JP5044337B2 - Polylactic acid-based resin expanded particles and the expanded particles molded body - Google Patents

Polylactic acid-based resin expanded particles and the expanded particles molded body Download PDF

Info

Publication number
JP5044337B2
JP5044337B2 JP2007234066A JP2007234066A JP5044337B2 JP 5044337 B2 JP5044337 B2 JP 5044337B2 JP 2007234066 A JP2007234066 A JP 2007234066A JP 2007234066 A JP2007234066 A JP 2007234066A JP 5044337 B2 JP5044337 B2 JP 5044337B2
Authority
JP
Japan
Prior art keywords
particles
polylactic acid
resin
foamed
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007234066A
Other languages
Japanese (ja)
Other versions
JP2009062502A (en
Inventor
広輝 篠崎
秀浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2007234066A priority Critical patent/JP5044337B2/en
Publication of JP2009062502A publication Critical patent/JP2009062502A/en
Application granted granted Critical
Publication of JP5044337B2 publication Critical patent/JP5044337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Description

本発明は、発泡剤を含有するポリ乳酸系樹脂粒子を発泡させて得られるポリ乳酸系樹脂発泡粒子、及び該ポリ乳酸系樹脂発泡粒子を型内成形にて相互に融着させてなる発泡粒子成形体に関する。   The present invention relates to a polylactic acid resin foamed particle obtained by foaming polylactic acid resin particles containing a foaming agent, and foamed particles obtained by fusing the polylactic acid resin foamed particles to each other by in-mold molding. It relates to a molded body.

従来、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂等の汎用樹脂からなる発泡体は、軽量性、断熱性、緩衝性に優れていることから、多分野にわたって使用されてきた。一方、近年地球環境に対する意識が高まっており、石油資源の枯渇などの環境問題がクローズアップされる中、従来の石油資源を原料とする上記の汎用樹脂に変わって、植物由来のポリ乳酸系樹脂が注目されている。該ポリ乳酸系樹脂は、とうもろこし等の植物を出発原料として作られ、カーボンニュートラルの考え方から環境低負荷型の熱可塑性樹脂である。かかるポリ乳酸系樹脂は、今後汎用性が高まることが予想される。同様に、ポリ乳酸系樹脂は、環境に優しい植物由来の発泡用汎用樹脂として用いられることが期待されており、ポリ乳酸系樹脂を原料とする発泡体の研究が行なわれ、その一つとして発泡粒子成形体の開発が行なわれている。   Conventionally, foams made of general-purpose resins such as polyethylene resin, polypropylene resin, and polystyrene resin have been used in many fields because they are excellent in lightness, heat insulation, and buffering properties. On the other hand, in recent years, awareness of the global environment has increased, and environmental problems such as the exhaustion of petroleum resources have been raised. Instead of the above-mentioned general-purpose resins made from petroleum resources, plant-derived polylactic acid-based resins Is attracting attention. The polylactic acid-based resin is made from a plant such as corn as a starting material, and is an environment-friendly thermoplastic resin from the viewpoint of carbon neutral. Such polylactic acid-based resin is expected to increase versatility in the future. Similarly, polylactic acid based resins are expected to be used as environmentally friendly plant-derived general-purpose foaming resins. Research has been conducted on foams made from polylactic acid based resins. Particle compacts are being developed.

ポリ乳酸系樹脂からなる発泡体に関する先行技術として、ポリ乳酸等の脂肪族ポリエステルの結晶化度が0〜20%の範囲となるような温度範囲で揮発型発泡剤を吸収させ発泡性を有する発泡性樹脂粒子(特許文献1)、乳酸成分単位を50モル%以上含み、熱流束示差走査熱量測定における吸熱量と発熱量との差が0J/g以上30J/g未満であり、且つ該吸熱量が15J/g以上である発泡粒子(特許文献2)、融着性改良剤を含有してなるポリ乳酸系樹脂発泡粒子(特許文献3)、及び発泡粒子相互の融着性に優れ、低温(低圧スチーム)で型内成形が可能なポリ乳酸系樹脂発泡粒子及びその発泡粒子を用いて得られるポリ乳酸系樹脂発泡粒子成形体(特許文献4)が知られている.
上記ポリ乳酸系樹脂発泡粒子成形体は、比較的形状的な制約を受けずに所望の形状の発泡体を得ることができ、軽量性、緩衝性、断熱性などの目的に応じた物性設計も容易であるため実用性を有するものとして特に有望である。
As a prior art related to a foam made of a polylactic acid-based resin, a foam having foamability by absorbing a volatile foaming agent in a temperature range in which the degree of crystallinity of an aliphatic polyester such as polylactic acid is in the range of 0 to 20%. Resin particles (Patent Document 1), containing 50 mol% or more of lactic acid component units, the difference between the endothermic amount and the calorific value in heat flux differential scanning calorimetry is 0 J / g or more and less than 30 J / g, and the endothermic amount Particles having a particle size of 15 J / g or more (Patent Document 2), polylactic acid resin expanded particles containing a fusing property improver (Patent Document 3), and excellent fusibility between the expanded particles, and low temperature ( Polylactic acid resin expanded particles that can be molded in-mold with low-pressure steam) and polylactic acid resin expanded particles molded products obtained by using the expanded particles (Patent Document 4) are known.
The above-mentioned polylactic acid-based resin foamed particle molded body can obtain a foam having a desired shape without being subjected to relatively shape restrictions, and also has a physical property design according to the purpose such as lightness, shock-absorbing property and heat insulation. Since it is easy, it is particularly promising as having utility.

特開2000−136261号公報JP 2000-136261 A 特開2004−83890号公報JP 2004-83890 A 特開2006−282750号公報JP 2006-282750 A 特開2006−282753号公報JP 2006-282755 A

しかし、特許文献1等に記載のポリ乳酸系樹脂からなる発泡粒子成形体は発泡性樹脂粒子を金型内に充填し熱風により該樹脂粒子を発泡させると同時に粒子同士を相互に融着せしめたものであるため、発泡粒子成形体内の部分における密度ばらつきが比較的大きく、発泡粒子同士の融着性、寸法安定性が不充分で、機械的物性も不充分であるという問題点を有していた。   However, in the foamed particle molded body made of polylactic acid-based resin described in Patent Document 1 and the like, foamable resin particles are filled in a mold and the resin particles are foamed with hot air, and at the same time, the particles are fused to each other. Therefore, there is a problem that the density variation in the part within the foamed particle molded body is relatively large, the fusion property between the foamed particles, the dimensional stability is insufficient, and the mechanical properties are also insufficient. It was.

上記特許文献1等に記載の発泡粒子成形体の問題点を解決し、発泡粒子同士の融着性、寸法安定性等を改良することを目的として、本発明者等は特許文献2において、結晶性ポリ乳酸系樹脂を用いて、該ポリ乳酸系樹脂が結晶化していない状態の発泡粒子を製造し、該発泡粒子を用いて発泡粒子成形体を得ることを試みた。しかしながら、特許文献2に記載のポリ乳酸系樹脂発泡粒子は、型内成形時の発泡粒子相互の融着性、二次発泡性の点で改良が認められるものであったが、成形容易性を高めるために良好な成形体が得られる加熱温度範囲を広げることが望まれる。
更に本発明者らは、特許文献3、特許文献4において、ポリ乳酸系発泡樹脂粒子に特定の融着性改良剤を含有させることによって、低い成形温度で加熱して型内成形が可能となることを見出した。しかしながら、発泡粒子成形体の形状が複雑であると発泡粒子相互の融着が不十分になる、厚みが大きいと発泡粒子成形体の中心部の発泡粒子相互の融着が不十分になるなど、融着性の点で改善すべき余地を残すものであった。
In order to solve the problems of the foamed particle molded article described in Patent Document 1 and the like and to improve the fusion property between the foamed particles, dimensional stability, etc., the present inventors disclosed a crystal An expanded polylactic acid-based resin was used to produce expanded particles in a state where the polylactic acid-based resin was not crystallized, and an attempt was made to obtain a expanded particle molded body using the expanded particles. However, the polylactic acid-based resin expanded particles described in Patent Document 2 have been found to be improved in terms of the mutual fusing property and secondary expandability of the expanded particles during in-mold molding. In order to increase, it is desired to widen the heating temperature range in which a good molded body is obtained.
Furthermore, in Patent Documents 3 and 4, the present inventors include a specific fusing property improving agent in the polylactic acid-based foamed resin particles, whereby heating at a low molding temperature enables in-mold molding. I found out. However, if the shape of the foamed particle molded body is complicated, the fusion between the foamed particles becomes insufficient, and if the thickness is large, the fusion between the foamed particles at the center of the foamed particle molded body becomes insufficient. This left room for improvement in terms of fusibility.

本発明は、発泡粒子相互の融着性に優れ、大きい厚みを有する発泡粒子成形体や複雑な形状を有する発泡粒子成形体であっても発泡粒子相互の融着性に優れる発泡粒子成形体を得ることが可能である、発泡性ポリ乳酸系樹脂粒子を発泡させて得られるポリ乳酸系樹脂発泡粒子、及び該ポリ乳酸系樹脂発泡粒子を型内成形して得られるポリ乳酸系樹脂発泡粒子成形体を提供することを目的とする。   The present invention provides a foamed particle molded body having excellent fusion properties between foamed particles, and having a large thickness and a foamed particle molded body having a complicated shape, and having excellent fusion properties between foamed particles. Polylactic acid resin foam particles obtained by foaming expandable polylactic acid resin particles, and polylactic acid resin foam particles obtained by molding the polylactic acid resin foam particles in a mold The purpose is to provide a body.

本発明者らは上記課題に鑑みて鋭意検討した結果、結晶性ポリ乳酸系樹脂、或いは結晶性ポリ乳酸系樹脂と非結晶性ポリ乳酸系樹脂との混合樹脂を基材樹脂とするポリ乳酸系樹脂発泡粒子において、該発泡粒子の結晶化が全体的には進んでない状態のものであって、且つ該発泡粒子の中央部よりも該発泡粒子の表層部の結晶化が進んでおらず、該発泡粒子の表層の厚みが従来のものよりも厚いものが、上記課題を解決できることを見出し、本発明に到達した。   As a result of intensive studies in view of the above problems, the present inventors have found that a polylactic acid-based resin using a crystalline polylactic acid-based resin or a mixed resin of a crystalline polylactic acid-based resin and an amorphous polylactic acid-based resin as a base resin. In the resin foam particles, the crystallization of the foam particles is not progressed as a whole, and the crystallization of the surface layer portion of the foam particles is not proceeding more than the center portion of the foam particles. The present inventors have found that a foamed particle whose surface layer is thicker than the conventional one can solve the above problems, and has reached the present invention.

即ち、本発明によれば、以下の[1]及び[2]にそれぞれ示す、ポリ乳酸系樹脂発泡粒子、及びポリ乳酸系樹脂発泡粒子成形体が提供される。
[1]見かけ密度が0.02g/cm〜0.65g/cmであるポリ乳酸系樹脂発泡粒子であって、該ポリ乳酸系樹脂発泡粒子をJIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)が10J/g以上であり、
該熱流束示差走査熱量測定法に基づいて、熱処理を行うことなく、加熱速度2℃/minにて常温から融解ピーク終了時より30℃高い温度まで加熱したときに得られるDSC曲線における該ポリ乳酸系樹脂発泡粒子の吸熱量(Bendo:J/g)と発熱量(Bexo:J/g)、及び該ポリ乳酸系樹脂発泡粒子の表層部の発熱量(Bs:J/g)と中央部の発熱量(Bc:J/g)との関係が下式(1)及び(2)を共に満足し、
該ポリ乳酸系樹脂発泡粒子の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比(Ts/Tm)が5.0〜40.0であることを特徴とするポリ乳酸系樹脂発泡粒子。
(Bexo)/(Bendo)>0.3 (1)
(Bs)>(Bc) (2)
[2]上記 [1]に記載のポリ乳酸系樹脂発泡粒子を型内成形にて相互に融着させてなるポリ乳酸系樹脂発泡粒子成形体。
That is, according to the present invention, there are provided polylactic acid-based resin expanded particles and polylactic acid-based resin expanded particle molded bodies shown in the following [1] and [2], respectively.
[1] Apparent density is a polylactic acid-based resin foamed particles is 0.02g / cm 3 ~0.65g / cm 3 , are listed in the polylactic acid-based resin foamed particles to JIS K7122 (1987 year) Based on the heat flux differential scanning calorimetry, heated to 30 ° C higher than the end of the melting peak and melted, kept at that temperature for 10 minutes, then cooled to 110 ° C at a cooling rate of 2 ° C / min, After maintaining at that temperature for 120 minutes, after heat treatment to cool to 40 ° C. at a cooling rate of 2 ° C./min, heat again to a temperature 30 ° C. higher than the end of the melting peak at a heating rate of 2 ° C./min to melt. The endothermic amount (Rendo) in the DSC curve obtained at the time is 10 J / g or more,
Based on the heat flux differential scanning calorimetry, the polylactic acid in the DSC curve obtained when heated from room temperature to 30 ° C higher than the end of the melting peak at a heating rate of 2 ° C / min without heat treatment Endothermic amount (Bendo: J / g) and calorific value (Bexo: J / g), and calorific value (Bs: J / g) of the surface layer portion of the polylactic acid based resin foamed particles The relationship with the calorific value (Bc: J / g) satisfies both the following formulas (1) and (2),
Polylactic acid resin foam characterized in that the ratio (Ts / Tm) of average surface layer thickness (Ts) and average cell membrane thickness (Tm) of the polylactic acid resin foamed particles is 5.0 to 40.0. particle.
(Bexo) / (Bendo)> 0.3 (1)
(Bs)> (Bc) (2)
[2] A molded article of polylactic acid resin expanded particles obtained by fusing the polylactic acid resin expanded particles according to [1] to each other by in-mold molding.

以下、実施例における比較例に関する記載を除いて、本発明のポリ乳酸系樹脂発泡粒子をポリ乳酸系樹脂発泡粒子(B)又は、単に発泡粒子(B)もしくは発泡粒子ということがあり、本発明のポリ乳酸系樹脂発泡粒子成形体をポリ乳酸系樹脂発泡粒子成形体(C)又は、単に発泡粒子成形体(C)もしくは発泡粒子成形体ということがある。
また、発泡してポリ乳酸系樹脂発泡粒子(B)を得る前の発泡性ポリ乳酸系樹脂粒子を発泡性ポリ乳酸系樹脂粒子(A)、又は、単に発泡性ポリ乳酸系樹脂粒子、もしくは発泡性樹脂粒子ということがある。
尚、ポリ乳酸系樹脂発泡粒子(B)において、発泡粒子の表層部(以下、表層部(S)ということがある。)とは、発泡粒子の表面全面から、切り出し前の発泡粒子の重量の5分の1から3分の1の重量となるように、できるだけ均一な厚みで切り出される部分をいう。これに対して発泡粒子の中央部(以下、中央部(C)ということがある。)とは、発泡粒子の表面全面を、できるだけ均一な厚みで切り取り除去し、切り取り前の発泡粒子の重量の5分の1から3分の1の重量となる発泡粒子残部をいう。
また、発泡性ポリ乳酸系樹脂粒子(A)において、発泡性樹脂粒子の表層部を含む該表層部付近を表層部近傍といい、発泡性樹脂粒子の中央部を含む該中央部付近を中央部近傍という。
Hereinafter, the polylactic acid-based resin expanded particles of the present invention may be referred to as polylactic acid-based resin expanded particles (B), or simply expanded particles (B) or expanded particles, except for the description relating to comparative examples in the examples. The polylactic acid-based resin expanded particle molded body may be referred to as a polylactic acid-based resin expanded particle molded body (C), or simply a expanded particle molded body (C) or expanded particle molded body.
Further, the foamable polylactic acid resin particles before foaming to obtain the polylactic acid resin foam particles (B) can be expanded foamed polylactic acid resin particles (A), or simply foamable polylactic acid resin particles, or foamed. Sometimes referred to as conductive resin particles.
Incidentally, in the polylactic acid-based resin foamed particles (B), the surface layer portion of the expanded beads (hereinafter sometimes referred to the surface layer portion (S B).) And the weight of the entire surface of the expanded beads, cut before the foamed particles The portion is cut out with a thickness as uniform as possible so that the weight is 1/5 to 1/3. On the other hand, the center part of the foamed particles (hereinafter sometimes referred to as the center part (C B )) is the entire surface of the foamed particles cut out with a uniform thickness as much as possible, and the weight of the foamed particles before cutting out. The remainder of the expanded particles is 1/5 to 1/3 of the weight.
In the expandable polylactic acid resin particles (A), the vicinity of the surface layer portion including the surface layer portion of the expandable resin particles is referred to as the vicinity of the surface layer portion, and the vicinity of the center portion including the center portion of the expandable resin particles is the center portion. It is called neighborhood.

上記ポリ乳酸系樹脂発泡粒子(B)は、(Bexo)/(Bendo)比が0.3を超えることから、発泡粒子中で結晶化しうる領域のうち未結晶領域が略3割を超えて存在しており、かつ表層部(S)の結晶化に基づく発熱量(Bs:J/g)が中央部(C)の結晶化に基づく発熱量(Bc:J/g)を超える値であることから、相対的に中央部(C)の結晶化度が高く、表層部(S)の結晶化度が低い状態にあるため、型内成形において加熱された際、発泡粒子が相互に融着しやすいものとなるので、該ポリ乳酸系樹脂発泡粒子を相互に融着させてなるポリ乳酸系樹脂発泡粒子成形体は融着性の優れたものとなる。また、ポリ乳酸系樹脂発泡粒子(B)は、平均気泡膜厚み(Tm)に対して平均表層厚み(Ts)が大きいものであるので、ポリ乳酸系樹脂発泡粒子の加熱時の発泡粒子の収縮、破泡を抑制することができ発泡粒子の耐熱性が高いものとなるため、発泡粒子の型内成形時において良好な発泡粒子成形体が得られる加熱温度範囲が広がり、二次発泡性がさらに良好なものとなる。 Since the polylactic acid-based resin expanded particles (B) have a (Bexo) / (Bendo) ratio of more than 0.3, there are over 30% of uncrystallized regions among the regions that can be crystallized in the expanded particles. And the calorific value (Bs: J / g) based on the crystallization of the surface layer part (S B ) exceeds the calorific value (Bc: J / g) based on the crystallization of the central part (C B ) For this reason, since the crystallinity of the central portion (C B ) is relatively high and the crystallinity of the surface layer portion (S B ) is low, the foamed particles are mutually bonded when heated in in-mold molding. Therefore, the polylactic acid-based resin expanded particle molded body obtained by fusing the polylactic acid-based resin expanded particles to each other has excellent fusion properties. Further, since the polylactic acid-based resin expanded particles (B) have an average surface layer thickness (Ts) larger than the average cell membrane thickness (Tm), the shrinkage of the expanded particles during heating of the polylactic acid-based resin expanded particles Since foaming can be suppressed and the heat resistance of the foamed particles becomes high, the heating temperature range in which a good foamed particle molded body can be obtained during molding of the foamed particles is widened, and the secondary foamability is further increased. It will be good.

以下、本発明のポリ乳酸系樹脂発泡粒子(B)、及びポリ乳酸系樹脂発泡粒子成形体(C)について説明する。
本発明のポリ乳酸系樹脂発泡粒子(B)は、(イ)ポリ乳酸系樹脂粒子に物理発泡剤を含浸させ、(ロ)該発泡剤が含浸されたポリ乳酸系樹脂粒子から発泡剤の一部を逸散させ、次に(ハ)発泡剤の一部が逸散された発泡剤含浸ポリ乳酸系樹脂粒子を発泡させて本発明のポリ乳酸系樹脂発泡粒子(B)を製造することが可能である。
尚、上記樹脂粒子の製造の際に物理発泡剤を添加することにより、樹脂粒子の製造と該発泡剤の含浸を1つの工程で行うことも可能である。
本発明のポリ乳酸系樹脂発泡粒子成形体(C)は、ポリ乳酸系樹脂発泡粒子(B)を(ニ)型内成形することにより製造することが可能である。
先ず、ポリ乳酸系樹脂発泡粒子(B)の製造に使用するポリ乳酸系樹脂粒子について説明する。
Hereinafter, the polylactic acid-based resin expanded particles (B) and the polylactic acid-based resin expanded particles (C) of the present invention will be described.
The polylactic acid-based resin expanded particles (B) of the present invention are obtained by (i) impregnating a polylactic acid-based resin particle with a physical foaming agent, and (b) one of the foaming agents from the polylactic acid-based resin particle impregnated with the foaming agent. And (iii) foaming the foaming agent-impregnated polylactic acid resin particles in which part of the foaming agent is diffused to produce the polylactic acid resin foamed particles (B) of the present invention. Is possible.
In addition, by adding a physical foaming agent during the production of the resin particles, the production of the resin particles and the impregnation with the foaming agent can be performed in one step.
The polylactic acid-based resin expanded particle molded body (C) of the present invention can be produced by (III) in-mold molding of the polylactic acid-based resin expanded particles (B).
First, the polylactic acid-type resin particle used for manufacture of a polylactic acid-type resin expanded particle (B) is demonstrated.

〔1〕ポリ乳酸系樹脂粒子について
本発明の発泡性ポリ乳酸系樹脂粒子(A)の製造に使用するポリ乳酸系樹脂粒子は、基材樹脂に必要な添加剤等を配合して押出成形してペレタイズする、ストランドカット法、アンダーウォーターカット法等により製造することが可能である。
(1)基材樹脂
(イ)基材樹脂について
発泡性ポリ乳酸系樹脂粒子(A)の製造に用いられる基材樹脂であるポリ乳酸系樹脂は、樹脂中に乳酸に由来する単位を50モル%以上含むポリマーである。該ポリ乳酸系樹脂には、例えば、(a)乳酸の重合体、(b)乳酸と他の脂肪族ヒドロキシカルボン酸とのコポリマー、(c)乳酸と脂肪族多価アルコールと脂肪族多価カルボン酸とのコポリマー、(d)乳酸と他の脂肪族多価カルボン酸とのコポリマー、(e)乳酸と脂肪族多価アルコールとのコポリマー、(f)前記(a)〜(e)の何れかの組み合わせによる混合物等が包含される。尚、上記乳酸の具体例としては、L−乳酸、D−乳酸、DL−乳酸又はそれらの環状2量体であるL−ラクチド、D−ラクチド、DL−ラクチド又はそれらの混合物を挙げることができる。
[1] Polylactic acid-based resin particles The polylactic acid-based resin particles used in the production of the expandable polylactic acid-based resin particles (A) of the present invention are extruded by blending additives necessary for the base resin. Can be manufactured by a strand cutting method, an underwater cutting method, or the like.
(1) Base resin (a) About base resin The polylactic acid resin, which is a base resin used in the production of the expandable polylactic acid resin particles (A), contains 50 moles of units derived from lactic acid in the resin. % Containing polymer. Examples of the polylactic acid resin include (a) a polymer of lactic acid, (b) a copolymer of lactic acid and another aliphatic hydroxycarboxylic acid, and (c) lactic acid, an aliphatic polyhydric alcohol, and an aliphatic polyvalent carboxylic acid. A copolymer of an acid, (d) a copolymer of lactic acid and another aliphatic polyhydric carboxylic acid, (e) a copolymer of lactic acid and an aliphatic polyhydric alcohol, (f) any one of (a) to (e) The mixture by the combination of these, etc. is included. Specific examples of the lactic acid include L-lactic acid, D-lactic acid, DL-lactic acid or their cyclic dimer L-lactide, D-lactide, DL-lactide, or a mixture thereof. .

前記(b)における他の脂肪族ヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられる。また、前記(c)及び(e)における脂肪族多価アルコールとしては、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、デカメチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリトリット等が挙げられる。また、前記(c)及び(d)における脂肪族多価カルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジカルボン酸、無水コハク酸、無水アジピン酸、トリメシン酸、プロパントリカルボン酸、ピロメリット酸、無水ピロメリット酸等が挙げられる。   Examples of the other aliphatic hydroxycarboxylic acid in (b) include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, and hydroxyheptanoic acid. Examples of the aliphatic polyhydric alcohol in (c) and (e) include ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, decamethylene. Examples include glycol, glycerin, trimethylolpropane, and pentaerythritol. Examples of the aliphatic polyvalent carboxylic acid in (c) and (d) include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedicarboxylic acid, succinic anhydride, adipic anhydride, trimesic acid, and propanetricarboxylic acid. , Pyromellitic acid, pyromellitic anhydride and the like.

前記ポリ乳酸系樹脂の製造方法の具体例としては、例えば、乳酸又は乳酸と脂肪族ヒドロキシカルボン酸の混合物を原料として、直接脱水重縮合する方法(例えば、米国特許第5,310,865号明細書に開示されている製造方法)、乳酸の環状二量体(ラクチド)を重合する開環重合法(例えば、米国特許2,758,987号明細書に開示されている製造方法)、乳酸と脂肪族ヒドロキシカルボン酸の環状2量体、例えば、ラクチドやグリコリドとε−カプロラクトンを、触媒の存在下、重合する開環重合法(例えば、米国特許4,057,537号明細書に開示されている製造方法)、乳酸と脂肪族二価アルコールと脂肪族二塩基酸の混合物を、直接脱水重縮合する方法(例えば、米国特許第5,428,126号明細書に開示されている製造方法)、乳酸と脂肪族二価アルコールと脂肪族二塩基酸とポリマーを、有機溶媒存在下に縮合する方法(例えば、欧州特許出願公開第0712880号明細書に開示されている製造方法)、乳酸重合体を触媒の存在下、脱水重縮合反応を行うことによりポリエステル重合体を製造するに際し、少なくとも一部の工程で、固相重合を行う方法、等を挙げることができるが、その製造方法は、特に限定されない。また、少量のグリセリンのような脂肪族多価アルコール、ブタンテトラカルボン酸のような脂肪族多塩基酸、多糖類等のような多価アルコール類を共存させて、共重合させても良く、又ポリイソシアネート化合物等のような結合剤(高分子鎖延長剤)を用いて分子量を上げてもよい。また、ペンタエリスリトール等の多価脂肪族アルコールに代表される分岐化剤にて分岐化させたものであってもよい。   Specific examples of the method for producing the polylactic acid resin include, for example, a method of direct dehydration polycondensation using lactic acid or a mixture of lactic acid and aliphatic hydroxycarboxylic acid as a raw material (for example, US Pat. No. 5,310,865). And a ring-opening polymerization method for polymerizing a cyclic dimer (lactide) of lactic acid (for example, a production method disclosed in US Pat. No. 2,758,987), lactic acid and A ring-opening polymerization method (for example, disclosed in US Pat. No. 4,057,537) in which a cyclic dimer of an aliphatic hydroxycarboxylic acid, for example, lactide or glycolide and ε-caprolactone is polymerized in the presence of a catalyst. And a method of directly dehydrating polycondensation of a mixture of lactic acid, an aliphatic dihydric alcohol and an aliphatic dibasic acid (for example, disclosed in US Pat. No. 5,428,126). Production method), a method in which lactic acid, an aliphatic dihydric alcohol, an aliphatic dibasic acid and a polymer are condensed in the presence of an organic solvent (for example, the production method disclosed in European Patent Application No. 071880). In the production of a polyester polymer by performing a dehydration polycondensation reaction in the presence of a lactic acid polymer in the presence of a catalyst, a method of performing solid phase polymerization in at least a part of the steps can be mentioned. The method is not particularly limited. In addition, a small amount of an aliphatic polyhydric alcohol such as glycerin, an aliphatic polybasic acid such as butanetetracarboxylic acid, a polyhydric alcohol such as a polysaccharide may be coexisted and copolymerized. The molecular weight may be increased by using a binder (polymer chain extender) such as a polyisocyanate compound. Further, it may be branched with a branching agent typified by a polyhydric aliphatic alcohol such as pentaerythritol.

本発明における基材樹脂は、結晶性ポリ乳酸系樹脂(m)20〜100重量部と、非結晶性ポリ乳酸系樹脂(n)0〜80重量部とからなることが好ましい(但し、(m)と(n)との重量部の合計は100重量部である)。
基材樹脂中の結晶性ポリ乳酸系樹脂(m)の割合が20重量部未満の場合には、発泡性ポリ乳酸系樹脂粒子(A)を発泡後、得られるポリ乳酸系樹脂発泡粒子をさらに型内成形して得られる発泡粒子成形体の結晶性成分を高温養生などにより十分に結晶化させたとしても機械的物性と耐熱性が不十分となる虞がある。かかる観点から、基材樹脂中の結晶性ポリ乳酸系樹脂(m)の含有量は30重量部以上が好ましく、40重量部以上がより好ましい。
なお、本発明における基材樹脂は、結晶性ポリ乳酸系樹脂(m)20〜90重量部と非結晶性ポリ乳酸系樹脂(n)10〜80重量部の混合物であることが好ましく、結晶性ポリ乳酸系樹脂(m)30〜80重量部と非結晶性ポリ乳酸系樹脂(n)20〜70重量部の混合物であることが上記した観点から更に好ましく、結晶性ポリ乳酸系樹脂(m)40〜80重量部と非結晶性ポリ乳酸系樹脂(n)20〜60重量部の混合物であることが上記した観点から特に好ましい(但し、(m)と(n)との重量部の合計は100重量部である)。上記した範囲であれば、樹脂粒子を発泡後、得られる発泡粒子をさらに型内成形して得られる発泡粒子成形体の結晶性成分を高温養生などにより十分に結晶化させた場合に、十分な耐熱性を有する発泡粒子成形体とすることが可能となり、かつ非結晶性ポリ乳酸系樹脂も有するため、樹脂粒子を発泡後、得られる発泡粒子は融着性の高いものとなり、さらに二次発泡性を調整しやすいものとなる。
The base resin in the present invention is preferably composed of 20 to 100 parts by weight of a crystalline polylactic acid resin (m) and 0 to 80 parts by weight of an amorphous polylactic acid resin (n) (provided that (m ) And (n) are 100 parts by weight.
When the ratio of the crystalline polylactic acid-based resin (m) in the base resin is less than 20 parts by weight, the foamed polylactic acid-based resin particles (A) are expanded, and the obtained polylactic acid-based resin expanded particles are further Even if the crystalline component of the foamed particle molded body obtained by in-mold molding is sufficiently crystallized by high-temperature curing or the like, the mechanical properties and heat resistance may be insufficient. From this viewpoint, the content of the crystalline polylactic acid resin (m) in the base resin is preferably 30 parts by weight or more, and more preferably 40 parts by weight or more.
The base resin in the present invention is preferably a mixture of 20 to 90 parts by weight of a crystalline polylactic acid resin (m) and 10 to 80 parts by weight of an amorphous polylactic acid resin (n). From the above viewpoint, the polylactic acid resin (m) is preferably a mixture of 30 to 80 parts by weight of the polylactic acid resin (m) and 20 to 70 parts by weight of the noncrystalline polylactic acid resin (n). It is particularly preferable from the above-mentioned viewpoint that it is a mixture of 40 to 80 parts by weight and an amorphous polylactic acid-based resin (n) 20 to 60 parts by weight (however, the total of parts by weight of (m) and (n) is 100 parts by weight). If it is in the above-mentioned range, it is sufficient when the crystalline component of the foamed particle molded body obtained by foaming the resin particles and further molding the obtained foamed particles in a mold is sufficiently crystallized by high-temperature curing or the like. Since it is possible to make a foamed particle molded body having heat resistance and also has an amorphous polylactic acid resin, the foamed particles obtained after foaming the resin particles become highly fusible, and further secondary foamed It becomes easy to adjust the sex.

(ロ)基材樹脂の示差走査熱量測定における吸熱量
該基材樹脂であるポリ乳酸系樹脂は、上述したポリ乳酸系樹脂の中でも、後述する加熱速度2℃/minでの示差走査熱量測定における吸熱量が10J/g以上のものが好ましい。
吸熱量が10J/g以上であれば発泡性ポリ乳酸系樹脂粒子(A)を発泡後、更に型内成形して得られる発泡粒子成形体は、結晶化されることによって加熱雰囲気下での変形を起こし難くするための耐熱性、また剛性等を有するものとなり、かつ後述する該基材樹脂から得られるポリ乳酸系樹脂発泡粒子の中央部と表層部の結晶化度の差を広げることが容易となる。かかる観点から、吸熱量が15J/g以上のものがより好ましく、20J/g以上のものが更に好ましい。一方、その上限は特に限定する必要はないが、通常の基材樹脂の性状から、吸熱量は一般に70J/gである。
(B) Endothermic amount in differential scanning calorimetry of base resin The polylactic acid resin as the base resin is the above-mentioned polylactic acid resin in differential scanning calorimetry at a heating rate of 2 ° C./min described later. A heat absorption amount of 10 J / g or more is preferable.
If the endothermic amount is 10 J / g or more, the foamed particle molded body obtained by foaming the expandable polylactic acid-based resin particles (A) and further molded in-mold is deformed under heating atmosphere by being crystallized. It is easy to increase the difference in crystallinity between the central part and the surface layer part of the polylactic acid resin foamed particles obtained from the base resin described later. It becomes. From this viewpoint, the heat absorption is more preferably 15 J / g or more, and further preferably 20 J / g or more. On the other hand, the upper limit is not particularly limited, but the endothermic amount is generally 70 J / g from the properties of ordinary base resin.

上記のポリ乳酸系樹脂の示差走査熱量測定における吸熱量は、JIS K7122(1987年)に記載されている熱流束示差走査熱量測定に基づいて求めることができる。但し、ポリ乳酸系樹脂1〜4mgを試験片とし、試験片の状態調節及びDSC曲線の測定は以下の手順にて行う。試験片をDSC装置の容器に入れ、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線を得る。
尚、ポリ乳酸系樹脂の吸熱量は、図1に示すように、該DSC曲線の吸熱ピークの低温側のベースラインから吸熱ピークが離れる点を点aとし、吸熱ピークが高温側のベースラインへ戻る点を点bとして、点aと点bとを結ぶ直線と、DSC曲線に囲まれる部分の面積から求められる値とする。また、ベースラインはできるだけ直線になるように装置を調節することとし、図2に示すようにベースラインが湾曲してしまう場合は、吸熱ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから吸熱ピークが離れる点を点a、吸熱ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ吸熱ピークが戻る点を点bとする。
The endothermic amount in the differential scanning calorimetry of the polylactic acid-based resin can be determined based on the heat flux differential scanning calorimetry described in JIS K7122 (1987). However, 1 to 4 mg of polylactic acid resin is used as a test piece, and the condition adjustment of the test piece and the measurement of the DSC curve are performed according to the following procedure. Place the test piece in the container of the DSC apparatus, heat and melt to a temperature 30 ° C. higher than the end of the melting peak, hold at that temperature for 10 minutes, cool to 110 ° C. at a cooling rate of 2 ° C./min, After maintaining the temperature for 120 minutes, after heat treatment to cool to 40 ° C. at a cooling rate of 2 ° C./min, when again heating and melting to a temperature 30 ° C. higher than the end of the melting peak at a heating rate of 2 ° C./min To obtain the DSC curve obtained.
As shown in FIG. 1, the endothermic amount of the polylactic acid resin is defined as point a where the endothermic peak is separated from the low temperature side baseline of the endothermic peak of the DSC curve, and the endothermic peak reaches the high temperature side baseline. The return point is defined as a point b, and a value obtained from a straight line connecting the points a and b and an area of a portion surrounded by the DSC curve. Also, the device should be adjusted so that the baseline is as straight as possible. If the baseline is curved as shown in FIG. 2, the curved baseline on the low temperature side of the endothermic peak is the curved state of the curve. The point where the endothermic peak moves away from the curved low-temperature base line is point a, and the curved base line on the high-temperature side of the endothermic peak is maintained in the curved state of the curve. The point where the endothermic peak returns to the curved high temperature side baseline is drawn as point b.

なお、上記吸熱量の測定において、試験片の状態調節およびDSC曲線の測定条件として、110℃での120分間の保持、2℃/minの冷却速度および2℃/minの加熱速度を採用する理由は、ポリ乳酸試験片の結晶化を極力進ませて、結晶化しうる領域を完全に結晶化した状態、或いは、それに近い状態に調整されたものの吸熱量を該測定にて求めることを目的としている為である。以上、試験片としてポリ乳酸系樹脂を用いた場合について説明したが、発泡粒子を試験片として同様の手順にて発泡粒子の吸熱量(Rendo)を測定すると基材樹脂の吸熱量と同様の値となる。
本明細書における結晶性ポリ乳酸系樹脂とは、前述のポリ乳酸系樹脂の吸熱量の測定手順により得られるDSC曲線において10J/gを超える吸熱ピークが現れるものとする。なお、結晶性ポリ乳酸系樹脂の吸熱量は通常30〜70J/gである。また、本明細書における非結晶性ポリ乳酸系樹脂とは、前述のポリ乳酸系樹脂の吸熱量の測定手順により得られるDSC曲線において2J/g以下の吸熱ピークが現れるもの或いは吸熱ピークが現れないものである。
In addition, in the measurement of the endothermic amount, the reason for adopting the holding condition at 110 ° C. for 120 minutes, the cooling rate of 2 ° C./min, and the heating rate of 2 ° C./min as the condition adjustment of the test piece and the measurement condition of the DSC curve. Is intended to determine the endothermic amount of a polylactic acid test piece which has been adjusted to a state where the crystallizable region is completely crystallized or close to it, by maximizing the crystallization of the polylactic acid test piece. Because of that. As described above, the case where the polylactic acid resin is used as the test piece has been described. When the endothermic amount (Rendo) of the expanded particle is measured in the same procedure using the expanded particle as the test piece, the same value as the endothermic amount of the base resin is obtained. It becomes.
In the present specification, the crystalline polylactic acid-based resin has an endothermic peak exceeding 10 J / g in the DSC curve obtained by the above-described procedure for measuring the endothermic amount of the polylactic acid-based resin. The endothermic amount of the crystalline polylactic acid resin is usually 30 to 70 J / g. In addition, the non-crystalline polylactic acid resin in the present specification means that an endothermic peak of 2 J / g or less appears in the DSC curve obtained by the above-described procedure for measuring the endothermic amount of the polylactic acid resin, or no endothermic peak appears. Is.

(2)他の樹脂成分及び添加剤
本発明のポリ乳酸系樹脂発泡粒子(B)の製造に使用する基材樹脂には、本発明の目的、効果を阻害しない範囲において他の樹脂成分を配合することができる。ポリ乳酸系樹脂と他の樹脂との混合樹脂中にはポリ乳酸系樹脂が50重量%以上含まれることが好ましく、より好ましくは70重量%以上、更に好ましくは90重量%以上である。
尚、ポリ乳酸系樹脂と混合できる他の樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等が挙げられ、中でも脂肪族エステル成分単位を少なくとも35モル%含む生分解性脂肪族ポリエステル系樹脂が好ましい。この場合の脂肪族ポリエステル系樹脂としては、上記ポリ乳酸系樹脂以外のヒドロキシ酸重縮合物、ポリカプロラクトン等のラクトンの開環重合物、及びポリブチレンサクシネート,ポリブチレンアジペート,ポリブチレンサクシネートアジペート,ポリ(ブチレンアジペート/テレフタレート)等の脂肪族多価アルコールと脂肪族多価カルボン酸との重縮合物等が挙げられる。
本発明の基材樹脂は、例えば、黒、灰色、茶色、青色、緑色等の着色顔料又は染料を添加して着色したものであってもよい。着色した基材樹脂より得られた着色樹脂粒子を用いれば、着色された発泡粒子及びその成形体を得ることができる。
着色剤としては、有機系、無機系の顔料、染料などが挙げられる。このような、顔料及び染料としては、従来公知の各種のものを用いることができる。
(2) Other resin components and additives In the base resin used in the production of the polylactic acid-based resin expanded particles (B) of the present invention, other resin components are blended within a range that does not impair the purpose and effect of the present invention. can do. The mixed resin of the polylactic acid resin and other resin preferably contains 50% by weight or more of polylactic acid resin, more preferably 70% by weight or more, and further preferably 90% by weight or more.
Examples of other resins that can be mixed with the polylactic acid-based resin include polyethylene-based resins, polypropylene-based resins, polystyrene-based resins, polyester-based resins, etc. Among them, biodegradable containing at least 35 mol% of aliphatic ester component units. Aliphatic polyester resins are preferred. Examples of the aliphatic polyester resin in this case include hydroxy acid polycondensates other than the above polylactic acid resins, ring-opening polymers of lactones such as polycaprolactone, polybutylene succinate, polybutylene adipate, polybutylene succinate adipate , Polycondensates of aliphatic polyhydric alcohols such as poly (butylene adipate / terephthalate) and aliphatic polycarboxylic acids.
For example, the base resin of the present invention may be colored by adding a coloring pigment or dye such as black, gray, brown, blue, or green. If colored resin particles obtained from the colored base resin are used, colored foamed particles and molded articles thereof can be obtained.
Examples of the colorant include organic and inorganic pigments and dyes. As such pigments and dyes, various conventionally known pigments can be used.

また、基材樹脂には、気泡調整剤として、例えばタルク、炭酸カルシウム、ホウ砂、ほう酸亜鉛、水酸化アルミニウム、ステアリン酸カルシウム等の無機物や、ポリエチレンワックス、ポリプロピレンワックス等の有機物をあらかじめ配合することができる。
上記基材樹脂に着色顔料、染料又は無機物等の添加剤を配合する場合は、添加剤をそのまま基材樹脂にペレタイズ工程や発泡剤含浸工程において含有させることができるが、通常は分散性等を考慮して添加剤のマスターバッチを作り、それと基材樹脂とをペレタイズ工程において混練して基材樹脂中に添加剤を均一に含有させることが好ましい。着色顔料又は染料の配合量は着色の色によっても異なるが、通常、基材樹脂100重量部に対して0.001〜5重量部とするのが好ましい。また、無機物の配合量は、基材樹脂100重量部に対して0.001〜5重量部、更に0.02〜1重量部とすることが好ましい。上記無機物やポリエチレンワックス等の有機物を基材樹脂に配合することにより、発泡倍率の向上効果、気泡径の均一性向上や気泡径調整効果が期待できる。
また、前記方法により、難燃剤、帯電防止剤、耐候剤、増粘剤等の添加剤の配合も本発明の効果を妨げない範囲内で可能である。
In addition, the base resin may be premixed with an inorganic substance such as talc, calcium carbonate, borax, zinc borate, aluminum hydroxide, calcium stearate, or an organic substance such as polyethylene wax or polypropylene wax, as a foam regulator. it can.
When an additive such as a color pigment, dye, or inorganic substance is added to the base resin, the additive can be added to the base resin as it is in the pelletizing step or the blowing agent impregnation step. It is preferable to make a master batch of the additive in consideration and knead it and the base resin in a pelletizing step so that the additive is uniformly contained in the base resin. The blending amount of the color pigment or dye varies depending on the color of the color, but it is usually preferably 0.001 to 5 parts by weight with respect to 100 parts by weight of the base resin. Moreover, it is preferable that the compounding quantity of an inorganic substance shall be 0.001-5 weight part with respect to 100 weight part of base resin, and also 0.02-1 weight part. By blending an organic material such as the above inorganic material or polyethylene wax into the base resin, it is possible to expect an effect of improving the expansion ratio, an improvement in the uniformity of the cell diameter, and an effect of adjusting the cell diameter.
Further, by the above method, it is possible to add additives such as flame retardants, antistatic agents, weathering agents, thickeners and the like within a range not impeding the effects of the present invention.

(3)樹脂粒子の製造
樹脂粒子の製造においては、結晶性ポリ乳酸系樹脂を含有するポリ乳酸系樹脂で構成される基材樹脂を原料としてストランドカット法、アンダーウォーターカット法など周知のペレタイズ法を採用することにより得られる。その具体例としては、基材樹脂又は必要に応じて添加剤が配合された樹脂組成物を押出機に供給して、溶融、混練してストランド状に押出し、該ストランド状の押出物を水冷により冷却した後、所定の長さに切断するか、又は押出されたストランドを所定の長さに切断後または切断と同時に、冷却して、樹脂粒子を得る製造法を挙げることができる。
その他の樹脂粒子を製造する方法としては、基材樹脂を押出機を用いて溶融、混練した後、板状または塊状に押出し、該押出物を冷却プレス等により冷却した後、該冷却樹脂を破砕したり、格子状に破断することによっても得る方法など、周知の方法を採用することができる。尚、上記の樹脂粒子を製造する際の冷却は、以降の工程にて得られる発泡粒子の発熱量(Bexo)及び発泡粒子の吸熱量(Bendo)についての比(Bexo/Bendo)の調整の容易さの点から水没させる等により急冷することが好ましい。
(3) Production of resin particles In the production of resin particles, a known pelletizing method such as a strand cut method or an underwater cut method using a base resin composed of a polylactic acid resin containing a crystalline polylactic acid resin as a raw material. It is obtained by adopting. As a specific example, a base resin or a resin composition containing additives as necessary is supplied to an extruder, melted, kneaded, extruded into a strand, and the strand-shaped extrudate is cooled with water. Examples of the production method include obtaining the resin particles by cooling to a predetermined length or cooling the extruded strand after cutting to a predetermined length or simultaneously with the cutting.
Other resin particles can be produced by melting and kneading the base resin using an extruder, then extruding it into a plate or lump, cooling the extrudate with a cooling press or the like, and then crushing the cooling resin. For example, a well-known method such as a method obtained by breaking in a lattice shape can be employed. In addition, the cooling at the time of manufacturing the above resin particles is easy to adjust the ratio (Bexo / Bendo) of the heat generation amount (Bexo) of the foamed particles and the heat absorption amount (Bendo) of the foamed particles obtained in the subsequent steps. From this point, it is preferable to quench by submerging.

前記ストランド状の押出物を切断して得られる樹脂粒子平均直径(D)、及び[樹脂粒子平均長さ(L)/樹脂粒子平均直径(D)]は発泡方法、型形状等の条件により適宜、選択される。Dは、好ましくは0.1〜5mm、より好ましくは0.3〜4mmであり、L/Dは、好ましくは1.0〜1.5である。
また、樹脂粒子1個当りの平均重量は、生産性、発泡剤含浸性の観点から好ましくは0.05〜10mg、より好ましくは0.1〜4mgである。また該樹脂粒子の形状は特に制約されず、柱状(ペレット状)の他、球形状、棒状等の各種の形状にすることが可能である。
The resin particle average diameter (D) and [resin particle average length (L) / resin particle average diameter (D)] obtained by cutting the strand-like extrudate are appropriately determined depending on conditions such as foaming method and mold shape. Selected. D is preferably 0.1 to 5 mm, more preferably 0.3 to 4 mm, and L / D is preferably 1.0 to 1.5.
Moreover, the average weight per resin particle is preferably 0.05 to 10 mg, more preferably 0.1 to 4 mg from the viewpoints of productivity and foaming agent impregnation properties. The shape of the resin particles is not particularly limited, and can be various shapes such as a spherical shape and a rod shape in addition to a columnar shape (pellet shape).

基材樹脂を上記した通り押出機で溶融混練しストランド状等に押出す際に、基材樹脂が吸湿性を有する場合、該基材樹脂を予め乾燥させておくことが好ましい。多量の水分を吸収している樹脂を押出機に供給すると、樹脂粒子中に気泡が混入して得られた樹脂粒子を後工程で発泡して得られる発泡粒子の気泡の均一性に悪影響を及ぼしたり、樹脂粒子を得るために基材樹脂を押出機中で溶融混練する際に基材樹脂のメルトフローレイト(MFR)が極端に大きくなるなど物性低下が生じるおそれがある。
また、基材樹脂の劣化を抑制するために、ベント口付き押出し機を使用して、真空吸引して基材樹脂から水分を除去する方法も採用できる。また、基材樹脂の物性低下が生じないように、前記押出温度条件の上限温度を設定することも可能である。また、得られた樹脂粒子は高温、高湿条件下を避けて加水分解が進行しないような環境下で保存することが好ましい。
When the base resin is hygroscopic when the base resin is melt kneaded and extruded into a strand or the like as described above, it is preferable to dry the base resin in advance. If a resin that absorbs a large amount of water is supplied to the extruder, it will adversely affect the uniformity of the foamed foam bubbles obtained by foaming the resin particles obtained in the subsequent process. When the base resin is melt-kneaded in an extruder in order to obtain resin particles, the physical properties may be lowered, for example, the melt flow rate (MFR) of the base resin becomes extremely large.
In order to suppress deterioration of the base resin, a method of removing moisture from the base resin by vacuum suction using an extruder with a vent port can be employed. Moreover, it is also possible to set the upper limit temperature of the extrusion temperature condition so that the physical properties of the base resin do not deteriorate. The obtained resin particles are preferably stored in an environment where hydrolysis does not proceed by avoiding high temperature and high humidity conditions.

〔2〕ポリ乳酸系樹脂発泡粒子(B)について
本発明のポリ乳酸系樹脂発泡粒子(B)は、見かけ密度が0.02g/cm〜0.65g/cmであるポリ乳酸系樹脂発泡粒子であって、該ポリ乳酸系樹脂発泡粒子をJIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)が10J/g以上であり、該熱流束示差走査熱量測定法に基づいて熱処理を行うことなく、加熱速度2℃/minにて常温(常温とはおおむね23℃程度の温度をいう(以下同じ。)。)から融解ピーク終了時より30℃高い温度まで加熱したときに得られるDSC曲線における該ポリ乳酸系樹脂発泡粒子の吸熱量(Bendo:J/g)と発熱量(Bexo:J/g)、及び該ポリ乳酸系樹脂発泡粒子の表層部の発熱量(Bs:J/g)と中央部の発熱量(Bc:J/g)との関係が下式(1)及び(2)を共に満足し、該ポリ乳酸系樹脂発泡粒子の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比(Ts/Tm)が5.0〜40.0であることを特徴とする。
(Bexo)/(Bendo)>0.3 (1)
(Bs)>(Bc) (2)
[2] The polylactic acid resin foamed beads of the present invention for the polylactic acid-based resin foamed particles (B) (B) is polylactic acid resin foamed apparent density of 0.02g / cm 3 ~0.65g / cm 3 Based on the heat flux differential scanning calorimetry described in JIS K7122 (1987), the polylactic acid resin foamed particles are heated to a temperature 30 ° C. higher than the end of the melting peak and melted. After maintaining at that temperature for 10 minutes, cooling to 110 ° C. at a cooling rate of 2 ° C./min, holding at that temperature for 120 minutes, and then cooling to 40 ° C. at a cooling rate of 2 ° C./min. The endothermic amount (Rendo) in the DSC curve obtained when heating and melting at a heating rate of 2 ° C./min up to 30 ° C. higher than the end of the melting peak is 10 J / g or more, and the heat flux differential running A temperature that is 30 ° C. higher than the end of the melting peak from normal temperature (normal temperature refers to a temperature of about 23 ° C. (hereinafter the same)) at a heating rate of 2 ° C./min without heat treatment based on the calorimetric method. Endothermic amount (Bendo: J / g) and exothermic amount (Bexo: J / g) of the polylactic acid-based resin expanded particles in the DSC curve obtained when heated to 1, and the surface layer portion of the polylactic acid-based resin expanded particles The relationship between the calorific value (Bs: J / g) and the calorific value (Bc: J / g) at the center satisfies both the following formulas (1) and (2), and the average surface layer of the polylactic acid-based resin expanded particles The ratio (Ts / Tm) of the thickness (Ts) and the average cell membrane thickness (Tm) is 5.0 to 40.0.
(Bexo) / (Bendo)> 0.3 (1)
(Bs)> (Bc) (2)

(1)ポリ乳酸系樹脂発泡粒子(B)の製造
ポリ乳酸系樹脂発泡粒子(B)は、(イ)ポリ乳酸系樹脂粒子に物理発泡剤の含浸、(ロ)物理発泡剤の逸散、及び(ハ)発泡により製造することが可能である。
以下にポリ乳酸系樹脂発泡粒子(B)の製造例を記載する。
(イ)物理発泡剤の含浸
(イ−1)物理発泡剤
物理発泡剤としては、従来公知のもの、プロパン、イソブタン、ノルマルブタン、イソヘキサン、ノルマルヘキサン、シクロブタン、シクロヘキサン、イソペンタン、ノルマルペンタン、シクロペンタン、トリクロロフロロメタン、ジクロロジフロロメタン、クロロフロロメタン、トリフロロメタン、1,1,1,2−テトラフロロエタン、1−クロロ−1,1−ジフロロエタン、1,1−ジフロロエタン、1−クロロ−1,2,2,2−テトラフルオロエタン等の有機系物理発泡剤、もしくは窒素、炭酸ガス、アルゴン、空気、水等の無機系物理発泡剤、又はそれらから選択される2種以上の混合物が挙げられるが、なかでもオゾン層の破壊がなく且つ安価な無機系物理発泡剤が好ましく、その観点から、物理発泡剤が窒素、空気、又は炭酸ガスを主成分とすることがさらに好ましい。
(1) Production of polylactic acid-based resin expanded particles (B) Polylactic acid-based resin expanded particles (B) are obtained by (i) impregnating polylactic acid-based resin particles with a physical foaming agent, (b) dissipation of physical foaming agent, And (c) production by foaming.
Production examples of the polylactic acid resin expanded particles (B) will be described below.
(A) Impregnation of physical foaming agent (a-1) Physical foaming agent As the physical foaming agent, conventionally known ones, propane, isobutane, normal butane, isohexane, normal hexane, cyclobutane, cyclohexane, isopentane, normal pentane, cyclopentane. , Trichlorofluoromethane, dichlorodifluoromethane, chlorofluoromethane, trifluoromethane, 1,1,1,2-tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro- An organic physical foaming agent such as 1,2,2,2-tetrafluoroethane, or an inorganic physical foaming agent such as nitrogen, carbon dioxide, argon, air, water, or a mixture of two or more selected from them. Among them, an inorganic physical foaming agent that does not destroy the ozone layer and is inexpensive is preferable. From this viewpoint, it is more preferable that the physical foaming agent contains nitrogen, air, or carbon dioxide as the main component.

本発明においては、物理発泡剤の主成分が炭酸ガスであることが最も好ましい。物理発泡剤の主成分が炭酸ガスであれば、発泡性ポリ乳酸系樹脂粒子の基材樹脂であるポリ乳酸系樹脂との相溶性が高いので見かけ密度の小さい発泡粒子を得るのに適した発泡性ポリ乳酸系樹脂粒子となる。また、含浸された炭酸ガスは発泡性ポリ乳酸系樹脂粒子から適度な速度で逸散するので、本発明において物理発泡剤を逸散させるのに適しており、発泡性ポリ乳酸系樹脂粒子を発泡させて得られるポリ乳酸系樹脂発泡粒子の表層部と中央部の結晶化度を調整しやすくなる。前記「物理発泡剤の主成分が炭酸ガスである」とは、物理発泡剤の60mol%以上が炭酸ガスであることを意味し、より好ましくは、70mol%以上、さらに好ましくは80mol%以上である。   In the present invention, the main component of the physical foaming agent is most preferably carbon dioxide. If the main component of the physical foaming agent is carbon dioxide, it is highly compatible with the polylactic acid resin, which is the base resin of the expandable polylactic acid resin particles, so it is suitable for obtaining expanded particles with a low apparent density. Polylactic acid resin particles. Further, since the impregnated carbon dioxide gas escapes from the foamable polylactic acid resin particles at an appropriate rate, it is suitable for dissipating the physical foaming agent in the present invention, and the foamable polylactic acid resin particles are foamed. It becomes easy to adjust the crystallinity of the surface layer part and the center part of the polylactic acid-based resin foamed particles obtained by the treatment. The phrase “the main component of the physical foaming agent is carbon dioxide” means that 60 mol% or more of the physical foaming agent is carbon dioxide, more preferably 70 mol% or more, and even more preferably 80 mol% or more. .

(イ−2)物理発泡剤の含浸方法
次に、前記ポリ乳酸系樹脂粒子に物理発泡剤を含浸させる含浸例について説明する。物理発泡剤の含浸方法としては、ポリ乳酸系樹脂粒子を押出機によるペレタイズ工程にて製造する際に押出機中に物理発泡剤を圧入する方法により、ポリ乳酸系樹脂粒子の製造と該発泡剤の含浸を1つの工程で行うことも可能であるが、物理発泡剤の含浸量の調整、物理発泡剤の含浸温度の調整、発泡性樹脂粒子の後述する結晶化度の調整などの観点から、水性媒体中でポリ乳酸系樹脂粒子に物理発泡剤を含浸させる方法が好ましい。この場合、密閉容器内に水性媒体と樹脂粒子とを入れて、次いで密閉容器内に物理発泡剤を圧入して攪拌することにより樹脂粒子に物理発泡剤を含浸させることができる。
上記水性媒体としては、好ましくは水が使用され、より好ましくはイオン交換水が使用されるが、水に限らずポリ乳酸系樹脂を溶解せず且つ樹脂粒子の分散が可能な水性媒体であれば使用することができる。水以外の水性媒体としては、例えば、エチレングリコール、グリセリン、メタノール、エタノール等が挙げられる。水性媒体には、水と有機溶媒、例えば前記アルコールとの混合液が包含される。
尚、水性媒体として使用される水は上記したように、発泡剤として作用する場合もある。
物理発泡剤の含浸温度は、好ましくは10〜50℃、更に好ましくは20〜40℃である。
含浸の操作性と効率を考慮すると前記温度範囲が好ましい。また前記温度範囲であれば、樹脂粒子の結晶化度の調整が容易である。
また、樹脂粒子への物理発泡剤を含浸させる際における気相含浸時の樹脂粒子雰囲気、或いは液層含浸時の密閉容器気層部の物理発泡剤の圧力は、目的とする発泡粒子の見かけ密度(発泡倍率)によっても変わってくるが、通常は0.5〜5.0MPa(G)であり、含浸時間は0.2〜7時間程度である。
(I-2) Impregnation method of physical foaming agent Next, an impregnation example in which the polylactic acid resin particles are impregnated with a physical foaming agent will be described. As the impregnation method of the physical foaming agent, when the polylactic acid resin particles are produced in the pelletizing process by an extruder, the physical foaming agent is pressed into the extruder to produce the polylactic acid resin particles and the foaming agent. It is also possible to perform the impregnation in one step, but from the viewpoint of adjusting the impregnation amount of the physical foaming agent, adjusting the impregnation temperature of the physical foaming agent, adjusting the crystallinity of the foamable resin particles described later, and the like. A method in which polylactic acid resin particles are impregnated with a physical foaming agent in an aqueous medium is preferred. In this case, the resin particles can be impregnated with the physical foaming agent by placing the aqueous medium and the resin particles in the airtight container, and then pressing the physical foaming agent into the airtight container and stirring.
As the aqueous medium, water is preferably used, and more preferably ion-exchanged water. However, the aqueous medium is not limited to water, and any aqueous medium that does not dissolve the polylactic acid resin and can disperse the resin particles. Can be used. Examples of the aqueous medium other than water include ethylene glycol, glycerin, methanol, ethanol, and the like. The aqueous medium includes a mixed solution of water and an organic solvent such as the alcohol.
In addition, the water used as an aqueous medium may act as a foaming agent as described above.
The impregnation temperature of the physical foaming agent is preferably 10 to 50 ° C, more preferably 20 to 40 ° C.
Considering the operability and efficiency of impregnation, the above temperature range is preferable. Moreover, if it is the said temperature range, adjustment of the crystallinity degree of the resin particle is easy.
The pressure of the physical foaming agent in the gas phase impregnation during the gas phase impregnation when impregnating the resin particles with the physical foaming agent or the liquid layer impregnation is the apparent density of the target foamed particles. Although it varies depending on (foaming ratio), it is usually 0.5 to 5.0 MPa (G), and the impregnation time is about 0.2 to 7 hours.

(イ−3)発泡剤の含浸量
物理発泡剤の含浸量は、次の工程である物理発泡剤の逸散による逸散分も考慮した量を含浸させておく必要がある。物理発泡剤の含浸量は物理発泡剤含浸前のポリ乳酸系樹脂粒子100重量部に対して1〜30重量部、好ましくは2〜20重量部、更に好ましくは3〜15重量部である。含浸量が1重量部未満の場合には、物理発泡剤逸散後に加熱発泡させる際に樹脂粒子を十分に発泡させられないおそれがあり、一方、含浸量が30重量部を超える場合には、物理発泡剤の逸散の際に処理時間が長くかかったり、或いは樹脂粒子の結晶化が進行し易くなるため得られた発泡粒子の型内成形時の融着性が不十分になる虞がある。
樹脂粒子100重量部に対する物理発泡剤の含浸量(重量部)は下記(3)式により求められる。
物理発泡剤含浸量(重量部)=[(物理発泡剤含浸後のポリ乳酸系樹脂粒子重量−物理発泡剤含浸前のポリ乳酸系樹脂粒子重量)/物理発泡剤含浸前のポリ乳酸系樹脂粒子重量]×100(重量部)・・・(3)
上記(3)式における物理発泡剤含浸後のポリ乳酸系樹脂粒子の重量とは、物理発泡剤が含浸されて大気圧中に取り出されてから10分経過後に測定される物理発泡剤含浸ポリ乳酸系樹脂粒子の重量をいう。なお、密閉容器内にて水性媒体中でポリ乳酸系樹脂粒子に物理発泡剤を含浸させた場合の物理発泡剤含浸後のポリ乳酸系樹脂粒子の重量は、物理発泡剤含浸後、大気圧中に取り出して樹脂粒子表面の水分をエアーや遠心分離機などにて除去してから測定される物理発泡剤含浸ポリ乳酸系樹脂粒子の重量であり、大気圧中に取り出されてから10分経過後に測定される。
(A-3) Impregnation amount of foaming agent The impregnation amount of the physical foaming agent needs to be impregnated in an amount that also takes into account the dissipation due to the dissipation of the physical foaming agent, which is the next step. The impregnation amount of the physical foaming agent is 1 to 30 parts by weight, preferably 2 to 20 parts by weight, and more preferably 3 to 15 parts by weight with respect to 100 parts by weight of the polylactic acid resin particles before impregnation with the physical foaming agent. When the impregnation amount is less than 1 part by weight, there is a risk that the resin particles may not be sufficiently foamed when heated and foamed after the physical foaming agent escapes, while when the impregnation amount exceeds 30 parts by weight, When the physical foaming agent is dissipated, it takes a long time to process, or the crystallization of the resin particles is likely to proceed, so that there is a possibility that the obtained foam particles may have insufficient fusion properties during molding in the mold. .
The amount of impregnation (parts by weight) of the physical foaming agent with respect to 100 parts by weight of the resin particles is obtained by the following equation (3).
Physical foaming agent impregnation amount (parts by weight) = [(polylactic acid resin particle weight after physical foaming agent impregnation−polylactic acid resin particle weight before physical foaming agent impregnation) / polylactic acid resin particles before physical foaming agent impregnation Weight] × 100 (parts by weight) (3)
The weight of the polylactic acid-based resin particles impregnated with the physical foaming agent in the above formula (3) is the physical foaming agent-impregnated polylactic acid measured 10 minutes after the physical foaming agent is impregnated and taken out to the atmospheric pressure This refers to the weight of resin particles. The weight of the polylactic acid resin particles after impregnation with the physical foaming agent when the polylactic acid resin particles are impregnated with the physical foaming agent in an aqueous medium in an airtight container is the atmospheric pressure after impregnation with the physical foaming agent. It is the weight of the physical foaming agent impregnated polylactic acid resin particles measured after removing the moisture on the surface of the resin particles with air or a centrifuge, and after 10 minutes have passed since being taken out to atmospheric pressure. Measured.

(イ−4)物理発泡剤として炭酸ガスの使用をした場合
以下、物理発泡剤として炭酸ガスを使用する場合について説明する。
炭酸ガスの含浸量は、上記したのと同様に、ポリ乳酸系樹脂100重量部に対して1〜30重量部、好ましくは2〜20重量部、更に好ましくは3〜15重量部である。含浸量が前記1重量部未満の場合には、発泡剤逸散後の発泡の際に十分に樹脂粒子を発泡させられないおそれがあり、一方、含浸量が前記30重量部を超える場合には、次の発泡剤逸散の際に処理時間が長くかかったり、或いはポリ乳酸系樹脂中に炭酸ガスが含浸されるとガラス転移温度が低下する結果、相対的に結晶化速度が速くなるので、結晶化が過度に進行して後工程で得られる発泡粒子の型内成形時の融着性が不十分となる虞がある。
(A-4) When carbon dioxide gas is used as a physical foaming agent Hereinafter, a case where carbon dioxide gas is used as a physical foaming agent will be described.
The amount of carbon dioxide impregnation is 1 to 30 parts by weight, preferably 2 to 20 parts by weight, and more preferably 3 to 15 parts by weight with respect to 100 parts by weight of the polylactic acid resin, as described above. When the impregnation amount is less than 1 part by weight, there is a possibility that the resin particles may not be sufficiently foamed during foaming after dissipation of the foaming agent, while when the impregnation amount exceeds 30 parts by weight. When the next blowing agent escapes, the treatment time takes a long time, or when carbon dioxide gas is impregnated in the polylactic acid-based resin, the glass transition temperature is lowered, resulting in a relatively high crystallization speed. There is a possibility that crystallization proceeds excessively and the fusibility at the time of in-mold molding of the foamed particles obtained in the subsequent process becomes insufficient.

炭酸ガスの含浸温度は、上記したと同様に、好ましくは10〜50℃、更に好ましくは20〜40℃である。含浸の操作性と効率を考慮すると前記温度範囲が好ましい。また前記温度範囲であれば、樹脂粒子の結晶化を抑制するように調整することが容易である。
特に、発泡剤に炭酸ガスを使用する場合の含浸温度は、炭酸ガスの樹脂粒子に対する含浸量をX(重量%)とすると、(−0.6X+50)℃以下の温度であることが好ましい。(−0.6X+50)℃を超えると、特に結晶性の高いポリ乳酸系樹脂では結晶化が極端に進行して所定の発泡倍率が得られなくなる場合がある。また、後工程で得られる発泡粒子を型内成形する際に、発泡粒子の膨張性、発泡粒子相互の融着性が低下する場合にはより高温で成形しなければならず、それにより表面が凹凸状の発泡粒子成形体となる場合がある。
また、樹脂粒子への炭酸ガスを含浸させる際における気相含浸時の樹脂粒子雰囲気、或いは液層含浸時の密閉容器気層部の炭酸ガス発泡剤の圧力は、目的とする発泡粒子の見かけ密度(発泡倍率)によっても変わってくるが、通常は0.5〜5.0MPa(G)であり、含浸時間は0.2〜7時間程度である。
The carbon dioxide impregnation temperature is preferably 10 to 50 ° C., more preferably 20 to 40 ° C., as described above. Considering the operability and efficiency of impregnation, the above temperature range is preferable. Moreover, if it is the said temperature range, it will be easy to adjust so that crystallization of a resin particle may be suppressed.
In particular, when carbon dioxide is used as the foaming agent, the impregnation temperature is preferably (−0.6X + 50) ° C. or lower, where X (weight%) represents the amount of carbon dioxide impregnated with respect to the resin particles. When the temperature exceeds (−0.6X + 50) ° C., the crystallization is extremely advanced particularly in a highly crystalline polylactic acid resin, and a predetermined foaming ratio may not be obtained. In addition, when foamed particles obtained in a subsequent process are molded in the mold, if the expandability of the foamed particles and the fusion property between the foamed particles are reduced, the foamed particles must be molded at a higher temperature. In some cases, it may be an uneven foamed particle molded body.
In addition, the pressure of the carbon dioxide foaming agent in the gas phase impregnation at the time of gas phase impregnation when impregnating the resin particles with carbon dioxide or the liquid layer impregnation is the apparent density of the target foam particles. Although it varies depending on (foaming ratio), it is usually 0.5 to 5.0 MPa (G), and the impregnation time is about 0.2 to 7 hours.

(イ−5)融着性改良剤の使用
ポリ乳酸系樹脂粒子に発泡剤を含浸させる際に、ポリ乳酸系樹脂中に融着性改良剤を含有させなくとも、樹脂粒子を発泡させて得られたポリ乳酸系樹脂発泡粒子を成形する際に、融着性の高い発泡粒子成形体を製造することが可能であるが、発泡性ポリ乳酸系樹脂粒子(A)に発泡剤を含浸させる際に、更なる融着性向上を目的としてポリ乳酸系樹脂中に融着性改良剤を含有させることもできる。
融着性改良剤を含有する発泡性ポリ乳酸系樹脂粒子(A)を用いた場合、表層部近傍の融着性改良剤の含有量が発泡粒子中央部近傍の含有量より多いことがより好ましく、表層部近傍のみに融着性改良剤が存在することが更に好ましい。
ここで融着性改良剤とは、ポリ乳酸系樹脂に含有させることによりポリ乳酸系樹脂のガラス転移温度を低下させる機能を有するものをいう。具体的なガラス転移温度の低下度合は、使用する融着性改良剤の種類と量にもよるが、中間点ガラス転移温度を0.5〜20℃低下させるものが好ましく、1〜15℃低下させるものがより好ましい。尚、前記中間点ガラス転移温度は、後述する測定方法により測定される値である。
融着性改良剤としては、ポリ乳酸系樹脂の可塑剤として用いられているものが挙げられ、グリセリン脂肪酸エステル等のグリセリン誘導体、エーテルエステル誘導体、グリコール酸誘導体、クエン酸誘導体、アジピン酸誘導体、ロジン誘導体、テトラヒドロフルフリルアルコール誘導体から選ばれた単一または複数の混合物が好ましく挙げられる。
(A-5) Use of fusibility improver When impregnating a polylactic acid resin particle with a foaming agent, the resin particle is obtained by foaming the polylactic acid resin without containing the fusibility improver. When molding the foamed polylactic acid-based resin particles, it is possible to produce a foamed particle molded body having a high fusing property. When the foamable polylactic acid-based resin particles (A) are impregnated with a foaming agent, In addition, for the purpose of further improving the fusibility, a polylactic acid resin may contain a fusibility improver.
When the expandable polylactic acid resin particles (A) containing a fusing property improving agent are used, it is more preferable that the content of the fusing property improving agent in the vicinity of the surface layer portion is larger than the content in the vicinity of the central portion of the expanding particle. Further, it is more preferable that the fusing property improving agent exists only in the vicinity of the surface layer portion.
Here, the fusing property improving agent means one having a function of lowering the glass transition temperature of the polylactic acid resin by being contained in the polylactic acid resin. The specific degree of decrease in the glass transition temperature depends on the type and amount of the fusibility improver used, but it is preferable to decrease the midpoint glass transition temperature by 0.5 to 20 ° C., and decrease by 1 to 15 ° C. What is made to do is more preferable. In addition, the said midpoint glass transition temperature is a value measured by the measuring method mentioned later.
Examples of the fusibility improver include those used as plasticizers for polylactic acid resins. Glycerin derivatives such as glycerin fatty acid esters, ether ester derivatives, glycolic acid derivatives, citric acid derivatives, adipic acid derivatives, rosin Preferred examples include single or plural mixtures selected from derivatives and tetrahydrofurfuryl alcohol derivatives.

ポリ乳酸系樹脂粒子に融着改良剤を含有させる方法としては、例えば、発泡剤の含浸の際に、或いは前やその後に融着改良剤を樹脂粒子に含有させる方法が挙げられる。
また後述する発泡性樹脂粒子の発泡の際に、樹脂粒子を発泡機を用いて加熱媒体にて発泡させる場合、例えば、融着性改良剤を発泡機中の樹脂粒子の表面に付着させるように霧状に吹付けると同時に或いは霧状に吹付けた後に加熱媒体を発泡機に導入して発泡させる方法や、融着性改良剤を添加した加熱媒体を発泡機に導入して発泡させながら、融着改良剤を樹脂粒子の表面に吹き付ける方法が挙げられる。更には、発泡終了後に発泡粒子の表面に付着させるように霧状に吹付けても良い。
Examples of the method for containing the fusion improving agent in the polylactic acid-based resin particles include a method in which the resin particle contains the fusion improving agent before or after impregnation with the foaming agent.
Also, when foaming resin particles, which will be described later, is foamed with a heating medium using a foaming machine, for example, a fusing improver is adhered to the surface of the resin particles in the foaming machine. While spraying in the form of mist or after spraying in the form of mist, the heating medium is introduced into the foaming machine and foamed, or the heating medium added with the fusing property improving agent is introduced into the foaming machine and foamed. The method of spraying a fusion improving agent on the surface of the resin particle is mentioned. Furthermore, you may spray in the shape of a mist so that it may adhere to the surface of a foamed particle after completion | finish of foaming.

(ロ)物理発泡剤の逸散
物理発泡剤の逸散は、物理発泡剤を含浸させたポリ乳酸系樹脂粒子中の物理発泡剤の一部を逸散させる工程である。該逸散により、含浸樹脂粒子の表層部近傍の発泡剤濃度が発泡粒子中央部近傍の発泡剤濃度より低くなる結果、後工程で発泡性樹脂粒子を発泡させた際に中央部近傍の結晶化が表層部近傍よりも相対的に進んでいる発泡粒子が得られる。そのため該逸散後に発泡性樹脂粒子を発泡して得られる発泡粒子の表層部(S)の結晶化度は、比較的低く維持することができる為、発泡粒子が型内成形において加熱された際に、発泡粒子が相互に融着し易いものとなり、融着性に優れた発泡粒子を得ることが可能になる。
発泡剤の逸散方法を以下に例示する。
樹脂粒子への発泡剤含浸操作終了後に密閉容器から、発泡剤含浸樹脂粒子を取り出して水性媒体を除去乾燥後、大気圧下又は減圧下に静置する方法、水性媒体を除去後容器に発泡剤含浸樹脂粒子を投入してその容器の一端から不活性ガス等の置換気体を導入し発泡剤を強制的に逸散させる方法、発泡剤含浸終了後に密閉容器から発泡剤含浸樹脂粒子を取り出さずに密閉容器の圧力を開放し又は発泡剤含浸終了後に密閉容器から発泡剤含浸樹脂粒子を取り出して他の容器に移した後に、水性媒体中に懸濁させた状態で発泡剤を逸散させる方法等が挙げられる。発泡剤含浸樹脂粒子の表層部近傍の発泡剤をより効率良く逸散するためには、大気圧下に静置する方法、又は不活性ガス等の置換気体を容器内に導入して発泡剤を逸散させる方法が好ましい。
(B) Dissipation of physical foaming agent Dissipation of physical foaming agent is a process of dissipating a part of the physical foaming agent in the polylactic acid resin particles impregnated with the physical foaming agent. As a result of the dissipation, the foaming agent concentration in the vicinity of the surface layer portion of the impregnated resin particles becomes lower than the foaming agent concentration in the vicinity of the center portion of the foamed particles. Is obtained, which is relatively advanced from the vicinity of the surface layer portion. Therefore, since the crystallinity of the surface layer portion (S B ) of the expanded particles obtained by expanding the expandable resin particles after the dissipation can be maintained relatively low, the expanded particles were heated in the in-mold molding. At this time, the foamed particles are easily fused to each other, and it is possible to obtain foamed particles having excellent meltability.
The method for dissipating the foaming agent is exemplified below.
After the operation of impregnating the foaming agent into the resin particles, the foaming agent-impregnated resin particles are taken out from the sealed container, the aqueous medium is removed and dried, and then left to stand under atmospheric pressure or reduced pressure. After the aqueous medium is removed, the foaming agent is removed from the container. A method of introducing impregnated resin particles and introducing a replacement gas such as an inert gas from one end of the container to forcibly disperse the foaming agent, without removing the foaming agent-impregnated resin particles from the sealed container after the impregnation of the foaming agent A method of releasing the foaming agent in a suspended state in an aqueous medium after releasing the pressure of the airtight container or after taking out the foaming agent-impregnated resin particles from the airtight container and transferring it to another container Is mentioned. In order to dissipate the foaming agent in the vicinity of the surface layer of the foaming agent-impregnated resin more efficiently, the foaming agent is introduced by introducing a replacement gas such as a method of standing under atmospheric pressure or an inert gas into the container. A method of dissipating is preferred.

発泡剤を逸散させる際の雰囲気温度は、0℃から40℃が好ましい。逸散温度が0℃以上であれば工業的に短時間で逸散することが可能であり、一方、40℃以下であれば、目的とする発泡剤の逸散量が調整しやすいので、本発明のポリ乳酸系樹脂発泡粒子の表層部の発熱量(Bs:J/g)が中央部の発熱量(Bc:J/g)より大きくなるように、表層部に存在する発泡剤の濃度を中央部に存在する発泡剤の濃度より効率的に低くすることができる。より好ましい発泡剤の逸散温度は10℃から30℃である。
発泡剤を逸散させる際の湿度条件は、相対湿度(RH)40%以上とすることが好ましい。湿度条件が40%RH以上であると逸散処理後に得られる発泡性樹脂粒子の含水率を例えば0.5重量%以上の高い値に維持することができ、このような発泡性樹脂粒子を発泡して得られたポリ乳酸系樹脂発泡粒子は表層厚みのより大きいものとなるため、ポリ乳酸系樹脂発泡粒子の耐熱性が向上するので発泡粒子の型内成形時において良好な発泡粒子成形体が得られる加熱温度範囲を広げることができる。かかる観点から、発泡剤を逸散させる際の湿度条件は、より好ましくは50%RH以上である。尚、ポリ乳酸系樹脂組成物の常態における含水率は0.5重量%未満である。
The ambient temperature for dissipating the blowing agent is preferably 0 ° C to 40 ° C. If the dissipation temperature is 0 ° C or higher, it is possible to dissipate industrially in a short time. On the other hand, if it is 40 ° C or lower, the amount of dissipation of the target foaming agent can be easily adjusted. The concentration of the blowing agent present in the surface layer portion is set so that the calorific value (Bs: J / g) of the surface layer portion of the polylactic acid-based resin expanded particles of the invention is larger than the calorific value (Bc: J / g) of the central portion The concentration can be made lower than the concentration of the blowing agent present in the central portion. More preferably, the dissipation temperature of the blowing agent is 10 ° C to 30 ° C.
The humidity condition for dissipating the blowing agent is preferably 40% or higher relative humidity (RH). When the humidity condition is 40% RH or more, the moisture content of the expandable resin particles obtained after the dissipation treatment can be maintained at a high value of 0.5% by weight or more, for example. Since the polylactic acid resin foam particles obtained in this way have a larger surface layer thickness, the heat resistance of the polylactic acid resin foam particles is improved. The heating temperature range obtained can be expanded. From this point of view, the humidity condition when the foaming agent is dissipated is more preferably 50% RH or more. In addition, the water content in the normal state of a polylactic acid-type resin composition is less than 0.5 weight%.

逸散処理の圧力は、発泡剤含浸時の発泡剤の分圧よりも低い必要があるが、その圧力は物理発泡剤含浸時の発泡剤分圧の半分以下が好ましく、より好ましくは大気圧以下である。また、これらの条件で逸散させる発泡剤逸散率は、発泡剤含浸終了後に発泡剤含浸樹脂粒子中に含浸された発泡剤の10重量%から60重量%となる。従って、発泡剤の逸散率が10〜60重量%であれば、発泡剤逸散工程を経たポリ乳酸系樹脂粒子の表層部近傍の発泡剤の量が中央部近傍の発泡剤の量より濃度が低く維持され、その結果、表層部の結晶化が進行しづらいものとなることにより、後工程にて得られる発泡粒子の表層部の結晶化が抑制され、該発泡粒子を型内成形する際、発泡粒子は相互に融着しやすいものとなる。かかる観点から、発泡剤逸散率は20重量%から50重量%がより好ましい。
なお、ポリ乳酸系樹脂粒子に含浸させた物理発泡剤のうち逸散させた物理発泡剤の割合を表す「発泡剤逸散率」は、下記(4)式により求められる。
発泡剤逸散率(重量%)=[(物理発泡剤含浸量(g)−逸散後の物理発泡剤含浸量(g))/(物理発泡剤含浸量(g))]×100・・(4)
式(4)において、物理発泡剤含浸量とは逸散工程に使用する物理発泡剤含浸樹脂粒子重量(g)から、物理発泡剤含浸前の樹脂粒子重量(g)を引いた値である。逸散後の物理発泡剤含浸量とは逸散後の物理発泡剤含浸樹脂粒子重量(g)から、物理発泡剤含浸前の樹脂粒子重量(g)を引いた値である。ここでいう逸散後とは、逸散工程終了時から10分経過後を意味する。なお、水性媒体中に懸濁させた状態で物理発泡剤を逸散させる方法により、物理発泡剤を逸散させた場合は、該樹脂粒子を逸散工程終了後、直ちに大気圧中に取り出し該樹脂粒子表面の水分をエアーなどにて除去したものを対象に、大気圧中に取り出されてから10分経過後の樹脂粒子重量を測定して逸散後の樹脂粒子重量(g)を求めることとする。
上記した物理発泡剤の逸散温度にて上記の逸散率に調整するには、発泡剤の逸散処理時間は、概ね30分以上6時間以下であることが好ましく、より好ましくは1時間以上5時間以下である。処理時間が30分以上6時間以下であれば、発泡剤の逸散が行なわれるのに十分であり、また、発泡に十分な発泡剤を樹脂粒子中に残すことができる。
また、逸散処理温度(℃)と処理時間(時間)の積が、10(℃・時間)以上200(℃・時間)以下となる様な温度と時間の条件が好ましく、更には20(℃・時間)以上150(℃・時間)以下となる様な温度と時間の条件が好ましく、30(℃・時間)以上100(℃・時間)以下となる様な温度と時間の条件が最も好ましい。
The pressure of the dissipation treatment needs to be lower than the partial pressure of the foaming agent when impregnated with the foaming agent, but the pressure is preferably less than half of the partial pressure of the foaming agent when impregnated with the physical foaming agent, more preferably less than atmospheric pressure. It is. Further, the foaming agent dissipation rate to be dissipated under these conditions is 10% to 60% by weight of the foaming agent impregnated in the foaming agent-impregnated resin particles after the impregnation of the foaming agent. Therefore, if the dissipation factor of the foaming agent is 10 to 60% by weight, the amount of the foaming agent in the vicinity of the surface layer portion of the polylactic acid-based resin particles that has undergone the foaming agent dissipation step is more concentrated than the amount of the foaming agent in the vicinity of the center portion. Is kept low, and as a result, the crystallization of the surface layer portion is difficult to proceed, so that the crystallization of the surface layer portion of the expanded particles obtained in the subsequent process is suppressed, and when the expanded particles are molded in the mold The expanded particles are easily fused to each other. From this viewpoint, the foaming agent dissipation rate is more preferably 20% by weight to 50% by weight.
The “foaming agent dissipation rate” representing the proportion of the physical foaming agent dissipated among the physical foaming agents impregnated in the polylactic acid resin particles is obtained by the following equation (4).
Foaming agent dissipation rate (% by weight) = [(physical foaming agent impregnation amount (g) −physical foaming agent impregnation amount (g)) / (physical foaming agent impregnation amount (g))] × 100 (4)
In the formula (4), the physical foaming agent impregnation amount is a value obtained by subtracting the resin particle weight (g) before impregnating the physical foaming agent from the physical foaming agent impregnated resin particle weight (g) used in the dissipation step. The amount of physical foaming agent impregnation after dissipation is a value obtained by subtracting the weight (g) of resin particles before impregnation with the physical foaming agent from the weight (g) of physical foaming agent impregnation resin particles after dissipation. The term “after dissipating” here means that 10 minutes have elapsed since the end of the dissipating process. In addition, when the physical foaming agent is dissipated by the method of dissipating the physical foaming agent in a state of being suspended in an aqueous medium, the resin particles are immediately taken out to the atmospheric pressure after the dissipation step. Measuring the resin particle weight (g) after evacuation by measuring the weight of the resin particle 10 minutes after it is taken out to atmospheric pressure, with the surface of the resin particle removed with air or the like And
In order to adjust to the above dissipation rate at the dissipation temperature of the physical foaming agent described above, the dissipation treatment time of the foaming agent is preferably approximately 30 minutes to 6 hours, more preferably 1 hour or more. 5 hours or less. If the treatment time is 30 minutes or more and 6 hours or less, it is sufficient to dissipate the foaming agent, and a foaming agent sufficient for foaming can be left in the resin particles.
The temperature and time conditions are preferably such that the product of the dissipation treatment temperature (° C.) and the treatment time (hour) is 10 (° C. · hour) or more and 200 (° C. · hour) or less, more preferably 20 (° C. The temperature and time conditions are preferably such that the time is not less than 150 (° C./hour), and the temperature and time conditions are most preferably not less than 30 (° C. · hour) and not more than 100 (° C. · hour).

(ハ)発泡性ポリ乳酸系樹脂粒子の発泡
発泡性ポリ乳酸系樹脂粒子の発泡工程では、前記(ロ)発泡剤の逸散が終了した発泡性樹脂粒子を加熱し発泡させる。発泡性樹脂粒子を加熱し発泡させる方法としては、従来公知の方法が採用できる。その中でも密閉容器内に発泡性樹脂粒子を充填しスチーム又はスチームと空気の混合熱媒体を導入して発泡させる方法が好ましい。又、温水に一定時間浸漬させ発泡させる方法も温水の温度調節が比較的容易なため工業的に好ましい。尚、密閉容器には、加熱媒体を排気させる開孔弁が備わっていると、密閉容器内の雰囲気温度を容易に一定に保つことができ、見かけ密度が均一な発泡粒子が得られ易い。
(C) Foaming of expandable polylactic acid-based resin particles In the foaming step of expandable polylactic acid-based resin particles, the foamable resin particles (ii) after the dissipation of the foaming agent are heated and foamed. As a method of heating and foaming the expandable resin particles, a conventionally known method can be employed. Among them, a method in which foamed resin particles are filled in an airtight container, and a foam or a mixed heat medium of steam and air is introduced and foamed is preferable. Also, the method of foaming by immersing in warm water for a certain time is industrially preferable because the temperature of the warm water is relatively easy to adjust. In addition, if the airtight container is provided with an opening valve for exhausting the heating medium, the atmospheric temperature in the airtight container can be easily maintained constant, and it is easy to obtain expanded particles having a uniform apparent density.

前記方法において、発泡剤が含浸されている発泡性樹脂粒子を加熱する際の温度条件、すなわち発泡温度は、基材樹脂の中間点ガラス転移温度をTgとすると、通常、基材樹脂の(Tg−50)℃〜(Tg+50)℃が好ましく、(Tg−40)℃〜(Tg+40)℃がより好ましい。発泡温度が前記(Tg−50)℃未満であると、十分な発泡が起こり難く、また前記(Tg+50)℃を超えると発泡粒子の独立気泡率が低下してしまい良好な型内成形性を示す発泡粒子が得られづらいという問題が生ずる。発泡剤を基材樹脂に含浸することにより基材樹脂の中間点ガラス転移温度以下においても発泡性樹脂粒子は発泡する。特に、発泡剤が炭酸ガスの場合には、発泡温度は基材樹脂の(Tg−40)℃〜(Tg+40)℃が好ましく、(Tg−30)℃〜(Tg+30)℃がより好ましい。   In the above method, the temperature condition for heating the foamable resin particles impregnated with the foaming agent, that is, the foaming temperature is usually (Tg of the base resin, where Tg is the midpoint glass transition temperature of the base resin. −50) ° C. to (Tg + 50) ° C. is preferable, and (Tg−40) ° C. to (Tg + 40) ° C. is more preferable. When the foaming temperature is less than (Tg-50) ° C., sufficient foaming is difficult to occur, and when the foaming temperature exceeds (Tg + 50) ° C., the closed cell ratio of the foamed particles is lowered and good in-mold moldability is exhibited. There arises a problem that it is difficult to obtain expanded particles. By impregnating the base resin with the foaming agent, the expandable resin particles are foamed even below the midpoint glass transition temperature of the base resin. In particular, when the foaming agent is carbon dioxide, the foaming temperature is preferably (Tg-40) ° C to (Tg + 40) ° C, more preferably (Tg-30) ° C to (Tg + 30) ° C.

尚、本明細書において中間点ガラス転移温度(Tg)の測定はJIS K 7121(1987年)に基づく熱流束示差走査熱量測定により得られるDSC曲線の中間点ガラス転移温度として求められる値である。より具体的には、中間点ガラス転移温度は、JIS K7121(1987年)の3.試験片の状態調節(3)記載の「一定の熱処理を行った後、ガラス転移温度を測定する場合」に準拠して試験片をDSC装置の容器に入れ、融解ピーク終了時より30℃高い温度まで加熱速度10℃/minにて昇温して加熱溶解させ、その温度に10分保持した後、0℃まで冷却速度10℃/minにて冷却する状態調整を行ない、次に加熱速度10℃/minにて0℃から融解ピーク終了時より30℃高い温度まで昇温したときに得られるDSC曲線から求められる。   In the present specification, the measurement of the midpoint glass transition temperature (Tg) is a value obtained as the midpoint glass transition temperature of the DSC curve obtained by heat flux differential scanning calorimetry based on JIS K 7121 (1987). More specifically, the midpoint glass transition temperature is the same as that in JIS K7121 (1987) 3. Condition of test piece (3) According to “When measuring glass transition temperature after performing a certain heat treatment”, put the test piece into the vessel of the DSC apparatus, and a temperature 30 ° C. higher than the end of the melting peak. The temperature was raised at a heating rate of 10 ° C./min until it was dissolved by heating, held at that temperature for 10 minutes, then adjusted to 0 ° C. at a cooling rate of 10 ° C./min, and then heated at a rate of 10 ° C. It is obtained from a DSC curve obtained when the temperature is raised from 0 ° C. to 30 ° C. higher than the end of the melting peak at / min.

(2)ポリ乳酸系樹脂発泡粒子(B)
上記製造例等で得られるポリ乳酸系樹脂発泡粒子(B)は、見かけ密度が0.02g/cm〜0.65g/cmであるポリ乳酸系樹脂発泡粒子であって、該ポリ乳酸系樹脂発泡粒子をJIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)が10J/g以上であり、該熱流束示差走査熱量測定法に基づいて、熱処理を行うことなく、加熱速度2℃/minにて常温から融解ピーク終了時より30℃高い温度まで加熱したときに得られるDSC曲線における該ポリ乳酸系樹脂発泡粒子の吸熱量(Bendo:J/g)と発熱量(Bexo:J/g)、及び該ポリ乳酸系樹脂発泡粒子の表層部の発熱量(Bs:J/g)と中央部の発熱量(Bc:J/g)との関係が下式(1)及び(2)を共に満足し、
該ポリ乳酸系樹脂発泡粒子の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比(Ts/Tm)が5.0〜40.0であることを特徴とする。
(Bexo)/(Bendo)>0.3 (1)
(Bs)>(Bc) (2)
発泡させて得られたポリ乳酸系樹脂発泡粒子(B)は、高温、多湿条件下を避けて加水分解しないような条件下で保存することが好ましい
(2) Polylactic acid resin foamed particles (B)
The obtained by the production examples and the like polylactic acid-based resin foamed particles (B) has an apparent density of a polylactic acid-based resin foamed particles is 0.02g / cm 3 ~0.65g / cm 3 , the polylactic acid Based on the heat flux differential scanning calorimetry described in JIS K7122 (1987), the resin expanded particles are heated to a temperature 30 ° C. higher than the end of the melting peak, and kept at that temperature for 10 minutes. Then, after cooling to 110 ° C. at a cooling rate of 2 ° C./min and keeping at that temperature for 120 minutes, after heat treatment to cool to 40 ° C. at a cooling rate of 2 ° C./min, again at a heating rate of 2 ° C./min The endothermic amount (Rendo) in the DSC curve obtained when heating and melting to a temperature 30 ° C. higher than the end of the melting peak is 10 J / g or more, and heat treatment based on the heat flux differential scanning calorimetry The endothermic amount of the polylactic acid-based resin expanded particles (Bendo: J / g) in the DSC curve obtained when heated from room temperature to 30 ° C higher than the end of the melting peak at a heating rate of 2 ° C / min. ) And calorific value (Bexo: J / g), and the relationship between the calorific value (Bs: J / g) of the surface layer portion of the polylactic acid-based resin expanded particles and the calorific value (Bc: J / g) of the central portion. Both the following formulas (1) and (2) are satisfied,
The ratio (Ts / Tm) of the average surface layer thickness (Ts) and the average cell membrane thickness (Tm) of the polylactic acid-based resin expanded particles is 5.0 to 40.0.
(Bexo) / (Bendo)> 0.3 (1)
(Bs)> (Bc) (2)
The polylactic acid-based resin expanded particles (B) obtained by foaming are preferably stored under conditions that avoid hydrolysis at high temperatures and high humidity.

(イ)見かけ密度
ポリ乳酸系樹脂発泡粒子(B)の見かけ密度は0.02g/cm〜0.65g/cmである。
ポリ乳酸系樹脂発泡粒子(B)の見かけ密度は、型内成形後の収縮率が大きくなる虞を避ける観点から0.03g/cm以上が好ましく、0.04g/cm以上がより好ましい。一方、その上限は発泡粒子の密度のばらつきが大きくなり易く、型内成形にて得られる発泡粒子成形体の物性ばらつきの虞を避ける観点から0.45g/cm以下が好ましく、0.20g/cm以下がより好ましい。
尚、ポリ乳酸系樹脂発泡粒子(B)の見かけ密度は次のように測定する。
23℃の水の入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて2日放置した500個以上の発泡粒子(発泡粒子群の重量W1)を金網などを使用して沈めて、水位上昇分より読みとられる発泡粒子群の容積V1(cm)にてメスシリンダーに入れた発泡粒子群の重量W1(g)を割り算(W1/V1)することにより求める。
(B) Apparent Density Apparent density expanded polylactic acid resin particles (B) is 0.02g / cm 3 ~0.65g / cm 3 .
The apparent density of the polylactic acid-based resin expanded particles (B) is preferably 0.03 g / cm 3 or more, and more preferably 0.04 g / cm 3 or more from the viewpoint of avoiding a possibility that the shrinkage rate after in-mold molding becomes large. On the other hand, the upper limit is preferably 0.45 g / cm 3 or less from the viewpoint of avoiding the possibility of variation in physical properties of the foamed particle molded body obtained by in-mold molding, since the density variation of the expanded particles tends to be large. More preferred is cm 3 or less.
The apparent density of the polylactic acid resin expanded particles (B) is measured as follows.
Prepare a measuring cylinder containing water at 23 ° C, and wire over 500 expanded foam particles (weight W1 of the expanded particle group) left in the measuring cylinder at a relative humidity of 50%, 23 ° C and 1 atm for 2 days. Divide (W1 / V1) the weight W1 (g) of the expanded particles placed in the graduated cylinder by the volume V1 (cm 3 ) of the expanded particles read from the rise in the water level. Ask for.

(ロ)ポリ乳酸系樹脂発泡粒子(B)の熱処理後の吸熱量(Rendo)の測定
本発明のポリ乳酸系樹脂発泡粒子(B)は、1〜4mgの発泡粒子を試験片としてJIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)が10J/g以上である。
該吸熱量が10J/g未満の場合には、ポリ乳酸系樹脂発泡粒子(B)中の結晶化する成分が少なすぎて、更に型内成形して得られる発泡粒子成形体に関して完全に結晶化させたとしても加熱雰囲気下での変形がし難い等の耐熱性、剛性等の改良が不十分になるおそれがある。かかる観点から、吸熱量が15J/g以上のものがより好ましく、20J/g以上のものが更に好ましい。一方、その上限は特に限定する必要はないが、通常の基材樹脂の性状から、吸熱量は一般に70J/gである。該吸熱量(Rendo)が上記の範囲内であれば該基材樹脂の有する結晶化し得る成分が多いので、該基材樹脂から得られるポリ乳酸系樹脂発泡粒子の中央部と表層部の結晶化度の差を大きくすることが容易である。
尚、上記吸熱量(Rendo)は、前記「基材樹脂の示差走査熱量測定における吸熱量」と実質的に同じ熱量となる。
(B) Measurement of endothermic amount (Rendo) after heat treatment of polylactic acid-based resin expanded particles (B) The polylactic acid-based resin expanded particles (B) of the present invention are JIS K7122 using 1 to 4 mg of expanded particles as a test piece. 1987), and heated to a temperature 30 ° C. higher than that at the end of the melting peak to be melted, kept at that temperature for 10 minutes, and then cooled at a rate of 2 ° C./min. After cooling to 110 ° C. and keeping at that temperature for 120 minutes, the heat treatment is cooled to 40 ° C. at a cooling rate of 2 ° C./min. The endothermic amount (Rendo) in the DSC curve obtained when melting by heating to a high temperature is 10 J / g or more.
When the endothermic amount is less than 10 J / g, there are too few components to crystallize in the polylactic acid-based resin expanded particles (B), and the expanded particle molded body obtained by in-mold molding is completely crystallized Even if it makes it, there exists a possibility that improvement in heat resistance, rigidity, etc. which are hard to deform | transform in a heating atmosphere may become inadequate. From this viewpoint, the heat absorption is more preferably 15 J / g or more, and further preferably 20 J / g or more. On the other hand, the upper limit is not particularly limited, but the endothermic amount is generally 70 J / g from the properties of ordinary base resin. If the endothermic amount (Rendo) is within the above range, the base resin has many components that can be crystallized. It is easy to increase the difference in degree.
The endothermic amount (Rendo) is substantially the same as the “endothermic amount in differential scanning calorimetry of the base resin”.

(ハ)示差走査熱量測定における発泡粒子の吸熱量と該発泡粒子の発熱量との関係
JIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて熱処理を行うことなく、加熱速度2℃/minにて常温から融解ピーク終了時より30℃高い温度まで加熱したときに得られるDSC曲線における該ポリ乳酸系樹脂発泡粒子の吸熱量(Bendo:J/g)と発熱量(Bexo:J/g)との関係が下式(1)を満足する。
(Bexo)/(Bendo)>0.3 (1)
(Bexo)/(Bendo)比が0.3を超える値であれば、発泡粒子が完全に、或いは大部分が結晶化された場合に有する結晶量に対して、未結晶である量を多く有しているため、型内成形時の発泡粒子の相互の融着性に優れるものとなる。また、高温養生などの後工程にて結晶化させて、発泡粒子成形体の耐熱性、機械的物性を高めることができる。上記(1)式において(Bexo)/(Bendo)の値の上限は1であり、好ましくは0.8、更に好ましくは0.7である。
尚、上記発泡粒子の発熱量(Bexo)および吸熱量(Bendo)は、JIS K7122(1987年)に記載されている熱流束示差走査熱量測定により求められる値とする。但し、発泡粒子1mg〜4mgの試験片とし、該試験片の状態調節およびDSC曲線の測定は以下の手順にて行う。
試験片をDSC装置の容器に入れ、熱処理を行わず、加熱速度2℃/minにて常温から融解ピーク終了時より30℃高い温度まで昇温する際のDSC曲線を得る。
尚、発泡粒子の発熱量(Bexo)は該DSC曲線の発熱ピークの低温側のベースラインから発熱ピークが離れる点を点cとし、発熱ピークが高温側のベースラインへ戻る点を点dとして、点cと点dとを結ぶ直線と、DSC曲線に囲まれる部分の面積から求められる値とする。また、発泡粒子の吸熱量(Bendo)は、該DSC曲線の吸熱ピークの低温側のベースラインから吸熱ピークが離れる点を点eとし、吸熱ピークが高温側のベースラインへ戻る点を点fとして、点eと点fとを結ぶ直線と、DSC曲線に囲まれる部分の面積から求められる値とする。
(C) Relationship between the endothermic amount of the expanded particles and the exothermic amount of the expanded particles in differential scanning calorimetry without performing heat treatment based on the heat flux differential scanning calorimetry described in JIS K7122 (1987), The endothermic amount (Bendo: J / g) and calorific value of the expanded polylactic acid resin particles in the DSC curve obtained when heating from room temperature to 30 ° C higher than the end of the melting peak at a heating rate of 2 ° C / min ( The relationship with Bexo: J / g) satisfies the following formula (1).
(Bexo) / (Bendo)> 0.3 (1)
If the (Bexo) / (Bendo) ratio is greater than 0.3, the amount of uncrystallized material is greater than the amount of crystals that the foamed particles have when they are completely or mostly crystallized. Therefore, the mutual fusion property of the foamed particles at the time of in-mold molding is excellent. Moreover, it can crystallize in post processes, such as high temperature curing, and can improve the heat resistance of a foamed particle molded object, and a mechanical physical property. In the above formula (1), the upper limit of the value of (Bexo) / (Bendo) is 1, preferably 0.8, and more preferably 0.7.
The exothermic amount (Bexo) and endothermic amount (Bendo) of the expanded particles are values determined by heat flux differential scanning calorimetry described in JIS K7122 (1987). However, the test piece is 1 mg to 4 mg of expanded particles, and the condition adjustment and DSC curve measurement of the test piece are performed according to the following procedure.
A test piece is put in a container of a DSC apparatus, and a DSC curve is obtained when the temperature is raised from room temperature to 30 ° C. higher than the end of the melting peak at a heating rate of 2 ° C./min without heat treatment.
The exothermic amount (Bexo) of the expanded particles is defined as a point c where the exothermic peak is separated from the low temperature side baseline of the DSC curve, and a point d where the exothermic peak returns to the high temperature side baseline. A value obtained from a straight line connecting the points c and d and the area of the portion surrounded by the DSC curve. Further, the endothermic amount (Bendo) of the expanded particles is defined as a point e where the endothermic peak is separated from the low-temperature base line of the endothermic peak of the DSC curve, and a point f where the endothermic peak returns to the high-temperature base line. , And a value obtained from a straight line connecting the points e and f and the area of the portion surrounded by the DSC curve.

但し、該DSC曲線におけるベースラインはできるだけ直線になるように装置を調節することする。また、どうしてもベースラインが湾曲してしまう場合は、発熱ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから発熱ピークが離れる点を点c、発熱ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ発熱ピークが戻る点を点dとする。更に、吸熱ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから吸熱ピークが離れる点を点e、吸熱ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ吸熱ピークが戻る点を点fとする。   However, the apparatus is adjusted so that the baseline in the DSC curve is as straight as possible. If the baseline is inevitably curved, the curved baseline on the low temperature side of the exothermic peak is extended to the high temperature side while maintaining the curved state of the curve. The point at which the exothermic peak deviates from the point c, and the curved base line on the high temperature side of the exothermic peak is extended to the low temperature side while maintaining the curved state of the curve, and the exothermic peak appears on the curved high temperature side baseline Let the point to return be a point d. Further, the base line curved at the low temperature side of the endothermic peak is extended to the high temperature side while maintaining the curved state of the curve, and the point at which the endothermic peak moves away from the curved base line at the low temperature side is the endothermic point. Drawing is performed to extend the curved base line on the high temperature side of the peak to the low temperature side while maintaining the curved state of the curve, and the point where the endothermic peak returns to the curved high temperature side baseline is defined as a point f.

例えば、図3に示す場合には、上記の通り定められる点cと点dとを結ぶ直線とDSC曲線に囲まれる部分の面積から発泡粒子の発熱量(Bexo)を求め、上記の通り定められる点eと点fとを結ぶ直線とDSC曲線に囲まれる部分の面積から発泡粒子の吸熱量(Bendo)を求める。また、図4に示すような場合には、上記のように点dと点eを定めることが困難である為、上記の通り定められる点cと点fとを結ぶ直線とDSC曲線との交点を点d(点e)と定めることにより、発泡粒子の発熱量(Bexo)及び吸熱量(Bendo)を求める。また、図5に示すように、吸熱ピークの低温側に小さな発熱ピークが発生するような場合には、発泡粒子の発熱量(Bexo)は、図5中の第1の発熱ピークの面積Aと第2の発熱ピークの面積Bとの和から求められる。即ち、該面積Aは第1の発熱ピークの低温側のベースラインから発熱ピークが離れる点を点cとし、第1の発熱ピークが高温側のベースラインへ戻る点を点dとして、点cと点dとを結ぶ直線とDSC曲線に囲まれる部分の面積Aとする。そして、該面積Bは第2の発熱ピークの低温側のベースラインから第2の発熱ピークが離れる点を点gとし、吸熱ピークが高温側のベースラインへ戻る点を点fとして、点gと点fとを結ぶ直線とDSC曲線との交点を点eと定め、点gと点eとを結ぶ直線とDSC曲線に囲まれる部分の面積Bとする。一方、図5において、発泡粒子の吸熱量(Bendo)は点eと点fとを結ぶ直線とDSC曲線に囲まれる部分の面積から求められる値とする。
なお、上記発熱量(Bexo)および吸熱量(Bendo)の測定において、DSC曲線の測定条件として、2℃/minの加熱速度を採用する理由は、発熱ピークと吸熱ピークとをなるべく分離し、正確な吸熱量(Bendo)および(Bendo−Bexo)を熱流束示差走査熱量測定にて求める際に、2℃/minの加熱速度が好適であるという発明者の知見に基づくものである。
For example, in the case shown in FIG. 3, the heat generation amount (Bexo) of the expanded particles is obtained from the area surrounded by the straight line connecting the points c and d and the DSC curve determined as described above, and determined as described above. The endothermic amount (Bendo) of the expanded particles is obtained from the area surrounded by the straight line connecting the points e and f and the DSC curve. In the case shown in FIG. 4, since it is difficult to determine the points d and e as described above, the intersection of the straight line connecting the points c and f determined as described above and the DSC curve. Is determined as a point d (point e) to determine the heat generation amount (Bexo) and the heat absorption amount (Bendo) of the expanded particles. In addition, as shown in FIG. 5, when a small exothermic peak occurs on the low temperature side of the endothermic peak, the exothermic amount (Bexo) of the foamed particles is the first exothermic peak area A in FIG. It is determined from the sum of the area B of the second exothermic peak. That is, the area A is defined as a point c where the exothermic peak moves away from the low temperature side baseline of the first exothermic peak, and a point d where the first exothermic peak returns to the high temperature side baseline. It is assumed that the area A is a portion surrounded by a straight line connecting the point d and the DSC curve. The area B is defined as a point g where the second exothermic peak is separated from the low temperature side baseline of the second exothermic peak, a point f where the endothermic peak returns to the high temperature side baseline, and a point g. The intersection of the straight line connecting the point f and the DSC curve is defined as a point e, and the area B of the portion surrounded by the straight line connecting the point g and the point e and the DSC curve is defined. On the other hand, in FIG. 5, the endothermic amount (Bendo) of the expanded particles is a value obtained from the area surrounded by the straight line connecting the point e and the point f and the DSC curve.
In the measurement of the exothermic amount (Bexo) and endothermic amount (Bendo), the reason for adopting a heating rate of 2 ° C./min as the measurement condition of the DSC curve is that the exothermic peak and the endothermic peak are separated as much as possible. This is based on the inventor's knowledge that a heating rate of 2 ° C./min is suitable when obtaining a high endothermic amount (Bendo) and (Bendo-Bexo) by heat flux differential scanning calorimetry.

(ニ)発泡粒子の表層部(S)の発熱量と中央部(C)の発熱量との関係
発泡性ポリ乳酸系樹脂粒子(A)を発泡して得られるポリ乳酸系樹脂発泡粒子(B)は、上記したように加熱速度2℃/minでの示差走査熱量測定における発泡粒子の吸熱量(Bendo:J/g)と該発泡粒子の発熱量(Bexo:J/g)との関係が下式(1)を満足し、且つその表層部(S)の発熱量(Bs)と該発泡粒子の中央部(C)の発熱量(Bc)との関係が下記の式(2)を満足するので、表層部の未結晶部分が中央部の未結晶部分よりも多いため、型内成形時の発泡粒子相互の融着性に優れ、機械的物性に優れた発泡粒子成形体を得ることが可能となる。また、中央部の結晶化がある程度進んだ状態である場合には、発泡粒子全体としては耐熱性が向上しているので、型内成形温度範囲を広げることができる。
(Bexo)/(Bendo)>0.3 (1)
(Bs)>(Bc) (2)
上記発熱量(Bs)、(Bc)は、それぞれ表層部(S)、中央部(C)1〜4mgを試験片とする以外は、発泡粒子の発熱量(Bexo)の測定方法と同様にして求めることができる。尚、発泡粒子の表層部(S)とは、発泡粒子の表面全面から、切り出し前の発泡粒子の重量の5分の1から3分の1重量となるように、できるだけ均一な厚みで切り出される部分を指し、中央部(C)とは、発泡粒子の表面全面を、できるだけ均一な厚みで切り取り除去し、切り取り前の発泡粒子の重量の5分の1から3分の1の重量となる発泡粒子残部をいう。
(D) a surface layer portion (S B) heating value and the central portion (C B) polylactic acid-based resin foamed particles obtained relationship expandable polylactic acid resin particles and heating value (A) to foam in the foamed particles (B) is the difference between the endothermic amount of the expanded particles (Bendo: J / g) and the exothermic amount of the expanded particles (Bexo: J / g) in the differential scanning calorimetry at the heating rate of 2 ° C./min as described above. The relationship satisfies the following formula (1), and the relationship between the calorific value (Bs) of the surface layer portion (S B ) and the calorific value (Bc) of the central portion (C B ) of the expanded particles is expressed by the following formula ( 2) is satisfied, the surface layer portion has more uncrystallized portions than the center uncrystallized portion. Therefore, the foamed particle molded body has excellent fusion properties between foamed particles at the time of in-mold molding and excellent mechanical properties. Can be obtained. Moreover, when the crystallization of the center part has progressed to some extent, since the heat resistance of the foamed particles as a whole is improved, the in-mold molding temperature range can be expanded.
(Bexo) / (Bendo)> 0.3 (1)
(Bs)> (Bc) (2)
The calorific values (Bs) and (Bc) are the same as the measurement method of the calorific value (Bexo) of the expanded particles, except that the surface layer part (S B ) and the central part (C B ) are 1 to 4 mg. Can be obtained. The surface layer portion (S B ) of the expanded particles is cut out from the entire surface of the expanded particles with a thickness as uniform as possible so that it is 1/5 to 1/3 the weight of the expanded particles before cutting. The central part (C B ) is a part of the surface of the foamed particles that is cut out and removed with a uniform thickness as much as possible. The weight of the foamed particles before cutting is 1/5 to 1/3 of the weight. The remainder of the expanded particles.

上記の発泡粒子の表層部(S)の試験片としては、発泡粒子の表面を含む表層部(S)をカッターナイフ、ミクロトーム等を用いて切削処理を行い表層部(S)を集めて測定に供すればよい。但し、この際の留意点としては1個の発泡粒子の表面全面を必ず切除し且つ1個の発泡粒子から切除した表層部(S)の合計重量が元の発泡粒子の粒子重量の5分の1から3分の1となるように、できるだけ均一の厚みとなる厚さで切除する。切除した表層部(S)の重量が元の発泡粒子の粒子重量の5分の1から3分の1であれば、発泡粒子内部の発泡層を多量に含有することなく表層部の発熱量を正確に測定することができる。更に1個の発泡粒子から得られる表層部が1〜4mgに満たない場合は上記操作を繰り返し複数個の発泡粒子について行う必要がある。
一方、中央部(C)の発泡層の試験片調製の方法としては、表層部(S)を含まない中央部(C)の発泡層を残すことを目的にカッターナイフ等で切削処理を行い測定に供する必要がある。中央部(C)の発泡層の試験片を調製する際の留意点としては、1個の発泡粒子の表面全面を必ず切除した上、切り出し面からできるだけ均一の厚みとなる厚さの発泡層を切除するようにして中央部(C)の発泡層を残す。この際、切除作業にて残された中央部(C)の発泡層の重量は、元の発泡粒子の粒子重量の5分の1から3分の1とする必要があり、且つ元の発泡粒子の形状とできる限り相似の関係にあることが好ましい。更に1個の発泡粒子から得られる中央部(C)の発泡層が1〜4mgに満たない場合は上記操作を繰り返し複数個の発泡粒子を用いる必要がある。
The test pieces of the surface layer portion of the expanded beads (S B), the surface layer portion (S B) of the cutter knife, the surface portion subjected to cutting processing using a microtome or the like (S B) were collected containing the surface of the foamed particles Can be used for measurement. However, 5 minutes total weight of the particle weight of the original foamed particles of the surface layer portion excised from always excised and one expanded beads entire surface of one of the expanded particles as noted point for the (S B) It is excised with a thickness that is as uniform as possible so that it becomes 1 to 1/3. If the weight of the excised surface layer portion (S B ) is 1/5 to 1/3 of the original expanded particle particle weight, the amount of heat generated in the surface layer portion without containing a large amount of the expanded layer inside the expanded particle Can be measured accurately. Furthermore, when the surface layer part obtained from one expanded particle is less than 1-4 mg, it is necessary to repeat the said operation about several expanded particle.
On the other hand, as a method of the central portion foamed layer of the test piece (C B) preparation, cutting processing with a cutter knife or the like for the purpose of leaving the foam layer of the central portion which does not include the surface layer portion (S B) (C B) It is necessary to perform measurement. The point to be noted when preparing the test piece of the foamed layer in the central part (C B ) is that the foamed layer has a thickness that is as uniform as possible from the cut-out surface after always cutting out the entire surface of one foamed particle. Is removed, leaving the foamed layer in the center (C B ). At this time, the weight of the foam layer in the central portion (C B ) left in the excision operation needs to be set to one fifth to one third of the particle weight of the original foam particles, and the original foam. It is preferable that the particle shape is as similar as possible. Furthermore, when the foamed layer of the center part (C B ) obtained from one expanded particle is less than 1 to 4 mg, it is necessary to repeat the above operation and use a plurality of expanded particles.

元の発泡粒子の重量の5分の1から3分の1となるように切り出される発泡粒子の表層部の厚みの算出方法としては下記の通りである。
まず、発泡粒子の重量(g)は下記の式により導かれる。
W=(4/3)π(Rρ
但し、Wは発泡粒子の重量(g)、Rは発泡粒子を球と仮定した球の半径(cm)、ρは発泡粒子の見かけ密度が全体的に一定であると仮定した見かけ密度(g/cm)である。
次いで、発泡粒子の表層部が元の発泡粒子の粒子重量の3分の1となるように切り出される発泡粒子の表層からの厚みSは、以下のように算出される。
(2/3)×(4/3)π(Rρ=(4/3)π(Rρ
=0.873R
=R−R=0.127R
但し、RはWの2/3の重量となる球の半径である。
同様にして、発泡粒子の表層部が5分の1となるように切り出される発泡粒子の表層からの厚みSは、0.072Rとなる。よって、発泡粒子の表層部(S)が、元の発泡粒子の粒子重量の5分の1から3分の1となるためには、発泡粒子の表層部(S)からできるだけ均一の厚みとなるように、表層から0.072R〜0.127Rcmの厚みを切り出されることになる。
The calculation method of the thickness of the surface layer portion of the expanded particles cut out to be 1/5 to 1/3 of the weight of the original expanded particles is as follows.
First, the weight (g) of the expanded particles is derived from the following equation.
W = (4/3) π (R 1 ) 3 ρ
Where W is the weight of the expanded particle (g), R 1 is the radius of the sphere assuming the expanded particle is a sphere (cm), and ρ is the apparent density assuming that the expanded density of the expanded particle is generally constant (g / Cm 3 ).
Next, the thickness S 1 from the surface layer of the expanded particles cut out so that the surface layer portion of the expanded particles becomes one third of the particle weight of the original expanded particles is calculated as follows.
(2/3) × (4/3) π (R 1 ) 3 ρ = (4/3) π (R 2 ) 3 ρ
R 2 = 0.873R 1
S 1 = R 1 −R 2 = 0.127R 1
Where R 2 is the radius of a sphere that is 2/3 the weight of W.
Similarly, the thickness S 2 from the surface of the expanded beads to be cut out as a surface layer portion of the expanded beads is 1/5 becomes 0.072R 1. Therefore, in order for the surface layer portion (S B ) of the expanded particles to be one fifth to one third of the particle weight of the original expanded particles, the thickness as uniform as possible from the surface layer portion (S B ) of the expanded particles. Thus, the thickness of 0.072R 1 to 0.127R 1 cm is cut out from the surface layer.

次に、中央部(C)は、発泡粒子の表面全面を、できるだけ均一の厚みとなるように切り出して除去し、元の発泡粒子の粒子重量の5分の1から3分の1となる残部の発泡粒子をいうが、そのように切り出された元の発泡粒子の粒子重量の3分の1となる残部の発泡粒子中央部の半径R(cm)は次のように導かれる。
(1/3)×(4/3)π(Rρ=(4/3)π(Rρ
=0.693R
同様にして、発泡粒子の中央部が元の発泡粒子の粒子重量の5分の1となる残部の発泡粒子中央部の半径R(cm)は、R=0.585Rとなる。
よって、発泡粒子の中央部(C)が、元の発泡粒子の粒子重量の5分の1から3分の1となるように発泡粒子を切除するためには、中央部の半径が0.585R〜0.693Rcmとなるように切除作業を行うことになる。
Next, the central part (C B ) cuts out and removes the entire surface of the foamed particles so as to have a uniform thickness as much as possible, and becomes 1/5 to 1/3 of the particle weight of the original foamed particles. The remaining foamed particles are referred to, and the radius R 3 (cm) of the center of the remaining foamed particles, which is one third of the particle weight of the original foamed particles cut out as described above, is derived as follows.
(1/3) × (4/3) π (R 1 ) 3 ρ = (4/3) π (R 3 ) 3 ρ
R 3 = 0.693R 1
Similarly, the radius R 4 (cm) of the remaining foamed particle central part in which the central part of the foamed particle is 1/5 of the particle weight of the original foamed particle is R 4 = 0.585R 1 .
Therefore, in order to cut out the foamed particles so that the center part (C B ) of the foamed particles is 1/5 to 1/3 of the particle weight of the original foamed particles, the radius of the center part is set to 0. The excision work is performed so as to be 585R 1 to 0.693R 1 cm.

ここで、見かけ密度0.15g/cm、直径0.3cmのほぼ球形である発泡粒子を例として示すと、上記の方法にて表層部(S)と中央部(C)に切り出した際の、発泡粒子の重量(g)、表層から切り出される厚みS、S、中央部の半径R、Rは、それぞれ、0.019cm、0.011cm、0.104cm、0.088cmとなる。
よって、見かけ密度0.15g/cm、直径0.3cmのほぼ球形である発泡粒子の場合、発泡粒子の表層部(S)は、発泡粒子の表層部(S)からできるだけ均一の厚みとなるように発泡粒子の表面全面を切り出し、切り出された表層部(S)の合計重量が元の発泡粒子の重量の5分の1以上3分の1以下となる部分であり、発泡粒子表面から0.11mm〜0.19mmまでの部分をいう。それに対して中央部(C)は、発泡粒子の表面全面を、できるだけ均一の厚みとなるように切り出して除去し、元の発泡粒子の粒子重量の5分の1から3分の1となる残部の発泡粒子であり、中心部からの半径が0.88mm以上1.04mm以下の部分をいう。
さらに、他の発泡粒子を同様に切り出して、測定のために表層部(S)および中央部(C)を1mg〜4mgにする。このようにして得られる試験片から、示差走査熱量測定にて表層部(S)の発熱量(Bs)と該発泡粒子の中央部(C)の発熱量(Bc)が測定される。
Here, as an example, a substantially spherical expanded particle having an apparent density of 0.15 g / cm 3 and a diameter of 0.3 cm was cut into a surface layer portion (S B ) and a central portion (C B ) by the above method. At that time, the weight (g) of the expanded particles, the thicknesses S 1 and S 2 cut out from the surface layer, and the radii R 3 and R 4 of the central part are 0.019 cm, 0.011 cm, 0.104 cm, and 0.088 cm, respectively. It becomes.
Thus, apparent density 0.15 g / cm 3, when the expanded beads are generally spherical diameter 0.3 cm, the surface layer portion of the expanded beads (S B) is as uniform as possible in thickness from the surface layer portion of the expanded beads (S B) cut out the entire surface of the expanded beads so that a cut-out surface portion (S B) 5 minutes 1 to 3 fold lower than to become part of the weight of the total weight the original foamed particles, the foamed particles The portion from 0.11 mm to 0.19 mm from the surface. On the other hand, the central portion (C B ) cuts out and removes the entire surface of the foamed particles so as to have a uniform thickness as much as possible, and becomes 1/5 to 1/3 of the particle weight of the original foamed particles. It is the remaining expanded particles, and refers to a portion having a radius from the center of 0.88 mm to 1.04 mm.
Further, other expanded particles are cut out in the same manner, and the surface layer portion (S B ) and the central portion (C B ) are 1 mg to 4 mg for measurement. From the test piece thus obtained, the calorific value (Bs) of the surface layer portion (S B ) and the calorific value (Bc) of the central portion (C B ) of the expanded particles are measured by differential scanning calorimetry.

(ホ)ポリ乳酸系樹脂発泡粒子(B)の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比
上記発泡性ポリ乳酸系樹脂粒子(A)を発泡して得られる本発明の発泡粒子(B)は、ポリ乳酸系樹脂発泡粒子の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比(Ts/Tm)が、5.0〜40.0、好ましくは6.0〜25.0、更に好ましくは7.0〜18.0であり、このような状態のポリ乳酸系樹脂発泡粒子(B)は、平均気泡膜厚み(Tm)に対する平均表層厚み(Ts)の値が従来の発泡粒子に比べて大きいものであるので、丈夫な表皮に覆われていることにより発泡粒子の耐熱性が高いものとなり、型内成形時のスチーム、熱風などの加熱媒体による加熱時において発泡粒子の収縮、破泡を防ぐことができ、良好な発泡粒子成形体が得られる成形温度範囲が広がり、良好なポリ乳酸系樹脂発泡粒子成形体を成形するのにさらに適したものとなる。
(E) Ratio of average surface layer thickness (Ts) and average cell membrane thickness (Tm) of polylactic acid-based resin expanded particles (B) The present invention is obtained by foaming the expandable polylactic acid-based resin particles (A). The expanded particles (B) have a ratio (Ts / Tm) of the average surface layer thickness (Ts) to the average cell membrane thickness (Tm) of the polylactic acid-based resin expanded particles of 5.0 to 40.0, preferably 6. It is 0-25.0, More preferably, it is 7.0-18.0, The polylactic acid-type resin expanded particle (B) of such a state is the average surface layer thickness (Ts) with respect to average cell membrane thickness (Tm). Since the value is larger than that of conventional foam particles, the heat resistance of the foam particles is increased by being covered with a strong skin, and when heated by a heating medium such as steam or hot air during in-mold molding Can prevent shrinkage and foam breakage of foamed particles, good foamed particles The molding temperature range in which a child molded body can be obtained is widened, and it becomes more suitable for molding a good molded body of polylactic acid resin particles.

(ホ−1)発泡粒子の平均表層厚み(Ts)の測定
発泡粒子の平均表層厚み(Ts)は次のように測定される。
発泡粒子を略二分割し切断面を走査型電子顕微鏡にて写真を撮影する。得られた断面写真において、発泡粒子の最外に位置し円周方向に連接する気泡と発泡粒子表面との間の長さが最小値となる値をそれぞれ全ての写真上の該連接する気泡に対して測定し、それらの値の算術平均値を発泡粒子の表層厚みとする。この操作を多数(少なくとも30個以上)の発泡粒子について行い各発泡粒子の表層厚みの算術平均値を平均表層厚み(Ts)とする。
尚、該連接する気泡より外側に独立して、あるいは数個連続して気泡が存在することがあるが、これらは発泡粒子を形成する気泡群とは別に稀に存在するものであることから無視できるものとする。表層厚みを正確に測定するためには表皮部が捲れないように発泡粒子を略二分割する必要がある。
(E-1) Measurement of average surface layer thickness (Ts) of expanded particles The average surface layer thickness (Ts) of expanded particles is measured as follows.
The foamed particles are roughly divided into two, and the cut surface is photographed with a scanning electron microscope. In the obtained cross-sectional photograph, the value at which the length between the bubble located on the outermost side of the expanded particle and connected in the circumferential direction and the surface of the expanded particle becomes the minimum value is set to the connected bubble on all the photos. The arithmetic average value of these values is taken as the surface layer thickness of the expanded particles. This operation is performed for a large number (at least 30 or more) of expanded particles, and the arithmetic average value of the surface layer thickness of each expanded particle is defined as the average surface layer thickness (Ts).
In addition, there are cases where bubbles exist independently or several times continuously outside the connected bubbles, but these are rarely present separately from the group of bubbles forming the expanded particles, and are ignored. It shall be possible. In order to accurately measure the surface layer thickness, it is necessary to divide the expanded particles substantially in half so that the skin portion is not wrinkled.

(ホ−2)発泡粒子の平均気泡径の測定
発泡粒子の平均気泡径は次のように測定される。
発泡粒子を略二分割し切断面を走査型電子顕微鏡にて写真を撮影する。得られた断面写真において、発泡粒子切断面の中心付近から八方向に等間隔に直線を引き、その直線と交わる気泡の数を全てカウントし、該直線の合計長さをカウントされた気泡数で除して得られた値を発泡粒子の気泡径とする。この操作を多数(少なくとも30個以上)の発泡粒子について行い各発泡粒子の気泡径の算術平均値を平均気泡径とする。
尚、上記各発泡粒子の気泡径の測定において、該直線と一部でも交わる気泡もカウントすることとする。また、上記測定において発泡粒子切断面の中心付近から八方向に等間隔に直線を引く理由としては、直線が発泡粒子切断面の中心付近から八方向に等間隔に引かれるものであれば測定される気泡の形状が、仮に発泡粒子切断面上で方向によって異なるものであっても、安定した気泡径の値が得られるからである。
(E-2) Measurement of average cell diameter of expanded particles The average cell diameter of expanded particles is measured as follows.
The foamed particles are roughly divided into two, and the cut surface is photographed with a scanning electron microscope. In the obtained cross-sectional photograph, draw straight lines at equal intervals in the eight directions from the vicinity of the center of the foamed particle cut surface, count all the number of bubbles intersecting the straight line, the total length of the straight line is the number of counted bubbles The value obtained by dividing is taken as the cell diameter of the expanded particles. This operation is performed for a large number (at least 30 or more) of foamed particles, and the arithmetic average value of the bubble diameters of the foamed particles is defined as the average bubble diameter.
In the measurement of the bubble diameter of each expanded particle, the bubbles that intersect even part of the straight line are counted. Further, in the above measurement, the reason why the straight lines are drawn at equal intervals in the eight directions from the vicinity of the center of the expanded surface of the foamed particle is measured if the straight lines are drawn at equal intervals in the eight directions from the vicinity of the center of the expanded surface of the expanded particle. This is because a stable bubble diameter value can be obtained even if the shape of the bubbles varies depending on the direction on the expanded particle cut surface.

(ホ−3)発泡粒子の平均気泡膜厚み(Tm)の算出
発泡粒子の平均気泡膜厚み(Tm)は、上記の方法で測定された平均気泡径dから以下の式(5)を使って算出される。
=(ρf−ρg)/(ρs−ρg)=[(d+Tm)−d]/(d+Tm)・・・(5)
但し、Vは基材樹脂の容積分率、ρfは発泡粒子の見かけ密度(g/cm)、ρsは基材樹脂の密度(g/cm)、ρgは気泡内のガス密度(g/cm)、dは平均気泡径(μm)、Tmは平均気泡膜厚み(μm)である。
上記式は、平均気泡径と平均気泡膜厚みとの関係式であり、「プラスチックフォームハンドブック」(発行所:日刊工業新聞社、昭和48年2月28日発行)、222頁目の「1.3.2の項」に記載されている。式(5)により、本発明の発泡粒子の平均気泡径が定まれば、発泡粒子の平均気泡膜厚み(Tm)が定まる。
(E-3) Calculation of average cell membrane thickness (Tm) of expanded particles The average cell membrane thickness (Tm) of the expanded particles is calculated from the average cell diameter d measured by the above method using the following formula (5). Calculated.
V S = (ρf−ρg) / (ρs−ρg) = [(d + Tm) 3 −d 3 ] / (d + Tm) 3 (5)
Where V S is the volume fraction of the base resin, ρf is the apparent density (g / cm 3 ) of the expanded particles, ρs is the density of the base resin (g / cm 3 ), and ρg is the gas density (g / Cm 3 ), d is the average bubble diameter (μm), and Tm is the average bubble film thickness (μm).
The above formula is a relational expression between the average bubble diameter and the average bubble film thickness. “Plastic Foam Handbook” (published by Nikkan Kogyo Shimbun, published on February 28, 1973), “1. This is described in section 3.2. If the average cell diameter of the foamed particles of the present invention is determined by the formula (5), the average cell membrane thickness (Tm) of the expanded particles is determined.

上述の発泡粒子を用いると、広い範囲の型内成形条件にて発泡粒子相互の融着性に優れた発泡粒子成形体を成形でき、厚みの大きいものや、複雑な形状のものなど型内成形が困難なものにおいても良好な成形体が得られる。尚、該発泡粒子を用いることにより、発泡粒子相互の融着性に優れる発泡粒子成形体を成形できるメカニズムは定かではないが、発泡粒子表層部(S)の結晶化が進んでいないため、発泡粒子表層部が軟化しやすい状態にあり、発泡粒子同士の融着がしやすい状態となっていることと、発泡粒子に従来のものよりも厚い表皮が形成されていることにより型内成形時において発泡粒子の収縮、破泡が防がれることによる良好な発泡粒子成形体が得られる型内成形温度範囲の拡大すること、これらが相俟って得られる効果と考えられる。 When the above-mentioned expanded particles are used, it is possible to mold expanded particle molded articles having excellent fusion properties between expanded particles under a wide range of in-mold molding conditions. In-mold molding such as thick and complex shapes Even if it is difficult to obtain, a good molded product can be obtained. Since the use of the expanded beads, a mechanism capable of forming a foamed bead molded article excellent in fusion bonding of the expanded beads another, but is not certain, it not progressed crystallization of the foamed particle surface layer portion (S B), At the time of in-mold molding, the surface layer of the foamed particles is easy to soften, the foamed particles are easily fused together, and the foamed particles have a thicker skin than conventional ones. In this case, it is considered that the expansion of the in-mold molding temperature range in which a good foamed particle molded body can be obtained by preventing shrinkage and foam breakage of foamed particles, and these are considered to be the combined effects.

〔3〕発泡性ポリ乳酸系樹脂粒子(A)について
発泡性ポリ乳酸系樹脂粒子(A)は、発泡させることにより、ポリ乳酸系樹脂発泡粒子(B)となるものであって、物理発泡剤を含有してなり、かつ含水量が0.5重量%以上である。
前記した通り、発泡性ポリ乳酸系樹脂粒子(A)は、ポリ乳酸系樹脂粒子に物理発泡剤を含浸した後に該発泡剤を逸散することにより製造することが可能である。
上記発泡剤を逸散させる際に、例えば湿度条件を40%RH以上とすると、逸散処理後に得られる樹脂粒子の含水率を0.5重量%以上とすることが可能になる。
このような逸散においては、物理発泡剤は相対的に樹脂粒子の表層部近傍から多く逸散して、樹脂粒子の表層部近傍の物理発泡剤濃度は、その粒子中央部近傍の発泡剤濃度より低くなることが想定される。
また、有機系物理発泡剤や炭酸ガス等の無機系物理発泡剤が含有されるとポリ乳酸系樹脂のガラス転移温度が低下するため、結晶性ポリ乳酸系樹脂組成物の結晶化が進みやすい状態となる。
その結果逸散工程を経ることによって、発泡性樹脂粒子の表層部近傍の発泡剤濃度が含浸樹脂粒子中央部近傍の発泡剤濃度より低くなることにより、樹脂粒子の表層部近傍よりも中央部近傍の結晶化が進みやすい状態となり、後の発泡工程を経て得られる発泡粒子において、発泡粒子中央部近傍の結晶化度は表層部近傍の結晶化度よりは相対的に高くなる。このことは、該逸散後に発泡して得られる発泡粒子の表層部(S)の発熱量(Bs)が中央部(C)の発熱量(Bc)よりも高くなることから確認される。発泡性樹脂粒子の表層部近傍の発泡剤濃度が比較的低く維持することができる為、後工程にて得られる発泡粒子は、表層部の結晶化度が低く発泡粒子相互の融着率の高いものとなる。
[3] About expandable polylactic acid-based resin particles (A) The expandable polylactic acid-based resin particles (A) become polylactic acid-based resin expanded particles (B) by foaming, and are a physical foaming agent. And the water content is 0.5% by weight or more.
As described above, the expandable polylactic acid resin particles (A) can be produced by impregnating the polylactic acid resin particles with a physical foaming agent and then dissipating the foaming agent.
When dispersing the foaming agent, for example, if the humidity condition is 40% RH or more, the water content of the resin particles obtained after the dissipation treatment can be 0.5% by weight or more.
In such dispersion, the physical foaming agent is relatively dissipated from the vicinity of the surface layer portion of the resin particle, and the physical foaming agent concentration in the vicinity of the surface layer portion of the resin particle is the foaming agent concentration in the vicinity of the center portion of the particle. It is assumed that it will be lower.
In addition, when an inorganic physical foaming agent such as an organic physical foaming agent or carbon dioxide gas is contained, the glass transition temperature of the polylactic acid resin is lowered, so that the crystallization of the crystalline polylactic acid resin composition is likely to proceed. It becomes.
As a result, by passing through the dissipation step, the foaming agent concentration in the vicinity of the surface layer portion of the expandable resin particles is lower than the foaming agent concentration in the vicinity of the center portion of the impregnated resin particles, so that the vicinity of the center portion of the resin particles near the center portion In the expanded particles obtained through the subsequent expansion step, the crystallinity in the vicinity of the center of the expanded particles is relatively higher than the crystallinity in the vicinity of the surface layer. This is confirmed by the fact that the calorific value (Bs) of the surface layer part (S B ) of the expanded particles obtained by foaming after the dissipation is higher than the calorific value (Bc) of the central part (C B ). . Since the foaming agent concentration in the vicinity of the surface layer portion of the expandable resin particles can be kept relatively low, the expanded particles obtained in the subsequent step have a low surface layer portion crystallinity and a high fusion rate between the expanded particles. It will be a thing.

〔4〕ポリ乳酸系樹脂発泡粒子成形体(C)について
発泡粒子成形体(C)は、ポリ乳酸系樹脂発泡粒子(B)を相互に融着させて得られる。
(1)ポリ乳酸系樹脂発泡粒子(B)の型内成形
ポリ乳酸系樹脂発泡粒子成形体(C)は、ポリ乳酸系樹脂発泡粒子(B)を型内成形することにより発泡粒子を相互に融着させて得ることが可能である。また、本発明のポリ乳酸系樹脂発泡粒子(B)を相互に融着させることにより得られた発泡粒子成形体(C)は更に、養生工程を経ることが好ましい。
型内成形においては、発泡粒子を型内に充填した後に、スチーム又はスチームと空気との混合媒体等の加熱媒体により該発泡粒子を加熱して発泡粒子を相互に融着させることが好ましい。このように、加熱成形すると発泡粒子は相互に良好に融着し一体化された発泡粒子成形体が得られる。この場合の成形用の型としては一般に使用されている金型又はや特開2000−15708号公報等に記載の連続成形装置に使用されているスチールベルトが用いられる。また、加熱手段としては、通常スチームが用いられ、その加熱温度は型内成形時に発泡粒子表面が溶融する温度である。
ポリ乳酸系樹脂発泡粒子(B)を型内成形して得られる発泡粒子成形体(C)は、従来のポリ乳酸樹脂発泡粒子成形体より発泡粒子間の融着性に優れ、例えば30mmから50mm厚みの発泡粒子成形体を0.1〜0.25MPa(G)のスチームで成形することが可能である。
[4] Polylactic acid-based resin expanded particle molded body (C) The expanded particle molded body (C) is obtained by fusing the polylactic acid-based resin expanded particles (B) to each other.
(1) In-mold molding of polylactic acid-based resin expanded particles (B) The polylactic acid-based resin expanded particles (C) are molded into each other by molding the polylactic acid-based resin expanded particles (B) in the mold. It can be obtained by fusing. Moreover, it is preferable that the foamed particle molded body (C) obtained by fusing the polylactic acid resin expanded particles (B) of the present invention to each other further undergo a curing process.
In in-mold molding, it is preferable that the foamed particles are fused together by heating the foamed particles with a heating medium such as steam or a mixed medium of steam and air after filling the foamed particles in the mold. As described above, when the heat molding is performed, the foamed particles are well fused with each other to obtain an expanded foamed particle molded body. As a mold for molding in this case, a generally used mold or a steel belt used in a continuous molding apparatus described in JP 2000-15708 A or the like is used. As the heating means, steam is usually used, and the heating temperature is a temperature at which the surface of the foamed particles melts during in-mold molding.
The foamed particle molded body (C) obtained by in-mold molding of the polylactic acid-based resin expanded particles (B) is superior to the conventional polylactic acid resin expanded particle molded body in the fusion property between the expanded particles, for example, 30 mm to 50 mm. It is possible to form a foamed particle molded body with a thickness of 0.1 to 0.25 MPa (G) steam.

(2)ポリ乳酸系樹脂発泡粒子(B)への加圧ガスの含浸
発泡粒子成形体(C)を製造する場合、型内成形に先立ってポリ乳酸系樹脂発泡粒子(B)に予め空気、窒素、炭酸ガス等の無機ガス、又はブタン等の有機ガス等を含浸させることが好ましい。上記無機ガス又は有機ガスの中でも炭酸ガスが取扱性の点から好ましい。発泡粒子にガスを含浸させることにより、型内成形において、発泡粒子相互間の隙間が少なくなる等の二次発泡性、金型形状再現性、発泡粒子成形体成形後の養生回復性が向上する。発泡粒子への含浸ガス量は、好ましくは0.05〜4mol/(1000g発泡粒子)、更に好ましくは0.1〜2mol/(1000g発泡粒子)の範囲内である。
(2) Impregnation of polylactic acid-based resin expanded particles (B) with pressurized gas When producing the expanded particle molded body (C), prior to in-mold molding, the polylactic acid-based resin expanded particles (B) are previously air, It is preferable to impregnate an inorganic gas such as nitrogen or carbon dioxide or an organic gas such as butane. Among the inorganic gas and organic gas, carbon dioxide is preferable from the viewpoint of handling. By impregnating the expanded particles with gas, in-mold molding, secondary foaming properties such as a decrease in gaps between the expanded particles, mold shape reproducibility, and curing recovery after molding the expanded particle molded body are improved. . The amount of impregnation gas into the expanded particles is preferably in the range of 0.05 to 4 mol / (1000 g expanded particles), more preferably 0.1 to 2 mol / (1000 g expanded particles).

尚、上記含浸ガス量(mol/1000g発泡粒子)は下記(6)式によって求められる。
含浸ガス量(mol/1000g発泡粒子)=
[ガス増加量(g)×1000]/[ガスの分子量(g/mol)×発泡粒子重量(g)]・・(6)
上記(6)式中のガス増加量(g)は次のように求める。
金型内に充填される、ガスを含浸することにより発泡粒子内部の圧力が高められた発泡粒子を500個以上取り出して60秒以内に相対湿度50%、23℃の大気圧下の恒温恒湿室に移動し、その恒温恒湿室内の秤に乗せ、該発泡粒子を取り出して120秒後の重量を読み取る。このときの重量をQ(g)とする。次に、該発泡粒子を相対湿度50%、23℃の大気圧下の同恒温恒湿室内にて240時間放置する。発泡粒子内の高い圧力のガスは時間の経過とともに気泡膜を透過して外部に抜け出すため発泡粒子の重量はそれに伴って減少し、240時間後では平衡に達しているため実質的にその重量は安定している。上記240時間後の該発泡粒子の重量を同恒温恒湿室内にて測定し、このときの重量をS(g)とする。上記のいずれの重量も0.0001gまで読み取るものとする。この測定で得られたQ(g)とS(g)の差を(6)式中のガス増加量(g)とする。
上記無機ガス又は有機ガスを発泡粒子に含浸させる方法としては、周知の通り、密閉容器に発泡粒子を入れ、該容器内を無機ガス又は有機ガスにて加圧する方法が挙げられ、この方法により発泡粒子の含浸ガス量を高めることができる。
The amount of impregnated gas (mol / 1000 g expanded particles) is obtained by the following equation (6).
Impregnation gas amount (mol / 1000 g expanded particles) =
[Gas increase (g) × 1000] / [Gas molecular weight (g / mol) × Expanded particle weight (g)] (6)
The gas increase amount (g) in the above equation (6) is obtained as follows.
Take out 500 or more foamed particles filled in the mold, and the pressure inside the foamed particles is increased by impregnating gas, and within 60 seconds, constant humidity and humidity at 50% relative humidity and 23 ° C atmospheric pressure It moves to a chamber, puts on the balance in the constant temperature and humidity chamber, takes out the foamed particles, and reads the weight after 120 seconds. The weight at this time is defined as Q (g). Next, the foamed particles are allowed to stand for 240 hours in the same constant temperature and humidity room at 50% relative humidity and 23 ° C. atmospheric pressure. The high-pressure gas in the expanded particles permeates through the cell membrane over time and escapes to the outside, so the weight of the expanded particles decreases accordingly, and after 240 hours the equilibrium is reached. stable. The weight of the expanded particles after 240 hours is measured in the same constant temperature and humidity chamber, and the weight at this time is defined as S (g). Any of the above weights shall be read up to 0.0001 g. The difference between Q (g) and S (g) obtained by this measurement is defined as the gas increase amount (g) in the equation (6).
As a method of impregnating the expanded particles with the inorganic gas or the organic gas, as is well known, there is a method in which the expanded particles are put in a closed container and the inside of the container is pressurized with an inorganic gas or an organic gas. The amount of impregnating gas of the particles can be increased.

(3)型内成形後の養生
上記型内成形で得られた発泡粒子成形体(C)は、基材樹脂の中間点ガラス転移温度をTgとした場合、[Tg+5]〜[Tg+30]℃の雰囲気下に一定時間保持する養生工程を経ることが好ましい。
養生工程の温度が[Tg+5]℃以上の場合には、ポリ乳酸系樹脂を結晶化させるのに比較的短時間で行うことが可能となり、発泡粒子成形体の耐熱性向上の効果が得られ、耐熱性により優れる発泡粒子成形体となる。この観点から、養生温度は[Tg+8]℃以上がより好ましく、[Tg+10]℃以上が更に好ましい。また、[Tg+30]℃以下の場合には、発泡粒子成形体(C)の変形を防止して、良好な発泡粒子成形体を得ることが可能となる。この観点から[Tg+25]℃以下がより好ましく、[Tg+20]℃以下が更に好ましい。
また、養生工程で上記の温度雰囲気下で保持する時間としては耐熱性向上の観点から1時間以上が好ましく、3時間以上が好ましく、特に5時間以上が好ましい。一方、その上限は発泡粒子成形体(C)が変形や変色を起こさない観点から通常、36時間以下である。上記観点と生産性のバランスから24時間以下がより好ましく、特に12時間以下が好ましい。
(3) Curing after in-mold molding The foamed particle molded body (C) obtained by the above in-mold molding has [Tg + 5] to [Tg + 30] ° C. when the midpoint glass transition temperature of the base resin is Tg. It is preferable to go through a curing process for holding for a certain time in an atmosphere.
When the temperature of the curing process is [Tg + 5] ° C. or higher, it becomes possible to perform the polylactic acid resin in a relatively short time to crystallize, and the effect of improving the heat resistance of the foamed particle molded body is obtained. It becomes a foamed particle molded body which is more excellent in heat resistance. In this respect, the curing temperature is more preferably [Tg + 8] ° C. or higher, and further preferably [Tg + 10] ° C. or higher. Moreover, when it is [Tg + 30] degrees C or less, it becomes possible to prevent a deformation | transformation of a foamed particle molded object (C), and to obtain a favorable expanded particle molded object. In this respect, [Tg + 25] ° C. or lower is more preferable, and [Tg + 20] ° C. or lower is still more preferable.
Moreover, as time to hold | maintain under said temperature atmosphere at a curing process, 1 hour or more is preferable from a viewpoint of heat resistance improvement, 3 hours or more are preferable, and especially 5 hours or more are preferable. On the other hand, the upper limit is usually 36 hours or less from the viewpoint of preventing the foamed particle molded body (C) from being deformed or discolored. From the above viewpoint and productivity balance, 24 hours or shorter is more preferable, and 12 hours or shorter is particularly preferable.

また、養生工程の相対湿度は、相対湿度が高いと発泡粒子成形体(C)が加水分解を受け、機械的物性に劣った発泡粒子成形体となる場合があることから40%RH以下が好ましい。上記観点から30%RH以下がより好ましく、20%RH以下が更に好ましい。一方、その下限は0%RHではその条件とするのに特別な装置が必要となることから5%RH以上が好ましい。
また、養生工程全体の時間を100%とした場合、上記観点から相対湿度が40%RHを超える時間が50%以下が好ましく、25%以下がより好ましい。
養生する際、発泡粒子成形体(C)はそのままの形態でも良いが、温度が高いと発泡粒子成形体(C)の変形を防止するためには、形状を固定する冶具などで発泡粒子成形体(C)を固定することが好ましい。
上記養生工程によれば、基材樹脂の中間点ガラス転移温度を基準として結晶化させることも兼ねるので、効率よく耐熱性が向上した発泡粒子成形体(C)が得られる。なお、養生工程での加熱媒体は通常熱風で行なわれる。
Further, the relative humidity in the curing process is preferably 40% RH or less because if the relative humidity is high, the foamed particle molded body (C) may be hydrolyzed to form a foamed particle molded body having poor mechanical properties. . From the above viewpoint, 30% RH or less is more preferable, and 20% RH or less is more preferable. On the other hand, a lower limit of 0% RH is preferably 5% RH or more because a special device is required to satisfy the condition.
Moreover, when the time of the whole curing process is 100%, from the above viewpoint, the time when the relative humidity exceeds 40% RH is preferably 50% or less, and more preferably 25% or less.
When curing, the foamed particle molded body (C) may be in the form as it is, but in order to prevent deformation of the foamed particle molded body (C) when the temperature is high, the foamed particle molded body may be fixed with a jig for fixing the shape. It is preferable to fix (C).
According to the curing step, the foamed particle molded body (C) having improved heat resistance can be obtained efficiently since it can be crystallized based on the midpoint glass transition temperature of the base resin. In addition, the heating medium in a curing process is normally performed with a hot air.

本発明の発泡粒子成形体(C)は、前記養生工程を行うことによってより耐熱性に優れたものとなる。具体的な耐熱性は90℃の雰囲気下で22時間放置後の加熱寸法変化率の絶対値が4%以内であることが好ましく、3%以内であることがより好ましく、2%以内であることが更に好ましい。該加熱寸法変化率の絶対値が4%を超えると、90℃付近で用いる分野に使用し難いなど使用範囲が狭くなる虞れがある。発泡粒子成形体を構成しているポリ乳酸系樹脂の組成にもよるが、上記範囲内の耐熱性を有する発泡粒子成形体は、上記養生工程を経ることにより得ることができる。なお、上記加熱寸法変化率(%)とは、〔(90℃、22時間の加熱後の発泡粒子成形体の寸法(mm)−加熱前の発泡粒子成形体の寸法(mm))/加熱前の発泡粒子成形体の寸法(mm)〕×100の式にて求められる値であり、本明細書における発泡粒子成形体の加熱寸法変化率は、上式により求められる各部位の加熱寸法変化率の内、最も寸法変化率の絶対値が大きかった部位の値を採用することとする。   The foamed particle molded body (C) of the present invention is more excellent in heat resistance by performing the curing step. Specifically, the heat resistance is preferably within 4%, more preferably within 3%, and more preferably within 2% of the heating dimensional change after standing for 22 hours in an atmosphere at 90 ° C. Is more preferable. If the absolute value of the heating dimensional change rate exceeds 4%, the use range may be narrowed, such as being difficult to use in the field used near 90 ° C. Although depending on the composition of the polylactic acid resin constituting the expanded particle molded body, the expanded particle molded body having heat resistance within the above range can be obtained through the curing step. The heating dimensional change rate (%) is [(the size of the foamed particle molded body after heating at 90 ° C. for 22 hours (mm) −the dimension of the foamed particle molded body before heating (mm)) / before the heating] Dimension of foamed particle molded body (mm)] × 100, which is a value determined by the formula, and the heating dimensional change rate of the foamed particle molded body in this specification is the heating dimensional change rate of each part determined by the above formula Of these, the value of the part having the largest absolute value of the dimensional change rate is adopted.

(4)発泡粒子成形体(C)
本発明の発泡粒子成形体(C)は、型内成形時の二次発泡性と発泡粒子相互の融着が良好な発泡粒子より得られるので発泡粒子相互間に隙間が少ないため、外観と発泡粒子成形体の中心部付近の融着が良好な発泡粒子成形体である。
更に、発泡粒子成形体(C)の結晶化が促進されていると、耐熱性が向上するので、前述した養生工程を経ることにより効率よく結晶化度を高め、耐熱性を向上させることができる。
発泡粒子成形体(C)の形状は特に制約されず、その形状は、例えば、容器状、板状、筒体状、柱状、シート状、ブロック状等の各種の形状にすることができる。また、本発明の発泡粒子成形体は寸法安定性、表面平滑性において優れたものである。
(4) Foamed particle molded body (C)
The foamed particle molded body (C) of the present invention can be obtained from foamed particles having good secondary foamability and good fusion between the foamed particles at the time of in-mold molding. This is a foamed particle compact with good fusion in the vicinity of the center of the particle compact.
Furthermore, since the heat resistance is improved when the crystallization of the foamed particle molded body (C) is promoted, the degree of crystallization can be increased efficiently and the heat resistance can be improved through the curing process described above. .
The shape of the expanded particle molded body (C) is not particularly limited, and the shape can be various shapes such as a container shape, a plate shape, a cylindrical shape, a column shape, a sheet shape, and a block shape. The foamed particle molded body of the present invention is excellent in dimensional stability and surface smoothness.

(イ)見かけ密度
発泡粒子成形体(C)の見かけ密度は、0.02〜0.65g/cmが好ましく、0.03〜0.45g/cmがより好ましい。
発泡粒子成形体(C)の見かけ密度は、発泡粒子成形体の外形寸法から求められる体積VM(cm)にて発泡粒子成形体の重量WM(g)を割り算し(WM/VM)単位換算することにより求められる。
Apparent density (a) Apparent Density PP bead molding (C) is preferably from 0.02~0.65g / cm 3, more preferably 0.03~0.45g / cm 3.
The apparent density of the foamed particle molded body (C) is calculated by dividing the weight WM (g) of the foamed particle molded body by the volume VM (cm 3 ) obtained from the outer dimensions of the foamed particle molded body (WM / VM). Is required.

(ロ)融着率
発泡粒子成形体(C)の融着率は、該成形体の曲げ強さなどの十分な機械的物性示すものとなる観点から50%以上が好ましく、60%以上がより好ましい。
融着率の測定は以下の方法で行うことができる。即ち、発泡粒子成形体を、カッターナイフで発泡粒子成形体の厚み方向に約3mmの切り込みを入れた後、手で切り込み部から発泡粒子成形体を破断した。次に、破断面に存在する発泡粒子の個数(n)と、材料破壊した発泡粒子の個数(b)を測定し、(n)と(b)の比(b/n)から下記(7)式により求めることができる。
融着率(%)=(b/n)×100・・・(7)
(B) Fusion rate The fusion rate of the foamed particle molded body (C) is preferably 50% or more, more preferably 60% or more from the viewpoint of exhibiting sufficient mechanical properties such as bending strength of the molded body. preferable.
The fusion rate can be measured by the following method. That is, the foamed particle molded body was cut by about 3 mm in the thickness direction of the foamed particle molded body with a cutter knife, and then the foamed particle molded body was broken from the cut portion by hand. Next, the number of expanded particles (n) present on the fractured surface and the number of expanded particles (b) whose material was destroyed were measured, and the ratio (b / n) between (n) and (b), It can be obtained by an expression.
Fusing rate (%) = (b / n) × 100 (7)

本発明のポリ乳酸系樹脂発泡粒子成形体は、環境低負荷型の熱可塑性樹脂を基材樹脂とするものであることから、従来のポリスチレン系樹脂発泡粒子成形体やポリオレフィン系樹脂発泡粒子成形体が使用されていた分野、例えば、魚箱、包装緩衝材料、自動車の内装材等の代替物として好ましく使用できる。   Since the polylactic acid-based resin expanded particle molded body of the present invention uses a low environmental load thermoplastic resin as a base resin, the conventional polystyrene-based resin expanded particle molded body and polyolefin-based resin expanded particle molded body Can be preferably used as a substitute for the fields in which has been used, for example, fish boxes, packaging cushioning materials, automobile interior materials and the like.

次に、本発明を実施例によりさらに詳しく説明する。但し、本発明は、これらの実施例に限定されるものではない。
実施例における評価方法等を以下に記載する。
尚、本発明の実施例、比較例にて使用したDSC装置は、ティー・エイ・インスツルメント・ジャパン(株)製、商品名:DSC―Q1000である。
(1)ポリ乳酸系樹脂粒子について
(i)中間点ガラス転移温度
ポリ乳酸系樹脂粒子の中間点ガラス転移温度は、JIS K7121(1987年)の3.試験片の状態調節(3)記載の「一定の熱処理を行った後、ガラス転移温度を測定する場合」に準拠して試験片をDSC装置の容器に入れ、融解ピーク終了時より30℃高い温度まで加熱速度10℃/minにて昇温して加熱溶解させ、その温度に10分保持した後、0℃まで冷却速度10℃/minにて冷却する状態調整を行ない、次に加熱速度10℃/minにて0℃から融解ピーク終了時より30℃高い温度まで昇温したときに得られるDSC曲線から求めた。
(2)発泡性ポリ乳酸系樹脂粒子について
(i)発泡剤含浸量
樹脂粒子に対する物理発泡剤の含浸量(重量部)は下記式から求めた。
物理発泡剤含浸量(重量部)=[(物理発泡剤含浸後のポリ乳酸系樹脂粒子重量(g)−物理発泡剤含浸前のポリ乳酸系樹脂粒子重量(g))/物理発泡剤含浸前のポリ乳酸系樹脂粒子重量(g)]×100(重量部)
(ii)発泡剤逸散率
樹脂粒子に対する物理発泡剤逸散率(%)は下記式から求めた。
[(物理発泡剤含浸量(g)−逸散後の物理発泡剤含浸量(g))/(物理発泡剤含浸量(g))]×100(%)
(iii)含水率
発泡性ポリ乳酸系樹脂粒子の含水率は、JIS K7251(2002年)のB法−水分気化法により測定した。
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
The evaluation methods and the like in the examples are described below.
The DSC apparatus used in Examples and Comparative Examples of the present invention is a product name: DSC-Q1000 manufactured by TA Instruments Japan Co., Ltd.
(1) Polylactic acid-based resin particles (i) Midpoint glass transition temperature The midpoint glass transition temperature of polylactic acid-based resin particles is the same as that in JIS K7121 (1987). Condition of test piece (3) According to “When measuring glass transition temperature after performing a certain heat treatment”, put the test piece into the vessel of the DSC apparatus, and a temperature 30 ° C. higher than the end of the melting peak. The temperature was raised at a heating rate of 10 ° C./min until heated and dissolved, held at that temperature for 10 minutes, and then adjusted to 0 ° C. at a cooling rate of 10 ° C./min, and then heated at a rate of 10 ° C. It was determined from the DSC curve obtained when the temperature was raised from 0 ° C./min to a temperature 30 ° C. higher than the end of the melting peak.
(2) About expandable polylactic acid-based resin particles (i) Amount of impregnated foaming agent The amount of impregnation (parts by weight) of a physical foaming agent into resin particles was determined from the following formula.
Physical foaming agent impregnation amount (parts by weight) = [(polylactic acid resin particle weight (g) after physical foaming agent impregnation−polylactic acid resin particle weight (g) before physical foaming agent impregnation) / before physical foaming agent impregnation Of polylactic acid resin particles (g)] × 100 (parts by weight)
(Ii) Foaming agent dissipation rate The physical blowing agent dissipation rate (%) with respect to the resin particles was determined from the following formula.
[(Physical foaming agent impregnation amount (g) −physical foaming agent impregnation amount after dissipation (g)) / (physical foaming agent impregnation amount (g))] × 100 (%)
(Iii) Moisture content The moisture content of the expandable polylactic acid resin particles was measured by the method B-water vaporization method of JIS K7251 (2002).

(3)ポリ乳酸系樹脂発泡粒子について
(i)見かけ密度
23℃のエタノールの入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて2日放置した約1000個の発泡粒子(発泡粒子群の重量W1)を金網を使用して沈めて、エタノール水位上昇分より読みとられる発泡粒子群の容積V1(cm)にてメスシリンダーに入れた発泡粒子群の重量W1(g)を割り算(W1/V1)することにより求めた。
(ii)ポリ乳酸系樹脂発泡粒子の熱処理後のDSC曲線における吸熱量(Rendo)
ポリ乳酸系樹脂発泡粒子は、JIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)を測定した。
(iii)発熱量(Bexo)と吸熱量(Bendo)
前記「〔2〕ポリ乳酸系樹脂発泡粒子(B)について、(2)ポリ乳酸系樹脂発泡粒子(B)、(ハ)示差走査熱量測定における発泡粒子の吸熱量と該発泡粒子の発熱量との関係」の項に記載した測定法を採用した。
(3) Polylactic acid-based resin expanded particles (i) Apparent density A graduated cylinder containing ethanol at 23 ° C. was prepared, and the graduated cylinder was allowed to stand for 2 days under the conditions of 50% relative humidity, 23 ° C. and 1 atm. 1000 foam particles (weight W1 of the foam particles group) were sunk using a wire mesh, and the foam particles group was placed in a graduated cylinder at a volume V1 (cm 3 ) of the foam particle group read from the rise in the ethanol water level. The weight W1 (g) was divided (W1 / V1).
(Ii) Endothermic amount (Rendo) in DSC curve after heat treatment of polylactic acid resin expanded particles
Based on the heat flux differential scanning calorimetry described in JIS K7122 (1987), the polylactic acid resin foamed particles are heated to a temperature 30 ° C. higher than the end of the melting peak and melted. After maintaining for 1 minute, cooling to 110 ° C. at a cooling rate of 2 ° C./min, holding at that temperature for 120 minutes, and then heat treatment to cool to 40 ° C. at a cooling rate of 2 ° C./min, again heating rate of 2 ° C. The endothermic amount (Rendo) in the DSC curve obtained when melted by heating to a temperature 30 ° C. higher than at the end of the melting peak at / min was measured.
(Iii) Heat generation (Bexo) and heat absorption (Bendo)
Regarding “[2] Polylactic acid-based resin expanded particles (B), (2) Polylactic acid-based resin expanded particles (B), (C) Endothermic amount of expanded particles and calorific value of the expanded particles in differential scanning calorimetry The measurement method described in the section “No.

(iv)中央部の発熱量(Bc)と表層部の発熱量(Bs)
前記「〔2〕ポリ乳酸系樹脂発泡粒子(B)について、(2)ポリ乳酸系樹脂発泡粒子(B)、(ニ)発泡粒子の表層部(S)の発熱量と中央部(C)の発熱量との関係」の項に記載した測定法を採用した。
(v)樹脂発泡粒子の平均表層厚みと平均気泡膜厚みの測定法
前記「〔2〕ポリ乳酸系樹脂発泡粒子(B)について、(2)ポリ乳酸系樹脂発泡粒子(B)、(ホ)ポリ乳酸系樹脂発泡粒子(B)の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比」の項に記載したのと同様の方法を採用し各々50個の発泡粒子について測定を行った。なお、式(5)において(ρfおよびρs)>>ρgであることからρgを0(g/cm)とすると、Vs=ρf/ρsとなる。よって、平均気泡膜厚みTm(μm)は、Tm=d〔(X/(X−1))1/3−1〕(但し、X=ρs/ρf=1.26/ρf。)の式にて算出した。
(Iv) Calorific value (Bc) at the center and calorific value (Bs) at the surface layer
Regarding “[2] Polylactic acid-based resin expanded particles (B), (2) Polylactic acid-based resin expanded particles (B), (D) Heat generation amount of the surface layer portion (S B ) of the expanded particles and the central portion (C B The measurement method described in the section “Relation with calorific value”) was adopted.
(V) Method for Measuring Average Surface Layer Thickness and Average Cell Film Thickness of Resin Expanded Particles “[2] Polylactic acid based resin expanded particles (B) (2) Polylactic acid based expanded resin particles (B), (e) Using the same method as described in the section “Ratio of average surface layer thickness (Ts) and average cell membrane thickness (Tm) of polylactic acid-based resin expanded particles (B)”, measurement was performed for 50 expanded particles each. went. Since (ρf and ρs) >> ρg in equation (5), assuming that ρg is 0 (g / cm 3 ), Vs = ρf / ρs. Therefore, the average bubble film thickness Tm (μm) is expressed by the following equation: Tm = d [(X / (X−1)) 1/3 −1] (where X = ρs / ρf = 1.26 / ρf). Calculated.

(4)発泡粒子成形体について
(i)二次発泡性
表1に示した二次発泡性の評価は、以下に示す基準にて発泡粒子成形体を目視により観察することにより評価した。
◎:発泡粒子成形体の表面において発泡粒子相互間に隙間がなく、成形体の角部の形状が金型の形状と同じ。
○:発泡粒子成形体の表面において発泡粒子相互間に隙間がほとんどなく、成形体の角部の形状が金型の形状とほぼ同じ。
△:発泡粒子成形体の表面において発泡粒子相互間に隙間が少なく、成形体の角部の形状が金型の形状より若干丸い。
×:発泡粒子成形体の表面において発泡粒子相互間に隙間が多く、成形体の角部の形状が金型の形状より丸い。
(ii)融着率
発泡粒子成形体を、カッターナイフで発泡粒子成形体の厚み方向に約3mmの切り込みを入れた後、手で切り込み部から発泡粒子成形体を破断した。次に、破断面に存在する発泡粒子の個数(n)と、発泡粒子自体が材料破壊した発泡粒子の個数(b)を測定し、(n)と(b)の比(b/n)の100分率である〔(b/n)×100〕(%)を融着率とした。
(iii)中心部融着評価
上記融着率の測定で破断した発泡粒子成形体の破断面の中心部を目視により観察し、融着の程度を以下のように評価した。
◎:全ての発泡粒子が粒子界面で剥がされず、発泡粒子自体が破壊している。
○:ほとんどの発泡粒子が粒子界面で剥がされず、発泡粒子自体が破壊している。
△:界面で剥がされている発泡粒子が多く、発泡粒子自体が破壊しているものが少ない。
×:ほぼ全ての発泡粒子が粒子界面で剥がされている。
(iv)発泡粒子成形体の見かけ密度
発泡粒子成形体の見かけ密度は、相対湿度50%、23℃、1atmの条件にて2日放置した発泡粒子成形体の外形寸法から求められる体積VM(cm)にて発泡粒子成形体の重量WM(g)を割り算(WM/VM)してkg/mに単位換算することにより求めた。
(4) About foamed particle molded body (i) Secondary foamability The secondary foamability shown in Table 1 was evaluated by visually observing the foamed particle molded body according to the following criteria.
A: There is no gap between the expanded particles on the surface of the expanded particle molded body, and the shape of the corner of the molded body is the same as the shape of the mold.
○: There are almost no gaps between the expanded particles on the surface of the expanded particle molded body, and the shape of the corner of the molded body is almost the same as the shape of the mold.
Δ: There are few gaps between the expanded particles on the surface of the expanded particle molded body, and the shape of the corner of the molded body is slightly rounder than the shape of the mold.
X: There are many gaps between the expanded particles on the surface of the expanded particle molded body, and the shape of the corner of the molded body is rounder than the shape of the mold.
(Ii) Fusing rate The foamed particle molded body was cut by about 3 mm in the thickness direction of the foamed particle molded body with a cutter knife, and then the foamed particle molded body was broken by hand from the cut portion. Next, the number (n) of the expanded particles existing on the fracture surface and the number (b) of the expanded particles whose material was destroyed by the expanded particles themselves were measured, and the ratio (b / n) of (n) and (b) The fusion rate was [(b / n) × 100] (%), which is 100 minutes.
(Iii) Center part fusion evaluation The center part of the fracture surface of the expanded foam molded body fractured by the measurement of the fusion rate was visually observed, and the degree of fusion was evaluated as follows.
A: All foamed particles are not peeled off at the particle interface, and the foamed particles themselves are broken.
○: Most of the expanded particles are not peeled off at the particle interface, and the expanded particles themselves are broken.
Δ: Many foamed particles are peeled off at the interface, and few foamed particles are destroyed.
X: Almost all foamed particles are peeled off at the particle interface.
(Iv) Apparent density of foamed particle molded body The apparent density of the foamed particle molded body is a volume VM (cm In 3 ), the weight WM (g) of the foamed particle molded body was divided (WM / VM) and converted into a unit of kg / m 3 .

[実施例1]
(1)樹脂粒子の製造
結晶性ポリ乳酸(三井化学(株)製、商品名:レイシアH−100、密度1.26g/cm、吸熱量49J/g、表1に結晶性樹脂と記した。)50重量部と非結晶性ポリ乳酸(三井化学(株)製、商品名:レイシアH−280、密度1.26g/cm、吸熱量0J/g、表1に非結晶性樹脂と記した。)50重量部のブレンド物に、ポリエチレンワックス(東洋ペトロライト(株)製、商品名:ポリワックス1000、数平均分子量2200)200重量ppmを添加し、これらを押出機にて溶融、混練してストランド状に押出した。次いでこのストランドを約25℃の水中で急冷固化させた後に切断して、長さ(L)/直径(D)が1.3、1個当たりの平均重量1.1mgの無架橋の樹脂粒子を得た。得られた樹脂粒子の中間点ガラス転移温度は、57℃であった。
[Example 1]
(1) Production of resin particles Crystalline polylactic acid (manufactured by Mitsui Chemicals, Inc., trade name: Lacia H-100, density 1.26 g / cm 3 , endotherm 49 J / g, listed as crystalline resin in Table 1) .) 50 parts by weight and amorphous polylactic acid (Mitsui Chemicals, trade name: Lacia H-280, density 1.26 g / cm 3 , endotherm 0 J / g, listed as amorphous resin in Table 1) 200 wt ppm of polyethylene wax (manufactured by Toyo Petrolite Co., Ltd., trade name: Polywax 1000, number average molecular weight 2200) is added to 50 parts by weight of the blend, and these are melted and kneaded in an extruder. And extruded into strands. Next, the strand was quenched and solidified in water at about 25 ° C. and then cut to obtain non-crosslinked resin particles having a length (L) / diameter (D) of 1.3 and an average weight of 1.1 mg per piece. Obtained. The midpoint glass transition temperature of the obtained resin particles was 57 ° C.

(2)発泡剤の含浸
次に、5リットル(L)の内容積を有するオートクレーブにイオン交換水3000mlと酸化アルミニウム(デグッサ製、商品名:アエロオキサイド)0.5g、ドデシルベンゼンスルホン酸ナトリウム(第一工業製薬(株)製、商品名:ネオゲンS20A)0.2g、樹脂粒子1000gを投入し、さらに融着性改良剤としてグリセロールジアセトモノカプリレート(理研ビタミン(株)製、商品名:リケマールPL―019)を樹脂粒子100重量部に対し0.5重量部添加した。
次に、前記オートクレーブ内温度を30℃(表1の含浸条件の欄に示す含浸温度)に調整した後、炭酸ガス(CO)を圧力調整弁を介してオートクレーブ内に圧入し、そのオートクレーブ内の気相部の圧力が2MPa(G)(表1の含浸条件の欄に示した含浸圧力)になるように調整し、5.5時間(表1の含浸条件の欄に示す時間保持(保持時間))保持し炭酸ガスを含浸させた。
次に、オートクレーブ内の圧力を大気圧に減圧した後、樹脂粒子を取り出した。取り出した樹脂粒子は、遠心分離機にて付着水分が除去された。
得られた樹脂粒子表面の水分をエアーによりさらに除去し、上記オートクレーブから取り出してから10分経過後に樹脂粒子の物理発泡剤含浸量を測定したところ6.3重量部であった。
(2) Impregnation of blowing agent Next, in an autoclave having an internal volume of 5 liters (L), 3000 ml of ion-exchanged water, 0.5 g of aluminum oxide (trade name: Aerooxide), sodium dodecylbenzenesulfonate (No. 1) Made by Ichi Kogyo Seiyaku Co., Ltd., trade name: Neogen S20A (0.2 g) and resin particles (1000 g) were added, and glycerol diacetomonocaprylate (manufactured by Riken Vitamin Co., Ltd., trade name: Riquemar PL) -019) was added in an amount of 0.5 part by weight based on 100 parts by weight of the resin particles.
Next, after adjusting the temperature in the autoclave to 30 ° C. (impregnation temperature shown in the column of impregnation conditions in Table 1), carbon dioxide (CO 2 ) was press-fitted into the autoclave through the pressure regulating valve, and the autoclave The pressure in the gas phase is adjusted to 2 MPa (G) (impregnation pressure shown in the column of impregnation conditions in Table 1) and maintained for 5.5 hours (retained for the time shown in the column of impregnation conditions in Table 1). Time)) held and impregnated with carbon dioxide.
Next, after reducing the pressure in the autoclave to atmospheric pressure, the resin particles were taken out. The resin particles taken out were freed of adhering moisture by a centrifuge.
Moisture on the surface of the obtained resin particles was further removed with air, and the amount of the resin particles impregnated with the physical foaming agent was measured after 10 minutes from taking out from the autoclave, and found to be 6.3 parts by weight.

(3)発泡剤の逸散
前記発泡剤含浸樹脂粒子をポリエチレン袋に入れ、室温25℃、湿度50%RHの雰囲気で袋の口は開封したまま2時間半静置して、該樹脂粒子に含浸された炭酸ガスの一部を逸散させる処理を実施した。
この発泡剤逸散処理を終えてから10分経過後に測定される逸散処理後の発泡剤含浸量は、3.5重量部であった。発泡剤逸散処理前後の発泡剤含浸量から、樹脂粒子の発泡剤逸散率は、45重量%であった。
また、逸散処理後の発泡性樹脂粒子の含水率は、1.1重量%であった。
(3) Dissipation of foaming agent The foaming agent-impregnated resin particles are put in a polyethylene bag and left at room temperature 25 ° C. and humidity 50% RH for 2 and a half hours with the bag mouth opened, A treatment to dissipate a part of the impregnated carbon dioxide gas was performed.
The amount of foaming agent impregnation after the dissipation treatment measured after 10 minutes from the end of the foaming agent dissipation treatment was 3.5 parts by weight. From the amount of foaming agent impregnation before and after the foaming agent dissipation treatment, the foaming agent dissipation rate of the resin particles was 45% by weight.
The water content of the expandable resin particles after the dissipation treatment was 1.1% by weight.

(4)発泡性ポリ乳酸系樹脂樹脂粒子の発泡
この発泡剤逸散処理後の発泡性樹脂粒子を、圧力調整弁の付いた密閉容器内に充填した後、スチームとエアーにより96℃に温度調整した混合熱媒体を8秒間導入して加熱し、膨張発泡した無架橋の発泡粒子を得た。この時、発泡機内の最高温度は82℃であった。この発泡粒子の見かけ密度、吸熱量(Rendo)、発熱量(Bexo)、吸熱量(Bendo)、比(Bexo/Bendo)及び差(Bendo−Bexo)、表層部の発熱量(Bs)、中央部の発熱量(Bc)、及び比(Bs/Bc)、平均表層厚み(Ts)、平均気泡径、平均気泡膜厚み(Tm)、比(Ts/Tm)を表1に示す。
(4) Foaming of expandable polylactic acid-based resin resin particles After filling the foamable resin particles after the foaming agent dissipation treatment into a sealed container with a pressure regulating valve, the temperature is adjusted to 96 ° C with steam and air. The mixed heat medium thus introduced was introduced for 8 seconds and heated to obtain expanded and foamed non-crosslinked expanded particles. At this time, the maximum temperature in the foaming machine was 82 ° C. Apparent density, endothermic amount (Rendo), exothermic amount (Bexo), endothermic amount (Bendo), ratio (Bexo / Bendo) and difference (Bendo-Bexo), surface layer portion calorific value (Bs), central portion Table 1 shows the calorific value (Bc) and ratio (Bs / Bc), average surface layer thickness (Ts), average bubble diameter, average bubble film thickness (Tm), and ratio (Ts / Tm).

(5)ポリ乳酸系樹脂発泡粒子の型内成形
得られた発泡粒子を用いて、次のように型内成形を行った。
発泡粒子を密閉容器内に充填し、空気にて加圧し、空気の含浸ガス量が0.33(mol/1000g)となるよう発泡粒子に含浸した後、横250(mm)×縦200(mm)×厚み50(mm)の成形空間部を有する金型に圧縮率20%(金型に充填される圧縮前の発泡粒子の嵩体積(cm)−型締後の金型内容積(cm))×100/型締後の金型内容積(cm))(%)にて充填し、表1に示す成形圧力(スチーム圧)で型内成形した。なお、金型に充填される圧縮前の発泡粒子の嵩体積(cm)は、発泡粒子の嵩密度(g/cm)にて金型に充填される該発泡粒子の重量(g)を除した値であり、発泡粒子の嵩密度(g/cm)は、発泡粒子を空のメスシリンダーに入れた際にメスシリンダーの目盛りが示す発泡粒子の体積(cm)にてメスシリンダー中の発泡粒子の重量(g)除した値である。型内成形条件と得られた発泡粒子成形体の評価結果を表1に示す。
図6には、実施例1で得られた本発明のポリ乳酸発泡粒子を略二分割した断面の一部の走査型電子顕微鏡写真を示す。図7には、実施例1で得られた本発明のポリ乳酸発泡粒子を略二分割した断面の一部における表層部を更に拡大した走査型電子顕微鏡写真を示す。
(5) In-mold molding of polylactic acid-based resin expanded particles In-mold molding was performed as follows using the obtained expanded particles.
The foamed particles are filled in a sealed container, pressurized with air, impregnated into the foamed particles so that the amount of impregnated gas of air is 0.33 (mol / 1000 g), and then 250 (mm) × 200 (mm) ) X compression rate 20% in a mold having a molding space portion with a thickness of 50 (mm) (bulk volume of foamed particles before compression filled in the mold (cm 3 ) −mold inner volume after mold clamping (cm 3 )) × 100 / The mold inner volume after clamping (cm 3 )) (%) was filled and molded in-mold at the molding pressure (steam pressure) shown in Table 1. The bulk volume (cm 3 ) of the foamed particles before compression filled in the mold is the weight (g) of the foamed particles filled in the mold at the bulk density (g / cm 3 ) of the foamed particles. The bulk density (g / cm 3 ) of the foamed particles is the volume of the foamed particles (cm 3 ) indicated by the scale of the graduated cylinder when the foamed particles are placed in an empty graduated cylinder. It is a value obtained by dividing the weight (g) of the expanded particles. Table 1 shows the in-mold molding conditions and the evaluation results of the obtained foamed particle molded body.
FIG. 6 shows a scanning electron micrograph of a part of a cross-section obtained by dividing the polylactic acid foamed particles of the present invention obtained in Example 1 into approximately two parts. In FIG. 7, the scanning electron micrograph which expanded further the surface layer part in the part of the cross section which divided the polylactic acid expanded particle of this invention obtained in Example 1 into the substantially two parts is shown.

[実施例2]
実施例2では、実施例1と同じ樹脂粒子を用い、発泡剤の含浸時に、グリセロールジアセトモノカプリレート(理研ビタミン(株)製、商品名:リケマールPL―019)を添加しないで炭酸ガスを含浸させた。発泡剤逸散処理、及び発泡は実施例1と同様の条件で実施した。また、型内成形は発泡粒子に空気を加圧含浸させないで行った以外は実施例1と同様の条件で行った。得られた発泡粒子成形体の評価結果を表1に示す。
[Example 2]
In Example 2, the same resin particles as in Example 1 were used, and carbon dioxide gas was impregnated without adding glycerol diacetomonocaprylate (manufactured by Riken Vitamin Co., Ltd., trade name: Riquemar PL-019) when impregnating the foaming agent. I let you. The foaming agent dissipation treatment and foaming were performed under the same conditions as in Example 1. In-mold molding was performed under the same conditions as in Example 1 except that the foamed particles were not impregnated with air under pressure. The evaluation results of the obtained foamed particle molded body are shown in Table 1.

[比較例1、2]
比較例1及び比較例2では、実施例1と同じ樹脂粒子を用い、表1に記載の条件で発泡剤の炭酸ガスを含浸させた。比較例1及び比較例2では、発泡剤の逸散処理を行わず発泡剤含浸終了後直ちに実施例1と同様の条件にて発泡し、発泡粒子を得た。ここで含浸終了後直ちにとは、含浸終了から発泡開始まで10分以内に実施した事を示す。また、型内成形は発泡粒子に空気を加圧含浸させないで成形圧力を0.2MPa(G)とした以外は実施例1と同様の条件で行った。得られた発泡粒子成形体の評価結果を表1に示す。
図8には、比較例1で得られたポリ乳酸発泡粒子を略二分割した断面の一部の走査型電子顕微鏡写真を示す。図9には、比較例1で得られたポリ乳酸発泡粒子を略二分割した断面の一部における表層部を更に拡大した走査型電子顕微鏡写真を示す。
[Comparative Examples 1 and 2]
In Comparative Example 1 and Comparative Example 2, the same resin particles as in Example 1 were used and impregnated with carbon dioxide gas as a blowing agent under the conditions described in Table 1. In Comparative Example 1 and Comparative Example 2, foaming particles were obtained by performing foaming under the same conditions as in Example 1 immediately after the foaming agent impregnation without performing the foaming agent dissipation treatment. Here, “immediately after the impregnation” means that the impregnation was performed within 10 minutes from the end of the impregnation to the start of foaming. In-mold molding was performed under the same conditions as in Example 1 except that the foamed particles were not impregnated with air and the molding pressure was 0.2 MPa (G). The evaluation results of the obtained foamed particle molded body are shown in Table 1.
FIG. 8 shows a scanning electron micrograph of a part of a cross-section obtained by dividing the polylactic acid foamed particles obtained in Comparative Example 1 into approximately two parts. In FIG. 9, the scanning electron micrograph which expanded further the surface layer part in a part of the cross section which divided the polylactic acid foamed particle obtained by the comparative example 1 substantially into two is shown.

[実施例3、実施例4]
実施例3と実施例4では、実施例1で使用したのと同じ樹脂粒子を用い、発泡剤含浸条件の保持時間を5時間とした以外は実施例1と同じ条件で発泡剤の炭酸ガスを含浸させた。次に、オートクレーブ内の圧力を大気圧に減圧した後、樹脂粒子を取り出し、遠心分離機にて付着水分を除去した。
得られた発泡性樹脂粒子を内径10cm深さ25cmの円筒容器(流動層乾燥装置)に入れ、この容器の下部から湿度を調整した空気を導入して容器内を温度25℃、湿度40%RHの状態にして、実施例3では1時間、実施例4では2時間、発泡性樹脂粒子の発泡剤逸散処理を実施した。次いで、実施例1と同様の条件で逸散処理後の発泡性樹脂粒子を発泡させた。得られた発泡粒子を成形圧力0.2MPa(G)とした以外は実施例2と同様の条件で型内成形した。得られた発泡粒子成形体の評価結果を表1に示す。
[Example 3, Example 4]
In Example 3 and Example 4, the same resin particles as used in Example 1 were used, and the blowing agent carbon dioxide gas was used under the same conditions as in Example 1 except that the retention time of the blowing agent impregnation condition was 5 hours. Impregnated. Next, after reducing the pressure in the autoclave to atmospheric pressure, the resin particles were taken out and the adhering moisture was removed with a centrifuge.
The obtained expandable resin particles are put into a cylindrical container (fluidized bed drying apparatus) having an inner diameter of 10 cm and a depth of 25 cm, and air with adjusted humidity is introduced from the lower part of the container, and the temperature in the container is 25 ° C. and humidity is 40% RH. In this state, the foaming agent dissipation treatment of the expandable resin particles was performed for 1 hour in Example 3 and for 2 hours in Example 4. Next, the foamable resin particles after the dissipation treatment were foamed under the same conditions as in Example 1. In-mold molding was performed under the same conditions as in Example 2 except that the obtained foamed particles were subjected to a molding pressure of 0.2 MPa (G). The evaluation results of the obtained foamed particle molded body are shown in Table 1.

[比較例3]
比較例3では、実施例1と同じ樹脂粒子を用い、実施例3及び実施例4と同条件で発泡剤の炭酸ガスを含浸させた。付着水分の除去後実施例3及び実施例4で使用したと同様の円筒容器に入れ、比較例3では、乾燥空気を導入して温度25℃、湿度15%RHの状態にて2時間、発泡性樹脂粒子の発泡剤逸散処理を実施した。次いで、実施例1と同様の条件で逸散処理後の発泡性樹脂粒子を発泡させた。得られた発泡粒子を成形圧力0.20MPa(G)とした以外は実施例2と同様の条件で型内成形した。得られた発泡粒子成形体の評価結果を表1に示す。
[Comparative Example 3]
In Comparative Example 3, the same resin particles as in Example 1 were used and impregnated with carbon dioxide gas as a foaming agent under the same conditions as in Examples 3 and 4. After removing the adhering moisture, it was placed in the same cylindrical container as used in Example 3 and Example 4, and in Comparative Example 3, foaming was performed for 2 hours at a temperature of 25 ° C. and a humidity of 15% RH by introducing dry air. The foaming agent dissipation treatment of the conductive resin particles was performed. Next, the foamable resin particles after the dissipation treatment were foamed under the same conditions as in Example 1. The foamed particles thus obtained were molded in-mold under the same conditions as in Example 2 except that the molding pressure was 0.20 MPa (G). The evaluation results of the obtained foamed particle molded body are shown in Table 1.

[実施例5]
実施例5では、実施例1と同じ樹脂粒子を用い、実施例3と同じ条件で発泡剤の炭酸ガスを含浸させた。次に、オートクレーブ内の圧力を大気圧に減圧した後、オートクレーブ内で攪拌しながらそのまま2時間発泡剤の逸散処理を実施した。次いで発泡性樹脂粒子をオートクレーブ内から取り出し、遠心分離機にて付着水分を除去した後、実施例3と同様の条件で逸散処理後の発泡性樹脂粒子を発泡させた。得られた発泡粒子を実施例3と同様の条件で型内成形した。得られた発泡粒子成形体の評価結果を表1に示す。なお、表1において()内の値は推定値である。
[Example 5]
In Example 5, the same resin particles as in Example 1 were used, and carbon dioxide gas as a foaming agent was impregnated under the same conditions as in Example 3. Next, after reducing the pressure in the autoclave to atmospheric pressure, the foaming agent was dispersed for 2 hours while stirring in the autoclave. Next, the expandable resin particles were taken out from the autoclave, and the adhering moisture was removed with a centrifuge. Then, the expandable resin particles after the dissipation treatment were expanded under the same conditions as in Example 3. The obtained expanded particles were molded in-mold under the same conditions as in Example 3. The evaluation results of the obtained foamed particle molded body are shown in Table 1. In Table 1, values in parentheses are estimated values.

[実施例と比較例のまとめ]
実施例1は、厚みの大きい発泡粒子成形体であっても、二次発泡性に優れ、融着率が高いものであった。また、成形圧力を0.16MPa(G)のように低い成形圧力にした場合でも、発泡粒子成形体の中心部まで融着が優れているものであった。
図7に示すように、実施例1で得られた本発明のポリ乳酸発泡粒子は、50%RHの条件で発泡剤を逸散処理したことにより含水率の高い発泡性樹脂粒子が得られ、該樹脂粒子を発泡して得られたポリ乳酸発泡粒子の表層は厚みが大きく、平均表層厚みと平均気泡膜厚みの比が大きな値を示すものであった。
実施例2は、融着改良剤を使用していないものであるが、厚みの大きい発泡粒子成形体であっても、二次発泡性に優れ、融着率が高いものであった。また、成形圧力が0.16MPa(G)のように低い場合でも発泡粒子成形体の中心部まで融着がされているものであった。
一方比較例1、比較例2は、高い加熱スチーム圧力でも発泡粒子成形体は充分に融着しておらず、特に発泡粒子成形体の中心部の融着が極端に低いものであり、更に加熱スチーム圧を上げても良好な融着性を示す50mmの厚みの発泡粒子成形体を得ることはできなかった。
図9に示すように、比較例1で得られたポリ乳酸発泡粒子は、発泡剤の逸散を行っていないことにより、ポリ乳酸発泡粒子表層部の写真は、実施例1の表層部の写真と同じ拡大倍率であるが、表層の厚みが実施例1の厚みより小さいことが観察され、平均表層厚みと平均気泡膜厚みの比が小さな値を示すものであった。また、発泡粒子の表層部の発熱量の値も小さく発泡粒子表層部の結晶化が進んでいるものであった。
実施例3、4、5は、静置以外の発泡剤逸散工程によっても、静置による発泡剤逸散工程と同様の効果が確認でき、厚みの大きい発泡粒子成形体であっても、二次発泡性に優れ、融着率が高いものが得られた。
比較例3は、逸散工程を湿度の低い条件下で行なった例であり、得られた発泡粒子成形体の融着性、二次発泡性は、実施例3、4に比べて劣っていた。
[Summary of Examples and Comparative Examples]
In Example 1, even if the foamed particle molded body had a large thickness, the secondary foamability was excellent and the fusion rate was high. Even when the molding pressure was set to a low molding pressure such as 0.16 MPa (G), the fusion was excellent up to the center of the foamed particle molded body.
As shown in FIG. 7, the polylactic acid foamed particles of the present invention obtained in Example 1 were obtained by treating the foaming agent under the condition of 50% RH to obtain expandable resin particles having a high water content. The surface layer of the polylactic acid foamed particles obtained by foaming the resin particles had a large thickness, and the ratio of the average surface layer thickness to the average cell membrane thickness showed a large value.
In Example 2, no fusion improver was used, but even a foamed particle molded body having a large thickness was excellent in secondary foamability and a high fusion rate. Further, even when the molding pressure was as low as 0.16 MPa (G), the center of the foamed particle molded body was fused.
On the other hand, in Comparative Example 1 and Comparative Example 2, the foamed particle molded body was not sufficiently fused even at a high heating steam pressure, and particularly the fusion at the center of the foamed particle molded body was extremely low. Even if the steam pressure was increased, it was not possible to obtain a foamed particle molded body having a thickness of 50 mm showing good fusion properties.
As shown in FIG. 9, the polylactic acid foamed particles obtained in Comparative Example 1 did not dissipate the foaming agent, so the photo of the polylactic acid foamed particles surface layer part is the photograph of the surface layer part of Example 1 However, the thickness of the surface layer was observed to be smaller than that of Example 1, and the ratio of the average surface layer thickness to the average bubble film thickness showed a small value. Moreover, the value of the calorific value of the surface layer portion of the expanded particles was small, and the crystallization of the expanded particle surface layer portion was progressing.
In Examples 3, 4, and 5, the same effect as the foaming agent dissipation step by standing can be confirmed by the foaming agent dissipation step other than standing, and even if the foamed particle molded body has a large thickness, An excellent secondary foaming property and a high fusion rate were obtained.
Comparative Example 3 is an example in which the dissipation step was performed under low humidity conditions, and the obtained foamed particle molded article had poorer fusibility and secondary foamability than Examples 3 and 4. .

表1において重量部とはポリ乳酸系樹脂粒子100重量部に対する値である。 In Table 1, “parts by weight” is a value relative to 100 parts by weight of the polylactic acid resin particles.

熱流束示差走査熱量計により試験片の熱処理を行って測定された基材樹脂の吸熱量、発泡粒子の吸熱量(Rendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the endothermic amount of the base resin and the endothermic amount (Rendo) of the foamed particles measured by heat-treating the test piece with a heat flux differential scanning calorimeter. 熱流束示差走査熱量計により試験片の熱処理を行って測定された基材樹脂の吸熱量、発泡粒子の吸熱量(Rendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the endothermic amount of the base resin and the endothermic amount (Rendo) of the foamed particles measured by heat-treating the test piece with a heat flux differential scanning calorimeter. 熱流束示差走査熱量計により試験片の熱処理を行わずに測定された発泡粒子の発熱量(Bexo)及び吸熱量(Bendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the emitted-heat amount (Bexo) and the endothermic amount (Bendo) of the expanded particle measured without heat-processing a test piece with a heat flux differential scanning calorimeter. 熱流束示差走査熱量計により試験片の熱処理を行わずに測定された発泡粒子の発熱量(Bexo)及び吸熱量(Bendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the emitted-heat amount (Bexo) and the endothermic amount (Bendo) of the expanded particle measured without heat-processing a test piece with a heat flux differential scanning calorimeter. 熱流束示差走査熱量計により試験片の熱処理を行わずに測定された発泡粒子の発熱量(Bexo)及び吸熱量(Bendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the emitted-heat amount (Bexo) and the endothermic amount (Bendo) of the expanded particle measured without heat-processing a test piece with a heat flux differential scanning calorimeter. 実施例1で得られた本発明のポリ乳酸発泡粒子を略二分割した断面の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of a cross-section obtained by dividing the polylactic acid foamed particles of the present invention obtained in Example 1 into approximately two parts. 実施例1で得られた本発明のポリ乳酸発泡粒子を略二分割した断面における表層部の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of the surface layer portion in a cross-section obtained by dividing the polylactic acid foamed particles of the present invention obtained in Example 1 into approximately two parts. 比較例1で得られたポリ乳酸発泡粒子を略二分割した断面の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of a cross-section obtained by dividing the polylactic acid foamed particles obtained in Comparative Example 1 into approximately two parts. 比較例1で得られたポリ乳酸発泡粒子を略二分割した断面における表層部の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of a surface layer portion in a cross-section obtained by dividing a polylactic acid foamed particle obtained in Comparative Example 1 into approximately two parts.

Claims (2)

見かけ密度が0.02g/cm〜0.65g/cmであるポリ乳酸系樹脂発泡粒子であって、該ポリ乳酸系樹脂発泡粒子をJIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)が10J/g以上であり、
該熱流束示差走査熱量測定法に基づいて、熱処理を行うことなく、加熱速度2℃/minにて常温から融解ピーク終了時より30℃高い温度まで加熱したときに得られるDSC曲線における該ポリ乳酸系樹脂発泡粒子の吸熱量(Bendo:J/g)と発熱量(Bexo:J/g)、及び該ポリ乳酸系樹脂発泡粒子の表層部の発熱量(Bs:J/g)と中央部の発熱量(Bc:J/g)との関係が下式(1)及び(2)を共に満足し、
該ポリ乳酸系樹脂発泡粒子の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比(Ts/Tm)が5.0〜40.0であることを特徴とするポリ乳酸系樹脂発泡粒子。
(Bexo)/(Bendo)>0.3 (1)
(Bs)>(Bc) (2)
Apparent density is a polylactic acid-based resin foamed particles is 0.02g / cm 3 ~0.65g / cm 3 , the heat flux differential listed the polylactic acid-based resin foamed particles to JIS K7122 (1987 year) Based on the scanning calorimetry, it is heated and melted to a temperature 30 ° C. higher than the end of the melting peak, kept at that temperature for 10 minutes, and then cooled to 110 ° C. at a cooling rate of 2 ° C./min. After maintaining for 120 minutes, after heat treatment to cool to 40 ° C. at a cooling rate of 2 ° C./min, it is obtained again by heating to a temperature 30 ° C. higher than the end of the melting peak at a heating rate of 2 ° C./min. The endothermic amount (Rendo) in the DSC curve is 10 J / g or more,
Based on the heat flux differential scanning calorimetry, the polylactic acid in the DSC curve obtained when heated from room temperature to 30 ° C higher than the end of the melting peak at a heating rate of 2 ° C / min without heat treatment Endothermic amount (Bendo: J / g) and calorific value (Bexo: J / g), and calorific value (Bs: J / g) of the surface layer portion of the polylactic acid based resin foamed particles The relationship with the calorific value (Bc: J / g) satisfies both the following formulas (1) and (2),
Polylactic acid resin foam characterized in that the ratio (Ts / Tm) of average surface layer thickness (Ts) and average cell membrane thickness (Tm) of the polylactic acid resin foamed particles is 5.0 to 40.0. particle.
(Bexo) / (Bendo)> 0.3 (1)
(Bs)> (Bc) (2)
請求項1に記載のポリ乳酸系樹脂発泡粒子を型内成形にて相互に融着させてなるポリ乳酸系樹脂発泡粒子成形体。   A polylactic acid resin foamed particle molded body obtained by fusing the polylactic acid resin foamed particles according to claim 1 to each other by in-mold molding.
JP2007234066A 2007-09-10 2007-09-10 Polylactic acid-based resin expanded particles and the expanded particles molded body Active JP5044337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234066A JP5044337B2 (en) 2007-09-10 2007-09-10 Polylactic acid-based resin expanded particles and the expanded particles molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234066A JP5044337B2 (en) 2007-09-10 2007-09-10 Polylactic acid-based resin expanded particles and the expanded particles molded body

Publications (2)

Publication Number Publication Date
JP2009062502A JP2009062502A (en) 2009-03-26
JP5044337B2 true JP5044337B2 (en) 2012-10-10

Family

ID=40557379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234066A Active JP5044337B2 (en) 2007-09-10 2007-09-10 Polylactic acid-based resin expanded particles and the expanded particles molded body

Country Status (1)

Country Link
JP (1) JP5044337B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546157B2 (en) * 2009-04-30 2014-07-09 古河電気工業株式会社 POLYLACTIC ACID RESIN COMPOSITION POLE AND PROCESS FOR PRODUCING THE SAME
KR101728195B1 (en) * 2010-05-18 2017-04-18 가부시키가이샤 제이에스피 Expanded particles of polylactic acid-based resin, and moldings of the expanded particles
EP2657279B1 (en) * 2010-12-21 2016-04-20 JSP Corporation Polylactic acid resin expanded beads and molded article of polylactic acid resin expanded beads
CN103827184B (en) 2011-09-28 2016-01-20 株式会社Jsp Based resin expanded beads and moulded work thereof
US20140336289A1 (en) 2011-10-18 2014-11-13 Jsp Corporation Process for producing polylactic acid-based resin expanded beads
JP6583909B2 (en) * 2015-05-29 2019-10-02 株式会社ジェイエスピー Polylactic acid resin foamed molded article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807834B2 (en) * 2005-01-25 2011-11-02 株式会社ジェイエスピー Expandable polylactic acid resin particles, polylactic acid expanded particles, and molded polylactic acid expanded particles
JP4697861B2 (en) * 2005-03-31 2011-06-08 株式会社ジェイエスピー Polylactic acid-based resin foamed particles and polylactic acid-based resin in-mold foam molding

Also Published As

Publication number Publication date
JP2009062502A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
TWI398471B (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
JP5004247B2 (en) Polylactic acid expanded particle molded body
TWI520995B (en) Expanded polylactic acid resin beads and foamed molded article thereof
JP4807834B2 (en) Expandable polylactic acid resin particles, polylactic acid expanded particles, and molded polylactic acid expanded particles
JP5044337B2 (en) Polylactic acid-based resin expanded particles and the expanded particles molded body
JP4761916B2 (en) Polylactic acid resin foam molding
JP5941052B2 (en) Method for producing polylactic acid-based resin expanded particles, and method for producing a molded article thereof
JP4289547B2 (en) Polylactic acid foamed particles and molded product of polylactic acid foamed particles
JP4697861B2 (en) Polylactic acid-based resin foamed particles and polylactic acid-based resin in-mold foam molding
US20110263732A1 (en) Polylactic Acid Foam Composition
JP6356477B2 (en) Foamed particle molding
JP4664106B2 (en) Method for producing foamed polylactic acid resin particles
JP5717204B2 (en) Polylactic acid resin foamed particles and molded article of the foamed particles
JP5986096B2 (en) Method for producing foamed polylactic acid resin particles
JP5620733B2 (en) Method for producing foamed polylactic acid resin particles
JP4225477B2 (en) Method for producing polylactic acid-based resin in-mold foam molded body and polylactic acid-based resin in-mold foam molded body
JP5027599B2 (en) Method for producing expandable polylactic acid resin particles
JP6583909B2 (en) Polylactic acid resin foamed molded article
JP5366276B2 (en) Method for producing expandable polylactic acid resin particles
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
JP2012188560A (en) Polyester resin foamed particle, polyester resin foamed molded product using the foamed particle, and method of producing the molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5044337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250