-based resin with an extruder, then extrudes it into strands and cuts it, and then fills the resin particles in a pressure-tight sealed container. The resin foam is impregnated with the foaming agent by press-fitting a physical foaming agent into the pressure vessel, and the foamable resin particles are put into a pre-foaming machine, and steam, hot air, or the like The foamed resin particles are foamed by heating with a heating medium such as a mixture of the above to obtain foamed particles. In the step of impregnating the resin particles with the foaming agent by press-fitting a physical foaming agent into the pressure vessel, a liquid phase impregnation method or a gas phase impregnation method can be appropriately selected. In the gas impregnation pre-foaming method, the resin particle production process, the foaming agent impregnation process, and the foaming process are performed as separate processes. For this method, refer to JP 2000-136261 A, JP 2006-282750 A, and the like. In the case where the expanded particles in the present invention are obtained by the gas impregnation pre-expanding method, resin particles having a fusibility improving layer formed on the surface of the core layer are prepared by a coextrusion molding method described later, and the resin particles are By causing foaming, a fusibility improving layer can be formed on the surface of the foamed particles.

分散媒放出発泡方法は、例えば、上記と同様にして樹脂粒子を製造し、該樹脂粒子を、密閉容器中で水性媒体中に分散、加熱して物理発泡剤を含浸させて発泡性樹脂粒子とし、該発泡性樹脂粒子を発泡適性温度で、密閉容器から水性媒体と共に放出して、発泡粒子を製造する方法である。この方法においては、樹脂粒子製造工程、発泡剤含浸工程、発泡工程をそれぞれ別の工程として行なうこともできるが、通常では、発泡剤含浸工程と発泡工程は一の工程として行なわれる。以下、ポリ乳酸系樹脂発泡粒子の製造方法について、分散媒放出発泡方法を中心として詳細に説明する。   In the dispersion medium release foaming method, for example, resin particles are produced in the same manner as described above, and the resin particles are dispersed in an aqueous medium in a sealed container and heated to be impregnated with a physical foaming agent to obtain foamable resin particles. The foamable resin particles are produced by discharging the foamable resin particles together with an aqueous medium from a closed container at a foaming suitable temperature. In this method, the resin particle production step, the foaming agent impregnation step, and the foaming step can be performed as separate steps, but the foaming agent impregnation step and the foaming step are usually performed as one step. Hereinafter, the production method of the polylactic acid-based resin expanded particles will be described in detail with a focus on the dispersion medium release foaming method.

樹脂粒子製造工程においては、樹脂粒子は、基材樹脂に必要な添加剤等を配合して押出成形してペレタイズする、ストランドカット法、アンダーウォーターカット法等により製造することが可能である。
該芯層と融着性向上層とからなる樹脂粒子は、例えば、特公昭41−16125号公報、特公昭43−23858号公報、特公昭44−29522号公報、特開昭60−185816号公報等に記載された共押出成形法技術を利用して製造することができる。
In the resin particle production process, the resin particles can be produced by a strand cut method, an underwater cut method, or the like in which additives necessary for the base resin are blended, extruded, and pelletized.
Resin particles comprising the core layer and the fusion-improving layer include, for example, Japanese Patent Publication No. 41-16125, Japanese Patent Publication No. 43-23858, Japanese Patent Publication No. 44-29522, Japanese Patent Publication No. 60-185816. Can be produced using the coextrusion molding technique described in the above.

該樹脂粒子の1個当りの平均重量は、前記発泡粒子を得ることができることから0.1mg以上2mg未満が好ましい。
該平均重量が軽すぎる場合には、樹脂粒子の製造が特殊なものになる。一方、該平均重量が重すぎる場合には、所望される薄肉部や嵌合部を得ることができなくなるおそれがある。
該樹脂粒子の形状は、円柱状、球状、角柱状、楕円球状、円筒状等を採用することができる。かかる樹脂粒子を発泡して得られる発泡粒子は、発泡前の樹脂粒子形状に略対応した形状となる。
The average weight per resin particle is preferably 0.1 mg or more and less than 2 mg because the foamed particles can be obtained.
If the average weight is too light, the production of resin particles becomes special. On the other hand, when the average weight is too heavy, there is a possibility that a desired thin part or fitting part cannot be obtained.
As the shape of the resin particles, a columnar shape, a spherical shape, a prismatic shape, an elliptical spherical shape, a cylindrical shape, or the like can be adopted. Foamed particles obtained by foaming such resin particles have a shape substantially corresponding to the shape of the resin particles before foaming.

前記基材樹脂を上記のように押出機で溶融混練しストランド状に押出して樹脂粒子を得る工程においては、基材樹脂の構成成分であるポリ乳酸系樹脂を予め乾燥させておくことが好ましい。この場合には、ポリ乳酸系樹脂の加水分解による劣化を抑制することができる。また、ポリ乳酸系樹脂の加水分解による劣化を抑制するために、ベント口付き押出機を使用して、真空吸引を行ってポリ乳酸系樹脂から水分を除去する方法も採用することができる。ポリ乳酸系樹脂の水分を除去することにより、樹脂粒子中に気泡が発生することを抑制し、押出製造時の安定性を向上させることができる。   In the step of obtaining the resin particles by melting and kneading the base resin with an extruder as described above to obtain resin particles, it is preferable to dry the polylactic acid resin, which is a constituent component of the base resin, in advance. In this case, deterioration due to hydrolysis of the polylactic acid resin can be suppressed. Moreover, in order to suppress degradation due to hydrolysis of the polylactic acid-based resin, a method of removing moisture from the polylactic acid-based resin by performing vacuum suction using an extruder with a vent port can be employed. By removing water from the polylactic acid-based resin, it is possible to suppress the generation of bubbles in the resin particles and improve the stability during extrusion production.

次に、分散媒放出発泡方法における発泡剤含浸工程と発泡工程について説明する。
分散媒放出発泡方法においては例えば前記樹脂粒子を耐圧容器内で分散媒及び物理発泡剤と共に分散させて加熱したり、或いは樹脂粒子を耐圧容器内で分散媒と共に分散させて加熱し、次いで物理発泡剤を上記耐圧容器内へ圧入したりすることにより、樹脂粒子に物理発泡剤を含浸させて発泡性樹脂粒子とする。次いで、該発泡性樹脂粒子を耐圧容器内よりも低い圧力下に分散媒と共に放出することにより発泡性樹脂粒子を発泡させて発泡粒子を得ることができる。
Next, the foaming agent impregnation step and the foaming step in the dispersion medium releasing foaming method will be described.
In the dispersion medium discharge foaming method, for example, the resin particles are dispersed and heated together with the dispersion medium and the physical foaming agent in the pressure resistant container, or the resin particles are dispersed and heated together with the dispersion medium in the pressure resistant container, and then physically foamed. The resin particles are impregnated with a physical foaming agent by press-fitting an agent into the pressure vessel to obtain expandable resin particles. Next, the expandable resin particles are expanded by releasing the expandable resin particles together with the dispersion medium under a pressure lower than that in the pressure vessel, thereby obtaining expanded particles.

また、前記樹脂粒子中には、発泡助剤を予め添加しておくことができる。該発泡助剤としては、例えばタルク、炭酸カルシウム、ホウ砂、ホウ酸亜鉛、水酸化アルミニウム、シリカ等の無機物や、ポリテトラフルオロエチレン、ポリエチレンワックス、ポリカーボネート、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、シリコーン、メタクリル酸メチル系共重合体及び架橋ポリスチレン等の高分子量体を採用することができる。
上記発泡助剤のうち、本発明では、ポリテトラフルオロエチレン、ポリエチレンワックス、架橋ポリスチレン等が好ましく、更に、疎水性のポリテトラフルオロエチレン粉末が好ましい。
A foaming aid can be added in advance to the resin particles. Examples of the foaming aid include inorganic substances such as talc, calcium carbonate, borax, zinc borate, aluminum hydroxide, silica, polytetrafluoroethylene, polyethylene wax, polycarbonate, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, High molecular weight materials such as polycyclohexanedimethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, silicone, methyl methacrylate copolymer, and crosslinked polystyrene can be employed.
Of the above foaming aids, polytetrafluoroethylene, polyethylene wax, cross-linked polystyrene and the like are preferable in the present invention, and hydrophobic polytetrafluoroethylene powder is more preferable.

基材樹脂に発泡助剤を添加する場合には、発泡助剤をそのまま基材樹脂に練り込むこともできるが、分散性等を考慮して通常は発泡助剤のマスターバッチを作製し、それと基材樹脂とを混練することが好ましい。   When adding a foaming aid to the base resin, the foaming aid can be kneaded into the base resin as it is, but in consideration of dispersibility, etc. It is preferable to knead the base resin.

本発明の発泡粒子の見掛け密度及び気泡径は発泡助剤の添加量によっても変化するため、それらの調整効果が期待できる。通常、基材樹脂100重量部に対して、発泡助剤を0.001〜5重量部添加することが好ましく、より好ましくは0.005〜3重量部、さらに好ましくは0.01〜2重量部である。   Since the apparent density and the bubble diameter of the expanded particles of the present invention vary depending on the amount of the foaming aid added, the effect of adjusting them can be expected. Usually, it is preferable to add 0.001 to 5 parts by weight of a foaming assistant to 100 parts by weight of the base resin, more preferably 0.005 to 3 parts by weight, and still more preferably 0.01 to 2 parts by weight. It is.

ポリ乳酸系樹脂は加水分解し易いことから、基材樹脂に配合する添加剤としては極力親水性の物質を避け、疎水性物質を選択して添加することが好ましい。発泡助剤として疎水性発泡助剤を採用することにより、ポリ乳酸系樹脂の加水分解による劣化を抑えながら発泡助剤としての効果が得られる。
この場合には、ポリ乳酸系樹脂の加水分解を十分に抑制しつつ、見掛け密度の低下(発泡倍率の向上)及び気泡径の均一化を図ることができる。
Since polylactic acid-based resins are easily hydrolyzed, it is preferable to avoid the hydrophilic substances as much as possible and to select and add hydrophobic substances as additives to the base resin. By adopting a hydrophobic foaming aid as the foaming aid, the effect as a foaming aid can be obtained while suppressing deterioration due to hydrolysis of the polylactic acid-based resin.
In this case, it is possible to reduce the apparent density (improve the expansion ratio) and make the bubble diameter uniform while sufficiently suppressing the hydrolysis of the polylactic acid resin.

分散媒放出発泡方法においては、前記の通り、例えば樹脂粒子を加圧可能な密閉容器(例えば、オートクレーブ)中の水などの分散媒に分散させ、分散剤を添加し、所要量の発泡剤を圧入し加圧し所要時間加温下に撹拌して発泡剤をポリ乳酸系樹脂粒子に含浸させた後、容器内容物を容器内圧力より低圧域下に放出して樹脂粒子を発泡させることにより、発泡粒子が得られる。この放出時には容器内に背圧をかけて放出することが好ましい。また、特に低い見掛け密度(高発泡倍率)の発泡粒子を得るにあたっては、上記の方法で得られた発泡粒子を通常行われる大気圧下での養生工程を経て、再度、加圧可能な密閉容器に充填し、空気などの加圧気体により例えば0.01〜0.10MPa(G)の圧力にて加圧処理して発泡粒子内の圧力を高める操作を行った後、該発泡粒子を発泡機内にて、熱風やスチームや空気とスチームとの混合物などの加熱媒体を用いて加熱することにより、更に低い見掛け密度の発泡粒子を得ることができる(この工程を以下、二段発泡という)。
なお、押出発泡法と比較して見掛け密度が低い発泡粒子を得ることができ、型内成形性に優れ、物性の良好な発泡粒子が得られるという観点から、発泡粒子の製法としては、上記のガス含浸予備発泡方法や分散媒放出発泡方法が好ましく、特に分散媒放出発泡方法が好ましい。
In the dispersion medium releasing foaming method, as described above, for example, resin particles are dispersed in a dispersion medium such as water in a pressurizable closed container (for example, an autoclave), a dispersant is added, and a required amount of foaming agent is added. After impregnating and pressurizing and stirring under heating for a required time to impregnate the polylactic acid resin particles with the foaming agent, the container contents are released below the pressure inside the container to lower the pressure range, thereby foaming the resin particles, Expanded particles are obtained. At the time of this discharge, it is preferable to discharge the container with back pressure. Moreover, when obtaining expanded particles having a particularly low apparent density (high expansion ratio), the expanded particles obtained by the above-described method are subjected to a normal curing step under atmospheric pressure, and can be pressurized again. And the pressure is increased by, for example, 0.01 to 0.10 MPa (G) with a pressurized gas such as air to increase the pressure in the foamed particles. Then, by using a heating medium such as hot air, steam or a mixture of air and steam, expanded particles having a lower apparent density can be obtained (this process is hereinafter referred to as two-stage foaming).
In addition, from the viewpoint of obtaining foamed particles having a low apparent density as compared with the extrusion foaming method, and obtaining foamed particles having excellent in-moldability and good physical properties, the production method of the foamed particles is as described above. A gas impregnation prefoaming method and a dispersion medium releasing foaming method are preferred, and a dispersion medium releasing foaming method is particularly preferred.

前記樹脂粒子を分散させる分散媒としては、上記した水以外にも、上記ポリ乳酸系樹脂粒子を溶解させないものであればこれを使用することができる。水以外の分散媒としては、例えばエチレングリコール、グリセリン、メタノール、エタノール等が挙げられる。好ましくは水がよい。   As the dispersion medium in which the resin particles are dispersed, other than the above-described water, any material that does not dissolve the polylactic acid-based resin particles can be used. Examples of the dispersion medium other than water include ethylene glycol, glycerin, methanol, ethanol and the like. Water is preferable.

また、樹脂粒子を分散媒に分散させるに際しては、必要に応じて分散剤を分散媒に添加することができる。
該分散剤としては、酸化アルミニウム、第三リン酸カルシウム、ピロリン酸マグネシウム、酸化チタン、酸化亜鉛、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、炭酸カルシウム、カオリン、マイカ、及びクレー等の無機物質や、ポリビニルピロリドン、ポリビニルアルコール、メチルセルロースなどの水溶性高分子保護コロイド剤が挙げられる。また、分散助剤として、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム等のアニオン性界面活性剤などを分散媒に添加することもできる。
これら分散剤は、樹脂粒子100重量部あたり0.05〜3重量部使用することができ、これら分散助剤は、樹脂粒子100重量部あたり0.001〜0.3重量部使用することができる。
Further, when dispersing the resin particles in the dispersion medium, a dispersant can be added to the dispersion medium as necessary.
Examples of the dispersant include inorganic substances such as aluminum oxide, tricalcium phosphate, magnesium pyrophosphate, titanium oxide, zinc oxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, kaolin, mica, and clay, and polyvinylpyrrolidone. , Water-soluble polymer protective colloid agents such as polyvinyl alcohol and methylcellulose. In addition, as a dispersion aid, an anionic surfactant such as sodium dodecylbenzenesulfonate or sodium alkanesulfonate can be added to the dispersion medium.
These dispersing agents can be used in an amount of 0.05 to 3 parts by weight per 100 parts by weight of the resin particles, and these dispersing aids can be used in an amount of 0.001 to 0.3 parts by weight per 100 parts by weight of the resin particles. .

前記発泡剤としては、例えば、ブタン、ペンタン、ヘキサン等の炭化水素、トリクロロフルオロメタン、ジクロロフルオロメタン、テトラクロロジフルオロエタン、ジクロロメタン等のハロゲン化炭化水素などの有機系物理発泡剤、二酸化炭素、窒素、空気等の無機ガス、水などの無機系物理発泡剤を、単独で又は2種以上併用して用いることができる。これらの物理発泡剤のなかでも、二酸化炭素、窒素、空気等の無機系物理発泡剤を主成分とする物理発泡剤を用いることが好ましい。より好ましくは二酸化炭素がよい。
なお、無機系物理発泡剤を主成分とするとは、全物理発泡剤100モル%中の無機系物理発泡剤が50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上含まれることを意味する。
Examples of the blowing agent include hydrocarbons such as butane, pentane and hexane, organic physical blowing agents such as halogenated hydrocarbons such as trichlorofluoromethane, dichlorofluoromethane, tetrachlorodifluoroethane, and dichloromethane, carbon dioxide, nitrogen, An inorganic physical foaming agent such as an inorganic gas such as air or water can be used alone or in combination of two or more. Among these physical foaming agents, it is preferable to use a physical foaming agent mainly composed of an inorganic physical foaming agent such as carbon dioxide, nitrogen or air. More preferred is carbon dioxide.
The term “inorganic physical foaming agent as a main component” means that the inorganic physical foaming agent in 100 mol% of the total physical foaming agent is 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more. Means that.

前記物理発泡剤の添加量は、発泡剤の種類、添加剤等の配合量、目的とする発泡粒子の見掛け密度等に応じて適宜調整することができる。例えば無機系物理発泡剤は、基材樹脂100重量部あたり概ね0.1〜30重量部、好ましくは0.5〜15重量部、更に好ましくは1〜10重量部使用することがよい。   The addition amount of the physical foaming agent can be appropriately adjusted according to the type of foaming agent, the blending amount of the additive, the apparent density of the desired foamed particles, and the like. For example, the inorganic physical foaming agent is used in an amount of generally 0.1 to 30 parts by weight, preferably 0.5 to 15 parts by weight, and more preferably 1 to 10 parts by weight per 100 parts by weight of the base resin.

本発明においては、前記の通り、前記DSC曲線において高温ピークが現れない発泡粒子を得る必要がある。そのための方法としては、ポリ乳酸の二次結晶化が生じないような条件で樹脂粒子を発泡させることが好ましい。上記分散媒放出発泡方法により発泡粒子を製造する場合には、発泡温度を発泡粒子を構成する結晶性ポリ乳酸の融点−22℃〜+10℃の範囲とし、その発泡温度における保持時間を60分以内とすることが好ましい。   In the present invention, as described above, it is necessary to obtain expanded particles in which a high temperature peak does not appear in the DSC curve. As a method for that purpose, it is preferable to foam the resin particles under conditions such that secondary crystallization of polylactic acid does not occur. When producing expanded particles by the above-mentioned dispersion medium releasing foaming method, the expansion temperature is in the range of the melting point of crystalline polylactic acid constituting the expanded particles from −22 ° C. to + 10 ° C., and the retention time at the expansion temperature is within 60 minutes. It is preferable that

次に、本発明の発泡粒子成形体の製造方法について説明する。該発泡粒子成形体の製造にあたっては、公知の型内成形方法を採用することができる。
例えば、従来公知の発泡粒子成形金型を用いる、圧縮成形法、クラッキング成形法、加圧成形法、圧縮充填成形法、常圧充填成形法(例えば、特公昭46−38359号公報、特公昭51−22951号公報、特公平4−46217号公報、特公平6−22919号公報、特公平6−49795号公報等参照)などが挙げられる。
Next, the manufacturing method of the expanded particle molding of this invention is demonstrated. In manufacturing the foamed particle molded body, a known in-mold molding method can be employed.
For example, a compression molding method, a cracking molding method, a pressure molding method, a compression filling molding method, a normal pressure filling molding method (for example, Japanese Patent Publication No. 46-38359, Japanese Patent Publication No. 51) using a conventionally known foamed particle molding die. No. 22951, Japanese Patent Publication No. 4-46217, Japanese Patent Publication No. 6-22919, Japanese Patent Publication No. 6-49795, etc.).

通常好ましく行なわれる型内成形法としては、加熱及び冷却が可能であって且つ開閉し密閉できる従来公知の熱可塑性樹脂発泡粒子型内成形用の金型のキャビティー内に発泡粒子を充填し、飽和蒸気圧が0.01〜0.25MPa(G)、好ましくは0.01〜0.20MPa(G)の水蒸気を供給して金型内で発泡粒子同士を加熱することにより発泡粒子を膨張、融着させ、次いで得られた発泡粒子成形体を冷却して、キャビティー内から取り出すバッチ式型内成形法や、後述する連続式の型内成形法等が挙げられる。   In-mold molding method that is usually preferably performed, the foam particles are filled into a cavity of a conventionally known thermoplastic resin foam particle molding mold that can be heated and cooled and that can be opened and closed and sealed, The foamed particles are expanded by supplying water vapor with a saturated vapor pressure of 0.01 to 0.25 MPa (G), preferably 0.01 to 0.20 MPa (G), and heating the foamed particles in a mold. Examples thereof include a batch type in-mold molding method in which the foamed particle molded body obtained by fusing and then cooling is taken out from the cavity, and a continuous in-mold molding method described later.

前記水蒸気の供給方法としては、一方加熱、逆一方加熱、本加熱などの加熱方法を適宜組み合わせる従来公知の方法を採用できる。特に、予備加熱、一方加熱、逆一方加熱、本加熱の順に発泡粒子を加熱する方法が好ましい。   As the method for supplying the water vapor, a conventionally known method in which heating methods such as one heating, reverse one heating, and main heating are appropriately combined can be adopted. In particular, a method of heating the expanded particles in the order of preliminary heating, one-side heating, reverse one-side heating, and main heating is preferable.

また、前記発泡粒子成形体は、発泡粒子を通路内の上下に沿って連続的に移動するベルトによって形成される型内に連続的に供給し、水蒸気加熱領域を通過する際に飽和蒸気圧が0.01〜0.25MPa(G)の水蒸気を供給して発泡粒子を膨張、融着させ、その後冷却領域を通過させて冷却し、次いで得られた発泡粒子成形体を通路内から取り出し、適宜長さに順次切断する連続式型内成形法(例えば特開平9−104026号、特開平9−104027号及び特開平10−180888号等参照)により製造することもできる。   The foamed particle molded body continuously supplies the foamed particles into a mold formed by a belt that moves continuously along the upper and lower sides of the passage, and the saturated vapor pressure is reduced when passing through the steam heating region. 0.01 to 0.25 MPa (G) of water vapor is supplied to expand and fuse the expanded particles, and then cooled by passing through a cooling region, and then the obtained expanded expanded particles are taken out from the passage, It can also be produced by a continuous in-mold molding method (for example, see JP-A-9-104026, JP-A-9-104027, JP-A-10-180888, etc.) which is sequentially cut into lengths.

前記型内成形に先立ち、前記方法で得られた発泡粒子を加圧可能な密閉容器に充填し、空気などの加圧気体により加圧処理して発泡粒子内の圧力を高める操作を行って発泡粒子内の圧力を0.01〜0.15MPa(G)に調整した後、該発泡粒子を容器内から取り出して型内成形を行なうことにより、発泡粒子の型内成形性をより一層向上させることが出来る。
Prior to in-mold molding, foamed particles obtained by the above method are filled into a pressurizable sealed container, and foaming is performed by increasing the pressure in the foamed particles by pressurizing with a pressurized gas such as air. After the pressure inside the particles is adjusted to 0.01 to 0.15 MPa (G), the foamed particles are taken out from the container and molded in the mold, thereby further improving the in-mold moldability of the foamed particles. I can do it.

次に、本発明を実施例によりさらに詳細に説明する。但し、本発明は実施例に限定されるものではない。   Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

発泡粒子の作製に用いた原料を表1に示す。   Table 1 shows the raw materials used for producing the expanded particles.

実施例1〜7、比較例1、2
多層樹脂粒子製造用の装置として、内径65mmの芯層形成用押出機および内径30mmの融着性向上層形成用押出機の出口側に多層ストランド形成用の共押ダイを付設した押出機を用いた。
芯層形成用押出機および融着性向上層形成用押出機に、それぞれ表1に示す芯層および融着性向上層を形成するための基材樹脂、末端封止剤としてのカルボジイミド(Bioamide100、ラインケミー製)を、表2に示す割合で、夫々の押出機に供給し、200〜220℃で溶融混練した。その溶融混練物を前記の共押ダイに導入してダイ内で合流して押出機先端に取り付けた口金の細孔から、芯層の側面に融着性向上層が形成された多層ストランドとして共押出し、共押出されたストランドを水冷し、ペレタイザーで重量が表2に記載の重量となるように切断し、乾燥して多層樹脂粒子を得た。
なお、芯層のポリ乳酸系樹脂には気泡調整剤としてポリテトラフルオロエチレン粉末(商品名:TFW−1000、(株)セイシン企業製)を含有量が1000重量ppmとなるようにマスターバッチで供給した。融着性向上層のポリ乳酸系樹脂にはフタロシアニングリーン系顔料を含有量が100重量ppmとなるようにマスターバッチで添加した。また、実施例7においては、融着性向上層に、ポリブチレンサクシネート(品名:ビオノーレ#1001、昭和電工(株)製、融点114℃)を30重量%配合した。
原料の結晶化度は前記方法により(1)式により算出した。
Examples 1 to 7, Comparative Examples 1 and 2
As an apparatus for producing multilayer resin particles, an extruder having a core layer forming extruder with an inner diameter of 65 mm and an extruder provided with a co-extrusion die for forming a multilayer strand on the outlet side of an extruder with an inner diameter of 30 mm for improving the fusing property is used. It was.
In the extruder for forming the core layer and the extruder for forming the fusibility improving layer, the base resin and the carbodiimide (Bioamide 100, end-capping agent) for forming the core layer and the fusibility improving layer shown in Table 1, respectively. (Rhein Chemie) was supplied to each extruder at the ratio shown in Table 2, and melt-kneaded at 200 to 220 ° C. The melt-kneaded material is introduced into the co-extrusion die, merged in the die, and from the fine pores of the die attached to the tip of the extruder, the multi-strand is formed as a multilayer strand in which a fusibility improving layer is formed on the side surface of the core layer. The extruded and co-extruded strand was cooled with water, cut with a pelletizer so that the weight was as shown in Table 2, and dried to obtain multilayer resin particles.
In addition, polytetrafluoroethylene powder (trade name: TFW-1000, manufactured by Seishin Enterprise Co., Ltd.) is supplied in a master batch so that the content of the polylactic acid resin in the core layer is 1000 ppm by weight as a foam regulator. did. A phthalocyanine green pigment was added to the polylactic acid resin of the fusibility improving layer in a master batch so that the content was 100 ppm by weight. In Example 7, 30% by weight of polybutylene succinate (product name: Bionore # 1001, manufactured by Showa Denko KK, melting point 114 ° C.) was blended in the fusibility improving layer.
The crystallinity of the raw material was calculated by the formula (1) by the above method.

次に、前記多層樹脂粒子を用いてポリ乳酸系樹脂発泡粒子を作製した。
まず、前記のようにして得られた樹脂粒子1kgを分散媒としての水3Lと共に撹拌機を備えた5Lのオートクレーブ内に仕込み、更に分散媒中に、分散剤として酸化アルミニウム0.45重量部、界面活性剤(商品名:ネオゲンS−20F、第一工業製薬社製、アルキルベンゼンスルホン酸ナトリウム)を有効成分量として0.01重量部を添加した。次いで、二酸化炭素をオートクレーブ内の圧力が1.0MPa(G)となるまでオートクレーブ内に圧入した。そして、撹拌下で表1に示す発泡温度まで昇温し、表2に示す圧力になるまで二酸化炭素をさらに圧入し、表2に示す発泡温度で15分間保持した。その後、窒素にて背圧を加えながらオートクレーブ内の内容物を大気圧下に放出して表2に示す見掛け密度のポリ乳酸系樹脂発泡粒子を得た。なお、分散剤、界面活性剤の添加量(重量部)は、ポリ乳酸系樹脂粒子100重量部に対する量である。
Next, polylactic acid resin foamed particles were produced using the multilayer resin particles.
First, 1 kg of the resin particles obtained as described above were charged into a 5 L autoclave equipped with a stirrer together with 3 L of water as a dispersion medium, and 0.45 parts by weight of aluminum oxide as a dispersant in the dispersion medium. A surfactant (trade name: Neogen S-20F, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., sodium alkylbenzene sulfonate) was added as an active ingredient in an amount of 0.01 part by weight. Next, carbon dioxide was injected into the autoclave until the pressure in the autoclave reached 1.0 MPa (G). And it heated up to the foaming temperature shown in Table 1 under stirring, and carbon dioxide was further injected until it became the pressure shown in Table 2, and it hold | maintained at the foaming temperature shown in Table 2 for 15 minutes. Thereafter, the contents in the autoclave were released under atmospheric pressure while applying a back pressure with nitrogen to obtain expanded polylactic acid resin particles having an apparent density shown in Table 2. In addition, the addition amount (parts by weight) of the dispersant and the surfactant is an amount with respect to 100 parts by weight of the polylactic acid resin particles.

ポリ乳酸系樹脂発泡粒子の製造条件(密閉容器内圧力、及び発泡温度)を表2に示す。
また、得られた発泡粒子の諸物性を測定した。結果を表2に示す。
Table 2 shows the production conditions of the polylactic acid-based resin expanded particles (the pressure in the sealed container and the expansion temperature).
Moreover, various physical properties of the obtained expanded particles were measured. The results are shown in Table 2.

次に、発泡粒子を用いて発泡粒子成形体を作製した。
得られた発泡粒子を250mm×200mm×20mmの平板状成形体を成形するための型に充填し(クラッキング4mm)、スチーム加熱による加圧成形により型内成形を行なって平板状の発泡粒子成形体を得た。なお、実施例5においては、0.05MPa(G)の内圧を付与した発泡粒子を用いた。
加熱方法は両面の型のドレン弁を開放した状態でスチームを8秒間供給して予備加熱(排気工程)を行ったのち、両面のドレン弁を閉止した状態で両面より8秒間、表3に記載の圧力のスチームにより加熱した。
Next, a foamed particle molded body was produced using the foamed particles.
The obtained foamed particles are filled into a mold for molding a flat molded article of 250 mm × 200 mm × 20 mm (cracking 4 mm) and molded in-mold by pressure molding by steam heating to form a flat foam particle molded article. Got. In Example 5, expanded particles to which an internal pressure of 0.05 MPa (G) was applied were used.
The heating method is described in Table 3 after supplying steam for 8 seconds with the double-sided drain valve open and preheating (exhaust process), and then closing the double-sided drain valve for 8 seconds from both sides. Heated with steam at a pressure of.

加熱終了後、放圧し、成形体の発泡力による表面圧力が0.02MPa(G)に低下するまで水冷したのち、型を開放し成形体を型から取り出した。得られた成形体は40℃のオーブン内にて15時間養生した後、次いで70℃のオーブンにて15時間養生し、その後、室温まで徐冷した。このようにして、発泡粒子成形体を得た。
また、同様にして、5mmの薄肉部を有する筐型成形体(外形寸法40mm×60mm×85mm)を成形するための型を用いて、発泡粒子成形体を得た。
このようにして得られた発泡粒子成形体について、諸物性を測定、評価した。結果を表3に示す。
After completion of heating, the pressure was released, and after cooling with water until the surface pressure due to the foaming force of the molded body decreased to 0.02 MPa (G), the mold was opened and the molded body was taken out of the mold. The obtained molded body was cured in an oven at 40 ° C. for 15 hours, then cured in an oven at 70 ° C. for 15 hours, and then gradually cooled to room temperature. In this way, a foamed particle molded body was obtained.
Similarly, a foamed particle molded body was obtained using a mold for molding a casing molded body (outer dimensions 40 mm × 60 mm × 85 mm) having a thin portion of 5 mm.
Various properties were measured and evaluated for the foamed particle molded body thus obtained. The results are shown in Table 3.

各項目については以下のように測定、評価した。
Each item was measured and evaluated as follows.

[発泡粒子の嵩密度]
発泡粒子を大気圧下、相対湿度50%、23℃の条件の恒温室内にて10日間放置して養生する。次に、同恒温室内にて、約500mlの養生後の発泡粒子群の重量W1(g)を測定し、重量を測定した発泡粒子群を金網などの道具を使用して温度23℃の水の入ったメスシリンダー中に沈めた。次に、金網等の道具の水面下の体積を差し引いた、水位上昇分より読みとられる発泡粒子群の体積V1(L)を測定し、メスシリンダーに入れた発泡粒子群の重量W1を体積V1で割り算(W1/V1)することにより見掛け密度(kg/cm)を求めた。この見掛け密度を1.6で割算した値を発泡粒子の嵩密度(kg/cm)とした。
[Bulk density of expanded particles]
The expanded particles are allowed to stand for 10 days in a temperature-controlled room at atmospheric pressure, relative humidity of 50% and 23 ° C. Next, the weight W1 (g) of the foam particle group after curing of about 500 ml is measured in the same temperature chamber, and the weight of the measured foam particle group is measured with water at a temperature of 23 ° C. using a tool such as a wire mesh. Sink into the graduated cylinder. Next, the volume V1 (L) of the expanded particle group, which is read from the rise in the water level, by subtracting the volume below the surface of the tool such as a wire mesh, is measured, and the weight W1 of the expanded particle group placed in the measuring cylinder is determined as the volume V1. The apparent density (kg / cm 3 ) was determined by dividing by (W1 / V1). The value obtained by dividing this apparent density by 1.6 was taken as the bulk density (kg / cm 3 ) of the expanded particles.

[吸熱量(Bf:endo)および発熱量(Bf:exo)、結晶化度]
前記の方法により測定した。
[Endotherm (Bf: endo) and calorific value (Bf: exo), crystallinity]
It was measured by the method described above.

[独立気泡率]
前記の方法により測定した。
[Closed cell ratio]
It was measured by the method described above.

[平均気泡径]
前記の方法により測定した。
[Average bubble diameter]
It was measured by the method described above.

「1cmあたりの発泡粒子の数」
発泡粒子成形体の表面を観察し、4cm×4cmの正方形内に存在する発泡粒子数を求め、単位換算した。
これを5回繰り返して、1cm2内に存在する発泡粒子の相加平均値を求めた。
“Number of expanded particles per 1 cm 2
The surface of the foamed particle molded body was observed, the number of foamed particles present in a 4 cm × 4 cm square was determined, and the unit was converted.
This was repeated 5 times, and the arithmetic average value of the expanded particles existing within 1 cm 2 was determined.

「成形体の表面平滑性」
発泡粒子成形体の表面を肉眼で観察し以下の基準にて評価した。
◎:発泡粒子成形体の表面に粒子間隙が少なく凹凸がなく良好な表面状態を示す。
○:発泡粒子成形体の表面に粒子間隙および/又は凹凸がやや認められる。
△:発泡粒子成形体の表面に粒子間隙及び/又は凹凸が明らかに認められる。
×:発泡粒子成形体の表面に粒子間隙および/又は凹凸が著しい。
"Surface smoothness of molded products"
The surface of the foamed particle molded body was observed with the naked eye and evaluated according to the following criteria.
A: The surface of the foamed particle molded body has a good surface state with few particle gaps and no unevenness.
◯: Particle gaps and / or irregularities are slightly observed on the surface of the foamed particle molded body.
Δ: Particle gaps and / or irregularities are clearly observed on the surface of the foamed particle molded body.
X: The particle | grain space | interval and / or unevenness | corrugation are remarkable on the surface of a foaming particle molded object.

[融着率]
融着率は下記の方法により測定し評価した。発泡粒子成形体を折り曲げて破断し、破断面に存在する発泡粒子の数(C1)と破壊した発泡粒子の数(C2)とを求め、上記発泡粒子に対する破壊した発泡粒子の比率(C2/C1×100)を材料破壊率として算出した。異なる試験片を用いて前記測定を5回行いそれぞれの材料破壊率を求め、それらの算術平均値を融着率とした。
[Fusion rate]
The fusion rate was measured and evaluated by the following method. The foamed particle molded body is bent and broken, and the number of foamed particles (C1) and the number of broken foamed particles (C2) present on the fractured surface are determined, and the ratio of the foamed particles broken to the foamed particles (C2 / C1) × 100) was calculated as the material fracture rate. The above measurement was performed 5 times using different test pieces, the respective material destruction rates were obtained, and the arithmetic average value thereof was defined as the fusion rate.

「収縮率」
平板成形型の寸法に対する養生後の発泡粒子成形体の横方向の寸法変化を、下式にて求めた。
収縮率(%)=(1−(養生後の発泡粒子成形体の横方向の最小寸法(mm)/250mm))×100
"Shrinkage factor"
The lateral dimensional change of the foamed particle molded body after curing with respect to the dimension of the flat plate mold was determined by the following equation.
Shrinkage rate (%) = (1− (minimum dimension (mm) / 250 mm in transverse direction of foamed particle molded body after curing)) × 100

「成形体の見掛け密度」
発泡粒子成形体の重量を発泡粒子成形体の体積で割算することにより求めた。なお、発泡粒子成形体の体積は水没法によって求めた。
"Appearance density of molded body"
It calculated | required by dividing the weight of a foamed particle molded object by the volume of a foamed particle molded object. In addition, the volume of the foamed particle molded body was determined by a submerging method.

[回復性]
得られた発泡粒子成形体表面に皺、収縮があり、金型形状を保持していないものを不合格と判定し、×と記載した。発泡粒子成形体表面に皺や収縮がなく、金型形状を保持しているものを合格と判定し、○と記載した。
[Recovery]
The surface of the obtained foamed particle molded body had wrinkles and shrinkage, and those that did not retain the mold shape were determined to be rejected and indicated as x. A foamed particle molded body that did not have wrinkles or shrinkage and retained the shape of the mold was determined to be acceptable and indicated as ◯.

[引張強さ]
平板状の発泡粒子成形体から切出した測定試料(JIS K6251に規定するダンベル状1号、厚み10mm(片面に成形スキン付))を23℃、湿度50%の条件下、24時間放置後、JIS K6767(1999年)に準拠し、試験速度500mm/minで引張試験を5回実施し、切断にいたるまでの最大荷重から各試験片における引張強さを求め、それらの相加平均値として記載した。
[Tensile strength]
A measurement sample (dumbbell-shaped No. 1 as defined in JIS K6251; thickness 10 mm (with a molding skin on one side)) cut out from a flat foam particle molded body was left for 24 hours at 23 ° C. and 50% humidity. In accordance with K6767 (1999), the tensile test was carried out five times at a test speed of 500 mm / min, the tensile strength in each test piece was determined from the maximum load up to cutting, and was described as the arithmetic mean value thereof. .

[引張強さ/見掛け密度]
引張強さ/見掛け密度は、引張強さ[kPa]を前記見掛け密度[kg/m]で割算して求めた。
[Tensile strength / apparent density]
The tensile strength / apparent density was obtained by dividing the tensile strength [kPa] by the apparent density [kg / m 3 ].

前記表2から、実施例1〜7の発泡粒子成形体は、引張強さ/見掛け密度の比が本発明で特定する範囲を満足し、表面平滑性、回復性、融着性、機械的強度、寸法安定性に優れた発泡粒子成形体であることが確認された。   From Table 2, the foamed particle molded products of Examples 1 to 7 satisfy the range specified by the present invention in terms of the ratio of tensile strength / apparent density, and have surface smoothness, recoverability, fusion property, and mechanical strength. It was confirmed that the foamed particle molded body was excellent in dimensional stability.

一方、比較例1は発泡粒子成形体の製造に用いた発泡粒子の高温ピークの熱量が高すぎる例であり、得られた発泡粒子成形体は、引張強さ/見掛け密度の比が本発明で特定する範囲を満足せず、融着性に劣ると共に、発泡粒子間の間隙が大きく表面平滑性に劣るものとなった。なお、型内成形時の二次発泡性を高めるために、成形スチーム圧を高めて型内成形を行なったが、発泡粒子成形体が大きく収縮してしまい、やはり良好な発泡粒子成形体を得ることはできなかった。   On the other hand, Comparative Example 1 is an example in which the amount of heat at the high temperature peak of the foamed particles used for the production of the foamed particle compact is too high. The specified range was not satisfied, the fusing property was inferior, the gap between the expanded particles was large, and the surface smoothness was inferior. In addition, in order to improve the secondary foamability at the time of molding in the mold, the molding steam pressure was increased and molding was performed in the mold, but the foamed particle molded body contracted greatly, and also a good foamed particle molded body was obtained. I couldn't.

比較例2は発泡粒子成形体の製造に用いた発泡粒子の結晶化度が低い例であり、得られた発泡粒子成形体は、引張強さ/見掛け密度の比が本発明で特定する範囲を満足せず、融着性、表面平滑性に劣り、寸法収縮率が大きく、良好な発泡粒子成形体を得ることが出来なかった。





Comparative Example 2 is an example where the degree of crystallinity of the foamed particles used in the production of the foamed particle molded body is low, and the obtained foamed particle molded body has a range in which the ratio of tensile strength / apparent density is specified in the present invention. Unsatisfactory, poor fusion and surface smoothness, large dimensional shrinkage, and could not obtain a good foamed particle molded body.





Claims (2)

結晶性ポリ乳酸系樹脂を含む発泡粒子を型内成形してなる、見掛け密度15〜68kg/m 発泡粒子成形体において、
該発泡粒子成形体を構成する発泡粒子の平面視における数が、単位面積[cm]当たり15個以上であり、該発泡粒子の1個当たりの平均重量が0.1〜1.5mgであり、発泡粒子成形体の見掛け密度[kg/m]に対する引張強さ[kPa]の比(引張強さ/見掛け密度)が10[kPa・m/kg]以上であり、型内成形に用いられる該発泡粒子が、該発泡粒子1〜2mgを測定試料として、JIS K7122−1987に記載されている熱流束示差走査熱量測定法に基づいて、加熱速度10℃/minにて23℃から融解ピーク終了時よりも30℃高い温度まで加熱溶融させる際に得られる1回目のDSC曲線と、次いで該融解ピーク終了時よりも30℃高い温度にて10分間保った後、冷却速度10℃/minにて40℃まで冷却し、再度、加熱速度10℃/minにて融解ピーク終了時よりも30℃高い温度まで加熱溶融させる際に得られる2回目のDSC曲線において、該1回目のDSC曲線には、2回目のDSC曲線の融解ピークの頂点温度を基準に、該基準の頂点温度よりも高温側(該基準の頂点温度を含まず)に頂点温度を有する融解ピークが現れない結晶構造を有する、又は該基準の頂点温度よりも高温側(該基準の頂点温度を含まず)に頂点温度を有する融解ピークが現れ、かつ該融解ピーク熱量が1J/g未満である結晶構造を有すると共に、該発泡粒子の結晶化度が20%以上であり、且つ発泡粒子の表面に融着性向上層を有することを特徴とするポリ乳酸系樹脂発泡粒子成形体。
In a foamed particle molded body having an apparent density of 15 to 68 kg / m 3 formed by in-mold molding of foamed particles containing a crystalline polylactic acid-based resin,
The number of the expanded particles constituting the expanded particle molded body in a plan view is 15 or more per unit area [cm 2 ], and the average weight per expanded particle is 0.1 to 1.5 mg. state, and it is specific (tensile strength / apparent density) is 10 [kPa · m 3 / kg ] or the apparent density of PP bead molding [kg / m 3] tensile strength to [kPa], the mold molding The foamed particles used are melted from 23 ° C. at a heating rate of 10 ° C./min based on the heat flux differential scanning calorimetry described in JIS K7122-1987, using 1-2 mg of the foamed particles as a measurement sample. A first DSC curve obtained when heating and melting to a temperature 30 ° C. higher than the end of the peak, and then maintaining for 10 minutes at a temperature 30 ° C. higher than the end of the melting peak, followed by a cooling rate of 10 ° C./min At 40 In the second DSC curve obtained when cooled to 30 ° C. and heated again to a temperature 30 ° C. higher than the end of the melting peak at a heating rate of 10 ° C./min, the first DSC curve includes 2 Having a crystal structure in which a melting peak having an apex temperature does not appear on the higher temperature side (excluding the reference apex temperature) than the reference apex temperature based on the apex temperature of the melting peak of the second DSC curve, or A melting peak having an apex temperature appears on a higher temperature side (excluding the reference apex temperature) than the reference apex temperature, and the melting peak calorie has a crystal structure of less than 1 J / g; crystallinity is not less than 20%, and polylactic acid resin foamed bead molded article, wherein Rukoto which have a fusion-enhancing layers on the surface of the expanded beads.
前記発泡粒子成形体が厚み10mm以下の薄肉部を有することを特徴とする請求項1に記載のポリ乳酸系樹脂発泡粒子成形体。
The said foaming particle molded object has a thin part 10 mm or less in thickness, The polylactic acid-type resin expanded particle molded object of Claim 1 characterized by the above-mentioned.
JP2015110220A 2015-05-29 2015-05-29 Polylactic acid resin foamed molded article Active JP6583909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110220A JP6583909B2 (en) 2015-05-29 2015-05-29 Polylactic acid resin foamed molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015110220A JP6583909B2 (en) 2015-05-29 2015-05-29 Polylactic acid resin foamed molded article

Publications (2)

Publication Number Publication Date
JP2016222807A JP2016222807A (en) 2016-12-28
JP6583909B2 true JP6583909B2 (en) 2019-10-02

Family

ID=57745521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110220A Active JP6583909B2 (en) 2015-05-29 2015-05-29 Polylactic acid resin foamed molded article

Country Status (1)

Country Link
JP (1) JP6583909B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836866B2 (en) 2016-09-16 2021-03-03 株式会社ジェイエスピー Crosslinked foamed particles and their molded product
JP6378730B2 (en) * 2016-10-03 2018-08-22 株式会社ジェイエスピー Foamed particle molding
JP6519813B2 (en) 2016-11-11 2019-05-29 株式会社ジェイエスピー Expanded particles and their compacts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164027A (en) * 1999-09-30 2001-06-19 Kanebo Ltd Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JP5044337B2 (en) * 2007-09-10 2012-10-10 株式会社ジェイエスピー Polylactic acid-based resin expanded particles and the expanded particles molded body
JP2010235835A (en) * 2009-03-31 2010-10-21 Kaneka Corp Thick aliphatic polyester-based resin foam molding and method for producing the same
JP2013014681A (en) * 2011-07-04 2013-01-24 Jsp Corp Automotive trim
CN103827184B (en) * 2011-09-28 2016-01-20 株式会社Jsp Based resin expanded beads and moulded work thereof
US20140336289A1 (en) * 2011-10-18 2014-11-13 Jsp Corporation Process for producing polylactic acid-based resin expanded beads

Also Published As

Publication number Publication date
JP2016222807A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5419243B2 (en) Polylactic acid-based resin expanded particles and molded body of polylactic acid-based resin expanded particles
JP5941052B2 (en) Method for producing polylactic acid-based resin expanded particles, and method for producing a molded article thereof
JP6356477B2 (en) Foamed particle molding
JP5717204B2 (en) Polylactic acid resin foamed particles and molded article of the foamed particles
JP5986096B2 (en) Method for producing foamed polylactic acid resin particles
JP5652859B2 (en) Composite laminate
JP5620733B2 (en) Method for producing foamed polylactic acid resin particles
JP6583909B2 (en) Polylactic acid resin foamed molded article
JP6611032B2 (en) Polylactic acid-based resin expanded particles and molded body of polylactic acid-based resin expanded particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190829

R150 Certificate of patent or registration of utility model

Ref document number: 6583909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250