JP2000086802A - Electrically conductive resin composition for biodegradable foamed article - Google Patents

Electrically conductive resin composition for biodegradable foamed article

Info

Publication number
JP2000086802A
JP2000086802A JP10256394A JP25639498A JP2000086802A JP 2000086802 A JP2000086802 A JP 2000086802A JP 10256394 A JP10256394 A JP 10256394A JP 25639498 A JP25639498 A JP 25639498A JP 2000086802 A JP2000086802 A JP 2000086802A
Authority
JP
Japan
Prior art keywords
resin composition
polylactic acid
foaming
less
polyisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10256394A
Other languages
Japanese (ja)
Inventor
Takayoshi Kubo
孝敬 久保
Shinko Yama
真弘 山
Hiroshi Naito
寛 内藤
Tsunahiro Nakae
綱大 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Research Institute of Innovative Technology for the Earth RITE filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP10256394A priority Critical patent/JP2000086802A/en
Publication of JP2000086802A publication Critical patent/JP2000086802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foamable resin compsn. having electrical conductivity, and biodegradability, while exhibiting excellent productivity. SOLUTION: A resin compsn. is made by compounding and reacting a polylactic acid consisting of the L-isomer and the D-isomer in a mole ratio of 95/5 to 60/40 or of 40/60 to 5/95, with 0.5-5 wt.%, based on the polylactic acid, of a polyisocyanate having isocyanate groups of 2.0 equivalents or more per mole and with an electrically conductive carbon; The compsn. has a melt index(MI) of 5 or less and a surface resistivity of 1010 Ω or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性を有する
梱包用緩衝材として用いられる発泡体用樹脂組成物に関
する。
The present invention relates to a resin composition for a foam used as a cushioning material for packing having biodegradability.

【0002】[0002]

【従来の技術】軽量性、緩衝性、成形加工性を生かした
プラスチック発泡体が包装、梱包材として多量に用いら
れており、その素材はポリスチレン(PS)、ポリオレ
フィンといった石油を原料とする化学製品である。この
為、使用後の処分が困難で、焼却するにしても燃焼カロ
リーが高く、焼却炉をいためたり、埋め立てをしても分
解しない上に容積が大きいために処分場のスペースを占
有してしまうといった大きな社会問題となってきてい
る。
2. Description of the Related Art Plastic foams utilizing light weight, cushioning properties, and moldability are widely used as packaging and packing materials, and are made of petroleum-based chemical products such as polystyrene (PS) and polyolefin. It is. Therefore, it is difficult to dispose after use, and even if it is incinerated, it burns high, and it does not decompose even if it is incinerated or buried, and it occupies the space of the disposal site because of its large volume. It is becoming a big social problem.

【0003】又、処分されずに投棄された発泡体が及ぼ
す、河川、海洋など、自然への悪影響も無視できなくな
ってきている。そこで、生態系の中で分解し、地球環境
への影響が少ない樹脂が開発された。例えば、微生物の
体内で合成されるポリヒドロキシブチレート系樹脂や、
脂肪族グリコールと脂肪族カルボン酸からなるポリエス
テル、カプロラクトンを主成分とするポリエステル系樹
脂などが発表されているが、前者は、微生物が作り出す
ため、純度が低い上、極めて生産性が悪く、利用は制限
される。
[0003] In addition, the adverse effects on natural resources, such as rivers and oceans, caused by foams that have been discarded without being disposed of have become insignificant. Therefore, resins that decompose in the ecosystem and have less impact on the global environment have been developed. For example, polyhydroxybutyrate resin synthesized in the body of a microorganism,
Polyesters composed of aliphatic glycols and aliphatic carboxylic acids, polyester resins containing caprolactone as the main component, etc. have been announced.The former is low in purity and extremely poor in productivity because it is produced by microorganisms. Limited.

【0004】そして後者は、原料が石油・天然ガスとい
った安価で多量に入手できるものであるから生産性は確
かに良いが、結晶性樹脂である上にガラス転移点が低い
ため、生分解性樹脂としては実用性に乏しいと共に原料
を石油・天然ガスとしているため、分解すると地球上に
存在する炭酸ガスに新たに炭酸ガスが加算されるため、
炭酸ガスの増加抑制に寄与しない。又、長期的にみた場
合原料ソースが有限であるため、やがて入手が困難とな
り、本当の意味での地球環境保全に資し得ない。
[0004] The latter is certainly good in productivity because the raw material is inexpensive and available in large quantities, such as petroleum and natural gas. However, since it is a crystalline resin and has a low glass transition point, the biodegradable resin is used. Because it is not practical and the raw materials are petroleum and natural gas, when it is decomposed, carbon dioxide gas is newly added to the carbon dioxide present on the earth,
Does not contribute to suppression of increase in carbon dioxide gas. In the long term, since the raw material source is limited, it becomes difficult to obtain the material source soon, and it cannot contribute to global environmental protection in the true sense.

【0005】更に、生分解性の素材としてグリコール酸
や乳酸などもグリコリドやラクチドの開環重合によりポ
リマーが得られ、医療用等の繊維として利用されている
が、繊維形成能要件として樹脂に結晶性を持たせている
ため、そのままでは発泡体として、包装容器や緩衝材と
して大量に使用されるに至っていない。
Further, as a biodegradable material, glycolic acid, lactic acid, and the like can be obtained as a polymer by ring-opening polymerization of glycolide or lactide, and are used as medical fibers. Because of its properties, it has not been used in a large amount as a foam as it is, as a packaging container or as a cushioning material.

【0006】[0006]

【発明が解決しようとする課題】本発明は、生分解性を
有しながら、生産性に優れる発泡性樹脂組成物、即ち、
微生物による分解が可能で、使用後処分するに際しても
地球環境への負荷が少なく、高い生産性を有し、実用に
耐えうる発泡性樹脂組成物を提供することにある。本発
明者等は、高い発泡性を有する生分解性樹脂として不可
欠な条件であるベースポリマー、高分子量化するための
添加剤、発泡させるための添加剤等について詳細に検討
を重ねた結果、実用上十分な生産性を有する生分解性樹
脂を見いだし、既に発明提案(公開特許出願番号)を行
った。しかし、該発明で得られる発泡樹脂は汎用の発泡
成形物には十分適用できるものの、特定の用途、例えば
電子精密機器、電子部品等、静電気の帯電が好ましくな
い用途はその使用が制限される。
DISCLOSURE OF THE INVENTION The present invention provides a foamable resin composition having biodegradability and excellent productivity, that is,
An object of the present invention is to provide a foamable resin composition that can be decomposed by microorganisms, has little impact on the global environment even when disposed after use, has high productivity, and can withstand practical use. The present inventors have conducted detailed studies on base polymers, additives for increasing the molecular weight, additives for foaming, etc., which are indispensable conditions as a biodegradable resin having high foaming properties, and as a result, the A biodegradable resin having sufficient productivity has been found, and the invention has been proposed (open patent application number). However, although the foamed resin obtained by the present invention can be sufficiently applied to a general-purpose foamed molded product, its use is limited in specific applications, for example, applications in which static electricity is not preferable, such as electronic precision equipment and electronic components.

【0007】[0007]

【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく鋭意研究の結果、導電性カーボンを適正
量配合することにより、発泡成形物の帯電圧を実用上支
障のないレベルまで低減させることが出来るに至り本発
明に到達したものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, by blending an appropriate amount of conductive carbon, the charged voltage of the foamed molded product can be reduced to a level which does not hinder practical use. This has led to the present invention.

【0008】即ち本発明は、L体とD体のモル比が95
/5〜64/40、又は40/60〜5/95であるポ
リ乳酸に、イソシアネート基≧2.0当量/モルのポリ
イソシアネートを該ポリ乳酸に対し0.5〜5重量%、
および導電性カーボン又は導電性金属酸化物粒子を配合
し、溶融粘度がメルトインデックス値(MI)で5以
下、且つ、発砲成形体としたときの表面抵抗が1011Ω
以下であることを特徴とする樹脂組成物である。
That is, according to the present invention, the molar ratio of L-form to D-form is 95
/ 5 to 64/40, or 40/60 to 5/95, a polyisocyanate having an isocyanate group ≧ 2.0 equivalents / mol is added to the polylactic acid in an amount of 0.5 to 5% by weight based on the polylactic acid.
And conductive carbon or conductive metal oxide particles, and have a melt viscosity of 5 or less in melt index (MI) and a surface resistance of 10 11 Ω when formed into a foam.
A resin composition characterized by the following.

【0009】[0009]

【発明の実施の形態】先ず、基本条件の一つである生分
解性を有し、自然界の炭酸ガス増加を最小限に抑制し、
且つ実用に耐えうる生産性、コストを考慮すると、とう
もろこし等、穀物のでんぷんをスタート物質とする乳酸
を原料とするポリ乳酸樹脂が好ましい。しかし、通常繊
維用として使われるものは結晶性が必要であることよ
り、光学異性体のL体がほぼ100%のものを用いてい
る。これに対し、発泡体を形成するためには少なくとも
結晶性はできうる限り小さくする必要がある。その理由
は、結晶性樹脂は発泡剤を含浸する工程で結晶化が進行
し、発泡性を阻害するからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, it has biodegradability, which is one of the basic conditions, and minimizes the increase in carbon dioxide in nature.
In consideration of productivity and cost that can be put to practical use, a polylactic acid resin starting from lactic acid and starting from cereal starch, such as corn, is preferred. However, those usually used for fibers need to have crystallinity, so that the L-form of the optical isomer is used in almost 100%. On the other hand, in order to form a foam, at least the crystallinity must be as small as possible. The reason is that the crystallization of the crystalline resin proceeds in the step of impregnating the foaming agent, and the foaming property is impaired.

【0010】従って、本発明でいうポリ乳酸とは、実質
的に非晶性のポリ乳酸であり、L体とD体のモル比が9
5/5〜60/40,又は40/60〜5/95の乳酸
を用いる。L体/D体のモル比が95/5を越えるも
の、あるいは5/95未満のものは結晶性が高く、発泡
倍率が上がらなかったり、発泡が不均一になり使用でき
ない。また、60/40〜40/60のものは耐熱性が
劣り使用できない。好ましくは90/10以下〜70/
30以上、又は30/70以下〜10/90以上となる
のが良い。
Therefore, the polylactic acid referred to in the present invention is a substantially amorphous polylactic acid, and the molar ratio of L-form to D-form is 9%.
Use 5/5 to 60/40 or 40/60 to 5/95 lactic acid. Those having a molar ratio of L-form / D-form exceeding 95/5 or less than 5/95 have high crystallinity and cannot be used because the expansion ratio does not increase or the foaming becomes uneven. Further, those having a ratio of 60/40 to 40/60 have poor heat resistance and cannot be used. Preferably 90/10 or less to 70 /
It is preferably 30 or more, or 30/70 or less to 10/90 or more.

【0011】一方、発泡体に使用される樹脂は、含浸さ
れた発泡剤が貯蔵中に揮散するのを極力低減させるた
め、ガスバリア性の良好な樹脂が好ましいが、該性質を
向上させる手段として高ガラス転移点(Tg)を有する
樹脂を選定することが好ましい。生分解性樹脂の中で、
ポリ乳酸樹脂はラス転移点が他の生分解性樹脂に比して
高く、本発明の目的に合致し好都合である。しかし、ポ
リ乳酸のガラス転移点はL体とD体の割合に応じ僅かず
つではあるが低下し、50/50で極小となる。ガラス
転移点が低下すると、上記理由により発泡性が経時的に
低下し、また発泡体の耐熱性も低下し好ましくない。即
ち、ガラス転移点は、50℃以上が好ましく、そのため
に、D体の比率はできるだけ40モル以下又は60モル
%以上、好ましくは30モル以下又は70モル以上とし
ておくことが必要である。
On the other hand, the resin used for the foam is preferably a resin having good gas barrier properties in order to minimize volatilization of the impregnated foaming agent during storage. It is preferable to select a resin having a glass transition point (Tg). Among the biodegradable resins,
The polylactic acid resin has a higher lath transition point than other biodegradable resins, which is advantageous because it meets the object of the present invention. However, the glass transition point of polylactic acid decreases slightly but slightly according to the ratio of the L-form and the D-form, and reaches a minimum at 50/50. When the glass transition point is reduced, the foaming property is reduced with time for the above-mentioned reason, and the heat resistance of the foam is also undesirably reduced. That is, the glass transition point is preferably 50 ° C. or higher, and therefore, it is necessary that the ratio of the D-form is 40 mol or less or 60 mol% or more, preferably 30 mol or less or 70 mol or more.

【0012】次に、本発明に使用されるポリ乳酸の溶融
粘度は高分子量のポリ乳酸が好ましく、その溶融粘度は
JIS K 7210(荷重2.16kgf)に準拠し
たメルトインデックス値(MI)で1〜10の範囲であ
り、更に好ましくは1〜5の範囲である。ポリ乳酸の溶
融粘度度が1未満の樹脂は、通常用いられる後述の方法
では製造することが困難であり、一方、10を越える溶
融粘度を有するポリ乳酸から得られる樹脂組成物は、発
泡倍率の低い発泡体しか得られず好ましい結果とはなら
ない。その理由は、低溶融粘度のポリ乳酸及び高溶融粘
度のポリ乳酸の溶融粘度を使用して、以下に述べるポリ
イソシアネートと反応させて同一の超高粘度樹脂を得た
とき、低溶融粘度のポリ乳酸からの樹脂組成物が高溶融
粘度のそれより分岐密度が高くなり、架橋構造をとりや
すく、該構造が、発泡を阻害すると考えられるからであ
る。
The polylactic acid used in the present invention preferably has a melt viscosity of high molecular weight polylactic acid, and has a melt viscosity of 1 in terms of a melt index value (MI) in accordance with JIS K7210 (load 2.16 kgf). The range is from 10 to 10, more preferably from 1 to 5. A resin having a melt viscosity of polylactic acid of less than 1 is difficult to produce by a commonly used method described below, while a resin composition obtained from a polylactic acid having a melt viscosity of more than 10 has an expansion ratio of Only low foams are obtained, which is not a favorable result. The reason is that when the same ultra-high viscosity resin is obtained by reacting with the polyisocyanate described below using the melt viscosity of polylactic acid having a low melt viscosity and polylactic acid having a high melt viscosity, This is because the resin composition made of lactic acid has a higher branch density than that of a resin having a high melt viscosity, and is likely to have a crosslinked structure, which is considered to inhibit foaming.

【0013】高溶融粘度のポリ乳酸を得る手段として、
通常の反応釜での高真空下、攪拌効率の良好な状態での
溶融重合、二軸混練反応機による溶融重合、溶融重合と
固相重合との組み合わせにより高溶融粘度のポリ乳酸を
得る事は可能であるが、高粘度であるため反応サイクル
低下による生産性の低下、樹脂の熱分解による品質低下
に十分注意する事が必要である。これらの方法により、
溶融粘度がJIS K7210(荷重2.16kgf)
に準拠したメルトインデックス値(MI)で1〜10の
範囲のポリ乳酸を得ることが出来る。
As means for obtaining polylactic acid having a high melt viscosity,
It is not possible to obtain polylactic acid with a high melt viscosity by melt polymerization in a state of good stirring efficiency under high vacuum in a normal reaction vessel, melt polymerization by a twin-screw kneading reactor, and a combination of melt polymerization and solid phase polymerization. Although it is possible, due to the high viscosity, it is necessary to pay sufficient attention to a decrease in productivity due to a decrease in the reaction cycle and a decrease in quality due to thermal decomposition of the resin. By these methods,
Melt viscosity is JIS K7210 (load 2.16kgf)
Polylactic acid having a melt index value (MI) in the range of 1 to 10 can be obtained.

【0014】しかし、本発明により得られたポリ乳酸に
発泡剤を含浸、発泡させても発泡倍率は低く実用に耐え
うるものではない。高発泡倍率を得るには、更に高溶融
粘度の樹脂が必要であり、溶融重合のみでは限界があり
困難である。
However, even if the polylactic acid obtained by the present invention is impregnated with a foaming agent and foamed, the foaming ratio is low and cannot be put to practical use. To obtain a high expansion ratio, a resin having a higher melt viscosity is required, and melt polymerization alone has a limit and is difficult.

【0015】本発明者等は鋭意検討の結果、イソシアネ
ート基≧2.0当量/モルのポリイソシアネートを該ポ
リ乳酸に対して0.5〜5重量%、好ましくは1〜3重
量%をポリ乳酸と溶融状態で混合、反応させることによ
り溶融粘度がJIS K 7210(荷重21.6kg
f)に準拠したメルトインデックス値(MI)で5以下
の範囲の発泡性の良好な樹脂組成物を得ることが出来
た。ポリイソシアネートが5重量%未満では樹脂組成物
の溶融粘度があまり上昇せず、また5重量%を越えると
樹脂組成物の溶融粘度は上昇するものの未反応のポリイ
ソシアネートが残留したり、分岐密度が大になり又架橋
反応も進行しゲル化物が多量に発生し、発泡性は逆に低
下する。
The present inventors have conducted intensive studies and found that 0.5 to 5% by weight, preferably 1 to 3% by weight, of polyisocyanate having an isocyanate group ≧ 2.0 equivalents / mol relative to the polylactic acid was used. And melted in a molten state to make the melt viscosity JIS K 7210 (load 21.6 kg
A resin composition having a good foaming property having a melt index value (MI) based on f) of 5 or less could be obtained. When the polyisocyanate is less than 5% by weight, the melt viscosity of the resin composition does not increase so much. When the polyisocyanate exceeds 5% by weight, the melt viscosity of the resin composition increases but unreacted polyisocyanate remains or the branch density decreases. In addition, the cross-linking reaction proceeds, and a large amount of gelled matter is generated.

【0016】ポリ乳酸とポリイソシアネートを溶融状態
で混合、反応させ超高分子量化させる方法は通常の公知
の方法が可能である。例えば、ペレツト化したポリ乳酸
にポリイソシアネートを添加混合し、単軸又は二軸混練
機等で溶融混合する方法、予めポリ乳酸を単軸又は二軸
混練機等で溶融した後ポリイソシアネートを添加する方
法、単軸又は二軸混練機等で溶融重合によりポリ乳酸を
製造又は製造中にポリイソシアネートを添加する方法な
どにより、目的物である樹脂組成物を得ることが出来
る。
As a method of mixing and reacting polylactic acid and polyisocyanate in a molten state to make them ultra-high molecular weight, a commonly known method can be used. For example, a method in which a polyisocyanate is added to and mixed with a pelletized polylactic acid, and melt-mixed with a single-screw or twin-screw kneader or the like, or polyisocyanate is previously melted with a single-screw or twin-screw kneader or the like, and then the polyisocyanate is added. The desired resin composition can be obtained by a method, a method of producing polylactic acid by melt polymerization using a single-screw or twin-screw kneader, or adding a polyisocyanate during the production.

【0017】使用されるポリイソシアネートとしては芳
香族、脂環族、脂肪族系のポリイソシアネートがあり、
例えば、芳香族ポリイソシアネートとしてはトリレン、
ジフェニルメタン、ナフチレン、トリジン、キシレン、
トリフェニルメタンを骨格とするポリイソシアネート、
脂環族ポリイソシアネートとしてはイソホロン、水素化
ジフェニルメタンを骨格とするポリイソシアネート、脂
肪族ポリイソシアネートとしてはヘキサメチレン、リジ
ンを骨格とするポリイソシアネートがあり、いずれも使
用可能であるが汎用性、取り扱い性、耐候性等からトリ
レン、ジフェニルメタン、特にジフェニルメタンが好ま
しく使用される。
The polyisocyanates used include aromatic, alicyclic and aliphatic polyisocyanates.
For example, as the aromatic polyisocyanate, tolylene,
Diphenylmethane, naphthylene, tolidine, xylene,
A polyisocyanate having a triphenylmethane skeleton,
Examples of alicyclic polyisocyanates include isophorone and polyisocyanates having a skeleton of hydrogenated diphenylmethane, and examples of aliphatic polyisocyanates include polyisocyanates having a skeleton of hexamethylene and lysine. Tolylene, diphenylmethane, especially diphenylmethane is preferably used from the viewpoint of weather resistance and the like.

【0018】かくして得られたポリ乳酸樹脂組成物は、
以下に述べる発泡剤、発泡助剤を含浸させ、発泡処理を
行うと高発泡倍率の発泡体が得られる。しかし、該発泡
体から成形される成形物は摩擦、印加荷電等により帯電
しやすく放電しにくいため、該成形物を包装材料として
使用した場合、使用用途により帯電した静電気が内容物
の障害となる場合がある。
The polylactic acid resin composition thus obtained is
When a foaming agent and a foaming aid described below are impregnated and subjected to a foaming treatment, a foam having a high expansion ratio is obtained. However, since the molded article molded from the foam is easily charged by friction, applied charge and the like and is hardly discharged, when the molded article is used as a packaging material, the static electricity charged depending on the intended use becomes an obstacle to the contents. There are cases.

【0019】本発明者等は、この課題を克服するため種
々検討した結果、導電性カーボン又は導電性金属酸化物
粒子をポリ乳酸樹脂組成物に配合、分散させることによ
り、実用上障害とならないレベルの帯電圧に低減させる
ことができた。
The present inventors have conducted various studies to overcome this problem. As a result, by blending and dispersing conductive carbon or conductive metal oxide particles in the polylactic acid resin composition, a level that does not hinder practical use is obtained. Was able to be reduced to the charged voltage.

【0020】一般的な使用方法において、実用上障害と
ならないレベルの帯電圧は成形物の表面抵抗が1011Ω
以下が好ましく、更に好ましくは108Ω以下である。
高湿度の条件下では、通常の成形物でも表面抵抗が10
11Ω以下となり帯電圧は低く静電気による障害は発生し
難いが、例えば、相対湿度が40%RH以下では障害が
発生しやすくなる。
In a general method of use, the charged voltage at a level that does not hinder practical use has a surface resistance of 10 11 Ω.
Or less, more preferably 10 8 Ω or less.
Under the condition of high humidity, the surface resistance is 10
Since the charging voltage is 11 Ω or less and the charged voltage is low, troubles due to static electricity are unlikely to occur. For example, when the relative humidity is 40% RH or less, the troubles easily occur.

【0021】導電性粒子として使用する導電性カーボン
は導電性を示すカーボンであればいずれでも使用可能で
あるが、アセチレンブラツク又はケッチェンブラックE
C(AkzoChemie社)が性能上好ましく使用さ
れる。アセチレンブラックはポリ乳酸に配合しても、無
機粒子を配合したときに生ずるチキソトロピー的な増粘
現象は比較的少ないが、低湿度の条件下例えば30%R
Hの雰囲気で表面抵抗値を1011Ω以下にするために
は、多量のアセチレンブラックカーボンを添加する必要
がある。これに対してケッチェンブラックEC(Akz
oChemie社)は、チキソトロピー的な増粘現象は
アセチレンブラックカーボンに比して大きいものの、導
電効果が優れており、上記条件下で表面抵抗値を1011
Ω以下にするには、その添加量は数%で十分である。
As the conductive carbon used as the conductive particles, any carbon can be used as long as it shows conductivity. Acetylene black or Ketjen black E
C (AkzoChemie) is preferably used for its performance. Even when acetylene black is blended with polylactic acid, thixotropic thickening phenomenon which occurs when blending inorganic particles is relatively small, but for example, 30% R
In order to reduce the surface resistance value to 10 11 Ω or less in an atmosphere of H, it is necessary to add a large amount of acetylene black carbon. On the other hand, Ketjen Black EC (Akz
oChemie) shows that although the thixotropic thickening phenomenon is greater than that of acetylene black carbon, it has an excellent conductive effect and has a surface resistance of 10 11 under the above conditions.
In order to reduce the resistance to Ω or less, the addition amount of several percent is sufficient.

【0022】一方、導電性金属酸化物粒子も好ましく使
用される。導電性粒子としては銀、銅、アルミニウム等
の金属粒子が最も導電性は良いが、粒子の表面活性が大
きく空気又は水と接触すると危険であり、且つ、酸化さ
れた粒子は酸化皮膜により導電性は極度に低下し実用上
使用できない。これに対して酸化スズ粒子は酸化物であ
りながら少量の不純物、いわゆるドーピング剤の存在で
良好な導電性を示し、本発明に好ましく使用される。そ
の添加量は使用目的により異なるが、通常5〜40%で
あり、特に510〜30%が好ましく使用される。酸化
スズ粒子は単体である必要はなく、他の粒子の表面にコ
ーティングされていても同等の効果を示す。特に酸化チ
タン粒子は1μm以下の微粒子で、安価に入手出来るの
で好都合である。
On the other hand, conductive metal oxide particles are also preferably used. Metal particles such as silver, copper, and aluminum are the most conductive as the conductive particles, but the surface activity of the particles is large and it is dangerous if they come into contact with air or water, and the oxidized particles are conductive due to the oxide film. Is extremely low and cannot be used practically. On the other hand, tin oxide particles are oxides and exhibit good conductivity in the presence of a small amount of impurities, so-called doping agents, and are preferably used in the present invention. The addition amount varies depending on the purpose of use, but is usually 5 to 40%, and particularly preferably 510 to 30%. Tin oxide particles do not need to be a single substance, and the same effect can be obtained even if they are coated on the surface of other particles. In particular, titanium oxide particles are fine particles of 1 μm or less, which is advantageous because they can be obtained at low cost.

【0023】これら導電粒子の粒子径は、微粒子である
ことが好ましく1μm以下、更に好ましくは0.5μm
以下である。1μmを越えると、導電性を示すためには
多量の添加量が必要となるのみならず、発泡体のセルの
膜厚よりも大きくなるため発泡性に支障をきたす。
The particle diameter of these conductive particles is preferably 1 μm or less, more preferably 0.5 μm
It is as follows. When the thickness exceeds 1 μm, not only a large amount of addition is required to exhibit conductivity, but also the foam thickness is larger than the cell thickness of the foam, which hinders foamability.

【0024】導電粒子のポリ乳酸への配合方法は公知の
方法が可能であり、例えばポリ乳酸、ポリイソシアネー
ト及び導電粒子を予めブレンドした後、単軸又は2軸混
練機で溶融混合する方法、溶融状態のポリ乳酸にポリイ
ソシアネート及び導電粒子をそれぞれ単独又は混合して
配合する方法等種々の方法が可能であるが、導電粒子の
樹脂中への分散性向上を考慮すると予め粉末化し、乾燥
されたポリ乳酸にポリイソシアネート及び導電粒子をブ
レンドしたものを2軸混練機で溶融混合する方法が有利
である。
Known methods can be used for blending the conductive particles with the polylactic acid. For example, a method in which polylactic acid, polyisocyanate and the conductive particles are preliminarily blended and then melt-mixed with a single-screw or twin-screw kneader, Various methods such as a method in which the polyisocyanate and the conductive particles are individually or mixed with the polylactic acid in the state can be used, but in consideration of the improvement in the dispersibility of the conductive particles in the resin, the powder is previously powdered and dried. A method in which a mixture of polylactic acid and polyisocyanate and conductive particles is melt-mixed with a twin-screw kneader is advantageous.

【0025】また、均一で微細な発泡セルを形成させる
ためには発泡核剤を配合することが好ましい。使用する
発泡核剤としては、固体状の粒子状物、例えば、タル
ク、シリカ、カオリン、ゼオライト、マイカ、アルミナ
等の無機粒子が好適である。この中でもタルクは本発明
の樹脂組成物に対して好ましく使用される。
In order to form uniform and fine foam cells, it is preferable to add a foam nucleating agent. As the foaming nucleating agent to be used, solid particulate matter, for example, inorganic particles such as talc, silica, kaolin, zeolite, mica, and alumina are suitable. Among them, talc is preferably used for the resin composition of the present invention.

【0026】また、その他の添加剤についても、目的に
応じ、適宜添加することが出来、例えば熱安定剤、酸化
防止剤、、難燃剤、紫外線吸収剤、可塑剤等がある。但
し、難燃剤等は塩素等のハロゲン化物であることが多
く、生分解性や焼却処分時の有害物質発生という観点か
ら最小限に留めておくのがよい。
Further, other additives can be appropriately added according to the purpose, and examples thereof include a heat stabilizer, an antioxidant, a flame retardant, an ultraviolet absorber, and a plasticizer. However, the flame retardant or the like is often a halide such as chlorine, and is preferably minimized from the viewpoint of biodegradability and generation of harmful substances during incineration.

【0027】こうして得られた樹脂組成物は、ペレット
又はビーズ状粒子とした後、発泡剤及び発泡助剤を含浸
させる。これら粒子は通常、加熱によって第1次の発泡
(予備発泡)をさせ、一旦、発泡倍率で数倍から30〜
50倍の発泡粒子とし、次いでこれらを金型に入れ、更
に加熱して2次発泡させ、所望の成形体を成形する。
The resin composition thus obtained is formed into pellets or bead-shaped particles and then impregnated with a foaming agent and a foaming aid. These particles are usually subjected to primary foaming (preliminary foaming) by heating, and the foaming ratio is temporarily increased from several times to 30 to 30 times.
These are expanded into 50-fold expanded particles, then placed in a mold, and further heated to secondary expansion to form a desired molded body.

【0028】発泡剤や発泡助剤を含浸させるペレット及
びビーズの大きさ、形状等に応じて適宜選択することが
できるが、通常、直径0.5〜2mmの大きさのものが
用いられる。精密な成形体の場合は直径0.5〜1mm
の粒子が一般的である。
The size and shape of the pellets and beads to be impregnated with a foaming agent or a foaming aid can be selected as appropriate, but usually those having a diameter of 0.5 to 2 mm are used. 0.5-1mm in diameter for precision molded products
Are generally used.

【0029】ここで用いる発泡剤及び発泡助剤として
は、プロパン、n−ブタン、イソブタン、n−ペンタ
ン、イソペンタン、シクロペンタン、ヘキサン等の炭化
水素、塩化メチレン、塩化メチル、ジクロロジフルオロ
メタン等のハロゲン化炭化水素類、ジメチルエーテル、
メチルエチルエーテル等のエーテル類が発泡剤として、
又、炭素数1〜4のアルコール、ケトン類、エーテル、
ベンゼン、トルエン等が発泡助剤として用いられる。
Examples of the foaming agent and foaming aid used herein include hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, cyclopentane and hexane, and halogens such as methylene chloride, methyl chloride and dichlorodifluoromethane. Hydrocarbons, dimethyl ether,
Ethers such as methyl ethyl ether as a foaming agent,
Also, alcohols having 1 to 4 carbon atoms, ketones, ethers,
Benzene, toluene and the like are used as foaming aids.

【0030】発泡剤と発泡助剤の組み合わせは、使用す
る樹脂によって適宜選択しなければならない。本発明に
使用するL体/D体共重合ポリ乳酸ポリマーの場合、発
泡剤としてブタンやペンタンが好ましく用いられる。
又、これと組み合わせる発泡助剤としては炭素数1〜4
の1価のアルコールが好適である。その他の組み合わせ
も種々あり、目的や経済性に鑑みて選択することができ
る。
The combination of the foaming agent and the foaming auxiliary must be appropriately selected depending on the resin used. In the case of the L-form / D-form copolymerized polylactic acid polymer used in the present invention, butane or pentane is preferably used as a foaming agent.
Further, as a foaming aid to be combined with this, a carbon number of 1 to 4 is used.
Are preferred. There are various other combinations, and they can be selected in view of the purpose and economy.

【0031】発泡剤と発泡助剤の使用比率は、発泡剤/
発泡助剤=1/2〜10/1が可能で、発泡剤と発泡助
剤の組み合わせによってこの比率は変わるが、1/2〜
2/1が一般的である。発泡剤及び発泡助剤の含有量
(率)は目的とする発泡倍率、ペレット又はビーズ粒子
の保存期間によって異なり、発泡剤としては通常5〜1
5重量%が適用される。一般に、低発泡品は含有量
(率)を低く、高発泡品は含有量(率)を高くすればよ
い。
The ratio of the foaming agent to the foaming assistant is as follows:
Foaming aid = 1/2 to 10/1 is possible, and this ratio varies depending on the combination of the foaming agent and the foaming aid.
2/1 is common. The content (ratio) of the foaming agent and the foaming aid varies depending on the desired expansion ratio and the storage period of the pellets or bead particles.
5% by weight apply. Generally, the content (ratio) of a low-foamed product may be low, and the content (ratio) of a highly foamed product may be high.

【0032】発泡剤及び発泡助剤を含有させたペレット
又はビーズ粒子は、予備発泡させた後、所望の金型に入
れ、更に加熱して発泡を進め、発泡ビーズ同志を融着さ
せて強固な成形体を成形する。ポリスチレン(PS)発
泡体の成型方法と基本的には同一であり、予備発泡及び
発泡成形共に熱容量の大きい水蒸気が好ましく用いられ
る。熱風による発泡も可能であるが、熱容量が小さいた
め発泡効率は良くない。従って、高発泡成形には不適で
ある。
The pellets or bead particles containing the foaming agent and the foaming aid are pre-foamed, placed in a desired mold, and further heated to promote foaming, and the foamed beads are fused to form a solid. A molded body is formed. The method is basically the same as the method for molding a polystyrene (PS) foam, and steam having a large heat capacity is preferably used for both prefoaming and foaming. Foaming by hot air is also possible, but foaming efficiency is not good due to small heat capacity. Therefore, it is not suitable for high foam molding.

【0033】[0033]

【実施例】以下に実施例及び比較例により、本発明を更
に具体的に説明する。尚、評価は下記の方法で行った。
The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, evaluation was performed by the following method.

【0034】(評価方法)ポリ乳酸のMI:JIS K
7210に準拠した方法で測定。(測定温度100
℃、オリフィス径2mm、2.16kg荷重の条件) 樹脂組成物のMI:JIS K 7210に準拠した方
法で測定。(測定温度100℃、オリフィス径2mm、
21.6kg荷重の条件) 発泡倍率:メスシリンダーを用いて、発泡前の発泡剤含
浸ペレツトの体積及び予備発泡粒子の体積を測定し、発
泡倍率を次のように求めた。 発泡倍率(倍)=予備発泡粒子の体積/発泡剤含浸ペレ
ットの体積 (4)表面抵抗:約12×12cmの試験片を20℃、
30%RHの条件下で調湿後、表面抵抗測定器にセット
しガード電極に電圧500Vの直流を印加し、試験片の
表面を流れた電流値から下式により表面抵抗を算出し
た。 RS=V/IS ここでRS:表面抵抗(Ω) V:印加電圧(V) IS:測定電流値(A) 測定条件:20℃×30%RH (5)生分解性::予備発泡粒子をコンポストに1ケ月
間入れ、外観状態で次のように評価した。 ◎:原形をとどめない状態まで分解 ○:元の形状はとどめているがぼろぼろに分解 △:変化は認められるが変化は僅か ×:全く変化なし (6)耐熱性:後述する方法で得られた300×300
×30mmの成形物より100×300×30mmの試
験片を切り出し、100℃でオーブン中2時間処理した
ときの寸法変化で評価した。 ◎:全く変化なし ○:3%未満変化 △:3〜10%未満の変化 ×:10%以上変化 −:発泡成形体採取出来ず比較できないもの
(Evaluation method) MI of polylactic acid: JIS K
Measured in accordance with 7210. (Measurement temperature 100
(° C., orifice diameter 2 mm, load 2.16 kg) MI of the resin composition: Measured by a method in accordance with JIS K 7210. (Measurement temperature 100 ° C, orifice diameter 2mm,
21.6 kg load condition) Expansion ratio: The volume of the foaming agent-impregnated pellet before foaming and the volume of the pre-expanded particles were measured using a measuring cylinder, and the expansion ratio was determined as follows. Expansion ratio (times) = volume of pre-expanded particles / volume of pellets impregnated with blowing agent (4) Surface resistance: A test piece of about 12 × 12 cm was subjected to 20 ° C.
After adjusting the humidity under the condition of 30% RH, the surface was set in a surface resistance measuring instrument, a DC voltage of 500 V was applied to the guard electrode, and the surface resistance was calculated from the current value flowing on the surface of the test piece by the following equation. R S = V / I S where R S : surface resistance (Ω) V: applied voltage (V) I S : measured current value (A) Measurement condition: 20 ° C. × 30% RH (5) Biodegradability :: The pre-expanded particles were put into compost for one month, and the appearance was evaluated as follows. ◎: Decomposed to a state where the original shape is not stopped. 300x300
A test piece of 100 × 300 × 30 mm was cut out from a molded product of × 30 mm and evaluated by dimensional change when treated at 100 ° C. for 2 hours in an oven. :: No change at all ○: Change of less than 3% △: Change of less than 3 to 10% ×: Change of 10% or more-: Unable to compare foamed molded articles

【0035】製造例 市販のL−ラクチド、D−ラクチドをそれぞれ酢酸エチ
ルを用いて再結晶して精製した。精製したL−ラクチ
ド、D−ラクチド及び触媒としてオクチル酸スズを表1
の組成になるように攪拌機付きオートクレーブに仕込
み、減圧脱気した後、N2雰囲気下で各々の重合条件で
開環重合した。反応終了後、オートクレーブよりポリマ
ーを取り出し、粘度(ηr)を測定し、ηrが3.3〜
3.5のポリマーを得た。
Production Example Commercially available L-lactide and D-lactide were purified by recrystallization using ethyl acetate, respectively. Table 1 shows purified L-lactide, D-lactide and tin octylate as a catalyst.
Was charged into an autoclave equipped with a stirrer so as to have the following composition, and after degassing under reduced pressure, ring-opening polymerization was performed under N2 atmosphere under each polymerization condition. After completion of the reaction, the polymer was taken out of the autoclave, and the viscosity (ηr) was measured.
A polymer of 3.5 was obtained.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例1〜10、比較例1〜6 P1〜P11のポリ乳酸粉末(100メッシュパス)に
イソシアネート化合物「ミリオネートMR−200」
(イソシアネート基2.7〜2.8当量/モル、日本ポ
リウレタン工業(株))、導電性カーボン(ケッチェン
ブラックEC、(AkzoChemie社))及びタル
ク「LMP―100」(富士タルク工業(株))1.0
重量%を表2の組成となるように予め混合し、二軸混練
機(PCM−30,池貝鉄工(株))にてシリンダー温
度180℃で混練し、ペレット状の樹脂組成物を得た。
Examples 1-10, Comparative Examples 1-6 Isocyanate compound "Millionate MR-200" was added to polylactic acid powder (100 mesh pass) of P1 to P11.
(2.7 to 2.8 equivalents / mol of isocyanate groups, Nippon Polyurethane Industry Co., Ltd.), conductive carbon (Ketjen Black EC, (AkzoChemie)) and talc “LMP-100” (Fuji Talc Kogyo Co., Ltd.) ) 1.0
% Was preliminarily mixed so as to have the composition shown in Table 2, and kneaded with a twin-screw kneader (PCM-30, Ikegai Iron Works, Ltd.) at a cylinder temperature of 180 ° C. to obtain a pellet-shaped resin composition.

【0038】これらの樹脂組成物のMIを測定した後、
オートクレーブに各々2000部、発泡剤としてイソペ
ンタン1200部、発泡助剤としてメタノール240部
を仕込み、密封し、20℃/Hrの速度で昇温し、70
℃に1時間保持した。その後、25℃まで冷却してから
樹脂を取り出し、風乾後、重量を測定し、含浸率を求め
た。次いで得られた発泡剤含有ペレツトを水蒸気(92
℃、1分)で予備発泡させ、かさ密度及び生分解性を評
価した。
After measuring the MI of these resin compositions,
Into an autoclave were charged 2000 parts each, 1200 parts of isopentane as a foaming agent, and 240 parts of methanol as a foaming aid, sealed, and heated at a rate of 20 ° C./Hr.
C. for 1 hour. Then, after cooling to 25 ° C., the resin was taken out, air-dried, weighed, and the impregnation rate was determined. Next, the obtained pellet containing the blowing agent was steamed (92%).
At 1 ° C. for 1 minute) to evaluate bulk density and biodegradability.

【0039】更に、1日熟成後、この予備発泡粒子を密
閉金型に充填してスチーム成形機で水蒸気圧0.5kg
/cm2、30秒間加熱して成形を行い、各300×3
00×30mmの成形体を得た。この成形体より試験片
を切り出し耐熱性を評価した。各々の評価の対照として
市販の発泡ポリスチレン「リューパール55KSY−3
171」(大日本インキ製)を用いた。評価結果は表3
の通りであった。
Further, after aging for one day, the pre-expanded particles were filled in a closed mold, and the steam pressure was 0.5 kg with a steam molding machine.
/ Cm 2 , heating for 30 seconds to form
A molded body of 00 × 30 mm was obtained. A test piece was cut out from this molded body and heat resistance was evaluated. As a control for each evaluation, a commercially available expanded polystyrene “Lyupearl 55KSY-3” was used.
171 "(manufactured by Dainippon Ink). Table 3 shows the evaluation results.
It was as follows.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】評価結果 ポリ乳酸のL/D体比率の変化したP1〜P11の樹脂
に、それぞれ架橋剤、導電粒子を配合、混練した樹脂組
成物のMI、発泡倍率、分解性、発泡成形体の表面抵
抗、耐熱性を比較すると、P1、P11は発泡倍率が小
で好ましくなく、P6は発泡倍率、分解性、表面抵抗共
に良好であるが耐熱性が不良である。特に船舶による輸
出に用いられる包装用発泡成形体は、耐熱性は重要な要
素となる。P2〜P5及びP7〜P10は、発泡倍率、
分解性、表面抵抗、耐熱性いずれも良好な結果を示して
おり、とりわけP3、P4、P8、P9は良好であっ
た。
Evaluation Results The crosslinking agent and conductive particles were mixed and kneaded with the resins P1 to P11 in which the L / D ratio of polylactic acid changed, respectively, and the MI, expansion ratio, decomposability, and When comparing the surface resistance and the heat resistance, P1 and P11 have low foaming ratios, which are not preferable. P6 has good foaming ratio, decomposability and surface resistance, but has poor heat resistance. In particular, heat resistance is an important factor for a foamed molded product for packaging used for export by ships. P2 to P5 and P7 to P10 are expansion ratios,
Decomposability, surface resistance and heat resistance all showed good results, and P3, P4, P8 and P9 were particularly good.

【0043】実施例11〜14、比較例7〜16 P3のポリ乳酸にイソシアネート化合物「ミリオネート
MR−200」(イソシアネート基2.7〜2.8当量
/モル、日本ポリウレタン工業(株))、導電粒子とし
てケッチェンブラック、アセチレンブラック、オイルフ
ァーネスFEFのカーボンブラック及び酸化チタン粒子
にコーティングした酸化スズ粒子を所定量配合し、実施
例1〜10、比較例1〜6と同様の混練機、混練条件で
処理し、ペレット状樹脂組成物を得、引き続き、同様の
処理を行い評価を行った。結果を表5に示した。
Examples 11 to 14, Comparative Examples 7 to 16 An isocyanate compound "Millionate MR-200" (2.7 to 2.8 equivalents / mole of isocyanate group, Nippon Polyurethane Industry Co., Ltd.) was added to the polylactic acid of P3. A predetermined amount of ketjen black, acetylene black, carbon black of oil furnace FEF and tin oxide particles coated on titanium oxide particles were blended as particles, and the same kneading machine and kneading conditions as in Examples 1 to 10 and Comparative Examples 1 to 6 were used. To obtain a pellet-shaped resin composition, and subsequently, the same treatment was performed and evaluated. Table 5 shows the results.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【表5】 [Table 5]

【0046】実施例15〜21、比較例17〜19 P3のポリ乳酸に種々の官能基数を持つイソシアネート
を所定量及び導電粒子としてケッチェンブラックECを
5重量%添加、配合し実施例1〜10、比較例1〜6と
同様の混練機、混練条件で処理し、ペレット状樹脂組成
物を得、引き続き、同様の処理を行い評価を行った。結
果を表7に示した。
Examples 15 to 21 and Comparative Examples 17 to 19 The polylactic acid of P3 was added with a predetermined amount of an isocyanate having various functional groups and 5% by weight of Ketjen Black EC as conductive particles. The mixture was treated under the same kneader and kneading conditions as in Comparative Examples 1 to 6 to obtain a pellet-shaped resin composition, which was subsequently subjected to the same treatment and evaluated. The results are shown in Table 7.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】[0049]

【発明の効果】以上、本発明の樹脂組成物は発泡性、耐
熱性、機械物性は従来から用いられてきた発泡ポリスチ
レン(PS)と同程度のものが得られ、さらには導電性
に優れ且つ生分解性が著しく優れており、地球環境保全
に資する樹脂組成物である。
As described above, the resin composition of the present invention has foaming properties, heat resistance and mechanical properties comparable to those of the conventionally used expanded polystyrene (PS). It is a resin composition that has excellent biodegradability and contributes to global environmental protection.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 9/02 C08K 9/02 C08L 75/06 C08L 75/06 (72)発明者 山 真弘 山口県防府市鐘紡町4番1号 カネボウ合 繊株式会社内 (72)発明者 内藤 寛 山口県防府市鐘紡町4番1号 カネボウ合 繊株式会社内 (72)発明者 中江 綱大 山口県防府市大字大崎276−516 Fターム(参考) 4F074 AA68 AA84 AB05 AC02 AC17 AC35 AE01 AG08 BA35 CA34 CA42 CA49 DA33 4J002 CF191 CK022 DA036 DE047 DE097 DE137 EA018 EA028 EA058 EB028 EB068 EC038 ED028 EE028 FB077 FD116 FD117 FD320 GE00 GG00 4J029 AA02 AB01 AC02 AD01 AD10 AE18 EA05 JA023 JA093 JB023 JB043 JB063 JB123 JB143 JB153 JF323 JF373 KH01 4J034 BA03 DA01 DB03 DB07 DF11 DF24 HA01 HA07 HA08 HB12 HC03 HC09 HC12 HC13 HC17 HC22 HC46 HC52 HC61 HC64 HC65 HC67 HC71 HC73 MA02 MA03 NA01 NA02 NA06 NA07 QA05 QB07 QB15 QC01 RA06──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 9/02 C08K 9/02 C08L 75/06 C08L 75/06 (72) Inventor Masahiro Yamaguchi Hofu City, Yamaguchi Prefecture 4-1 Kanebocho Kanebo Gosen Co., Ltd. (72) The inventor Hiroshi Naito 4-1 Kanebocho, Hofu City, Yamaguchi Prefecture Kanebo Gosen Co., Ltd. (72) Inventor Tsunahiro Nakae Osaki Osaki 276, Hofu City, Yamaguchi Prefecture −516 F-term (reference) 4F074 AA68 AA84 AB05 AC02 AC17 AC35 AE01 AG08 BA35 CA34 CA42 CA49 DA33 4J002 CF191 CK022 DA036 DE047 DE097 DE137 EA018 EA028 EA058 EB028 EB068 EC038 ED028 EE028 FB0117 FD01 GE018 FB077 FD01 AD02 JA023 JA093 JB023 JB043 JB063 JB123 JB143 JB153 JF323 JF373 KH01 4J034 BA03 DA01 DB03 DB07 DF11 DF24 HA01 HA07 HA08 HB12 HC03 HC09 HC12 HC13 HC 17 HC22 HC46 HC52 HC61 HC64 HC65 HC67 HC71 HC73 MA02 MA03 NA01 NA02 NA06 NA07 QA05 QB07 QB15 QC01 RA06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 L体とD体のモル比が95/5〜64/
40、又は40/60〜5/95であるポリ乳酸に、イ
ソシアネート基≧2.0当量/モルのポリイソシアネー
トを該ポリ乳酸に対し0.5〜5重量%、および導電性
カーボン又は導電性金属酸化物粒子を配合し、溶融粘度
がメルトインデックス値(MI)で5以下、且つ、発砲
成形体としたときの表面抵抗が1011Ω以下であること
を特徴とする樹脂組成物。
1. The molar ratio of L-form to D-form is 95/5 to 64 /
40 or 40/60 to 5/95, polyisocyanate having an isocyanate group ≧ 2.0 equivalents / mol in 0.5 to 5% by weight based on the polylactic acid, and conductive carbon or conductive metal. A resin composition containing oxide particles, having a melt viscosity of 5 or less in melt index value (MI) and a surface resistance of 10 11 Ω or less when formed into a foamed molded article.
【請求項2】 L体とD体のモル比が90/10〜70
/30、又は30/70〜10/90である請求項1に
記載の樹脂組成物。
2. The molar ratio of L-form to D-form is 90/10 to 70.
The resin composition according to claim 1, wherein the ratio is 30/70 or 30/70 to 10/90.
【請求項3】 ポリイソシアネートの添加量が1〜3重
量%である請求項1に記載の樹脂組成物。
3. The resin composition according to claim 1, wherein the amount of the polyisocyanate is 1 to 3% by weight.
【請求項4】 ポリイソシアネートがイソシアネート基
≧2.3当量/モルである請求項1に記載の樹脂組成
物。
4. The resin composition according to claim 1, wherein the polyisocyanate has an isocyanate group ≧ 2.3 equivalent / mol.
【請求項5】 導電性カーボンとしてアセチレンブラッ
ク、ケッチェンブラックから選ばれた導電性カーボンを
使用する請求項1に記載の樹脂組成物。
5. The resin composition according to claim 1, wherein a conductive carbon selected from acetylene black and Ketjen black is used as the conductive carbon.
【請求項6】 導電性金属酸化物粒子が酸化スズ又は酸
化チタン粒子の表面に酸化スズがコートされた粒子であ
る請求項1に記載の樹脂組成物。
6. The resin composition according to claim 1, wherein the conductive metal oxide particles are tin oxide or titanium oxide particles whose surfaces are coated with tin oxide.
【請求項7】 該樹脂組成物の表面抵抗値が108Ω以
下である請求項1に記載の樹脂組成物。
7. The resin composition according to claim 1, wherein the surface resistance of the resin composition is 10 8 Ω or less.
JP10256394A 1998-09-10 1998-09-10 Electrically conductive resin composition for biodegradable foamed article Pending JP2000086802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10256394A JP2000086802A (en) 1998-09-10 1998-09-10 Electrically conductive resin composition for biodegradable foamed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10256394A JP2000086802A (en) 1998-09-10 1998-09-10 Electrically conductive resin composition for biodegradable foamed article

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006166873A Division JP2006241472A (en) 2006-06-16 2006-06-16 Electrically conductive resin composition for biodegradable foamed article

Publications (1)

Publication Number Publication Date
JP2000086802A true JP2000086802A (en) 2000-03-28

Family

ID=17292076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10256394A Pending JP2000086802A (en) 1998-09-10 1998-09-10 Electrically conductive resin composition for biodegradable foamed article

Country Status (1)

Country Link
JP (1) JP2000086802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003709A (en) * 2000-06-20 2002-01-09 Unitika Ltd Biodegradable heat-resistant resin composition, sheet, molded product and foamed product
JP2006111735A (en) * 2004-10-15 2006-04-27 Kanebo Ltd Polylactic acid-based resin composition and expanded beads thereof and expanded molded body thereof
JP2013532209A (en) * 2010-06-15 2013-08-15 ビーエーエスエフ ソシエタス・ヨーロピア Manufacturing process for blends of polylactide (PLA) and thermoplastic polyurethane (TPU)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003709A (en) * 2000-06-20 2002-01-09 Unitika Ltd Biodegradable heat-resistant resin composition, sheet, molded product and foamed product
JP4530491B2 (en) * 2000-06-20 2010-08-25 ユニチカ株式会社 Biodegradable heat-resistant resin composition and sheet, molded body, foam
JP2006111735A (en) * 2004-10-15 2006-04-27 Kanebo Ltd Polylactic acid-based resin composition and expanded beads thereof and expanded molded body thereof
JP2013532209A (en) * 2010-06-15 2013-08-15 ビーエーエスエフ ソシエタス・ヨーロピア Manufacturing process for blends of polylactide (PLA) and thermoplastic polyurethane (TPU)

Similar Documents

Publication Publication Date Title
JP3937727B2 (en) Resin composition for foam having biodegradability
JP3802680B2 (en) Expandable resin composition having biodegradability
US5314927A (en) Polyester foamed articles and method for producing the same
EP0569148A1 (en) Polyester foamed articles and method for producing the same
JP2000230029A (en) Anti-static resin composition
JP3871822B2 (en) Expandable resin composition having biodegradability
JP4019747B2 (en) Expandable particles, expanded particles and expanded molded articles comprising a polyester resin composition
JP4954461B2 (en) POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY
JP2001122955A (en) Polyester-polyolefin.block copolymer and method for producing the same
JP2000086802A (en) Electrically conductive resin composition for biodegradable foamed article
JP3802681B2 (en) Expandable resin composition having biodegradability
JP3811747B2 (en) Expandable resin composition having biodegradability
JP3787447B2 (en) Expandable resin composition having biodegradability
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP3907047B2 (en) Method for producing foamed molding
JP2001164027A (en) Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JP2002179832A (en) Foamed particle and molded product
JP4293489B2 (en) Method for producing foamed molded article having biodegradation
JP3879433B2 (en) Polyester resin composition
JP2001098044A (en) Polylactic acid resin composition having biodegradability and expandability
JP2001098104A (en) Expanded particle having biodegradability and mold thereof
JP2003301067A (en) Heat resistant foamed particle of polylactic acid and its molded product, and manufacturing method thereof
JP2004277440A (en) Polylactic acid foaming resin particle and foam molded product
JP2006241472A (en) Electrically conductive resin composition for biodegradable foamed article
JP2003301068A (en) Molded product made of foamed particles of polylactic acid and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912