JP2010235835A - Thick aliphatic polyester-based resin foam molding and method for producing the same - Google Patents

Thick aliphatic polyester-based resin foam molding and method for producing the same Download PDF

Info

Publication number
JP2010235835A
JP2010235835A JP2009086732A JP2009086732A JP2010235835A JP 2010235835 A JP2010235835 A JP 2010235835A JP 2009086732 A JP2009086732 A JP 2009086732A JP 2009086732 A JP2009086732 A JP 2009086732A JP 2010235835 A JP2010235835 A JP 2010235835A
Authority
JP
Japan
Prior art keywords
aliphatic polyester
polyester resin
resin foam
molded article
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009086732A
Other languages
Japanese (ja)
Inventor
Takeshi Sugiyama
武史 杉山
Takayuki Otokura
孝行 乙倉
Toshio Miyagawa
登志夫 宮川
Masaki Amano
正樹 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009086732A priority Critical patent/JP2010235835A/en
Publication of JP2010235835A publication Critical patent/JP2010235835A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick aliphatic polyester-based resin foam molding and a method for producing the same. <P>SOLUTION: In the aliphatic polyester-based resin foam molding, a content of a chloroform-insoluble component is 25% or more and a thickness is more than 60 mm and equal to or less than 200 mm. A heating process preferably comprises a preheating process and a main heating process. The aliphatic polyester-based resin foam molding is obtained by performing in-mold expansion molding when a molding space center temperature during the preheating process is more than Tg+30 (°C) and equal to or less than Tg+60 (°C), and the molding space center temperature during the main heating process is equal to or more than Tg+30 (°C) and equal to or less than Tg+60 (°C), assuming that a glass transition temperature of the aliphatic polyester-based resin is Tg. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、厚みのある脂肪族ポリエステル系樹脂発泡成形体とその製造方法に関する。   The present invention relates to a thick aliphatic polyester resin foam molded article and a method for producing the same.

一般的に、発泡成形体は、軽量性、断熱性、緩衝性等を活かして土木材料、建築材料、流通材料、自動車材料などとして広く使用されている。例えばブロック形状のように厚みがあるポリスチレン発泡成形体は、軽量で体積を嵩増しできることを活かし、土木用途や建材、自動車用用途として好適に用いられている。一方、この様な発泡成形体として生分解性を有する樹脂の適用がなされて来ており、例えば、特許文献1にはクロロホルム不溶分が5重量%以上である厚み60mmの脂肪族ポリエステル系樹脂発泡粒子成形体が125℃の成形温度で成形されたことが開示されている。特許文献2にはL体とD体からなる実質的に非晶性のポリ乳酸を主体とする発泡粒子をスチーム圧0.5kgf/cm3(約110℃)、10〜30秒処理し成形加工し、厚さが60mmの発泡成形体が得られたことが開示されている。 In general, foam molded articles are widely used as civil engineering materials, building materials, distribution materials, automobile materials and the like by taking advantage of lightness, heat insulation, buffering properties and the like. For example, a polystyrene foam molded body having a thickness like a block shape is suitably used for civil engineering applications, building materials, and automobile applications, taking advantage of its light weight and increased volume. On the other hand, a resin having biodegradability has been applied as such a foamed molded article. For example, Patent Document 1 discloses foaming of an aliphatic polyester resin having a thickness of 60 mm and having a chloroform-insoluble content of 5% by weight or more. It is disclosed that the particle compact was molded at a molding temperature of 125 ° C. In Patent Document 2, foamed particles mainly composed of non-crystalline polylactic acid composed of L-form and D-form are treated for 10 to 30 seconds with a steam pressure of 0.5 kgf / cm 3 (about 110 ° C.) and molded. However, it is disclosed that a foamed molded product having a thickness of 60 mm was obtained.

特許文献3には密度0.02〜0.30g/cm3、厚みが5mm以上のポリ乳酸系樹脂の発泡体を使用した畳が開示されている。しかし、具体的には実施例に発泡粒子を密閉金型に充填してスチーム成形機で水蒸気圧0.1MPa(約120℃)、20秒加熱して成形を行い、厚み50mmの発泡体が開示されているに過ぎない。特許文献4には、無架橋のポリ乳酸系樹脂組成物からなる発泡粒子を、ポリ乳酸のガラス転移温度を基準とした特定の条件に加熱した気体と接触させることにより、高発泡倍率の無架橋ポリ乳酸系樹脂発泡成形体が得られたことが開示されている。 Patent Document 3 discloses a tatami mat using a polylactic acid resin foam having a density of 0.02 to 0.30 g / cm 3 and a thickness of 5 mm or more. However, specifically, in the examples, a foam having a thickness of 50 mm is disclosed by filling foamed particles in a closed mold and molding with a steam molding machine by heating at a water vapor pressure of 0.1 MPa (about 120 ° C.) for 20 seconds. It has only been done. In Patent Document 4, non-crosslinked high foaming ratio is obtained by bringing expanded particles made of a non-crosslinked polylactic acid resin composition into contact with a gas heated to specific conditions based on the glass transition temperature of polylactic acid. It is disclosed that a polylactic acid-based resin foam molded article was obtained.

以上のように、生分解性を有している代表的な樹脂である脂肪族ポリエステル系樹脂発泡成形体において、厚み60mmを超える発泡成形体は、これまで具体的には報告されていない。   As described above, in the aliphatic polyester resin foam molded article that is a typical biodegradable resin, a foam molded article having a thickness exceeding 60 mm has not been specifically reported so far.

特開2001−49021号公報JP 2001-49021 A 特開2001−98104号公報JP 2001-98104 A 特開2004−156372号公報JP 2004-156372 A 特開2006−111704号公報JP 2006-111704 A

本発明の目的は、厚みのある脂肪族ポリエステル系樹脂発泡成形体とその製造方法を提供することにある。   An object of the present invention is to provide a thick aliphatic polyester resin foam molded article and a method for producing the same.

本発明者は、鋭意検討した結果、架橋された脂肪族ポリエステル系樹脂を用いることにより、厚みのある脂肪族ポリエステル系樹脂発泡成形体が得られることを見出し、本発明の完成に至った。   As a result of intensive studies, the present inventor has found that a thick aliphatic polyester resin foamed molded article can be obtained by using a crosslinked aliphatic polyester resin, and the present invention has been completed.

即ち、本発明は以下の構成よりなる。
〔1〕 クロロホルム不溶分が20%以上で、厚みが60mmを超え200mm以下である脂肪族ポリエステル系樹脂発泡成形体。
〔2〕 脂肪族ポリエステル系樹脂発泡成形体の表層部と中心部の最大引張り応力が、それぞれ0.35MPa以上2.0MPa以下であり、かつ、表層部の最大引張り応力と中心部の最大引張り応力の比が0.80以上1.20以下である〔1〕記載の脂肪族ポリエステル系樹脂発泡成形体。
〔3〕 見かけ密度が、0.014g/cm3以上0.050g/cm3以下である〔1〕または〔2〕記載の脂肪族ポリエステル系樹脂発泡成形体。
〔4〕 脂肪族ポリエステル系樹脂がポリ乳酸系樹脂である〔1〕〜〔3〕何れかに記載の脂肪族ポリエステル系樹脂発泡成形体。
〔5〕 脂肪族ポリエステル系樹脂を含んでなる脂肪族ポリエステル系樹脂発泡粒子を、閉鎖しうるが密閉しえない金型から構成される成形空間に充填し、加熱工程を経て得られることを特徴とする〔1〕〜〔4〕何れかに記載の脂肪族ポリエステル系樹脂発泡成形体の製造方法。
〔6〕 加熱工程が、予熱工程と本加熱工程を含んでなり、脂肪族ポリエステル系樹脂のガラス転移温度(Tg)としたときに、予熱工程時の成形空間中心温度が、Tg+30(℃)を超えTg+60(℃)以下、本加熱工程時の成形空間中心温度が、Tg+30(℃)以上Tg+60(℃)以下であることを特徴とする〔5〕記載の脂肪族ポリエステル系樹脂発泡成形体の製造方法。
〔7〕 加熱工程において使用する熱媒体として、水蒸気と空気の混合物を用いることを特徴とする〔6〕記載の脂肪族ポリエステル系樹脂発泡成形体の製造方法。
That is, the present invention has the following configuration.
[1] An aliphatic polyester resin foam molded article having a chloroform insoluble content of 20% or more and a thickness of more than 60 mm and 200 mm or less.
[2] The maximum tensile stress of the surface layer portion and the center portion of the aliphatic polyester resin foam molded article is 0.35 MPa or more and 2.0 MPa or less, respectively, and the maximum tensile stress of the surface layer portion and the maximum tensile stress of the center portion. The aliphatic polyester-based resin foam molded article according to [1], wherein the ratio is from 0.80 to 1.20.
[3] The aliphatic polyester resin foam molded article according to [1] or [2], wherein the apparent density is 0.014 g / cm 3 or more and 0.050 g / cm 3 or less.
[4] The aliphatic polyester resin foam molded article according to any one of [1] to [3], wherein the aliphatic polyester resin is a polylactic acid resin.
[5] The foamed aliphatic polyester resin particles containing the aliphatic polyester resin are filled into a molding space composed of a mold that can be closed but cannot be sealed, and obtained through a heating process. [1] to [4] A method for producing an aliphatic polyester resin foam molded article according to any one of [1] to [4].
[6] The heating process includes a preheating process and a main heating process. When the glass transition temperature (Tg) of the aliphatic polyester resin is used, the center temperature of the molding space during the preheating process is Tg + 30 (° C.). Exceeding Tg + 60 (° C.) or less, and the molding space center temperature during the heating step is Tg + 30 (° C.) or more and Tg + 60 (° C.) or less, The production of an aliphatic polyester resin foam molded article according to [5] Method.
[7] The method for producing an aliphatic polyester resin foam molded article according to [6], wherein a mixture of water vapor and air is used as a heat medium used in the heating step.

本発明の脂肪族ポリエステル系樹脂発泡成形体は、厚みがあるため、土木用途や建築用途、自動車用途等に好適に使用することが出来る。   Since the aliphatic polyester-based resin foam molded article of the present invention has a thickness, it can be suitably used for civil engineering applications, architectural applications, automobile applications, and the like.

本発明の製造方法によれば、厚みのある脂肪族ポリエステル系樹脂発泡成形体を簡便に製造することが出来る。   According to the production method of the present invention, a thick aliphatic polyester resin foam molded article can be produced easily.

本発明で使用する脂肪族ポリエステル系樹脂とは、脂肪族ポリエステルを主たる成分(50重量%以上)とするものをいい、例えば、ポリ乳酸を主たる成分とするポリ乳酸系樹脂、ポリ3−(ヒドロキシブチレート)、ポリ3−(ヒドロキシブチレートーコーバリレート)、ポリ3−(ヒドロキシブチレートーコーヘキサノエート)等を代表とするヒドロキシ酸重縮合物や、ポリカプロラクトン等のラクトンの開環重合物、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンサクシネートアジペート、ポリ(ブチレンアジペート/テレフタレート)等の脂肪族多価アルコールと脂肪族カルボン酸との重縮合物などが例示でき、それらの群より選ばれる少なくとも1種を用いることができる。   The aliphatic polyester resin used in the present invention refers to an aliphatic polyester as a main component (50% by weight or more). For example, a polylactic acid resin including polylactic acid as a main component, poly-3- (hydroxy Butyrate), poly-3- (hydroxybutyrate-covalerate), poly-3- (hydroxybutyrate-cohexanoate) and other hydroxy acid polycondensates, and ring-opening polymers of lactones such as polycaprolactone And polycondensates of aliphatic polyhydric alcohols such as polybutylene succinate, polybutylene adipate, polybutylene succinate adipate, poly (butylene adipate / terephthalate) and aliphatic carboxylic acid, etc., selected from these groups Can be used.

また、2以上の脂肪族ポリエステル系樹脂を混合して使用することもできるし、本発明の効果を阻害しない範囲においては、脂肪族ポリエステル系樹脂に他の樹脂を添加して基材樹脂とする事ができる。その時には基材樹脂中には脂肪族ポリエステル系樹脂が50重量%以上含まれることが好ましく、より好ましくは70重量%以上、更に好ましくは90重量%以上である。前記他の樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、アクリル系樹脂、ビニル系樹脂等が挙げられる。   In addition, two or more aliphatic polyester resins can be mixed and used, and, as long as the effects of the present invention are not impaired, other resins are added to the aliphatic polyester resin to form a base resin. I can do things. At that time, the base resin preferably contains 50% by weight or more of an aliphatic polyester resin, more preferably 70% by weight or more, and still more preferably 90% by weight or more. Examples of the other resins include polyethylene resins, polypropylene resins, polystyrene resins, polyester resins, acrylic resins, and vinyl resins.

これらの中でも、本発明の効果を得るには、脂肪族ポリエステル系樹脂として、ポリ乳酸系樹脂あるいはヒドロキシ酸重縮合物が好ましく、特にポリ乳酸系樹脂が環境に優しい点からもより好ましい。   Among these, in order to obtain the effects of the present invention, as the aliphatic polyester-based resin, a polylactic acid-based resin or a hydroxy acid polycondensate is preferable, and a polylactic acid-based resin is particularly preferable from the viewpoint of environmental friendliness.

ポリ乳酸系樹脂は、特に限定はないが、乳酸成分の異性体比率が5%以上、好ましくは8%以上であるポリ乳酸を主成分としたものであることが好ましい。当該範囲であれば、ポリ乳酸は非晶性であるため、発泡性、成形性の点から好ましい。   The polylactic acid-based resin is not particularly limited, but it is preferable that the main component is polylactic acid whose isomer ratio of the lactic acid component is 5% or more, preferably 8% or more. If it is the said range, since polylactic acid is amorphous, it is preferable from the point of foamability and moldability.

ポリ乳酸系樹脂の溶融粘度は、JIS K 7210(荷重2.16kg)に準拠したメルトインデックス(MI)値が0.1g/10分以上10g/10分以下であることが好ましい。MI値がこの範囲にあれば、生産性に優れ、発泡倍率の高い発泡成形体を得やすい傾向にあり、本発明の目的・効果を発現しやすい。   The melt viscosity of the polylactic acid resin preferably has a melt index (MI) value in accordance with JIS K 7210 (load 2.16 kg) of 0.1 g / 10 min or more and 10 g / 10 min or less. If the MI value is within this range, it tends to be easy to obtain a foamed molded article having excellent productivity and a high foaming ratio, and the objects and effects of the present invention are easily exhibited.

本発明の脂肪族ポリエステルの重量平均分子量は150000以上400000以下であることが好ましい。重量平均分子量が当該範囲であると成形性の良好な発泡粒子、外観の良好な発泡成形体が得られる傾向がある。   The weight average molecular weight of the aliphatic polyester of the present invention is preferably from 150,000 to 400,000. If the weight average molecular weight is within this range, expanded particles having good moldability and expanded molded articles having good appearance tend to be obtained.

本発明の脂肪族ポリエステル系樹脂発泡成形体は、クロロホルム不溶分が20重量%以上であり、好ましくは25%以上であり、より好ましくは30%以上である。クロロホルム不溶分が当該範囲であると、熱による粘度低下が緩やかになり、発泡粒子の発泡力と融着力のバランスが取りやすく、十分に内部融着した厚み60mmを超え200mm以下である脂肪族ポリエステル系樹脂発泡成形体が得られる。   The aliphatic polyester resin foam molded article of the present invention has a chloroform insoluble content of 20% by weight or more, preferably 25% or more, and more preferably 30% or more. When the insoluble content of chloroform is within the above range, the viscosity decrease due to heat becomes moderate, the balance between the foaming force and the fusion force of the foamed particles is easy to be achieved, and the aliphatic polyester having a thickness of more than 60 mm and not more than 200 mm sufficiently fused internally. -Based resin foam molding is obtained.

本発明において、クロロホルム不溶分は、以下のようにして測る発泡成形体約0.3gを精秤し重量W1とする。次に、成形体を入れるメッシュ(目合200)の重量を測定しとした。次に、メッシュ(W2(g))に発泡成形体を包み、クロロホルム95mlを入れたフラスコに入れ、8時間加熱還流する。その後、発泡成形体入りメッシュを60℃の真空乾燥機で一晩乾燥した後、発泡成形体入りメッシュの重量(W3(g))を測定し、下記の式から算出したものをクロロホルム不溶分とした。
クロロホルム不溶分(%)=(W3−W2)/W1×100
In the present invention, the chloroform-insoluble matter is precisely weighed about 0.3 g of the foamed molded product, measured as follows, to obtain a weight W 1 . Next, the weight of the mesh (mesh 200) into which the molded body was put was measured. Next, the foamed molded product is wrapped in a mesh (W 2 (g)), placed in a flask containing 95 ml of chloroform, and heated to reflux for 8 hours. Thereafter, the foam-molded mesh was dried overnight in a vacuum dryer at 60 ° C., and then the weight (W 3 (g)) of the foam-molded mesh was measured. It was.
Chloroform insoluble content (%) = (W 3 −W 2 ) / W 1 × 100

脂肪族ポリエステル系樹脂発泡成形体のクロロホルム不溶分が20重量%以上をするために、脂肪族ポリエステル系樹脂に架橋剤を添加し、架橋させておくことが好ましい。   In order for the chloroform-insoluble matter of the aliphatic polyester resin foamed molded article to be 20% by weight or more, it is preferable to add a crosslinking agent to the aliphatic polyester resin to cause crosslinking.

使用しうる架橋剤としては、例えば、ポリイソシアネート化合物、過酸化物、酸無水物、エポキシ化合物等、一般的な架橋剤が挙げられる。   Examples of the crosslinking agent that can be used include general crosslinking agents such as polyisocyanate compounds, peroxides, acid anhydrides, and epoxy compounds.

前記ポリイソシアネート化合物としては、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が使用可能であり、芳香族ポリイソシアネートとしては、トリレン、ジフェニルメタン、ナフチレン、トリフェニルメタンを骨格とするポリイソシアネート化合物が挙げられる。また、脂環族ポリイソシアネートとしては、イソホロン、水酸化ジフェニルメタンを骨格とするポリイソシアネート化合物が挙げられ、脂肪族ポリイソシアネートとしては、ヘキサメチレン、リジンを骨格とするポリイソシアネート化合物が挙げられる。   As the polyisocyanate compound, aromatic polyisocyanate, alicyclic polyisocyanate, aliphatic polyisocyanate, and the like can be used. An isocyanate compound is mentioned. Examples of the alicyclic polyisocyanate include polyisocyanate compounds having isophorone and diphenylmethane hydroxide as a skeleton, and examples of the aliphatic polyisocyanate include polyisocyanate compounds having hexamethylene and lysine as a skeleton.

前記過酸化物としては、ベンゾイルパーオキサイド、ビス(ブチルパーオキシ)トリメチルシクロヘキサン、ビス(ブチルパーオキシ)シクロドデカン、ブチルビス(ブチルパーオキシ)バレレート、ジクミルパーオキサイド、ブチルパーオキシベンゾエート、ジブチルパーオキサイド、ビス(ブチルパーオキシ)ジイソプロピルベンゼン、ジメチルジ(ブチルパーオキシ)ヘキサン、ジメチルジ(ブチルパーオキシ)ヘキシン、ブチルパーオキシクメン等の有機過酸化物が挙げられる。   Examples of the peroxide include benzoyl peroxide, bis (butylperoxy) trimethylcyclohexane, bis (butylperoxy) cyclododecane, butylbis (butylperoxy) valerate, dicumyl peroxide, butylperoxybenzoate, and dibutyl peroxide. And organic peroxides such as bis (butylperoxy) diisopropylbenzene, dimethyldi (butylperoxy) hexane, dimethyldi (butylperoxy) hexyne, and butylperoxycumene.

前記酸無水物としては、無水トリメリット酸、無水ピロメリット酸、エチレン−無水マレイン酸共重合体、メチルビニルエーテル−無水マレイン酸共重合体、スチレン−無水マレイン酸共重合体等が挙げられる。   Examples of the acid anhydride include trimellitic anhydride, pyromellitic anhydride, ethylene-maleic anhydride copolymer, methyl vinyl ether-maleic anhydride copolymer, styrene-maleic anhydride copolymer, and the like.

前記エポキシ化合物としては、グリシジルメタクリレート−メチルメタクリレート共重合体、グリシジルメタクリレート−スチレン共重合体、グリシジルメタクリレート−スチレン−ブチルアクリレート共重合体、ポリエチレングリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ヤシ脂肪酸グリシジルエステル、エポキシ化大豆油、エポキシ化アマニ油等の各種グリシジルエーテル及び各種グリシジルエステル等が挙げられる。   Examples of the epoxy compound include glycidyl methacrylate-methyl methacrylate copolymer, glycidyl methacrylate-styrene copolymer, glycidyl methacrylate-styrene-butyl acrylate copolymer, polyethylene glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, coconut fatty acid glycidyl. Examples thereof include various glycidyl ethers such as esters, epoxidized soybean oil, and epoxidized linseed oil, and various glycidyl esters.

これら架橋剤のうち、ポリイソシアネート化合物を用いることが好ましい。その理由は、ポリイソシアネート化合物を用いれば、混練時の架橋増粘によるトルクアップが少なく、混練後に水分の存在下で加熱することで尿素結合、ウレタン結合、アロファネート結合などによる後増粘が可能だからである。ポリイソシアネート化合物の中でも、汎用性、取り扱い性、耐候性等の観点からトリレン、ジフェニルメタン骨格とするポリイソシアネート化合物、特にジフェニルメタンのポリイソシアネートを使用することが好ましい。   Of these crosslinking agents, polyisocyanate compounds are preferably used. The reason is that if a polyisocyanate compound is used, torque increase due to cross-linking and thickening during kneading is small, and post-thickening due to urea bond, urethane bond, allophanate bond, etc. is possible by heating in the presence of moisture after kneading. It is. Among the polyisocyanate compounds, it is preferable to use a polyisocyanate compound having a tolylene or diphenylmethane skeleton, particularly a polyisocyanate of diphenylmethane, from the viewpoints of versatility, handleability, weather resistance, and the like.

前記架橋剤の添加量は、所望の溶融特性を得られるよう、架橋剤ごとに調整して決めることが出来る。その量は架橋剤の種類や官能基量によって異なるが、概ね脂肪族ポリエステル系樹脂100重量部に対して、0.1重量部以上6.0重量部以下であることが好ましく、より好ましくは0.2重量部以上5.0重量部以下、更に好ましくは0.5重量部以上4.0重量部以下である。   The addition amount of the crosslinking agent can be adjusted and determined for each crosslinking agent so as to obtain desired melting characteristics. The amount varies depending on the kind of the crosslinking agent and the amount of the functional group, but is preferably 0.1 parts by weight or more and 6.0 parts by weight or less, more preferably 0, with respect to 100 parts by weight of the aliphatic polyester resin. 2 parts by weight or more and 5.0 parts by weight or less, more preferably 0.5 parts by weight or more and 4.0 parts by weight or less.

例えば、脂肪族ポリエステル系樹脂として、重量平均分子量20万前後、多分散度2〜2.5程度のポリ乳酸系樹脂を使用し、これに対して、架橋剤として官能基数2〜3の芳香族系ポリイソシアネート化合物を用いる場合には、その含有量は、ポリ乳酸系樹脂100重量部に対して0.1重量部以上5重量部以下が好ましく、より好ましくは0.2重量部以上4重量部以下、更に好ましくは1.5重量部以上3.5重量部以下である。   For example, a polylactic acid resin having a weight average molecular weight of about 200,000 and a polydispersity of about 2 to 2.5 is used as the aliphatic polyester resin, whereas an aromatic having a functional group of 2 to 3 is used as a crosslinking agent. When the polyisocyanate compound is used, the content is preferably 0.1 part by weight or more and 5 parts by weight or less, more preferably 0.2 part by weight or more and 4 parts by weight or less with respect to 100 parts by weight of the polylactic acid resin. The amount is more preferably 1.5 parts by weight or more and 3.5 parts by weight or less.

脂肪族ポリエステル系樹脂には、気泡調整剤、着色剤等の添加剤を添加することが出来る。例えば、気泡調整剤としては、タルク、炭酸カルシウム、ホウ砂、ほう酸亜鉛、水酸化アルミニウム、ステアリン酸カルシウム等の無機物が例示でき、これらを予め、脂肪族ポリエステル系樹脂に添加することができる。気泡調整剤の添加量としては、脂肪族ポリエステル系樹脂100重量部に対して、0.001重量部以上10重量部以下であることが好ましい。   Additives such as a bubble regulator and a colorant can be added to the aliphatic polyester resin. For example, examples of the air conditioner include inorganic substances such as talc, calcium carbonate, borax, zinc borate, aluminum hydroxide, and calcium stearate, and these can be added to the aliphatic polyester resin in advance. The addition amount of the cell regulator is preferably 0.001 to 10 parts by weight with respect to 100 parts by weight of the aliphatic polyester resin.

着色剤としては顔料、例えば、黒、灰色、茶色、青色、緑色等の着色顔料又は染料が例示できる。着色剤としては、有機系、無機系の顔料、染料などが挙げられる。このような顔料及び染料としては、従来公知のものを用いることができる。   Examples of the colorant include pigments such as black, gray, brown, blue and green pigments or dyes. Examples of the colorant include organic and inorganic pigments and dyes. Conventionally known pigments and dyes can be used.

着色剤の添加量は着色の色によっても異なるが、通常、脂肪族ポリエステル系樹脂100重量部に対して、0.001重量部以上5重量部以下が好ましく、0.02重量部以上3重量部以下とすることがより好ましい。   The addition amount of the colorant varies depending on the color of the color, but is usually preferably 0.001 part by weight or more and 5 parts by weight or less, and 0.02 part by weight or more and 3 parts by weight or less with respect to 100 parts by weight of the aliphatic polyester resin More preferably, it is as follows.

また、脂肪族ポリエステル系樹脂中には、本発明の効果を損なわない程度であれば、その他、難燃剤、帯電防止剤、耐候剤などの添加剤を添加しても良い。   In addition, additives such as a flame retardant, an antistatic agent, and a weathering agent may be added to the aliphatic polyester resin as long as the effects of the present invention are not impaired.

脂肪族ポリエステル系樹脂に気泡調整剤、着色剤等の添加剤を添加する場合は、添加剤をそのまま脂肪族ポリエステル系樹脂に練り込むこともできるが、通常は分散性等を考慮して添加剤のマスターバッチを作り、それと脂肪族ポリエステル系樹脂とを混練することが好ましい。   When adding additives such as cell regulators and colorants to aliphatic polyester resins, the additives can be kneaded into the aliphatic polyester resins as they are, but usually the additives are taken into account dispersibility and the like It is preferable to make a masterbatch and knead it with an aliphatic polyester resin.

本発明の脂肪族ポリエステル系樹脂発泡成形体は、脂肪族ポリエステル系樹脂を含んでなる脂肪族ポリエステル系樹脂発泡粒子を、閉鎖しうるが密閉しえない金型から構成される成形空間に充填し、加熱工程を経て得るいわゆる、ビーズ法型内発泡成形法で得ることが好ましい。   The aliphatic polyester resin foam molded article of the present invention fills a molding space composed of a mold that can be closed but cannot be sealed with aliphatic polyester resin foam particles containing an aliphatic polyester resin. It is preferably obtained by a so-called bead method in-mold foam molding method obtained through a heating step.

脂肪族ポリエステル系樹脂を含んでなる脂肪族ポリエステル系樹脂発泡粒子を作製するには、
(a)粒子形状の脂肪族ポリエステル系樹脂に発泡剤を含浸させ、発泡性脂肪族ポリエステル系樹脂粒子とし、該発泡性脂肪族ポリエステル系樹脂粒子を加熱発泡させ発泡粒子とする方法、
(b)耐圧容器内で粒子形状の脂肪族ポリエステル系樹脂に発泡剤を含浸させ、低圧雰囲気下に放出することにより発泡粒子とする方法、
(c)脂肪族ポリエステル系樹脂を発泡剤とともに押出機中にて溶融混練し、押し出しながら、発泡させつつ或いは発泡完了後に発泡粒子形状に切断する方法、
(d)脂肪族ポリエステル系樹脂を発泡剤とともに押出機中にて溶融混練し、発泡させずに押し出しながら粒子形状に切断して、発泡性脂肪族ポリエステル系樹脂粒子とし、該発泡性脂肪族ポリエステル系樹脂粒子を加熱発泡させ、発泡粒子とする方法、
等の方法が挙げられる。
In order to produce an aliphatic polyester resin expanded particle comprising an aliphatic polyester resin,
(A) impregnating a particulate aliphatic polyester resin with a foaming agent to form expandable aliphatic polyester resin particles, and heating and foaming the expandable aliphatic polyester resin particles to form expanded particles;
(B) A method of impregnating an aliphatic polyester resin in the form of particles in a pressure-resistant container with a foaming agent and releasing the foamed particles under a low-pressure atmosphere,
(C) a method of melt-kneading an aliphatic polyester-based resin together with a foaming agent in an extruder, and extruding, foaming or cutting into a foamed particle shape after completion of foaming,
(D) The aliphatic polyester resin is melt-kneaded in an extruder together with a foaming agent, cut into a particle shape while being extruded without being foamed, to obtain expandable aliphatic polyester resin particles, and the expandable aliphatic polyester A method of heating and foaming resin-based resin particles to form expanded particles,
And the like.

本発明において使用しうる発泡剤としては、特に限定はなく従来公知のものが使用でき、プロパン、イソブタン、ノルマルブタン、イソヘキサン、ノルマルヘキサン、シクロブタン、シクロヘキサン、イソペンタン、ノルマルペンタン、シクロペンタン等の炭化水素系発泡剤;塩化メチル、塩化メチレン、ジクロロジフルオロメタン等のハロゲン化炭化水素系発泡剤;ジメチルエーテル、メチルエチルエーテル等のエーテル系発泡剤;窒素、二酸化炭素、アルゴン、空気等の無機系発泡剤等が挙げられ、1種または2種以上を併用して使用することが出来る。   The blowing agent that can be used in the present invention is not particularly limited and conventionally known blowing agents can be used, and hydrocarbons such as propane, isobutane, normal butane, isohexane, normal hexane, cyclobutane, cyclohexane, isopentane, normal pentane, cyclopentane, etc. -Based foaming agents; halogenated hydrocarbon foaming agents such as methyl chloride, methylene chloride, dichlorodifluoromethane; ether-based foaming agents such as dimethyl ether and methyl ethyl ether; inorganic foaming agents such as nitrogen, carbon dioxide, argon, air, etc. 1 type or 2 or more types can be used in combination.

ビーズ法型内発泡成形法によって発泡成形体を製造する場合、脂肪族ポリエステル系樹脂に対するガス散逸が少なく、発泡性粒子輸送が可能であり、所望の発泡性が得られる点から、炭化水素系発泡剤を使用することが好ましい。   When producing foamed molded products by the in-mold foam molding method using beads, hydrocarbon-based foaming is possible because there is little gas dissipation with respect to aliphatic polyester-based resin, foamable particle transport is possible, and desired foamability is obtained. It is preferable to use an agent.

発泡剤量としては、発泡剤の種類や所望の発泡倍率により調整することが出来るが、脂肪族ポリエステル系樹脂100重量部に対して、2重量部以上20重量部以下であることが好ましい。例えば、発泡倍率30倍以上の発泡粒子を得るためには、発泡性粒子を構成する脂肪族ポリエステル系樹脂100重量部に対して、発泡剤は4重量部以上であることが好ましい。   The amount of foaming agent can be adjusted depending on the type of foaming agent and the desired expansion ratio, but it is preferably 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the aliphatic polyester resin. For example, in order to obtain expanded particles having an expansion ratio of 30 times or more, the amount of the foaming agent is preferably 4 parts by weight or more with respect to 100 parts by weight of the aliphatic polyester resin constituting the expandable particles.

脂肪族ポリエステル系樹脂発泡粒子の嵩密度は、0.014g/cm3以上0.050g/cm3以下が好ましく、0.016g/cm3以上0.048g/cm3以下がより好ましく、0.018g/cm3以上0.046g/cm3以下がさらに好ましい。当該範囲内の嵩密度の発泡粒子であれば軽量で厚みのある脂肪族ポリエステル系樹脂発泡成形体が得られる傾向がある。なお、脂肪族ポリエステル系樹脂発泡粒子の嵩密度はJIS K6911に準拠して測定されたものであり、下記式に基づいて脂肪族ポリエステル系樹脂発泡粒子の嵩密度を算出する。
脂肪族ポリエステル系樹脂発泡粒子の嵩密度(g/cm3)=〔試料を入れたメスシリンダの質量(g)−メスシリンダの質量(g)〕/〔メスシリンダの容量(cm3)〕
The bulk density of the expanded aliphatic polyester resin particles is preferably from 0.014 g / cm 3 or more 0.050 g / cm 3 or less, 0.016 g / cm 3 or more 0.048 g / cm 3 and more preferably less, 0.018 g / Cm 3 or more and 0.046 g / cm 3 or less is more preferable. If the foamed particles have a bulk density within the above range, a lightweight and thick aliphatic polyester resin foamed molded product tends to be obtained. In addition, the bulk density of the aliphatic polyester-based resin expanded particles is measured based on JIS K6911, and the bulk density of the aliphatic polyester-based resin expanded particles is calculated based on the following formula.
Bulk density of aliphatic polyester resin expanded particles (g / cm 3 ) = [mass cylinder mass (g) -mass cylinder mass (g)] / [meas cylinder capacity (cm 3 )]

以上のようにして得られた脂肪族ポリエステル系樹脂発泡粒子は、好ましくは、発泡粒子内外圧力差の緩和(養生とも呼ばれる)を行った後、成形空間に充填され、加熱工程を経て脂肪族ポリエステル系樹脂型内発泡成形体をなる。脂肪族ポリエステル系樹脂発泡粒子の2次発泡力が乏しい場合は、一般的な型内発泡成形に用いられる加圧充填、圧縮充填の方法のほか、空気、窒素、二酸化炭素などの無機ガスを脂肪族ポリエステル系樹脂発泡粒子に付与した後、型内発泡成形に供してもよい。   The aliphatic polyester resin expanded particles obtained as described above are preferably filled with a molding space after relaxation of the pressure difference between the inside and outside of the expanded particles (also referred to as curing), and then subjected to a heating process. A resin-based in-mold foam molding is obtained. When the secondary foaming power of the aliphatic polyester resin foamed particles is poor, in addition to the pressure filling and compression filling methods used in general in-mold foam molding, inorganic gases such as air, nitrogen and carbon dioxide are used as fat. After imparting to the polyester resin foam particles, they may be subjected to in-mold foam molding.

ここで、基材樹脂としてポリ乳酸系樹脂を使用し、ポリ乳酸系樹脂発泡粒子を製造する方法の一例を説明する。   Here, an example of a method for producing polylactic acid resin expanded particles using a polylactic acid resin as a base resin will be described.

まず、ポリ乳酸系樹脂からポリ乳酸系樹脂粒子を作製する。このポリ乳酸系樹脂粒子は従来公知の方法で作ることができ、例えば、ポリ乳酸系樹脂と、必要に応じて、架橋剤、その他添加剤を押出機で溶融混練した後、水中カッターやストランドカッター等で押出カットすることで得ることができる。ポリ乳酸系樹脂粒子の1個当りの重量は、0.05mg以上10mg以下が好ましく、より好ましくは0.1mg以上4mg以下である。粒子重量が前記範囲であれば、樹脂粒子の生産性が良好であり、成形空間への充填性が良好になる傾向がある。   First, polylactic acid resin particles are prepared from a polylactic acid resin. These polylactic acid resin particles can be produced by a conventionally known method. For example, after polylactic acid resin and, if necessary, a crosslinking agent and other additives are melt-kneaded with an extruder, an underwater cutter or a strand cutter is used. It can obtain by carrying out extrusion cutting by the above. The weight per polylactic acid resin particle is preferably 0.05 mg or more and 10 mg or less, more preferably 0.1 mg or more and 4 mg or less. When the particle weight is in the above range, the productivity of the resin particles is good and the filling property into the molding space tends to be good.

次にポリ乳酸系樹脂粒子に発泡剤を含浸させ、発泡性ポリ乳酸系樹脂粒子を得る。ポリ乳酸系樹脂粒子に発泡剤を含浸する方法としては、所望の発泡性が得られる発泡剤の存在下で、十分な圧力がかかる条件さえそろっていれば特に限定されるものではない。例えば、密閉容器内に水性媒体または非水性媒体を入れて、これに樹脂粒子と発泡剤を添加して、適度な温度、時間で攪拌することにより樹脂粒子に発泡剤を含浸させることが可能である。水性媒体で含浸を行う場合には、ポリ乳酸系樹脂は加水分解反応を受けやすい性質であることを考慮し、加水分解を抑制する工夫や短時間で含浸を終了させることが好ましい。   Next, the polylactic acid resin particles are impregnated with a foaming agent to obtain expandable polylactic acid resin particles. The method for impregnating the polylactic acid resin particles with the foaming agent is not particularly limited as long as sufficient pressure is applied in the presence of the foaming agent that provides the desired foamability. For example, it is possible to impregnate a resin particle with a foaming agent by placing an aqueous medium or a non-aqueous medium in an airtight container, adding resin particles and a foaming agent thereto, and stirring at an appropriate temperature and time. is there. When impregnating with an aqueous medium, it is preferable that the polylactic acid-based resin is easily subjected to a hydrolysis reaction, and it is preferable to end the impregnation in a short time with a device for suppressing hydrolysis.

なお、発泡剤の含浸では、安定した含浸性、発泡性を得るために含浸助剤、分散剤などを使用しても良い。含浸助剤としては、メタノール、エタノール、プロパノールなどのアルコール類に代表されるプロトン系溶剤、アセトン、メチルエチルケトンなどのケトン類、酢酸エチル、酢酸ブチル、ノルマルプロピルアセテートなどのエステル類、トルエン、キシレン等の芳香族炭化水素類、などに代表される非プロトン系溶剤、などが挙げられるが、水性媒体で含浸する場合はポリ乳酸系樹脂の加水分解を助長しない、非プロトン系溶剤を用いることが好ましい。前記分散剤としては、カチオン系界面活性剤、アニオン系界面活性剤、非イオン系界面活性剤等が挙げられる。また、水性媒体で含浸する場合は、樹脂粒子中への水の浸透を抑制する目的で、塩化ナトリウム、硫酸ナトリウム、炭酸ナトリウム、塩化カリウム、硫酸カリウム、炭酸カリウムなどの1価の金属塩、塩化マグネシウム、硫酸マグネシウムなどの2価の金属塩、硫酸アルミニウムなどの3価の金属塩、などの水溶性塩類などを添加することが好ましい。前記樹脂粒子中への水の浸透を抑制する目的で添加する水溶性塩類などの添加量は、水100重量部に対して5重量部以上20重量部以下が好ましく、7.5重量部以上20重量部以下がより好ましい。5重量部より少ないと発泡剤の含浸が不充分な場合があり、20重量部より多いと発泡剤が入りにくくなる場合がある。   In the impregnation with the foaming agent, an impregnation aid, a dispersing agent or the like may be used in order to obtain stable impregnation properties and foamability. Examples of the impregnation aid include proton solvents such as methanol, ethanol and propanol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, butyl acetate and normal propyl acetate, toluene and xylene. Examples include aprotic solvents such as aromatic hydrocarbons. When impregnated with an aqueous medium, it is preferable to use an aprotic solvent that does not promote hydrolysis of the polylactic acid resin. Examples of the dispersant include a cationic surfactant, an anionic surfactant, and a nonionic surfactant. In the case of impregnation with an aqueous medium, monovalent metal salts such as sodium chloride, sodium sulfate, sodium carbonate, potassium chloride, potassium sulfate, potassium carbonate, and chloride are used for the purpose of suppressing water penetration into the resin particles. It is preferable to add water-soluble salts such as divalent metal salts such as magnesium and magnesium sulfate, and trivalent metal salts such as aluminum sulfate. The amount of water-soluble salts added for the purpose of suppressing water penetration into the resin particles is preferably 5 parts by weight or more and 20 parts by weight or less, and 7.5 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of water. More preferred are parts by weight or less. When the amount is less than 5 parts by weight, the foaming agent may not be sufficiently impregnated, and when the amount is more than 20 parts by weight, the foaming agent may be difficult to enter.

或いは、発泡性ポリ乳酸系樹脂粒子を得る際に、押出機を用いてポリ乳酸系樹脂に発泡剤を含浸させることができ、その場合、ポリ乳酸系樹脂と、必要に応じて、架橋剤、その他添加剤を押出機へ投入し、さらに発泡剤を加え溶融混練した後、混練物を押出し、押出された混練物をカットして発泡性粒子を得ることができる。   Alternatively, when obtaining expandable polylactic acid-based resin particles, the polylactic acid-based resin can be impregnated with a foaming agent using an extruder. In that case, the polylactic acid-based resin and, if necessary, a crosslinking agent, Other additives are put into an extruder, and after adding a foaming agent and melt-kneading, the kneaded product is extruded, and the extruded kneaded product is cut to obtain expandable particles.

次に、発泡性ポリ乳酸系樹脂粒子を発泡させてポリ乳酸系樹脂発泡粒子を得る。このような方法としては、例えば、発泡性ポリ乳酸系樹脂粒子を蒸気や熱風、高周波等によって加熱発泡する方法、樹脂粒子を密閉容器内において発泡剤の存在下で分散媒に分散させるとともに、その内容物を加熱して樹脂粒子を軟化させてその粒子内に発泡剤を含浸させ、次いで容器の一端を開放し、容器内圧力を発泡剤の蒸気圧以上の圧力に保持しながら樹脂粒子と分散媒とを同時に容器内よりも低圧の雰囲気(通常は大気圧下)に放出して発泡させる方法、ポリ乳酸系樹脂と、必要に応じて、架橋剤、その他添加剤を押出機で溶融させると共に、発泡剤と混練して発泡性溶融混練物とし、次いでストランド状に押出して発泡させると共に、冷却後適当な長さに切断するか又はストランドを適当な長さに切断後冷却することによって発泡粒子を製造する方法、等が挙げられる。中でも、発泡性粒子輸送が可能であり、操作も簡便であるという点から、発泡性ポリ乳酸系樹脂粒子を蒸気や熱風、高周波等によって加熱発泡する方法が好ましい。   Next, the foamable polylactic acid resin particles are expanded to obtain polylactic acid resin foam particles. As such a method, for example, a method in which foamable polylactic acid resin particles are heated and foamed with steam, hot air, high frequency, etc., and the resin particles are dispersed in a dispersion medium in the presence of a foaming agent in a sealed container, Heat the contents to soften the resin particles, impregnate the particles with the foaming agent, then open one end of the container and disperse with the resin particles while maintaining the pressure inside the container at a pressure higher than the vapor pressure of the foaming agent. Simultaneously releasing the foam into a low-pressure atmosphere (usually under atmospheric pressure) from the container and foaming it, melting the polylactic acid resin and, if necessary, the crosslinking agent and other additives in an extruder It is foamed by kneading with a foaming agent to form a foamable melt-kneaded product, then extruding into a strand shape and foaming, and cutting it to an appropriate length after cooling, or cutting the strand to an appropriate length and then cooling. Method of making a child, and the like. Among these, from the viewpoint that the expandable particles can be transported and the operation is simple, a method of heating and foaming the expandable polylactic acid resin particles with steam, hot air, high frequency, or the like is preferable.

以上のようにして、本発明において用いうる脂肪族ポリエステル系樹脂発泡粒子を製造することが出来る。   As described above, the aliphatic polyester resin expanded particles that can be used in the present invention can be produced.

脂肪族ポリエステル系樹脂発泡粒子を型内発泡成形することで厚みのある脂肪族ポリエステル系樹脂発泡成形体を得ることが好ましい。しかし、ポリ乳酸系樹脂に代表される脂肪族ポリエステル系樹脂は、ガラス転移温度(以下、Tgと表記する場合がある)近傍で急速に軟化して溶融張力で低下する傾向がある為、急速な温度上昇が、急激な内部気体の膨張に伴う内部圧の上昇と重なると一気に膨張し、成形空間内へ水蒸気等の熱媒体の侵入が妨げられるため内部融着不良の原因となる傾向がある。そこで、例えば、以下のような加熱工程を行うことで、脂肪族ポリエステル系樹脂発泡成形体の内部まで充分に融着し、60mmを超える厚みのある脂肪族ポリエステル系樹脂発泡成形体を得ることができる。   It is preferable to obtain a thick aliphatic polyester resin foamed molded article by foaming the aliphatic polyester resin foamed particles in-mold. However, aliphatic polyester-based resins typified by polylactic acid-based resins tend to rapidly soften near the glass transition temperature (hereinafter sometimes referred to as Tg) and decrease with melt tension. If the temperature rise overlaps with the rise in internal pressure accompanying rapid expansion of the internal gas, it expands all at once and tends to cause poor internal fusion because it prevents the heat medium such as water vapor from entering the molding space. Therefore, for example, by performing the following heating step, it is possible to obtain an aliphatic polyester resin foam molded article having a thickness exceeding 60 mm that is sufficiently fused to the inside of the aliphatic polyester resin foam molded article. it can.

例えば、
(1)通常発泡スチロールの成形に用いられる成形機やポリオレフィン系樹脂発泡粒子の成形に用いられる成形機において、閉鎖しうるが密閉しえない金型から構成される成形空間に脂肪族ポリエステル系樹脂発泡粒子を充填し、比較的低い温度の熱媒体を脂肪族ポリエステル系樹脂発泡粒子に接触させる、
(2)脂肪族ポリエステル系樹脂発泡粒子を充填した金型を100℃以下の温度に温調した水中に浸漬させる、
(3)脂肪族ポリエステル系樹脂発泡粒子を充填した金型に100℃以下の温度に温調した温水を流す、
等の加熱工程が挙げられる。この中でも(1)の方法が、既存の成形機を利用することが出来るため好ましい。
For example,
(1) Aliphatic polyester resin foaming in a molding space composed of a mold that can be closed but cannot be sealed in a molding machine usually used for molding polystyrene foam or a molding machine used for molding polyolefin resin foam particles Filling the particles and bringing a heat medium having a relatively low temperature into contact with the foamed aliphatic polyester resin particles,
(2) The mold filled with the aliphatic polyester resin expanded particles is immersed in water adjusted to a temperature of 100 ° C. or lower.
(3) Pour warm water adjusted to a temperature of 100 ° C. or lower through a mold filled with expanded foam of aliphatic polyester resin,
And the like, such as a heating step. Among these, the method (1) is preferable because an existing molding machine can be used.

発泡スチロールやポリオレフィン系樹脂発泡粒子の型内発泡成形法における加熱工程は、一般的には予熱工程と本加熱工程を含んでなる。予熱工程は、発泡粒子を型内に充填した際に出来る空間の空気を蒸気に置換し、発泡粒子の温度を上げる工程であり、本加熱工程は、続けて蒸気を与えることで発泡粒子を融着させる工程である。本発明においてこのような加熱工程を採用する場合、予熱工程時の成形空間中心温度がTg+30(℃)を超えTg+60(℃)以下であることが好ましく、Tg+33(℃)以上Tg+60(℃)以下がより好ましく、Tg+33(℃)以上Tg+55(℃)以下がさらに好ましい。   The heating process in the in-mold foam molding method of expanded polystyrene or polyolefin resin foamed particles generally includes a preheating process and a main heating process. The preheating process is a process in which the air in the space formed when the foam particles are filled in the mold is replaced with steam to raise the temperature of the foam particles, and in this heating process, the foam particles are melted by continuously applying steam. This is the process of wearing. When such a heating step is employed in the present invention, the molding space center temperature during the preheating step is preferably more than Tg + 30 (° C.) and not more than Tg + 60 (° C.), and more preferably Tg + 33 (° C.) or more and Tg + 60 (° C.) or less. More preferably, Tg + 33 (° C.) or higher and Tg + 55 (° C.) or lower is more preferable.

また、本加熱工程時の、成形空間中心温度が、Tg+30(℃)以上Tg+60(℃)以下であることが好ましく、Tg+33(℃)以上Tg+60(℃)以下がより好ましく、Tg+33(℃)以上Tg+55(℃)以下がさらに好ましい。なお、成形空間中心温度は、熱電対等を用いて測定することが出来る。   Moreover, it is preferable that the molding space center temperature at the time of this heating process is Tg + 30 (degreeC) or more and Tg + 60 (degreeC) or less, Tg + 33 (degreeC) or more and Tg + 60 (degreeC) or less are more preferable, Tg + 33 (degreeC) or more and Tg + 55. (° C.) or less is more preferable. The molding space center temperature can be measured using a thermocouple or the like.

このような成形空間中心温度とするためには、通常発泡スチロールの成形に用いられる成形機やポリオレフィン系樹脂発泡粒子の成形に用いられる成形機の蒸気ラインにエアラインをつなぎ合わせて、蒸気とエアを混合、または、バッファタンク等で蒸気とエアの混合することにより調整することが好ましい。   In order to achieve such a molding space center temperature, an air line is connected to a steam line of a molding machine usually used for molding foamed polystyrene or a molding machine used for molding polyolefin-based resin foamed particles, so that steam and air are supplied. It is preferable to adjust by mixing or mixing steam and air in a buffer tank or the like.

加熱工程時間としては、20秒以上400秒以下が好ましく、20秒以上380秒以下がより好ましく、20秒以上360秒以下がさらに好ましい。成形空間中心温度と接触時間が当該範囲であると、十分に内部融着した60mmを超える厚みの脂肪族ポリエステル系樹脂発泡成形体を得ることが出来る。   The heating process time is preferably 20 seconds or longer and 400 seconds or shorter, more preferably 20 seconds or longer and 380 seconds or shorter, and further preferably 20 seconds or longer and 360 seconds or shorter. When the molding space center temperature and the contact time are within the above ranges, an aliphatic polyester-based resin foam molded article having a thickness exceeding 60 mm that is sufficiently fused internally can be obtained.

また、脂肪族ポリエステル系樹脂発泡粒子の2次発泡力が乏しい場合は、一般的な型内発泡成形に用いられる加圧充填、圧縮充填の方法のほか、空気、窒素、二酸化炭素などの無機ガスを脂肪族ポリエステル系樹脂発泡粒子に付与してもよい。   In addition, when the secondary foaming power of the aliphatic polyester resin foam particles is poor, in addition to the pressure filling and compression filling methods used for general in-mold foam molding, inorganic gases such as air, nitrogen, carbon dioxide, etc. May be imparted to the aliphatic polyester resin expanded particles.

このようにして得られた脂肪族ポリエステル系樹脂発泡成形体の嵩密度としては、0.014g/cm3以上0.050g/cm3以下が好ましく、0.016g/cm3以上0.048g/cm3以下がより好ましく、0.018g/cm3以上0.046g/cm3以下がさらに好ましい。当該範囲であれば、軽量であるため好ましい。 The bulk density of the thus obtained aliphatic polyester resin expansion molding is preferably 0.014 g / cm 3 or more 0.050 g / cm 3 or less, 0.016 g / cm 3 or more 0.048 g / cm 3, more preferably less, more preferably 0.018 g / cm 3 or more 0.046 g / cm 3 or less. If it is the said range, since it is lightweight, it is preferable.

本発明の脂肪族ポリエステル系樹脂発泡成形体の厚みは、60mmを超え200mm以下であり、好ましくは、60mm以上180mm以下である。ここで、厚みとは、脂肪族ポリエステル系樹脂発泡成形体の広がり平面方向に対して垂直な方向のことである。ただし、ビーズ法型内発泡成形法によって製造された脂肪族ポリエステル系樹脂発泡成形体の場合には、型開き方向の発泡成形体の長さの最大値を言う。   The thickness of the aliphatic polyester resin foam molded article of the present invention is more than 60 mm and 200 mm or less, and preferably 60 mm or more and 180 mm or less. Here, the thickness is a direction perpendicular to the spreading plane direction of the aliphatic polyester-based resin foam molding. However, in the case of an aliphatic polyester resin foam molded article produced by a bead method in-mold foam molding method, it means the maximum length of the foam molded article in the mold opening direction.

本発明の脂肪族ポリエステル系樹脂発泡成形体は、発泡成形体の厚み方向に対し表面から30%までの厚みを「表層部」、30%から70%までの厚みを「中心部」とした時、表層部との中心部の最大引張り応力が、それぞれ0.35MPa以上2.0MPa以下であることが好ましく、より好ましくは0.35MPa以上1.8MPa以下、さらに好ましくは、0.35MPa以上1.6MPa以下であり、かつ表層部の最大引張り応力と中心部の最大引張り応力の比が0.80以上1.20以下であることが好ましい。   The aliphatic polyester-based resin foam molded article of the present invention has a thickness of 30% from the surface with respect to the thickness direction of the foam molded article as “surface layer part” and a thickness from 30% to 70% as “center part”. The maximum tensile stress at the center part with the surface layer part is preferably 0.35 MPa or more and 2.0 MPa or less, more preferably 0.35 MPa or more and 1.8 MPa or less, and further preferably 0.35 MPa or more and 1. It is preferable that it is 6 MPa or less, and the ratio of the maximum tensile stress of the surface layer part to the maximum tensile stress of the center part is 0.80 or more and 1.20 or less.

表層部と中心部の最大引張り応力が前記範囲であるとき、脂肪族ポリエステル系樹脂発泡成形体が充分に内部融着していると言える傾向がある。   When the maximum tensile stress of the surface layer portion and the central portion is within the above range, it can be said that the aliphatic polyester-based resin foam molded body is sufficiently fused internally.

以下、本発明の脂肪族ポリエステル系樹脂発泡成形体を具体的な実施例により詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、特に断りのない限り、「部」、「%」は重量基準である。   Hereinafter, although the aliphatic polyester-type resin foaming molding of this invention is demonstrated in detail by a specific Example, this invention is not limited only to this Example. Unless otherwise specified, “part” and “%” are based on weight.

<ガラス転移温度測定>
脂肪族ポリエステル系樹脂粒子約5mg秤量し、示差走査熱量測定装置(セイコーインスツルメンツ(株))にて0℃〜200℃を昇温速度10℃/minで昇温してガラス転移温度(℃)を測定した。
<Glass transition temperature measurement>
About 5 mg of aliphatic polyester resin particles are weighed, and the glass transition temperature (° C.) is raised by raising the temperature from 0 ° C. to 200 ° C. at a rate of temperature rise of 10 ° C./min with a differential scanning calorimeter (Seiko Instruments Inc.). It was measured.

<クロロホルム不溶分測定>
発泡成形体約0.3gを精秤し重量W1とする。次に、成形体を入れるメッシュ(目合200)の重量を測定しW2とした。次に、メッシュに成形体を包み、クロロホルム95mlを入れたフラスコに入れ、8時間加熱還流した。加熱還流した成形体入りメッシュを60℃の真空乾燥機で一晩乾燥した。乾燥した成形体入りメッシュの重量を測定し、W3とした。クロロホルム不溶分は下記の式から算出した。
クロロホルム不溶分(%)=(W3−W2)/W1×100
<Measurement of chloroform insoluble matter>
About 0.3 g of the foam molded product is precisely weighed to obtain a weight W 1 . Next, to measure the weight of the mesh (Mego 200) to put the molded body was W 2. Next, the molded body was wrapped in a mesh, placed in a flask containing 95 ml of chloroform, and heated to reflux for 8 hours. The molded mesh containing the heated reflux was dried overnight in a vacuum dryer at 60 ° C. The weight of the dried molded body containing mesh was measured and the W 3. The chloroform insoluble content was calculated from the following formula.
Chloroform insoluble content (%) = (W 3 −W 2 ) / W 1 × 100

<最大引張り応力測定>
脂肪族ポリエステル系樹脂発泡成形体の厚み方向の30%までの表層部と30%以上70%以下の中心部から、JIS K−6767に準拠したサイズに試験片を切り出し、該試験片を、引張圧縮試験機(ミネベア社製TG−20kN)を用い、JIS−K6767に準じて引張り試験を行い、得られた応力−歪曲線から最大引張り応力を求めた。
<Maximum tensile stress measurement>
From the surface layer part up to 30% in the thickness direction of the aliphatic polyester resin foam molded article and the center part of 30% or more and 70% or less, a test piece was cut out to a size according to JIS K-6767, and the test piece was pulled. Using a compression tester (TG-20kN, manufactured by Minebea), a tensile test was performed according to JIS-K6767, and the maximum tensile stress was determined from the obtained stress-strain curve.

<融着性評価>
表層部および中心部の最大引張り応力がそれぞれ0.35MPa以上2.0MPa以下であり、かつ表層部の最大引張り応力と中心部の最大引張り応力の比が0.80以上1.20以下である場合を、融着性が「良好」とした。それ以外の場合は融着性が「不良」とした。
<Fusability evaluation>
When the maximum tensile stress of the surface layer portion and the central portion is 0.35 MPa or more and 2.0 MPa or less, respectively, and the ratio of the maximum tensile stress of the surface layer portion and the maximum tensile stress of the central portion is 0.80 or more and 1.20 or less Was determined to be “good”. In other cases, the fusing property was “bad”.

(実施例1)
D体比率10%、MI値3.7g/10分のポリ乳酸樹脂100重量部とポリイソシアネート化合物(日本ポリウレタン(株)製、MR−200)2.0重量部を、二軸押出機(東芝機械製、TEM35B)を用いて、シリンダー温度185℃で溶融混練し、水中カッターを用いて約1mmφ(約1.5mg)のビーズ状のポリ乳酸系樹脂粒子を得た。得られたポリ乳酸系樹脂粒子のガラス転移温度(Tg)を測定した結果、60℃であった。
Example 1
100 parts by weight of a polylactic acid resin having a D-form ratio of 10% and an MI value of 3.7 g / 10 minutes and 2.0 parts by weight of a polyisocyanate compound (manufactured by Nippon Polyurethane Co., Ltd., MR-200) Using a TEM 35B) manufactured by Kikai, it was melt-kneaded at a cylinder temperature of 185 ° C., and about 1 mmφ (about 1.5 mg) bead-shaped polylactic acid resin particles were obtained using an underwater cutter. It was 60 degreeC as a result of measuring the glass transition temperature (Tg) of the obtained polylactic acid-type resin particle.

このポリ乳酸系樹脂粒子100重量部に対して、水100重量部、発泡剤として脱臭ブタン(ノルマルブタン/イソブタン重量比=7/3)12重量部、食塩10重量部、分散助剤としてポリオキシエチレンオレイルエーテル0.3重量部をオートクレーブに仕込み、84℃で90分間保持した。十分に冷却後取出し、乾燥して、ポリ乳酸系樹脂発泡性粒子を得た。得られたポリ乳酸系樹脂発泡性粒子の発泡剤含浸率は5.5%であった。   With respect to 100 parts by weight of the polylactic acid-based resin particles, 100 parts by weight of water, 12 parts by weight of deodorized butane (normal butane / isobutane weight ratio = 7/3) as a foaming agent, 10 parts by weight of sodium chloride, and polyoxy as a dispersion aid 0.3 parts by weight of ethylene oleyl ether was charged into an autoclave and maintained at 84 ° C. for 90 minutes. After sufficiently cooling, it was taken out and dried to obtain polylactic acid resin foamable particles. The resulting polylactic acid-based resin expandable particles had a blowing agent impregnation rate of 5.5%.

ポリ乳酸系樹脂発泡性粒子を予備発泡機(ダイセン工業製、BHP−300)に投入し、90℃の蒸気に40〜60秒間保持してポリ乳酸系樹脂発泡粒子を得た。得られたポリ乳酸系樹脂発泡粒子を風乾した後、篩を使用し融着粒子を分別した。分取されたポリ乳酸系樹脂発泡粒子の嵩倍率は0.025g/cm3であった。 The polylactic acid-based resin expandable particles were put into a pre-foaming machine (BHP-300, manufactured by Daisen Kogyo Co., Ltd.) and kept in a 90 ° C. vapor for 40 to 60 seconds to obtain polylactic acid-based resin expanded particles. The obtained polylactic acid-based resin foamed particles were air-dried, and then the fused particles were separated using a sieve. The bulk magnification of the separated polylactic acid-based resin expanded particles was 0.025 g / cm 3 .

発泡成形機(ダイセン工業製、KR−57)を一部改良し、蒸気とエアを混合したものが導入可能なようにした成形機を用い、300×520×100mm厚の金型を設置し、成形空間内部温度が、予熱工程時に95℃、本加熱工程時に95℃となるよう型内発泡成形を行い、密度0.025g/cm3のポリ乳酸系樹脂発泡成形体を得た。得られた発泡成形体を表層部と中心部に切り出し、引張り試験を行い、融着性評価を行った。その結果を表1に示す。 Using a molding machine in which a foam molding machine (made by Daisen Kogyo Co., Ltd., KR-57) is partially improved so that a mixture of steam and air can be introduced, a 300 × 520 × 100 mm thick mold is installed, In-mold foam molding was performed so that the molding space internal temperature was 95 ° C. during the preheating step and 95 ° C. during the main heating step, to obtain a polylactic acid resin foam molding having a density of 0.025 g / cm 3 . The obtained foamed molded product was cut into a surface layer portion and a center portion, subjected to a tensile test, and evaluated for fusing property. The results are shown in Table 1.

Figure 2010235835
Figure 2010235835

(実施例2)
成形空間内部温度が、予熱工程時に98℃、本加熱工程時に100℃となるように型内発泡成形した以外は実施例1と同様にし、得られた発泡成形体の融着性評価を行った。その結果を表1に示す。
(Example 2)
Fusing property evaluation of the obtained foamed molding was performed in the same manner as in Example 1 except that the molding space internal temperature was 98 ° C. during the preheating step and 100 ° C. during the main heating step. . The results are shown in Table 1.

(実施例3)
300×450×150mm厚の金型で型内発泡成形した以外は実施例1と同様にし、得られた発泡成形体の融着性評価を行った。その結果を表1に示す。
Example 3
Fusing property evaluation of the obtained foamed molded product was performed in the same manner as in Example 1 except that in-mold foam molding was performed with a 300 × 450 × 150 mm thick mold. The results are shown in Table 1.

(実施例4)
成形空間内部温度が、予熱工程時に82℃、本加熱工程時に85℃となるように型内発泡成形した以外は実施例1と同様にし、得られた発泡成形体の融着性評価を行った。その結果を表1に示す。
Example 4
Fusing property evaluation of the obtained foamed molding was performed in the same manner as in Example 1 except that the molding space internal temperature was 82 ° C. during the preheating step and 85 ° C. during the main heating step. . The results are shown in Table 1.

(実施例5)
成形空間内部温度が、予熱工程時に90℃、本加熱工程時に92℃となるように型内発泡成形した以外は実施例1と同様にし、得られた発泡成形体の融着性評価を行った。その結果を表1に示す。
(Example 5)
Fusing property evaluation of the obtained foamed molding was performed in the same manner as in Example 1 except that the molding space internal temperature was 90 ° C. during the preheating step and 92 ° C. during the main heating step. . The results are shown in Table 1.

(実施例6)
300×450×150mm厚の金型で蒸気のみを用いて、成形空間内部温度が予熱工程時に80℃、本加熱工程時に83℃として型内発泡成形した以外は実施例1と同様にし、得られた発泡成形体の融着性評価を行った。その結果を表1に示した。
(Example 6)
Obtained in the same manner as in Example 1 except that a 300 × 450 × 150 mm thick mold was used only with steam, and the molding space internal temperature was 80 ° C. during the preheating step and 83 ° C. during the main heating step. Evaluation of the fusing property of the foamed molded product was performed. The results are shown in Table 1.

(比較例1)
300×520×100mm厚の金型で蒸気のみを用い、蒸気圧0.1MPaGで60秒加熱し成形したが、予熱工程中(その時の成形空間内部温度は122℃であった)に樹脂が大きく収縮して成形体は得られなかった。
(Comparative Example 1)
The mold was 300 x 520 x 100 mm thick using only steam and heated for 60 seconds at a vapor pressure of 0.1 MPaG, but the resin was large during the preheating process (the molding space internal temperature was 122 ° C at that time). Shrinkage did not yield a molded product.

(比較例2)
ポリ乳酸樹脂にポリイソシアネート化合物を混錬しなかった以外は実施例1と同様にしたが、樹脂が収縮して成形体は得られなかった。
(Comparative Example 2)
Except that the polyisocyanate compound was not kneaded with the polylactic acid resin, the same procedure as in Example 1 was carried out.

(比較例3)
成形空間内部温度が、予熱工程時に75℃(導入蒸気温度は90℃)、本加熱工程時に85℃(導入蒸気温度は100℃)とした以外は実施例1と同様にしたが、成形直後に割れが発生し、成形体は得られなかった。
(Comparative Example 3)
The internal temperature of the molding space was the same as in Example 1 except that the temperature was 75 ° C. (introduction steam temperature was 90 ° C.) during the preheating process and 85 ° C. (introduction steam temperature was 100 ° C.) during the main heating process. Cracks occurred and no molded product was obtained.

クロロホルム不溶分が20%以上で、厚みが60mmを超え200mm以下である脂肪族ポリエステル系樹脂発泡成形体は、発泡体の厚みが要求される様々な分野で使用できる。   Aliphatic polyester resin foam molded products having a chloroform insoluble content of 20% or more and a thickness of more than 60 mm and not more than 200 mm can be used in various fields where the thickness of the foam is required.

Claims (7)

クロロホルム不溶分が20%以上で、厚みが60mmを超え200mm以下である脂肪族ポリエステル系樹脂発泡成形体。   An aliphatic polyester resin foamed molded article having a chloroform insoluble content of 20% or more and a thickness of more than 60 mm and not more than 200 mm. 脂肪族ポリエステル系樹脂発泡成形体の表層部と中心部の最大引張り応力が、それぞれ0.35MPa以上2.0MPa以下であり、かつ、表層部の最大引張り応力と中心部の最大引張り応力の比が0.80以上1.20以下である請求項1記載の脂肪族ポリエステル系樹脂発泡成形体。   The maximum tensile stress of the surface layer portion and the center portion of the aliphatic polyester resin foam molded article is 0.35 MPa or more and 2.0 MPa or less, respectively, and the ratio of the maximum tensile stress of the surface layer portion and the maximum tensile stress of the center portion is The aliphatic polyester resin foam molded article according to claim 1, which is 0.80 or more and 1.20 or less. 見かけ密度が、0.014g/cm3以上0.050g/cm3以下である請求項1または2記載の脂肪族ポリエステル系樹脂発泡成形体。 The aliphatic polyester resin foam molded article according to claim 1 or 2, wherein the apparent density is 0.014 g / cm 3 or more and 0.050 g / cm 3 or less. 脂肪族ポリエステル系樹脂がポリ乳酸系樹脂である請求項1から3何れか一項に記載の脂肪族ポリエステル系樹脂発泡成形体。   The aliphatic polyester resin foam molded article according to any one of claims 1 to 3, wherein the aliphatic polyester resin is a polylactic acid resin. 脂肪族ポリエステル系樹脂を含んでなる脂肪族ポリエステル系樹脂発泡粒子を、閉鎖しうるが密閉しえない金型から構成される成形空間に充填し、加熱工程を経て得られることを特徴とする請求項1〜4何れか一項に記載の脂肪族ポリエステル系樹脂発泡成形体の製造方法。   Claims characterized in that the aliphatic polyester-based resin foam particles containing the aliphatic polyester-based resin are filled in a molding space constituted by a mold that can be closed but cannot be sealed, and obtained through a heating step. Item 5. A method for producing an aliphatic polyester resin foam molded article according to any one of Items 1 to 4. 加熱工程が、予熱工程と本加熱工程を含んでなり、脂肪族ポリエステル系樹脂のガラス転移温度(Tg)としたときに、予熱工程時の成形空間中心温度が、Tg+30(℃)を超えTg+60(℃)以下、本加熱工程時の成形空間中心温度が、Tg+30(℃)以上Tg+60(℃)以下であることを特徴とする請求項5記載の脂肪族ポリエステル系樹脂発泡成形体の製造方法。   When the heating step includes a preheating step and a main heating step, and the glass transition temperature (Tg) of the aliphatic polyester resin is determined, the molding space center temperature during the preheating step exceeds Tg + 30 (° C.) and Tg + 60 ( 6) The method for producing an aliphatic polyester resin foam molded article according to claim 5, wherein the molding space center temperature during the heating step is Tg + 30 (° C.) or more and Tg + 60 (° C.) or less. 加熱工程において使用する熱媒体として、水蒸気と空気の混合物を用いることを特徴とする請求項6に記載の脂肪族ポリエステル系樹脂発泡成形体の製造方法。   The method for producing an aliphatic polyester resin foam molded article according to claim 6, wherein a mixture of water vapor and air is used as a heat medium used in the heating step.
JP2009086732A 2009-03-31 2009-03-31 Thick aliphatic polyester-based resin foam molding and method for producing the same Pending JP2010235835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086732A JP2010235835A (en) 2009-03-31 2009-03-31 Thick aliphatic polyester-based resin foam molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086732A JP2010235835A (en) 2009-03-31 2009-03-31 Thick aliphatic polyester-based resin foam molding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010235835A true JP2010235835A (en) 2010-10-21

Family

ID=43090467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086732A Pending JP2010235835A (en) 2009-03-31 2009-03-31 Thick aliphatic polyester-based resin foam molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010235835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214636A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Method for producing polyester-based resin foamed body and polyester-based resin foamed body
JP2016222807A (en) * 2015-05-29 2016-12-28 株式会社ジェイエスピー Polylactic acid-based resin foam particle molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214636A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Method for producing polyester-based resin foamed body and polyester-based resin foamed body
JP2016222807A (en) * 2015-05-29 2016-12-28 株式会社ジェイエスピー Polylactic acid-based resin foam particle molded body

Similar Documents

Publication Publication Date Title
US7863343B2 (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
WO2007099833A1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JP2012007180A (en) Method of manufacturing polylactic acid resin foamed molding
JP6547628B2 (en) Polyethylene-based resin foam particles, polyethylene-based resin in-mold foam molded article and method for producing the same
CN103665583A (en) Propylene-ethylene high-melt-strength polypropylene foamed bead and preparation method thereof
JP2006298956A (en) Pre-expanded particle of modified polyethylene-based resin and method for producing the same
JPWO2009119325A1 (en) Aliphatic polyester resin foam, pedestal for flower arrangement comprising the foam, and method for producing them
JP2007186692A (en) Method for producing polylactic acid-based resin expandable beads
TWI410459B (en) Heat - resistant lightweight environmental protection package and its composition
JP2010235835A (en) Thick aliphatic polyester-based resin foam molding and method for producing the same
JP2008056869A (en) Polylactic acid-based expandable particle, expanded particle, and expanded molding therefrom
JP2008239728A (en) Method for producing polylactic acid foamed molding
JP6670850B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles and in-mold expanded molded article
WO2020201935A1 (en) Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article
JP6612764B2 (en) Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings
JP2011084593A (en) Method for producing styrene-modified polyethylene-based resin preliminary foamed particles
JP5536357B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam
JP2008214423A (en) Method for producing polylactic acid-based foam-molded article
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
JP2008214422A (en) Method for producing polylactic acid-based foam-molded article
JP2013181074A (en) Styrene-modified polyethylene resin particles, foamable composite resin particles, preliminary foamable particles, foaming molded product, and method of producing the preliminary foamable particles
JP2010111828A (en) Biodegradable resin molded article and method for producing the same
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JP2017179281A (en) Polypropylene resin foam particle, polypropylene resin in-mold foam molded body and manufacturing method therefor
JP2010207469A (en) Pedestal for flower arrangement, and method for manufacturing thereof