JP4952326B2 - 有機薄膜の形成方法及び有機電界発光素子の製造方法 - Google Patents

有機薄膜の形成方法及び有機電界発光素子の製造方法 Download PDF

Info

Publication number
JP4952326B2
JP4952326B2 JP2007078766A JP2007078766A JP4952326B2 JP 4952326 B2 JP4952326 B2 JP 4952326B2 JP 2007078766 A JP2007078766 A JP 2007078766A JP 2007078766 A JP2007078766 A JP 2007078766A JP 4952326 B2 JP4952326 B2 JP 4952326B2
Authority
JP
Japan
Prior art keywords
group
organic
ring
coating
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007078766A
Other languages
English (en)
Other versions
JP2008243421A (ja
Inventor
淳 玉木
朋行 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007078766A priority Critical patent/JP4952326B2/ja
Publication of JP2008243421A publication Critical patent/JP2008243421A/ja
Application granted granted Critical
Publication of JP4952326B2 publication Critical patent/JP4952326B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、被塗布物の有機薄膜形成領域に有機薄膜形成用塗布液をスプレー塗布する工程を少なくとも有する有機薄膜の形成方法、並びに、この有機薄膜の形成方法により有機層を形成する有機電界発光素子の製造方法に関するものである。
スプレー塗布法は、建造物、自動車、家具などの塗装など、幅広い用途に用いられる塗布方式である。近年は、MEMS(メムス、Micro Electro Mechanical Systems)製造プロセスのレジスト塗布に代表される、ミクロンオーダーからサブミクロンオーダーの膜厚をコントロールする精密塗布にも用いられてきている。
精密塗布用途として、ディスプレイパネルや照明デバイスに用いられる有機電界発光素子の製造プロセスに、スプレー塗布法を用いる例も数多く提案されている。
ディスプレイパネル基板等の電極パターンが配置された基板に、スプレー塗布法で膜を形成する際は、多くの場合、膜を形成する部分と形成しない部分との塗り分け、いわゆるパターニングが必要となる。
パターニングの方法としては、塗布液の霧化粒子を塗布領域にのみ吹き付ける方法や、非塗布領域を覆うマスクを基板上に配置して、マスク上から塗布液の霧化粒子を吹きかける方法が、一般的に採用される(特許文献1〜3参照)。
なお、スプレーノズルとしては、気体との混合・衝突によって塗布液の霧化を行なう二流体霧化方式スプレーノズル(以下「二流体スプレーノズル」という場合がある。)が広く使われている(特許文献4,5参照)。
二流体霧化方式スプレーノズルの中には、少量の気体と少量の塗布液とを混合させることで、機能性薄膜の形成に適した直径ミクロンオーダーの霧化粒子を生成できるものも開発されており、MEMSやディスプレイパネルの分野での適用が進んでいる。
特開2001−237070号公報 特開2001−297876号公報 特開2002−200447号公報 特開2003−123968号公報 特開2005−078892号公報
二流体霧化方式においては、塗布液の霧化に利用された気体は、霧化粒子とともに被塗布物表面に衝突し、形成されたばかりの未乾燥の塗布膜を流動させる効果を有する。
パターニングを行なわない場合には、未乾燥塗布膜の適切な流動が膜のレベリングを促進し、被塗布物の表面全体に形成される塗布膜の厚さの均一性を向上させるというメリットがある。
しかし、パターニングを行なう場合には、塗布膜の流動がパターン端部の形状を不安定なものにしてしまい、塗布膜の厚さがパターン端部において大きくなる傾向があった。
図1は、スプレー塗布時にパターニングを行なった場合に、塗布膜の流動により生じるパターン端部の厚さの不均一化について説明するための図である。具体的に、図1では、基板101上にマスク102を、スペーサ103を介して載置し、スプレー塗布により塗布膜104を形成した状態における、膜厚方向の断面を模式的に示している。
従来、未乾燥時に塗布膜104が流動することにより、マスク102によって規定される塗布膜104のパターン端部の膜厚Texは、塗布膜104のパターン端部以外の部分の膜厚Tinと比較して、大きくなってしまう傾向があった。
その結果、塗布膜104のパターン端部の膜厚が変動して製造物の品質が低下したり、塗布膜104のパターン端部の形状を整えるための塗布膜104の拭取り工程の導入が必要になる等のコスト増加要因が発生するという課題があった。
以上の背景から、得られる有機薄膜の膜厚の均一性を高めるとともに、有機薄膜端部の位置・形状の精度を高めることが可能な、有機薄膜の形成技術が求められていた。そして、このような有機薄膜の形成技術を、高い膜厚均一性とパターン精度を有する機能膜の形成が望まれる有機電界発光素子の製造に適用することにより、低コストで高品質な有機電界発光素子を実現することが求められていた。
本発明は、上記課題に鑑みてなされたものである。即ち、本発明の目的は、被塗布物の有機薄膜形成領域に有機薄膜形成用塗布液をスプレー塗布する工程を少なくとも有する有機薄膜の形成方法であって、得られる有機薄膜の膜厚の均一性を高めるとともに、有機薄膜端部の位置・形状の精度を高めることが可能な、有機薄膜の形成方法を提供すること、並びに、この有機薄膜の形成方法を用いて有機層を形成することにより、低コストで高品質な有機電界発光素子を製造することが可能な、有機電界発光素子の製造方法を提供することにある。
本発明者らは、上記課題を解決するべく鋭意検討した結果、スプレー塗布時の被塗布物上における気流速度を一定値以下とすることにより、塗布膜の膜厚の均一性を高めるとともに、形成された塗布膜端部の位置・形状の精度を高めることが可能となることを見出し、本発明を完成させた。
即ち、本発明の要旨は、被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布することにより塗布膜を形成する工程を少なくとも有する、有機電界素子の有機層の形成方法であって、スプレーノズルとして二流体スプレーノズルを用いて、前記スプレー塗布を行ない、前記スプレー塗布時の前記被塗布物上における気流速度を2.99m/sec以下とすることで、前記塗布膜の流動を抑制し、前記有機層の端部付近の膜厚の乱れ及び端部形状の乱れを抑えることを特徴とする、有機電界素子の有機層の形成方法に存する(請求項1)。この方法によれば、未乾燥塗布膜の流動が抑制されるので、得られる有機層の端部付近の膜厚の乱れや端部形状の乱れが大幅に抑えられ、形状精度に優れた有機層を得ることが可能になる。また、二流体スプレーノズルは、安価で、塗布膜の霧化特性に優れ、高品質な有機層を形成することができる。
また、本発明の別の要旨は、被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布することにより塗布膜を形成する工程を少なくとも有する、有機電界素子の有機層の形成方法であって、スプレーノズルとして、超音波スプレーノズル又は回転式スプレーノズルを用いて、前記スプレー塗布を行ない、前記スプレー塗布時の前記被塗布物上における気流速度を2.2m/sec以下とすることで、前記塗布膜の流動を抑制し、前記有機層の端部付近の膜厚の乱れ及び端部形状の乱れを抑えることを特徴とする、有機電界素子の有機層の形成方法に存する(請求項2)。これらのスプレーノズルは、塗布液の霧化プロセスと気体流により霧化粒子を基板に搬送するプロセスとを独立して制御可能であることから、上述の気流速度条件を容易に達成することが可能である。
また、前記被塗布物の有機層非形成領域の少なくとも一部をマスクで覆い、前記スプレー塗布を行なうことが好ましい(請求項)。これにより、有機層有機層非形成領域にはみ出すのを防止し、有機層の形状精度をより高めることが可能となる。
また、本発明のさらに別の要旨は、基板と、前記基板上に設けられる陽極及び陰極と、前記の陽極及び陰極の間に設けられる有機層とを少なくとも有する有機電界発光素子を製造する方法であって、前記有機層の形成時に、被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布することにより塗布膜を形成する工程を少なくとも有するとともに、スプレーノズルとして二流体スプレーノズルを用いて、前記スプレー塗布を行ない、前記スプレー塗布時の前記被塗布物上における気流速度を2.99m/sec以下とすることで、前記塗布膜の流動を抑制し、前記有機層の端部付近の膜厚の乱れ及び端部形状の乱れを抑えることを特徴とする、有機電界発光素子の製造方法に存する(請求項4)。
また、本発明のさらに別の要旨は、基板と、前記基板上に設けられる陽極及び陰極と、前記の陽極及び陰極の間に設けられる有機層とを少なくとも有する有機電界発光素子を製造する方法であって、前記有機層の形成時に、被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布することにより塗布膜を形成する工程を少なくとも有するとともに、スプレーノズルとして超音波スプレーノズル又は回転式スプレーノズルを用いて、前記スプレー塗布を行ない、前記スプレー塗布時の前記被塗布物上における気流速度を2.2m/sec以下とすることで、前記塗布膜の流動を抑制し、前記有機層の端部付近の膜厚の乱れ及び端部形状の乱れを抑えることを特徴とする、有機電界発光素子の製造方法に存する(請求項5)。
これらの方法によれば、有機層の端部付近の膜厚の乱れや端部形状の乱れを大幅に抑え、形状精度に優れた有機層を得ることができるので、低コストで高品質な有機電界発光素子を製造することが可能になる。
ここで、前記有機層が正孔注入層であることが好ましい(請求項6)。発光波長の異なる有機電界発光素子でも、正孔注入層は同一の材料で形成されるため、本発明の製造方法を適用することにより、複数の有機電界発光素子の正孔注入層を同時に効率よく形成することが可能となる。
本発明によれば、被塗布物の有機薄膜形成領域に有機薄膜形成用塗布液をスプレー塗布する工程を経て有機薄膜を形成する際に、得られる有機薄膜の膜厚の均一性を高めるとともに、有機薄膜端部の位置・形状の精度を高めることが可能となる。
また、この有機薄膜の形成方法を用いて有機層を形成することにより、低コストで高品質な有機電界発光素子を製造することが可能となる。
以下、本発明について実施の形態を挙げて詳細に説明するが、本発明は以下の説明に限定されるものではなく、その要旨を超えない範囲において種々に変更して実施することができる。
[I.有機薄膜の形成方法]
本発明の有機薄膜の形成方法は、被塗布物の有機薄膜形成領域に有機薄膜形成用塗布液をスプレー塗布する工程(以下「スプレー塗布工程」という場合がある。)を有する。また、スプレー塗布工程以外の工程を有していてもよい。その他の工程の例としては、スプレー塗布工程により形成された塗布膜を乾燥する工程(以下「乾燥工程」という場合がある。)が挙げられる。
以下、まず有機薄膜及び有機薄膜形成用塗布液について説明し、次いで被塗布物について説明した上で、スプレー塗布工程及び乾燥工程の詳細について順に説明する。
〔I−1.有機薄膜及び有機薄膜形成用塗布液〕
本発明において「有機薄膜」とは、少なくとも一種の有機化合物を含有する、厚さが通常10μm以下、好ましくは1μm以下、より好ましくは0.1μm以下の膜をいう。
本発明において「有機薄膜形成用塗布液」とは、塗布により有機薄膜を形成するために用いられる、有機薄膜の材料を含有する塗布液である。有機薄膜形成用塗布液としては、通常は有機薄膜材料を溶剤に溶解又は分散させた溶液又は分散液が用いられる。
有機薄膜材料の種類は制限されず、有機薄膜の種類や用途等に応じて選択される。
また、溶剤についても、有機薄膜材料を好適に溶解又は分散させることができれば、その種類は制限されない。
有機薄膜形成用塗布液の粘度は制限されないが、通常100mPa/s以下、好ましくは10mPa/s以下であることが望ましい。粘度が高過ぎると、塗布液の霧化(微粒化)が阻害される場合がある。
なお、以下の記載では「有機薄膜形成用塗布液」を「塗布液」と略称する場合がある。
〔I−2.被塗布物〕
本発明において「被塗布物」とは、有機薄膜形成用塗布液を塗布する対象であり、通常はこの被塗布物上に有機薄膜が形成されることになる。
被塗布物の種類は制限されず、有機薄膜の目的や用途等に応じて選択すればよい。例としては、各種の有機デバイス用の基板や、その基板上に一又は二以上の層を形成した積層体等が挙げられる。基板の材料は制限されないが、例えば、有機電界発光素子や液晶ディスプレイ等の用途では、ガラス、プラスチック等が挙げられ、MEMS等の用途では、シリコンウェーハー、ガラス等が挙げられる。基板上に形成される層の種類も制限されないが、例としてはパターニング電極、陰極、陰極隔壁、絶縁膜等が挙げられる。
被塗布物の形状は制限されないが、例としては平板状、フィルム状等が挙げられる。被塗布物の寸法も制限されず、目的や用途等に応じて選択すればよい。
本発明において「有機薄膜形成領域」とは、被塗布物の表面における、塗布液が塗布されて有機薄膜が形成される領域をいう。有機薄膜形成領域は、通常は被塗布物の表面の2次元(平面)領域をいう。ここで、被塗布物の表面に凹凸がある場合等も、2次元(平面)領域に含むものとする。
また、被塗布物の表面の有機薄膜形成領域を除く領域を、本明細書では「有機薄膜非形成領域」という場合がある。
図2(a)は、被塗布物の一例を模式的に示す平面図である。図2(a)に示す被塗布物11は、方形の平板状の形状を有し、その表面に有機薄膜形成領域AFを有している。また、有機薄膜形成領域AF以外の領域が、有機薄膜非形成領域ANとなる。
〔I−3.スプレー塗布工程〕
本発明において「スプレー塗布」とは、塗布液を霧化して噴霧することにより、被塗布物上に膜状に塗布する手法をいう。
スプレー塗布は、通常はスプレーノズルを用いて行なわれる。また、被塗布物の有機薄膜非形成領域をマスクで覆った状態で、スプレー塗布を行なうことが好ましい。
以下の記載では、まずスプレーノズルとマスクについて説明した上で、スプレー塗布の手順について説明し、続いて本発明の有機薄膜の形成方法の特徴である、被塗布物上における気流速度について説明する。
<I−3−1.スプレーノズル>
本発明で使用されるスプレーノズルの方式は制限されず、各々のスプレーノズルの利点を考慮して選択すればよい。
スプレーノズルの代表的な例としては、二流体スプレーノズル、超音波スプレーノズル、回転式スプレーノズル等が挙げられる。
二流体スプレーノズル(二流体霧化方式スプレーノズル)は、加圧された気体を塗布液に衝突させ、塗布液を破砕することにより、塗布液の霧化を行なう方式のノズルである。即ち、二流体スプレーノズルにおいては、塗布液の霧化と被塗布物への霧化粒子の搬送とが、何れも加圧された気体流によって行なわれる。
二流体スプレーノズルの例としては、ノードソン社製マイクロスプレーガン、アトマックス社製アトマックスノズル、旭サナック社製パールガン、IVEK社製Sonicair Nozzle等が挙げられる。
超音波スプレーノズル(超音波霧化方式スプレーノズル)は、塗布液に超音波を印加し、塗布液を破砕することにより、塗布液の霧化を行なう方式のノズルである。即ち、超音波スプレーノズルでは、塗布液の霧化は超音波によって行なわれる。また、それによって得られた霧化粒子の被塗布物への搬送は、例えば、別途設けられたエアノズルから吐出する気体流等によって行なわれる。
超音波スプレーノズルの例としては、Sono-Tek社製Vortex Nozzle、Sono-Tek社製Ultrasonic Microspray Nozzle、シソニック社製Ultrasonic Microspray Nozzle等が挙げられる。
回転式スプレーノズル(回転霧化方式スプレーノズル、ロータリーアトマイザー)は、例えば数万rpmで回転する回転カップ等に塗布液を導入し、塗布液に回転力を加えながら吐出することにより、遠心力で塗布液の霧化を行なう方式のノズルである。即ち、回転式スプレーノズルでは、遠心力によって塗布液の霧化が行なわれるとともに、通常はノズルに別途導入される気体流等によって、霧化粒子の被塗布物への搬送が行なわれる。
回転式スプレーノズルの例としては、旭サナック社製NCベル、ノードソン社製RA−20 ロータリーアトマイザー等が挙げられる。
超音波スプレーノズル及び回転式スプレーノズルには、塗布液の霧化プロセスと、塗布液の霧化粒子を気体流により被塗布物に搬送するプロセスとを、独立して制御可能であることから、上述の気流速度条件を容易に達成できるという利点がある。即ち、加圧された気体との衝突・混合により塗布液の霧化を行なう二流体スプレーノズルでは、霧化に使用される気体が被塗布物の表面に衝突するので、塗布膜の流動が促進される傾向がある。これに対し、超音波スプレーノズルや回転式スプレーノズルは、気体による塗布液の霧化を行なわないため、塗布膜の流動を招く可能性が低い。
一方、二流体スプレーノズルは、超音波スプレーノズル及び回転式スプレーノズルよりも安価であり、塗布膜の霧化特性に優れ、高品質な有機薄膜を形成することができるという利点がある。
<I−3−2.マスク>
本発明においては、上述のように、被塗布物の有機薄膜非形成領域をマスクで覆った状態で、スプレー塗布を行なうことが好ましい。
塗布液粒子の噴霧パターンを制御することによって、塗布膜を所定の領域(有機薄膜形成領域)に形成することも可能ではあるが、塗布膜が有機薄膜非形成領域に侵入するのを防止することは困難である。よって、塗布膜が有機薄膜非形成領域に侵入するのを確実に防止するためには、スプレー塗布時にマスクで有機薄膜非形成領域を保護することが望まれる。
また、スプレー塗布時にマスクを用いてパターニングを行なうと、上述したように、未乾燥時の塗布膜の流動によりパターン端部の形状が不安定化するため、得られる有機薄膜の膜厚が不均一となったり、有機薄膜の端部の位置・形状の精度が低下する傾向がある。従って、本発明を適用することにより、有機薄膜の膜厚の均一化や有機薄膜端部の位置・形状の精度向上の効果が、より顕著に得られることになるので望ましい。
なお、マスクは、スプレー塗布時において、有機薄膜非形成領域の全面を覆っていてもよく、一部のみを覆っていてもよい。但し、マスクは有機薄膜非形成領域のうち、少なくとも有機薄膜形成領域との境界付近を覆っていることが好ましい。
具体的に、マスクの素材は、塗布液やスプレー塗布時の環境の影響で変質や劣化を生じることなく、容易に加工ができるものであれば、どのような素材でもよい。実際には、ステンレス、ニッケル等の金属や、PET(ポリエチレンテレフタラート)、ポリイミド等の樹脂が用いられる。これらの素材は、何れか一種単独で使用してもよく、二種以上の混合で使用してもよい。
マスクの形状や寸法等は、スプレー塗布時に有機薄膜非形成領域の少なくとも一部を適切に覆うことができ、当該領域における塗布膜の形成を遮断することができるものであれば、制限されない。
但し、ハンドリング性等を考慮すると、マスクの形状は平板状、シート状等の略平面形状とすることが望ましく、その厚さは、通常1μm以上、好ましくは10μm以上、また、通常1000μm以下、好ましくは500μm以下とすることが望ましい。
また、マスクの平面寸法は、被塗布物の平面寸法(例えば基板の平面寸法)よりも、例えば数mmから数十mm程度、大きな寸法とすることが望ましい。
また、被塗布物の有機薄膜形成領域に対応するマスクの部分領域には、通常は開口部が設けられる。開口部の寸法は、対応する有機薄膜形成領域の寸法と概ね同一か、若干(1mm程度)大きめの寸法に設定することが望ましい。
図2(b)は、図2(a)の被塗布物11に用いられるマスクの一例を模式的に示す平面図である。図2(b)に示すマスク12は、被塗布物11と同様に方形の平板状の形状を有し、その寸法は被塗布物11よりも大きめに設定されている。また、被塗布物11の有機薄膜形成領域AFと対応する位置に開口部OPを有し、その寸法は有機薄膜形成領域AFよりも若干大きめに設定されている。なお、図2(b)では、被塗布物11とマスク12との形状比較のため、マスク12を被塗布物11に載置した状態で示している。
また、被塗布物とマスクとの間には、スペーサを介挿してもよい。スペーサを使用することにより、被塗布物とマスクとが直接接触するのを防止することができる。特に、被塗布物である基板に高い表面精度が求められるディスプレイパネル等の分野においては、スペーサを用いることにより、基板表面に傷が付くのを防止することが好ましい。
スペーサの素材は制限されないが、ステンレス、ガラス、テフロン(登録商標)樹脂、ポリイミド樹脂等、塗布液の成分として使用されることが多い有機溶剤に対して耐性を有する素材であることが好ましい。これらの素材は何れか一種を単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
スペーサの厚みは、未乾燥塗布膜の厚さよりも大きいことが好ましいが、大き過ぎるとスプレーノズルからの塗布液粒子が被塗布物とマスクとの間隙に侵入し易くなる傾向があるため、通常500μm以下、好ましくは300μm以下とすることが望ましい。
また、未乾燥塗布膜の厚さよりも大きな厚みを有するスペーサを使用することで、被塗布物とマスクとの間隙への毛管現象による未乾燥塗布膜の流入を抑制することができる。
スペーサの厚さ方向以外の寸法や形状については制限されず、被塗布物の有機薄膜被形成領域とマスクとの間に介挿されてマスクを支持することが可能であれば、任意に選択することができる。但し、被塗布物との接触面積ができるだけ小さいことが好ましい。
<I−3−3.スプレー塗布の手順>
スプレー塗布の好ましい手順の一例について、図3(a)〜(d)を参照しながら、以下に説明する。
図3(a)〜(d)は、被塗布物として図2(a)に示す被塗布物11を用い、マスクとして図2(b)に示すマスク12を用い、更にスペーサ13を併用して、有機薄膜16を形成する場合の手順を説明するためのものであり、何れも図2(a),(b)のA−A面に相当する断面を模式的に示している。
なお、被塗布物11、マスク12、スペーサ13、及び有機薄膜16の厚さは、通常は平面方向の寸法と比べると微小であるが、図3(a)〜(d)では視覚容易性を考慮して、実際よりも大きめに表示している。また、被塗布物11、マスク12、スペーサ13、及び有機薄膜16の厚さの相対関係についても、図3(a)〜(d)の表示は、実際の関係とは異なる。
まず、図3(a)に示すように、被塗布物11の上にスペーサ13を載置する。スペーサ13は、被塗布物11の有機薄膜非形成領域内に配置される。
次いで、図3(b)に示すように、スペーサ13上にマスク12を載置する。マスク12は、被塗布物11の有機薄膜非形成領域を覆うように配置され、その開口部Opは、被塗布物11の有機薄膜形成領域に合わせて配置される。
続いて、図3(c)に示すように、スプレーノズル14から塗布液の霧化粒子15を放出し、被塗布物11の有機薄膜形成領域に対して、マスク12の上から噴霧する。これにより、被塗布物11の有機薄膜形成領域内に、マスク12の開口部によってパターニングされた塗布膜16が形成される。
その後、必要に応じて塗布膜16を乾燥させるとともに(本工程については後述の〔I−4.乾燥工程〕の欄で説明する。)、マスク12及びスペーサ13を除去することにより、図3(d)に示すように、被塗布物11上に形成された有機薄膜16が得られる。
但し、本発明の有機薄膜の形成方法におけるスプレー塗布の手順は、図3(a)〜(d)に示す手順に制限されるものではなく、任意の変更を加えてもよい。例えば、マスク12やスペーサ13を使用せずにスプレー塗布を行なってもよい。
<I−3−4.気流速度>
本発明の有機薄膜の形成方法は、スプレー塗布時の被塗布物上における気流速度を、通常3m/sec以下とすることを特徴とする。
この気流速度が高過ぎると、気流によって誘発される塗布膜の流動により、有機薄膜のパターン端部の形状が不安定となり、有機薄膜のパターン端部付近に膜厚の大きな部分が発生する場合がある。気流速度が低い値であるほど、このようなパターン端部における膜厚変動が発生し難くなる。
但し、スプレー塗布時の被塗布物上における気流速度の好ましい上限値は、スプレーノズルの種類に応じて異なる。
具体的に、二流体スプレーノズルを用いてスプレー塗布を行なう場合、スプレー塗布時の被塗布物上における気流速度は、通常2.99m/sec以下、好ましくは2.98m/sec以下、より好ましくは2.95m/sec以下とすることが望ましい。
また、超音波スプレーノズル又は回転式スプレーノズルを用いてスプレー塗布を行なう場合、スプレー塗布時の被塗布物上における気流速度は通常2.2m/sec以下、好ましくは2.1m/sec以下、より好ましくは2m/sec以下とすることが望ましい。
但し、この気流速度があまりに低いと、塗布環境における気流によって塗布液粒子が飛散する可能性がある上に、スプレー塗布そのものが困難となる場合もある。よって、気流速度の下限値は、通常0.1m/sec以上、好ましくは0.5m/sec以上、より好ましくは1m/sec以上とすることが望ましい。
なお、本発明において、スプレー塗布時の「被塗布物上における気流速度」とは、被塗布物の表面からの距離が通常1cm以内の位置において測定される気流速度を指す。
スプレー塗布時の被塗布物上における気流速度を測定する手法は、制限されるものではないが、例えば、後述の[実施例]の欄で説明するように、被塗布物上に風速計(例えば日本カノマックス製アネモマスター6162)のセンサープローブを設置して行なうことができる。この場合、間隔を置いて複数回の気流速度の測定を行ない、その測定値を平均した値(平均気流速度)を採用することが好ましい。
具体的な測定手順を例示すると、以下の通りである。
(i)被塗布物をステージ上に設置し、続けて被塗布物上にSUSマスクを設置し、その上方からスプレー塗布を行う。この際に、ノズル−被塗布物距離、ノズルへの気体導入圧力を制御因子として、様々な条件で塗布を行ない、塗布膜端部の形状を観察する。
(ii)被塗布物の代わりに風速計センサープローブをステージ上に設置する。
(iii)スプレーノズル−センサープローブ距離、ノズルへの気体導入圧力を、塗布条件に揃えて、ノズルから気体のみを噴出した際のステージ上気流速度を測定する。
スプレー塗布時の被塗布物上における気流速度を上記範囲に調整する手法は、制限されるものではないが、例えば以下の手法が挙げられる。
まず、第1の手法として、スプレーノズルから吐出される気流の速度を制御する手法が挙げられる。即ち、スプレーノズルから吐出される気流の速度が速いほど、被塗布物上における気流速度も速くなる関係があるので、この関係を用いて制御する手法である。ここで、スプレーノズルから吐出される気流の速度は、吐出される気流の単位時間当たりの体積や、スプレーノズルに導入する気流の圧力等のパラメータと相関を有するため、これらのパラメータを制御することにより、スプレーノズルから吐出される気流の速度を制御することが可能となる。なお、この第1の手法は、スプレーノズルとして超音波スプレーノズルを用いる場合に特に有効である。
また、第2の手法として、スプレーノズルの先端から基板までの距離を制御する手法が挙げられる。即ち、スプレーノズルの先端から基板までの距離が大きいほど、被塗布物上における気流速度が遅くなる関係があるので、この関係を用いて制御する手法である。なお、この第2の手法は、スプレーノズルとして回転式スプレーノズル、二流体スプレーノズルを用いる場合に特に有効である。
<I−3−5.その他>
スプレー塗布時における他の条件は制限されないが、通常は以下の通りである。
スプレー塗布時の温度は、通常15℃以上、好ましくは20℃以上、また、通常30℃以下、好ましくは25℃以下とすることが望ましい。温度が高過ぎると塗布膜の乾燥速度が高くなり、ムラが発生し易くなる場合がある。
スプレー塗布時の湿度は、通常20%RH以上、好ましくは30%RH以上、また、通常60%RH以下、好ましくは50%RH以下とすることが望ましい。湿度が低過ぎると静電気により安全性が低下する可能性があり、湿度が高過ぎると塗布膜の吸湿が生じる可能性がある。なお、「%RH」は相対湿度パーセントを表わす。
〔I−4.乾燥工程〕
本発明の有機薄膜の形成方法では、上述のスプレー塗布工程の後に、塗布液中の溶剤を除去するため、塗布膜を乾燥させる工程(乾燥工程)を実施することが好ましい。
乾燥工程を実施する場合、乾燥の手法は制限されない。例としては加熱乾燥、減圧乾燥、通風乾燥等が挙げられる。これらは1種を単独で実施してもよく、2種以上を組み合わせて実施してもよい。
乾燥の手段も任意である。加熱乾燥の手段としては、ホットプレート、オーブン、赤外線照射、電磁波照射等が挙げられる。通風加熱乾燥の手段として、送風乾燥オーブン等が挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
なお、スプレー塗布工程時にマスクやスペーサを使用した場合、乾燥工程の前にマスクやスペーサを取り外してもよいが、マスクやスペーサが被塗布物上に載置されたままの状態で乾燥工程に供してもよい。
乾燥時の温度は制限されないが、通常は室温以上である。特に加熱乾燥を行なう場合、その温度は通常40℃以上、好ましくは50℃以上、また、通常300℃以下、好ましくは260℃以下の範囲が望ましい。なお、加熱乾燥時の温度は一定でもよいが、変動してもよい。
乾燥時の圧力も制限されないが、特に減圧乾燥を行なう場合、通常は常圧以下、好ましくは10kPa以下、より好ましくは1kPa以下の範囲が望ましい。
乾燥時の湿度も制限されないが、塗布膜の吸湿を防ぐため、通常は60%RH程度以下とすることが望ましく、好ましくは常圧で30%RH以下、或いは真空状態(湿度0%RH)とすることが望ましい。
乾燥時の雰囲気も制限されず、大気雰囲気でも、窒素雰囲気等の不活性ガス雰囲気でも、真空雰囲気でもよい。これらは塗布膜の特性等を考慮して選択すればよい。但し、通常はクリーンな雰囲気であることが好ましい。
乾燥時間も制限されず、塗布膜中の溶剤が除去できれば任意であるが、乾燥時の温度・圧力・湿度等の条件や、塗布液の溶剤の沸点、プロセススピード、塗布膜の特性等を考慮して決定することが好ましい。一般的には、通常1秒以上、好ましくは30秒以上、より好ましくは1分以上、また、通常100時間以下、好ましくは24時間以下、より好ましくは3時間以下の範囲が望ましい。
〔I−5.その他〕
本発明の有機薄膜の形成方法は、高い膜厚均一性が求められる有機薄膜の形成に適しているが、中でも各種の有機デバイスにおける有機薄膜の形成に適用することが好ましい。本発明の有機薄膜の形成方法を用いることにより、高品質な有機デバイスを低コストで製造することが可能となる。
本発明の有機薄膜の形成方法が適用される分野の具体例としては、有機電界発光素子の有機層の形成、液晶ディスプレイ用の配向膜の形成、MEMS(Micro Electro Mechanical Systems)用のフォトレジストの形成等が挙げられるが、中でも有機電界発光素子有機電界発光素子の有機層の形成に適用することが好ましい。有機電界発光素子はディスプレイパネル等への応用が検討されているが、その際、膜厚均一性の高い有機膜を高い精度で所定の領域に設けることが求められるからである。
本発明の有機薄膜の形成方法を、有機電界発光素子の有機層の形成に適用する場合、形成対象となる有機層の種類は制限されないが、正孔注入層の形成に適用することが好ましい。ディスプレイパネル等の用途において有機電界発光素子を基板上に多数並べて配置する場合、複数の機能性薄膜を積層することによりこれらの有機電界発光素子を形成するが、各素子に共通な機能性薄膜については同時に形成することが、製造コストを抑制する上で望まれる。正孔注入層は、発光波長の異なる素子においても同一材料を使用するため、複数の素子を同時に形成可能なスプレー塗布法の使用が望ましい。従って、本発明の有機薄膜の形成方法を適用することによる効果も大きくなる。
[II.有機電界発光素子の製造方法]
本発明の有機電界発光素子の製造方法(以下「本発明の製造方法」という場合がある。)は、基板と、基板上に設けられる陽極及び陰極と、陽極及び陰極の間に設けられる有機層とを少なくとも有する有機電界発光素子を製造するものである。
そして、本発明の製造方法は、有機層の形成時に、被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布する工程を少なくとも有し、スプレー塗布時の被塗布物上における気流速度を3m/sec以下とすることを特徴とする。
即ち、本発明の製造方法は、有機層の形成を、上述した本発明の有機薄膜の形成方法によって行なうことを特徴とするものである。
有機電界発光素子の陽極と陰極との間には、通常は複数の有機層が設けられる。有機層の例としては、正孔注入層、正孔輸送層、有機発光層、電子輸送層、正孔阻止層、電子注入層等が挙げられる。
本発明の製造方法では、これらの有機層のうち、何れの層を本発明の有機薄膜の形成方法によって形成してもよいが、正孔注入層の形成時に本発明の有機薄膜の形成方法を用いることが好ましい。
なお、本発明の製造方法において「被塗布物」とは、本発明の有機薄膜の形成方法により有機層が形成される対象物をいい、本発明の有機薄膜の形成方法で形成される有機層(以下「特定有機層」という場合がある。)の種類によって異なる。通常は、特定有機層の直下までの層が形成された積層体が「被塗布物」となる。
以下、本発明の実施形態に係る有機電界発光素子の製造方法として、正孔注入層を本発明の有機薄膜の形成方法によって形成する場合を例として説明する。但し、本発明は以下の実施形態に限定されるものではなく、その要旨を超えない範囲において種々に変更して実施することができる。
〔II−1.有機電界発光素子の構成〕
図4(a)は、本発明の一実施形態に係る有機電界発光素子の層構成を模式的に示す断面図である。図4(a)に示す有機電界発光素子1は、基板2の上に、陽極3、正孔注入層4、有機発光層5、電子注入層6及び陰極7を、この順に積層することにより構成される。
〔II−2.基板〕
基板2は、有機電界発光素子1の支持体となるものである。
基板2の材料は制限されないが、例としては、石英、ガラス、金属、プラスチック等が挙げられる。これらの材料は何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
基板2の形状も制限されないが、例としては、板、シート、フィルム、箔等、或いはこれらの二種以上を組み合わせた形状等が挙げられる。
中でも、基板2としては、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。
なお、基板2の材料として合成樹脂を使用する場合には、ガスバリア性に留意することが望ましい。基板2のガスバリア性が低過ぎると、基板2を通過した外気により、有機電界発光素子1が劣化する場合がある。よって、合成樹脂からなる基板2の少なくとも片面に、緻密なシリコーン酸化膜等を設けてガスバリア性を確保する、等の手法を講じることが好ましい。
基板2の厚さは制限されないが、通常1μm以上、好ましくは50μm以上、また、通常50mm以下、好ましくは3mm以下の範囲が望ましい。基板2が薄過ぎると機械的強度が低くなる場合があり、厚過ぎると素子の重量が増加し過ぎる場合がある。
なお、基板2は単一の層からなる構成としてもよいが、複数の層が積層された構成としてもよい。後者の場合、複数の層は同一の材料からなる層であってもよいが、異なる材料からなる層であってもよい。
〔II−3.陽極〕
基板2の上には、陽極3が形成される。
陽極3は、後述する有機発光層5側の層(正孔注入層4又は有機発光層5等)への正孔注入の役割を果たすものである。
陽極3の材料は、導電性を有する材料であれば任意であるが、例としては、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等が挙げられる。
これらの陽極3の材料は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
陽極3を形成する手法は制限されないが、通常はスパッタリング法、真空蒸着法等が用いられる。また、銀等の金属微粒子、ヨウ化銅等の金属ハロゲン化物の微粒子、カーボンブラック等の炭素材料の微粒子、導電性金属酸化物の微粒子、導電性高分子の微粉末等の材料を用いる場合には、これらの材料を適当なバインダー樹脂溶液に分散させ、基板2上に塗布することにより、陽極3を形成することもできる。
更に、導電性高分子を材料として用いる場合は、電解重合により基板2上に直接、薄膜を形成したり、基板2上に導電性高分子を塗布したりする等の手法により、陽極3を形成することもできる(Applied Physics Letters,1992年,Vol.60,pp.2711参照)。
陽極3の厚みは、陽極3に求められる透明性により異なる。
陽極3に透明性が求められる場合は、陽極3による可視光の透過率を、通常60%以上、好ましくは80%以上とすることが望ましい。この場合、陽極3の厚みは、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲が望ましい。陽極3が薄過ぎると電気抵抗が大きくなる場合があり、厚過ぎると透明性が低下する場合がある。
一方、陽極3が不透明でよい場合、例えば、陽極3が基板2を兼ねる場合、陽極3の厚さは基板2と同様、通常1μm以上、好ましくは50μm以上、また、通常50mm以下、好ましくは30mm以下の範囲が望ましい。陽極3が薄過ぎると機械的強度が低くなる場合があり、厚過ぎると素子の重量が増加し過ぎる場合がある。
なお、陽極3は単一の層からなる構成としてもよいが、複数の層が積層された構成としてもよい。後者の場合、複数の層は同一の材料からなる層であってもよいが、異なる材料からなる層であってもよい。
更には、陽極3を上述の基板2と一体に形成し、陽極3が基板2を兼ねる構成としてもよい。
なお、陽極3の形成後、陽極3に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的として、陽極3表面に対して、紫外線(UV)処理、オゾン処理、プラズマ処理(例えば酸素プラズマ処理、アルゴンプラズマ処理等)等の処理を行なうことが好ましい。
〔II−4.正孔注入層〕
陽極3の上には、正孔注入層4が形成される。
正孔注入層4は、陽極3から有機発光層5へ正孔を輸送する層である。
正孔注入層4は、通常は正孔輸送剤及び電子受容性化合物を含有する。更に、他の成分を含有していてもよい。
正孔輸送剤(以下「正孔輸送性化合物」と言う場合がある。)は、従来、有機EL素子における正孔注入・輸送性の薄膜形成材料として利用されてきた各種の化合物の中から、適宜選択することが可能である。中でも、溶剤溶解性の高いものが好ましい。
中でも、正孔輸送性化合物は、4.5eV〜5.5eVのイオン化ポテンシャルを有する化合物であることが好ましい。なお、イオン化ポテンシャルは、物質のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、光電子分光法で直接測定されるか、電気化学的に測定した酸化電位を基準電極に対して補正しても求められる。後者の方法の場合は、例えば、飽和甘コウ電極(SCE)を基準電極として用いたとき、下記式で表される(“Molecular Semiconductors”, Springer-Verlag, 1985年, pp.98)。
イオン化ポテンシャル = 酸化電位(vs.SCE)+4.3eV
正孔輸送性化合物は、低分子化合物であっても高分子化合物であってもよいが、高分子化合物であることが好ましい。
正孔輸送性化合物の例としては、芳香族アミン化合物、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体等が挙げられる。中でも、非晶質性、溶剤への溶解度、可視光の透過率の点から、芳香族アミン化合物が好ましい。
芳香族アミン化合物の中でも、正孔輸送性化合物としては、特に芳香族三級アミン化合物が好ましい。なお、ここでいう芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
芳香族アミン化合物の種類は制限されず、低分子化合物であっても高分子化合物であってもよいが、表面平滑化効果の点から、重量平均分子量が1000以上、100万以下の高分子化合物であることが好ましい。
高分子の芳香族アミン化合物(以下「芳香族アミン高分子化合物」と言う場合がある。)の好ましい例としては、下記式(I)で表わされる繰り返し単位を有する芳香族三級アミン高分子化合物が挙げられる。
Figure 0004952326
(式(I)中、Ar1及びAr2は各々独立して、置換基を有していてもよい芳香族炭化水素基、又は、置換基を有していてもよい芳香族複素環基を表わす。Ar3〜Ar5は各々独立して、置換基を有していてもよい2価の芳香族炭化水素基、又は、置換基を有していてもよい2価の芳香族複素環基を表わす。Xは、下記の連結基群X1の中から選ばれる連結基を表わす。)
・連結基群X1:
Figure 0004952326
(式中、Ar11〜Ar28は各々独立して、置換基を有していてもよい芳香族炭化水素基又は芳香族複素環基を表わす。R1及びR2は各々独立して、水素原子又は任意の置換基を表わす。)
前記式(I)において、Ar1〜Ar5及びAr11〜Ar28としては、任意の芳香族炭化水素環又は芳香族複素環由来の、1価又は2価の基が適用可能である。即ち、Ar1、Ar2、Ar16、Ar21及びAr26は、それぞれ1価の基が適用可能であり、Ar3〜Ar5、Ar11〜Ar15、Ar17〜Ar20、Ar22〜Ar25、Ar27及びAr28は、それぞれ2価の基が適用可能である。これらは各々同一であっても、互いに異なっていてもよい。また、任意の置換基を有していてもよい。
前記の芳香族炭化水素環としては、例えば、5又は6員環の単環又は2〜5縮合環が挙げられる。その具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などが挙げられる。
前記の芳香族複素環としては、例えば、5又は6員環の単環又は2〜4縮合環が挙げられる。その具体例としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などが挙げられる。
また、Ar3〜Ar5、Ar11〜Ar15、Ar17〜Ar20、Ar22〜Ar25、Ar27、Ar28としては、上に例示した1種類又は2種類以上の芳香族炭化水素環及び/又は芳香族複素環由来の2価の基を2つ以上連結して用いることもできる。
また、Ar1〜Ar5及びAr11〜Ar28の芳香族炭化水素環及び/又は芳香族複素環由来の基は、本発明の趣旨に反しない限りにおいて、更に置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基の種類は特に制限されないが、例としては、下記の置換基群Wから選ばれる1種又は2種以上が挙げられる。なお、置換基は、1個が単独で置換していてもよく、2個以上が任意の組み合わせ及び比率で置換していてもよい。
[置換基群W]
メチル基、エチル基等の、炭素数が通常1以上、通常10以下、好ましくは8以下のアルキル基;ビニル基等の、炭素数が通常2以上、通常11以下、好ましくは5以下のアルケニル基;エチニル基等の、炭素数が通常2以上、通常11以下、好ましくは5以下のアルキニル基;メトキシ基、エトキシ基等の、炭素数が通常1以上、通常10以下、好ましくは6以下のアルコキシ基;フェノキシ基、ナフトキシ基、ピリジルオキシ基等の、炭素数が通常4以上、好ましくは5以上、通常25以下、好ましくは14以下のアリールオキシ基;メトキシカルボニル基、エトキシカルボニル基等の、炭素数が通常2以上、通常11以下、好ましくは7以下のアルコキシカルボニル基;ジメチルアミノ基、ジエチルアミノ基等の、炭素数が通常2以上、通常20以下、好ましくは12以下のジアルキルアミノ基;ジフェニルアミノ基、ジトリルアミノ基、N−カルバゾリル基等の、炭素数が通常10以上、好ましくは12以上、通常30以下、好ましくは22以下のジアリールアミノ基;フェニルメチルアミノ基等の、炭素数が通常6以上、好ましくは7以上、通常25以下、好ましくは17以下のアリールアルキルアミノ基;アセチル基、ベンゾイル基等の、炭素数が通常2以上、通常10以下、好ましくは7以下のアシル基;フッ素原子、塩素原子等のハロゲン原子;トリフルオロメチル基等の、炭素数が通常1以上、通常8以下、好ましくは4以下のハロアルキル基;メチルチオ基、エチルチオ基等の、炭素数が通常1以上、通常10以下、好ましくは6以下のアルキルチオ基;フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の、炭素数が通常4以上、好ましくは5以上、通常25以下、好ましくは14以下のアリールチオ基;トリメチルシリル基、トリフェニルシリル基等の、炭素数が通常2以上、好ましくは3以上、通常33以下、好ましくは26以下のシリル基;トリメチルシロキシ基、トリフェニルシロキシ基等の、炭素数が通常2以上、好ましくは3以上、通常33以下、好ましくは26以下のシロキシ基;シアノ基;フェニル基、ナフチル基等の、炭素数が通常6以上、通常30以下、好ましくは18以下の芳香族炭化水素環基;チエニル基、ピリジル基等の、炭素数が通常3以上、好ましくは4以上、通常28以下、好ましくは17以下の芳香族複素環基。
上述した基の中でも、Ar1及びAr2としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の1価の基が好ましく、フェニル基、ナフチル基が更に好ましい。
また、上述したものの中でも、Ar3〜Ar5としては、耐熱性、酸化還元電位を含めた正孔注入・輸送性の点から、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環由来の2価の基が好ましく、フェニレン基、ビフェニレン基、ナフチレン基が更に好ましい。
前記式(I)において、R1及びR2としては、水素原子又は任意の置換基が適用可能である。これらは互いに同一であってもよく、異なっていてもよい。置換基の種類は、本発明の趣旨に反しない限り特に制限されないが、適用可能な置換基を例示するならば、アルキル基、アルケニル基、アルキニル基、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基が挙げられる。これらの具体例としては、先に置換基群Wにおいて例示した各基が挙げられる。
前記式(I)で表わされる繰り返し単位を有する高分子化合物の中でも、特に、下記式(I’)で表わされる繰り返し単位を有する高分子化合物が、正孔注入・輸送性が非常に高くなるので好ましい。
Figure 0004952326
前記式(I’)中、R41〜R45は各々独立に、任意の置換基を表わす。R41〜R45の置換基の具体例は、式(I)のAr1〜Ar5が有してもよい置換基(即ち、[置換基群W]に記載されている置換基)と同様である。また、式(I’)中、p、qは各々独立に、0以上、5以下の整数を表わし、r、s及びtは各々独立に、0以上、4以下の整数を表わす。
また、前記式(I’)中、Y’は、下記の連結基群Y2の中から選ばれる連結基を表わす。
・連結基群Y2:
Figure 0004952326
上記各式中、Ar31〜Ar37は、各々独立して、置換基を有していてもよい芳香族炭化水素環又は芳香族複素環由来の1価又は2価の基を表わす。Ar31〜Ar37の具体例は、上記のAr1〜Ar5と同様である。即ち、Ar31〜Ar35及びAr37はAr3〜Ar5と同様のものが適用でき、Ar36はAr1及びAr2と同様のものを適用できる。また、有していてもよい置換基も、上記のAr1〜Ar5と同様である。
以下に、本発明において適用可能な、式(I)又は式(I’)で表わされる繰り返し単位の好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure 0004952326
また、他の芳香族三級アミン高分子化合物の好ましい例として、下記式(II−1)及び/又は式(II−1)で表わされる繰り返し単位を含む高分子化合物が挙げられる。
Figure 0004952326
Figure 0004952326
(式(II−1)及び(II−2)中、Ar45、Ar47及びAr48は各々独立して、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表わす。Ar44及びAr46は各々独立して、置換基を有していてもよい2価の芳香族炭化水素基、又は置換基を有していてもよい2価の芳香族複素環基を表わす。R51〜R53は各々独立して、水素原子又は任意の置換基を表わす。)
Ar45、Ar47及びAr48、並びに、Ar44及びAr46の具体例、好ましい例、有していてもよい置換基の例及び好ましい置換基の例は、それぞれ、Ar21及びAr22、並びに、Ar23〜Ar25と同様である。R51〜R53として好ましくは、水素原子又は[置換基群W]に記載されている置換基であり、更に好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、芳香族炭化水素基、芳香族炭化水素基である。
以下に、本発明において適用可能な、式(II−1)及び(II−2)で表わされる繰り返し単位の好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure 0004952326
また、本発明において適用可能な芳香族アミン高分子化合物の好ましい例としては、下記の繰り返し単位を有する高分子化合物が挙げられる。従って、前記の好ましい高分子量の正孔輸送性化合物として例示した芳香族三級アミン化合物も、下記の繰り返し単位を有することが特に好ましい。但し、本発明はこれらの例示に限定されるものではない。
Figure 0004952326
前記の芳香族アミン高分子化合物は、上に説明した各種の繰り返し単位のうち、何れか一種のみからなる単独重合体であってもよく、二種以上を任意の組み合わせ及び比率で含有する共重合体であってもよい。後者の場合、共重合体の形態はブロック共重合でもランダム共重合でもよい。
正孔注入層4の材料として用いられる芳香族三級アミン高分子化合物の重量平均分子量は、本発明の効果を著しく損なわない限り任意であるが、通常1000以上、好ましくは2000以上、より好ましくは3000以上、また、通常50万以下、好ましくは20万以下、より好ましくは10万以下である。
一方、低分子の芳香族三級アミン化合物(以下「芳香族三級アミン低分子化合物」と言う場合がある。)のうち、正孔輸送性化合物として好ましい具体例としては、下記式(III)で表わされるビナフチル系化合物が挙げられる。
Figure 0004952326
式(III)中、Ar51〜Ar58は各々独立に、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表わす。Ar51とAr52、Ar55とAr56は、各々結合して環を形成していてもよい。Ar51〜Ar58の具体例、好ましい例、有していてもよい置換基の例及び好ましい置換基の例は、それぞれ、Ar1〜Ar5について先に例示したものと同様である。
u及びvは、各々独立に、0以上、4以下の整数を表わす。但し、u+v≧1である。特に好ましいのは、u=1かつv=1である。
1及びQ2は各々独立に、直接結合又は2価の連結基を表わす。
式(III)中のナフタレン環は、−(Q1NAr53Ar57(NAr51Ar52))及び−(Q2NAr54Ar58(NAr55Ar56))に加えて、任意の置換基を有していてもよい。
また、これらの置換基−(Q1NAr53Ar57(NAr51Ar52)及び−(Q2NAr54Ar58(NAr55Ar56)は、ナフタレン環の何れの位置に置換していてもよいが、中でも、式(III)におけるナフタレン環の、各々4−位、4’−位に置換したビナフチル系化合物がより好ましい。
また、式(III)で表わされる化合物におけるビナフチレン構造は、2,2’−位に置換基を有することが好ましい。2,2’−位に結合する置換基としては、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシカルボニル基等が挙げられる。
なお、式(III)で表わされる化合物において、ビナフチレン構造は2,2’−位以外に任意の置換基を有していてもよく、該置換基としては、例えば、2,2’−位における置換基として前掲した各基等が挙げられる。式(III)で表わされる化合物は、2−位及
び2’−位に置換基を有することにより、2つのナフタレン環がねじれた配置になるため、溶解性が向上すると考えられる。
式(III)で表わされるビナフチル系化合物の分子量は、通常500以上、好ましくは700以上、また、通常2000以下、好ましくは1200以下の範囲である。
以下に、本発明において正孔輸送性化合物として適用可能な、式(III)で表わされるビナフチル系化合物の好ましい具体例を挙げるが、本発明で適用可能なビナフチル系化合物はこれらに限定されるものではない。
Figure 0004952326
その他、本発明における正孔輸送性化合物として適用可能な芳香族アミン化合物としては、有機EL素子における正孔注入・輸送性の層形成材料として利用されてきた、従来公知の化合物が挙げられる。例えば、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン等の第3芳香族アミンユニットを連結した芳香族ジアミン化合物(特開昭59−194393号公報);4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族アミン(特開平5−234681号公報);トリフェニルベンゼンの誘導体でスターバースト構造を有する芳香族トリアミン(米国特許第4923774号明細書);N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)ビフェニル−4,4’−ジアミン等の芳香族ジアミン(米国特許第4764625号明細書);α,α,α’,α’−テトラメチル−α,α’−ビス(4−ジ−p−トリルアミノフェニル)−p−キシレン(特開平3−269084号公報);分子全体として立体的に非対称なトリフェニルアミン誘導体(特開平4−129271号公報);ピレニル基に芳香族ジアミノ基が複数個置換した化合物(特開平4−175395号公報);エチレン基で3級芳香族アミンユニットを連結した芳香族ジアミン(特開平4−264189号公報);スチリル構造を有する芳香族ジアミン(特開平4−290851号公報);チオフェン基で芳香族3級アミンユニットを連結したもの(特開平4−304466号公報);スターバースト型芳香族トリアミン(特開平4−308688号公報);ベンジルフェニル化合物(特開平4−364153号公報);フルオレン基で3級アミンを連結したもの(特開平5−25473号公報);トリアミン化合物(特開平5−239455号公報);ビスジピリジルアミノビフェニル(特開平5−320634号公報);N,N,N−トリフェニルアミン誘導体(特開平6−1972号公報);フェノキサジン構造を有する芳香族ジアミン(特開平7−138562号公報);ジアミノフェニルフェナントリジン誘導体(特開平7−252474号公報);ヒドラゾン化合物(特開平2−311591号公報);シラザン化合物(米国特許第4950950号明細書);シラナミン誘導体(特開平6−49079号公報);ホスファミン誘導体(特開平6−25659号公報);キナクリドン化合物等が挙げられる。これらの芳香族アミン化合物は、必要に応じて2種以上を混合して用いてもよい。
また、本発明における正孔輸送性化合物として適用可能な芳香族アミン化合物のその他の具体例としては、ジアリールアミノ基を有する8−ヒドロキシキノリン誘導体の金属錯体が挙げられる。上記の金属錯体は、中心金属がアルカリ金属、アルカリ土類金属、Sc、Y、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Sm、Eu、Tbの何れかから選ばれ、配位子である8−ヒドロキシキノリンはジアリールアミノ基を置換基として1つ以上有するが、ジアリールアミノ基以外に任意の置換基を有することがある。
また、本発明における正孔輸送性化合物として適用可能なフタロシアニン誘導体又はポルフィリン誘導体の好ましい具体例としては、ポルフィリン、5,10,15,20−テトラフェニル−21H,23H−ポルフィリン、5,10,15,20−テトラフェニル−21H,23H−ポルフィリンコバルト(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィリン銅(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィリン亜鉛(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィリンバナジウム(IV)オキシド、5,10,15,20−テトラ(4−ピリジル)−21H,23H−ポルフィリン、29H,31H−フタロシアニン銅(II)、フタロシアニン亜鉛(II)、フタロシアニンチタン、フタロシアニンオキシドマグネシウム、フタロシアニン鉛、フタロシアニン銅(II)、4,4',4'',4'''−テトラアザ−29H,31H−フタロシアニン等が挙げられる。
また、本発明における正孔輸送性化合物として適用可能なオリゴチオフェン誘導体の好ましい具体例としては、α−セキシチオフェン等が挙げられる。
なお、正孔輸送性化合物として適用可能な芳香族アミン化合物(上述した芳香族三級アミン高分子化合物及び式(III)で表わされるビナフチル系化合物を除く。)、フタロシアニン誘導体、ポルフィリン誘導体、及びオリゴチオフェン誘導体の分子量は、通常200以上、好ましくは400以上、より好ましくは600以上、また、通常5000以下、好ましくは3000以下、より好ましくは2000以下、更に好ましくは1700以下、特に好ましくは1400以下の範囲である。分子量が小さ過ぎると耐熱性が低くなる傾向がある一方で、正孔輸送性化合物の分子量が大き過ぎると合成及び精製が困難となる傾向がある。
正孔注入層4は、上述の各種の正孔輸送性化合物(正孔輸送剤)のうち何れか一種を単独で含有していてもよく、二種以上を任意の組み合わせ及び比率で含有していてもよい。特に、高分子量の正孔輸送性化合物(例えば、上述の芳香族三級アミン高分子化合物)と低分子量の正孔輸送性化合物とは、何れか一方のみを用いてもよいが、両方を組み合わせて用いてもよい。
正孔注入層4における正孔輸送剤の含有率は、本発明の効果を著しく損なわない限り任意であるが、通常0.1重量%以上、好ましくは1重量%以上、また、通常99.9重量%以下、好ましくは90重量%以下の範囲とすることが望ましい。なお、2種以上の正孔輸送剤を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにすることが好ましい。
また、正孔輸送剤として特に芳香族三級アミン高分子化合物を使用する場合、その正孔注入層4における割合は、本発明の効果を著しく損なわない限り任意であるが、通常10重量%以上、好ましくは30重量%以上、また、通常99.9重量%以下、好ましくは99重量%以下とすることが望ましい。なお、2種以上の芳香族三級アミン高分子化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにすることが好ましい。
正孔注入層4の材料として用いられる電子受容性化合物の種類は、本発明の効果を著しく損なわない限り任意である。その例としては、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩;塩化鉄(III)(特開平11−251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンダフルオロフェニル)ボラン(特開2003−31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素等が挙げられる。上記の化合物のうち、強い酸化力を有する点で、有機基の置換したオニウム塩、高原子価の無機化合物が好ましく、種々の溶剤に可溶である点で、有機基の置換したオニウム塩、シアノ化合物、芳香族ホウ素化合物が好ましい。更に、強い酸化力と高い溶解性とを両立する点から、有機基の置換したオニウム塩が特に好ましく、下記式(IV−1)〜(IV−3)で表わされる化合物であることが特に好ましい。
Figure 0004952326
(上記式(IV−1)〜(IV−3)中、R11、R21及びR31は、各々独立に、A1〜A3と炭素原子で結合する有機基を表わす。R12、R22、R23及びR32〜R34は、各々独立に、任意の基を表わす。R11〜R34のうち隣接する2以上の基が、互いに結合して環を形成していてもよい。A1〜A3は何れも長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第3周期以降の元素であって、A1は長周期型周期表の第17族に属する元素を表わし、A2は長周期型周期表の第16族に属する元素を表わし、A3は長周期型周期表の第15族に属する元素を表わす。Z1 n1-〜Z3 n3-は、各々独立に、対アニオンを表わす。n1〜n3は、各々独立に、対アニオンのイオン価を表わす。)
上記式(IV−1)〜(IV−3)中、R11、R21及びR31は、各々独立に、A1〜A3と炭素原子で結合する有機基を表わす。したがって、R11、R21及びR31としては、A1〜A3との結合部分に炭素原子を有する有機基であれば、本発明の趣旨に反しない限り、その種類は特に制限されない。
11、R21及びR31の分子量は、それぞれ、その置換基を含めた値で、通常1000以下、好ましくは500以下の範囲である。
11、R21及びR31の好ましい例としては、正電荷を非局在化させる点から、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基が挙げられる。中でも、正電荷を非局在化させるとともに熱的に安定であることから、芳香族炭化水素基又は芳香族複素環基が好ましい。
アルキル基としては、例えば、直鎖状、分岐鎖状又は環状のアルキル基であって、その炭素数が通常1以上、また、通常12以下、好ましくは6以下のものが挙げられる。具体例としては、メチル基、エチル基、n−プロピル基、2−プロピル基、n−ブチル基、イソブチル基、tert−ブチル基、シクロヘキシル基等が挙げられる。
アルケニル基としては、例えば、炭素数が通常2以上、通常12以下、好ましくは6以下のものが挙げられる。具体例としては、ビニル基、アリル基、1−ブテニル基等が挙げられる。
アルキニル基としては、例えば、炭素数が通常2以上、通常12以下、好ましくは6以下のものが挙げられる。具体例としては、エチニル基、プロパルギル基等が挙げられる。
芳香族炭化水素基としては、例えば、5又は6員環の単環又は2〜5縮合環由来の1価の基であり、正電荷を当該基上により非局在化させられる基が挙げられる。その具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオレン環等の由来の一価の基が挙げられる。
芳香族複素環基としては、例えば、5又は6員環の単環又は2〜4縮合環由来の1価の基であり、正電荷を当該基上により非局在化させられる基が挙げられる。その具体例としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、トリアゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の由来の一価の基が挙げられる。
上記式(IV−1)〜(IV−3)中、R12、R22、R23及びR32〜R34は、各々独立に、任意の置換基を表わす。したがって、R12、R22、R23及びR32〜R34の種類は、本発明の趣旨に反しない限り特に制限されない。
12、R22、R23及びR32〜R34の分子量は、それぞれ、その置換基を含めた値で、通常1000以下、好ましくは500以下の範囲である。
12、R22、R23及びR32〜R34の例としては、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、アミノ基、アルキルアミノ基、アリールアミノ基、アシルアミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニルオキシ基、アルキルチオ基、アリールチオ基、スルホニル基、アルキルスルホニル基、アリールスルホニル基、スルホニルオキシ基シアノ基、水酸基、チオール基、シリル基等が挙げられる。中でも、R11、R21及びR31と同様、電子受容性が大きい点から、A1〜A3との結合部分に炭素原子を有する有機基が好ましく、例としては、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基が好ましい。特に、電子受容性が大きいとともに熱的に安定であることから、芳香族炭化水素基又は芳香族複素環基が好ましい。
以上、R11、R12、R21〜R23及びR31〜R34として例示した基は、本発明の趣旨に反しない限りにおいて、更に他の置換基によって置換されていてもよい。置換基の種類は特に制限されないが、例としては、上記R11、R12、R21〜R23及びR31〜R34としてそれぞれ例示した基の他、ハロゲン原子、シアノ基、チオシアノ基、ニトロ基等が挙げられる。中でも、耐熱性及び電子受容性の妨げにならない観点から、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、芳香族炭化水素基、芳香族複素環基が好ましい。なお、前記の更に置換する置換基は、1個のみで置換していてもよく、2個以上が任意の組み合わせ及び比率で置換していてもよい。
また、上記式(IV−1)〜(IV−3)中、R11、R12、R21〜R23及びR31〜R34のうち隣接する2以上の基は、互いに結合して環を形成していてもよい。
式(IV−1)〜(IV−3)中、A1〜A3は、何れも周期表第3周期以降(第3〜第6周期)の元素であって、A1は、長周期型周期表の第17族に属する元素を表わし、A2は、第16族に属する元素を表わし、A3は、第15族に属する元素を表わす。
中でも、電子受容性及び入手容易性の観点から、周期表の第5周期以前(第3〜第5周期)の元素が好ましい。即ち、A1としてはヨウ素原子、臭素原子、塩素原子のうち何れかが好ましく、A2としてはテルル原子、セレン原子、硫黄原子のうち何れかが好ましく、A3としてはアンチモン原子、ヒ素原子、リン原子のうち何れかが好ましい。
特に、電子受容性、化合物の安定性の面から、式(IV−1)におけるA1が臭素原子又はヨウ素原子である化合物、又は、式(IV−2)におけるA2がセレン原子又は硫黄原子である化合物が好ましく、中でも、式(IV−1)におけるA1がヨウ素原子である化合物が特に好ましい。
式(IV−1)〜(IV−3)中、Z1 n1-〜Z3 n3-は、各々独立に、対アニオンを表わす。対アニオンの種類は特に制限されず、単原子イオンであっても錯イオンであってもよい。但し、対アニオンのサイズが大きいほど負電荷が非局在化し、それに伴い正電荷も非局在化して電子受容能が大きくなるため、単原子イオンよりも錯イオンの方が好ましい。
式(IV−1)〜(IV−3)中、n1〜n3は、各々独立に、対アニオンZ1 n1-〜Z3 n3-のイオン価に相当する任意の正の整数である。n1〜n3の値は特に制限されないが、何れも1又は2であることが好ましく、1であることが特に好ましい。
1 n1-〜Z3 n3-の具体例としては、水酸化物イオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン、硝酸イオン、亜硝酸イオン、硫酸イオン、亜硫酸イオン、過塩素酸イオン、過臭素酸イオン、過ヨウ素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、リン酸イオン、亜リン酸イオン、次亜リン酸イオン、ホウ酸イオン、イソシアン酸イオン、水硫化物イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサクロロアンチモン酸イオン;酢酸イオン、トリフルオロ酢酸イオン、安息香酸イオン等のカルボン酸イオン;メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等のスルホン酸イオン;メトキシイオン、t−ブトキシイオン等のアルコキシイオンなどが挙げられる。
特に、対アニオンZ1 n1-〜Z3 n3-としては、化合物の安定性、溶剤への溶解性の点で、下記式(IV−4)〜(IV−6)で表わされる錯イオンが好ましく、サイズが大きいという点で、負電荷が非局在化し、それに伴い正電荷も非局在化して電子受容能が大きくなるため、下記式(IV−6)で表わされる錯イオンが更に好ましい。
Figure 0004952326
式(IV−4)及び(IV−6)中、E1及びE3は、各々独立に、長周期型周期表の第13族に属する元素を表わす。中でもホウ素原子、アルミニウム原子、ガリウム原子が好ましく、化合物の安定性、合成及び精製のし易さの点から、ホウ素原子が好ましい。
式(IV−5)中、E2は、長周期型周期表の第15族に属する元素を表わす。中でもリン原子、ヒ素原子、アンチモン原子が好ましく、化合物の安定性、合成及び精製のし易さ、毒性の点から、リン原子が好ましい。
式(IV−4)及び(IV−5)中、Xは、フッ素原子、塩素原子、臭素原子などのハロゲン原子を表わし、化合物の安定性、合成及び精製のし易さの点からフッ素原子、塩素原子であることが好ましく、フッ素原子であることが特に好ましい。
式(IV−6)中、Ar61〜Ar64は、各々独立に、芳香族炭化水素基又は芳香族複素環基を表わす。芳香族炭化水素基、芳香族複素環基の例示としては、R11、R21及びR31について先に例示したものと同様の、5又は6員環の単環又は2〜5縮合環由来の1価の基が挙げられる。中でも、化合物の安定性、耐熱性の点から、ベンゼン環、ナフタレン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環由来の1価の基が好ましい。
Ar61〜Ar64として例示した芳香族炭化水素基、芳香族複素環基は、本発明の趣旨に反しない限りにおいて、更に別の置換基によって置換されていてもよい。置換基の種類は特に制限されず、任意の置換基が適用可能であるが、電子吸引性の基であることが好ましい。
中でも、Ar61〜Ar64のうち少なくとも1つの基が、フッ素原子又は塩素原子を置換基として1つ又は2つ以上有することがより好ましい。特に、負電荷を効率よく非局在化する点、及び、適度な昇華性を有する点から、Ar61〜Ar64の水素原子が全てフッ素原子で置換されたパーフルオロアリール基であることが特に好ましい。パーフルオロアリール基の具体例としては、ペンタフルオロフェニル基、ヘプタフルオロ−2−ナフチル基、テトラフルオロ−4−ピリジル基等が挙げられる。
なお、前記の置換基は、1個のみが置換していてもよく、2個以上が任意の組み合わせ及び比率で置換していてもよい。
式(IV−4)〜(IV−6)で表わされる錯イオンの式量は、本発明の効果を著しく損なわない限り任意であるが、通常100以上、好ましくは300以上、更に好ましくは400以上、また、通常5000以下、好ましくは3000以下、更に好ましくは2000以下の範囲である。該錯イオンの式量が小さ過ぎると、正電荷及び負電荷の非局在化が不十分なため、電子受容能が低下する場合があり、また、該錯イオンの式量が大き過ぎると、該化合物自体が電荷輸送の妨げとなる場合がある。
以下に式(IV−4)〜(IV−6)で表わされる錯イオンの具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure 0004952326
正孔注入層4の材料としては、上に説明した各種の電子受容性化合物のうち、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。2種以上の電子受容性化合物を用いる場合には、上記式(IV−1)〜(IV−3)のうち何れか1つの式に該当する電子受容性化合物を2種以上組み合わせてもよく、それぞれ異なる式に該当する2種以上の電子受容性化合物を組み合わせてもよい。
正孔注入層4中における電子受容性化合物の含有量は、本発明の効果を著しく損なわない限り任意であるが、正孔輸送性化合物に対する値で、通常0.1重量%以上、好ましくは1重量%以上、また、通常100重量%以下、好ましくは60重量%以下、更に好ましくは50重量%以下である。電子受容性化合物の量は、多い方が不溶化し易くなるため好ましい。電子受容性化合物の量が多いと、加熱時間が短くとも不溶化することができる。なお、2種以上の電子受容性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
また、上述の正孔輸送剤に対する電子受容性化合物の比率は、通常0.1重量%以上、好ましくは1重量%以上、また、通常100重量%以下、好ましくは60重量%以下の範囲が望ましい。
なお、正孔注入層4の形成時或いは形成後に、正孔輸送性化合物がこの電子受容性化合物と反応することにより、形成後の正孔注入層4中では正孔輸送性化合物のカチオンラジカル及びイオン化合物が生成している場合がある。
正孔注入層4は、正孔注入層4を構成する成分(電子受容性化合物、正孔輸送剤等)を含有する組成物(以下適宜「正孔注入層用組成物」という場合がある。)を成膜することにより形成される。
正孔注入層用組成物は、正孔注入層4の構成成分である、電子受容性化合物及び正孔輸送剤を含有するとともに、通常は溶剤を含有する。
溶剤としては、正孔注入層用組成物中の各成分を良好に溶解でき、且つ、これらの成分と好ましからぬ化学反応を生じないものであれば、その種類に制限はない。中でも、重合反応開始剤から生じるフリーキャリア(カチオンラジカル)を失活させる可能性のある失活物質又は失活物質を発生させるものを含まない溶剤が好ましい。
好ましい溶剤の例としては、エーテル系溶剤及びエステル系溶剤が挙げられる。
エーテル系溶剤の具体例としては、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(Propyleneglycol-1-monomethylether acetate:以下適宜「PGMEA」と略する。)等の脂肪族エーテル;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテルなどが挙げられる。これらのエーテル系溶剤は何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で用いてもよい。
エステル系溶剤の具体例としては、酢酸エチル、酢酸n−ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステルなどが挙げられる。これらのエステル系溶剤は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で用いてもよい。
また、一種又は二種以上のエーテル系溶剤と、一種又は二種以上のエステル系溶剤とを、任意の比率で組み合わせて用いてもよい。
また、上述のエーテル系溶剤及びエステル系溶剤以外に使用可能な溶剤としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド系溶剤;ジメチルスルホキシド等が挙げられる。これらは何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で用いてもよい。また、これらの溶剤のうち一種又は二種以上を、上述のエーテル系溶剤及びエステル系溶剤のうち一種又は二種以上と組み合わせて用いてもよい。特に、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤は、酸化剤とポリマーを溶解する能力が低いため、エーテル系溶剤及びエステル系溶剤と混合して用いることが好ましい。
正孔注入層用組成物における溶剤の含有率は、通常1重量%以上、好ましくは70重量%以上、また、通常99.999重量%以下、好ましくは99重量%以下の範囲が望ましい。
正孔注入層用組成物における正孔輸送剤の含有率は、通常0.001重量%以上、好ましくは0.1重量%以上、また、通常99重量%以下、好ましくは20重量%以下の範囲が望ましい。
正孔注入層用組成物における電子受容性化合物の含有率は、通常0.00001重量%以上、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、また、通常50重量%以下、通常5重量%以下、より好ましくは1重量%以下の範囲が望ましい。
更に、正孔注入層用組成物は、その他の成分を含有していてもよい。その他の成分の例としては、レベリング剤、消泡剤等が挙げられる。
レベリング剤の例としては、シリコーン系界面活性剤、フッ素系界面活性剤等が挙げられる。レベリング剤は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
正孔注入層用組成物中におけるレベリング剤の含有率は、通常0.0001重量%以上、好ましくは0.001重量%以上、また、通常1重量%以下、好ましくは0.1重量%以下の範囲である。レベリング剤の含有率が少な過ぎるとレベリング不良となる場合があり、多過ぎると膜の電気特性を阻害する場合がある。
消泡剤の例としては、シリコーンオイル、脂肪酸エステル、リン酸エステル等が挙げられる。消泡剤は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
正孔注入層用組成物中における消泡剤の含有率は、通常0.0001重量%以上、好ましくは0.001重量%以上、また、通常1重量%以下、好ましくは0.1重量%以下の範囲である。消泡剤の含有率が少な過ぎると消泡効果がなくなる場合があり、多過ぎると膜の電気特性を阻害する場合がある。
上述の各成分を混合して正孔注入層用組成物を調製した後、これを上述の陽極3上に成膜することにより、正孔注入層4を形成する。
ここで、本実施形態では、正孔注入層4を形成する際に、上述した本発明の有機薄膜の形成方法を用いる。即ち、正孔注入層4が「特定有機層」となる。
具体的には、基板2上に陽極3が形成された積層体を被塗布物とし、その陽極3上の正孔注入層4が形成される領域(以下「正孔注入層形成領域」という。)を有機薄膜形成領域とし、上述の正孔注入層用組成物を有機薄膜形成用塗布液として用い、正孔注入層用組成物を陽極3上の正孔注入層形成領域にスプレー塗布する。そして、スプレー塗布時の被塗布物上における気流速度を、2m/sec以下とする。
正孔注入層4の形成方法の詳細は、[I.有機薄膜の形成方法]の欄で上述した通りであるが、正孔注入層4の形状を精度よく、且つ効率よくパターニングするためには、マスクを使用することが好ましい。即ち、有機薄膜非形成領域として、陽極3上の正孔注入層4が形成されない領域(以下「正孔注入層非形成領域」)をマスクで覆った状態で、正孔注入層用組成物のスプレー塗布を行なうことが好ましい。
正孔注入層4の厚さは制限されないが、通常1nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲が望ましい。正孔注入層4が薄過ぎると正孔注入性が不十分となる場合があり、厚過ぎると抵抗が高くなる場合がある。
なお、正孔注入層4は単一の層からなる構成としてもよいが、複数の層が積層された構成としてもよい。後者の場合、複数の層は同一の材料からなる層であってもよいが、異なる材料からなる層であってもよい。
〔II−5.有機発光層〕
正孔注入層4の上には、有機発光層5が形成される。
有機発光層5は、電界を与えられた電極間において、陽極3から正孔注入層4を通じて注入された正孔と、陰極7から電子注入層6を通じて注入された電子との再結合により励起されて、主たる発光源となる層である。
有機発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する材料(正孔輸送性化合物)、或いは、電子輸送の性質を有する材料(電子輸送性化合物)とを含有する。更に、有機発光層5は、本発明の趣旨を逸脱しない範囲で、その他の成分を含有していてもよい。これらの材料としては、後述のように湿式成膜法で有機発光層5を形成する観点から、何れも低分子系の材料を使用することが好ましい。
発光材料としては、任意の公知の材料を適用可能である。例えば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。
なお、溶剤への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることも重要である。
青色発光を与える蛍光色素としては、ペリレン、ピレン、アントラセン、クマリン、p−ビス(2−フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。緑色蛍光色素としては、キナクリドン誘導体、クマリン誘導体等が挙げられる。黄色蛍光色素としては、ルブレン、ペリミドン誘導体等が挙げられる。赤色蛍光色素としては、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7〜11族から選ばれる金属を含む有機金属錯体が挙げられる。
燐光性有機金属錯体に含まれる、周期表第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。これらの有機金属錯体として、好ましくは下記式(VI)又は式(VII)で表わされる化合物が挙げられる。
ML(q-j)L′j (VI)
(式(VI)中、Mは金属を表わし、qは上記金属の価数を表わす。また、L及びL′は二座配位子を表わす。jは0、1又は2の数を表わす。)
Figure 0004952326
(式(VII)中、M7は金属を表わし、Tは炭素原子又は窒素原子を表わす。R92〜R95は、それぞれ独立に置換基を表わす。但し、Tが窒素原子の場合は、R94及びR95は無い。)
以下、まず、式(VI)で表わされる化合物について説明する。
式(VI)中、Mは任意の金属を表わし、好ましいものの具体例としては、周期表第7〜11族から選ばれる金属として前述した金属が挙げられる。
また、式(VI)中、二座配位子Lは、以下の部分構造を有する配位子を示す。
Figure 0004952326
(上記Lの部分構造において、環A1は、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表わす。)
該芳香族炭化水素基としては、5又は6員環の単環又は2〜5縮合環が挙げられる。具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環由来の1価の基などが挙げられる。
該芳香族複素環基としては、5又は6員環の単環又は2〜4縮合環が挙げられる。具体例としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環由来の1価の基などが挙げられる。
また、上記Lの部分構造において、環A2は、置換基を有していてもよい、含窒素芳香族複素環基を表わす。
該含窒素芳香族複素環基としては、5又は6員環の単環又は2〜4縮合環由来の基が挙げられる。具体例としては、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、フロピロール環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環由来の1価の基などが挙げられる。
環A1又は環A2がそれぞれ有していてもよい置換基の例としては、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基;芳香族炭化水素基等が挙げられる。
また、式(VI)中、二座配位子L′は、以下の部分構造を有する配位子を示す。但し、以下の式において、「Ph」はフェニル基を表わす。
Figure 0004952326
中でも、L′としては、錯体の安定性の観点から、以下に挙げる配位子が好ましい。
Figure 0004952326
式(VI)で表わされる化合物として、更に好ましくは、下記式(VIa)、(VIb)、(VIc)で表わされる化合物が挙げられる。
Figure 0004952326
(式(VIa)中、M4は、Mと同様の金属を表わし、wは、上記金属の価数を表わし、環A1は、置換基を有していてもよい芳香族炭化水素基を表わし、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表わす。)
Figure 0004952326
(式(VIb)中、M5は、Mと同様の金属を表わし、wは、上記金属の価数を表わし、環A1は、置換基を有していてもよい芳香族炭化水素基又は芳香族複素環基を表わし、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表わす。)
Figure 0004952326
(式(VIc)中、M6は、Mと同様の金属を表わし、wは、上記金属の価数を表わし、jは、0、1又は2を表わし、環A1及び環A1′は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は芳香族複素環基を表わし、環A2及び環A2′は、それぞれ独立に、置換基を有していてもよい含窒素芳香族複素環基を表わす。)
上記式(VIa)〜(VIc)において、環A1及び環A1′の好ましい例としては、フェニル基、ビフェニル基、ナフチル基、アントリル基、チエニル基、フリル基、ベンゾチエニル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、カルバゾリル基等が挙げられる。
上記式(VIa)〜(VIc)において、環A2及び環A2′の好ましい例としては、ピリジル基、ピリミジル基、ピラジル基、トリアジル基、ベンゾチアゾール基、ベンゾオキサゾール基、ベンゾイミダゾール基、キノリル基、イソキノリル基、キノキサリル基、フェナントリジル基等が挙げられる。
上記式(VIa)〜(VIc)で表わされる化合物が有していてもよい置換基としては、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基等が挙げられる。
なお、これら置換基は互いに連結して環を形成してもよい。具体例としては、環A1が有する置換基と環A2が有する置換基とが結合するか、又は、環A1′が有する置換基と環A2′が有する置換基とが結合することにより、一つの縮合環を形成してもよい。このような縮合環としては、7,8−ベンゾキノリン基等が挙げられる。
中でも、環A1、環A1′、環A2及び環A2′の置換基として、より好ましくは、アルキル基、アルコキシ基、芳香族炭化水素基、シアノ基、ハロゲン原子、ハロアルキル基、ジアリールアミノ基、カルバゾリル基が挙げられる。
また、式(VIa)〜(VIc)におけるM4〜M6の好ましい例としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金又は金が挙げられる。
上記式(VI)及び(VIa)〜(VIc)で示される有機金属錯体の具体例を以下に示すが、下記の化合物に限定されるものではない。但し、以下の式において、「Ph」はフェニル基を表わす。
Figure 0004952326
Figure 0004952326
Figure 0004952326
上記式(VI)で表わされる有機金属錯体の中でも、特に、配位子L及び/又はL′として2−アリールピリジン系配位子、即ち、2−アリールピリジン、これに任意の置換基が結合したもの、及び、これに任意の基が縮合してなるものを有する化合物が好ましい。
また、国際特許公開第2005/019373号明細書に記載の化合物も、発光材料として使用することが可能である。
次に、式(VII)で表わされる化合物について説明する。
式(VII)中、M7は金属を表わす。具体例としては、周期表第7〜11族から選ばれる金属として前述した金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金又は金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。
また、式(VII)において、R92及びR93は、それぞれ独立に、水素原子、ハロゲン原
子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香族炭化水素基又は芳香族複素環基を表わす。
更に、Tが炭素原子の場合、R94及びR95は、それぞれ独立に、R92及びR93と同様の例示物で表わされる置換基を表わす。また、Tが窒素原子の場合は、R94及びR95は無い。
また、R92〜R95は、更に置換基を有していてもよい。置換基を有する場合、その種類に特に制限はなく、任意の基を置換基とすることができる。
更に、R92〜R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。
式(VII)で表わされる有機金属錯体の具体例(T−1、T−10〜T−15)を以下に示すが、下記の例示物に限定されるものではない。また、以下の化学式において、Meはメチル基を表わし、Etはエチル基を表わす。
Figure 0004952326
発光材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。分子量が低過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を招いたりする場合がある。分子量が高過ぎると、有機化合物の精製が困難となったり、溶剤に溶解させる際に時間を要したりする場合がある。
なお、有機発光層5は、上に説明した各種の発光材料のうち、何れか一種を単独で含有していてもよく、二種以上を任意の組み合わせ及び比率で併有していてもよい。
低分子系の正孔輸送性化合物の例としては、前述の正孔注入層4の正孔輸送性化合物として例示した各種の化合物の他、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5−234681号公報)、4,4’,4”−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence, 1997年, Vol.72-74, pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications, 1996年, pp.2175)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のスピロ化合物(Synthetic Metals, 1997年, Vol.91, pp.209)等が挙げられる。
低分子系の電子輸送性化合物の例としては、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)や、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)や、4,4’−ビス(9−カルバゾール)−ビフェニル(CBP)等がある。
これら正孔輸送性化合物や電子輸送性化合物は発光層においてホスト材料として使用されることが好ましいが、ホスト材料として具体的には以下のような化合物を使用することができる。
Figure 0004952326
有機発光層5の形成法としては、湿式成膜法、真空蒸着法が挙げられるが、上述したように、均質で欠陥がない薄膜を容易に得られる点や、形成のための時間が短くて済む点から、低分子系の材料を用いて湿式成膜法で有機発光層5を形成することが好ましい。
湿式成膜法により有機発光層5を形成する場合、上述の材料を適切な溶剤に溶解させて有機発光層形成用組成物を調製し、それを上述の正孔注入層4の上に塗布・成膜し、乾燥して溶剤を除去することにより形成する。
成膜の手法は制限されないが、有機発光層形成用組成物の成分や下地となる正孔注入層4の性質等に応じて、スピンコート法、スプレー法等の塗布法や、インクジェット法、スクリーン法等の印刷法等を任意に選択して用いることが可能である。更には、上述した本発明の有機薄膜の形成方法を用いて有機発光層5を形成することも可能である。この場合、有機発光層5が「特定有機層」となる。
湿式成膜法により成膜を行なった場合、成膜後に乾燥処理等を行なう。
乾燥処理の手法は特に制限されないが、例としては自然乾燥、加熱乾燥、減圧乾燥等が挙げられる。また、加熱乾燥と減圧乾燥とを組み合わせて実施してもよい。
加熱乾燥を行なう場合、その手法の例としては、ホットプレート、オーブン、赤外線照射、電波照射等が挙げられる。
加熱乾燥を行なう場合、加熱温度としては、通常は室温以上、好ましくは50℃以上、また、通常300℃以下、好ましくは260℃以下の範囲が望ましい。なお、加熱乾燥時の温度は一定でもよいが、変動してもよい。
減圧乾燥を行なう場合、乾燥時の圧力としては、通常は常圧以下、好ましくは10kPa以下、より好ましくは1kPa以下の範囲が望ましい。
乾燥処理の時間は、通常1秒以上、好ましくは10秒以上、より好ましくは30秒以上、また、通常100時間以下、好ましくは24時間以下、より好ましくは3時間以下の範囲が望ましい。
有機発光層5の厚さは制限されないが、通常5nm以上、好ましくは20nm以上、また、通常1000nm以下、好ましくは100nm以下の範囲が望ましい。有機発光層5が薄過ぎると発光効率が低下したり、寿命が短くなる場合があり、厚過ぎると素子の電圧が高くなる場合がある。
なお、有機発光層5は単一の層からなる構成としてもよいが、複数の層が積層された構成としてもよい。後者の場合、複数の層は同一の材料からなる層であってもよいが、異なる材料からなる層であってもよい。
〔II−6.電子注入層〕
有機発光層5の上には、電子注入層6が形成される。
電子注入層6は、陰極7から注入された電子を効率良く有機発光層5へ注入する役割を果たす。
電子注入を効率よく行なうために、電子注入層6を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。
この場合、電子注入層6の厚さは、通常0.1nm以上、好ましくは0.5nm以上、また、通常5nm以下、好ましくは2nm以下の範囲が望ましい。
更に、後述するバソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10−270171号公報、特開2002−100478号公報、特開2002−100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。
この場合、電子注入層6の厚さは、通常5nm以上、好ましくは10nm以上、また、通常200nm以下、好ましくは100nm以下の範囲が望ましい。
これらの電子注入層6の材料は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
電子注入層6は、湿式成膜法或いは真空蒸着法により、有機発光層5上に積層することにより形成される。
湿式成膜法の詳細は、上述の正孔注入層4及び有機発光層5の場合と同様である。
一方、真空蒸着法の場合には、真空容器内に設置されたるつぼ又は金属ボートに蒸着源を入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、るつぼ又は金属ボートを加熱して蒸発させ、るつぼ又は金属ボートと向き合って置かれた基板2上の有機発光層5上に電子注入層6を形成する。
電子注入層6としてのアルカリ金属の蒸着は、クロム酸アルカリ金属と還元剤をニクロムに充填したアルカリ金属ディスペンサーを用いて行なう。このディスペンサーを真空容器内で加熱することにより、クロム酸アルカリ金属が還元されてアルカリ金属が蒸発される。
有機電子輸送材料とアルカリ金属とを共蒸着する場合は、有機電子輸送材料を真空容器内に設置されたるつぼに入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、各々のるつぼ及びディスペンサーを同時に加熱して蒸発させ、るつぼ及びディスペンサーと向き合って置かれた基板上に電子注入層6を形成する。
このとき、通常は電子注入層6の膜厚方向において均一に共蒸着されるが、膜厚方向において濃度分布があっても構わない。
なお、電子注入層6は単一の層からなる構成としてもよいが、複数の層が積層された構成としてもよい。後者の場合、複数の層は同一の材料からなる層であってもよいが、異なる材料からなる層であってもよい。
〔II−7.陰極〕
電子注入層6の上には、陰極7が形成される。
陰極7は、有機発光層5側の層(電子注入層6又は有機発光層5など)に電子を注入する役割を果たす。
陰極7の材料としては、前記の陽極3に使用される材料を用いることが可能であるが、効率良く電子注入を行なうには、仕事関数の低い金属が好ましい。仕事関数の低い金属の例としては、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等、又はそれらの合金が挙げられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等が挙げられる。
これらの陰極7の材料は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
陰極7の厚さは制限されないが、通常は陽極3と同様である。
なお、陰極7は単一の層からなる構成としてもよいが、複数の層が積層された構成としてもよい。後者の場合、複数の層は同一の材料からなる層であってもよいが、異なる材料からなる層であってもよい。
〔II−8.正孔輸送層〕
なお、図4(a)に示す有機電界発光素子1の構成において、正孔注入層4と有機発光層5との間に正孔輸送層を設けた構成の有機電界発光素子を、本発明の製造方法によって製造することも可能である。以下、この場合について以下に説明する。
図4(b)は、本発明の別の実施形態に係る有機電界発光素子の層構成を模式的に示す断面図である。図4(b)に示す有機電界発光素子1’は、基板2の上に、陽極3、正孔注入層4、正孔輸送層8、有機発光層5、電子注入層6及び陰極7を、この順に積層することにより構成される。
なお、図4(b)において、図4(a)と同じ符号を用いて示した有機電界発光素子1’の構成要素、即ち基板2、陽極3、正孔注入層4、有機発光層5、電子注入層6及び陰極7の構成や形成方法等の詳細は、図4(a)の有機電界発光素子1の場合と同様であるので、その説明は省略する。特に、正孔注入層4を形成する際に、上述した本発明の有機薄膜の形成方法を用いる。
正孔輸送層8は、正孔注入層4と有機発光層5との間に設けられ、陽極3、正孔注入層4の順に注入された正孔を有機発光層5に注入する機能を有すると共に、有機発光層5から電子が陽極3側に注入されることによる発光効率の低下を抑制する機能を有する。
正孔輸送層8を形成する材料としては、正孔注入層4に使用可能な正孔輸送化合物として例示した化合物と同様の化合物が挙げられる。その他に、例えば、ポリビニルカルバゾール、ポリビニルトリフェニルアミン、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン等の高分子材料も用いることができる。また、高分子材料を用いて正孔輸送層を形成する場合、正孔輸送性モノマーを湿式成膜した後に、重合させた高分子材料によって正孔輸送層を形成してもよい。なお、正孔輸送層8の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正孔輸送層8は、これらの材料を湿式成膜法又は真空蒸着法で正孔注入層4上に積層することにより形成できる。
正孔輸送層8の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常10nm以上、好ましくは30nm以上、また、通常300nm以下、好ましくは100nm以下である。
〔II−9.正孔阻止層〕
また、図4(a)に示す有機電界発光素子1の構成において、有機発光層5と電子注入層6との間に正孔阻止層を設けた構成の有機電界発光素子を、本発明の製造方法によって製造することも可能である。以下、この場合について以下に説明する。
図4(c)は、本発明の更に別の実施形態に係る有機電界発光素子の層構成を模式的に示す断面図である。図4(c)に示す有機電界発光素子1”は、基板2の上に、陽極3、正孔注入層4、有機発光層5、正孔阻止層9、電子注入層6及び陰極7を、この順に積層することにより構成される。特に、正孔注入層4を形成する際に、上述した本発明の有機薄膜の形成方法を用いる。
なお、図4(c)において、図4(a)と同じ符号を用いて示した有機電界発光素子1”の構成要素、即ち基板2、陽極3、正孔注入層4、有機発光層5、電子注入層6及び陰極7の構成や形成方法等の詳細は、図4(a)の有機電界発光素子1の場合と同様であるので、その説明は省略する。
正孔阻止層9は、有機発光層5上に、有機発光層5の陰極7側の界面と接するように積層されるが、陽極3から移動してくる正孔が陰極7に到達するのを阻止する役割と、陰極7から注入された電子を効率よく有機発光層5の方向に輸送する役割とを有する化合物(これを「正孔阻止材料」という。)より形成される。
正孔阻止層9を構成する材料(正孔阻止材料)に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
これらの条件を満たす正孔阻止材料としては、ビス(2−メチル−8−キノリノラト),(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト),(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10−79297号公報)が挙げられる。更に、国際公開第2005−022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止材料として好ましい。
正孔阻止材料の具体例としては、以下に挙げる構造の化合物が挙げられる。
Figure 0004952326
これらの正孔阻止材料は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
正孔阻止層9も、正孔注入層4や有機発光層5と同様、湿式成膜法を用いて形成することもできるが、通常は真空蒸着法により形成される。真空蒸着法の手順の詳細は、上述の電子注入層6の場合と同様である。
正孔阻止層9の厚さは制限されないが、通常0.5nm以上、好ましくは1nm以上、また、通常100nm以下、好ましくは50nm以下の範囲が望ましい。正孔阻止層9が薄過ぎると、正孔阻止能力不足による発光効率の低下が生じる場合があり、正孔阻止層9が厚過ぎると、素子の電圧が高くなる場合がある。
なお、正孔阻止層9は単一の層からなる構成としてもよいが、複数の層が積層された構成としてもよい。後者の場合、複数の層は同一の材料からなる層であってもよいが、異なる材料からなる層であってもよい。
〔II−10.電子輸送層〕
また、図4(a)に示す有機電界発光素子1の構成において、有機発光層5と電子注入層6との間に電子輸送層を設けた構成の有機電界発光素子を、本発明の製造方法によって製造することも可能である。以下、この場合について以下に説明する。
図4(d)は、本発明の更に別の実施形態に係る有機電界発光素子の層構成を模式的に示す断面図である。図4(d)に示す有機電界発光素子1'''は、基板2の上に、陽極3、正孔注入層4、有機発光層5、電子輸送層10、電子注入層6及び陰極7を、この順に積層することにより構成される。特に、正孔注入層4を形成する際に、上述した本発明の有機薄膜の形成方法を用いる。
なお、図4(d)において、図4(a)と同じ符号を用いて示した有機電界発光素子1'''の構成要素、即ち基板2、陽極3、正孔注入層4、有機発光層5、電子注入層6及び陰極7の構成や形成方法等の詳細は、図4(a)の有機電界発光素子1の場合と同様であるので、その説明は省略する。
電子輸送層10は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において、陰極7から注入された電子を効率よく有機発光層5の方向に輸送することができる化合物より形成される。
電子輸送層10に用いられる電子輸送性化合物としては、通常、陰極7又は電子注入層6からの電子注入効率が高く、且つ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物(以下「電子輸送材料」という。)を用いる。
電子輸送材料の例としては、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−又は5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
なお、これらの電子輸送材料は、1種のみを単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
電子輸送層10の形成方法に制限は無い。電子輸送層10は正孔注入層4や有機発光層5と同様、湿式成膜法を用いて形成することもできるが、通常は真空蒸着法により形成される。真空蒸着法の手順の詳細は、電子注入層6の場合と同様である。
電子輸送層10の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
〔II−11.その他〕
以上、本発明の製造方法の詳細について、図4(a)〜(d)に示す有機電界発光素子1,1’,1”,1'''を製造する場合を例として説明したが、本発明の製造方法の詳細は、上記説明によって限定されるものではない。
例えば、本発明の製造方法により製造される有機電界発光素子の構成は、図4(a)〜(d)の有機電界発光素子1,1’,1”,1'''の構成に制限されるものではなく、有機電界発光素子1,1’,1”,1'''の構成に対して任意の変更を加えた構成であってもよい。
変更の例として、図4(a)に示す有機電界発光素子1に対し、図4(b)に示す正孔輸送層8、図4(c)に示す正孔阻止層9、及び図4(d)に示す電子輸送層10のうち二以上の層を組み合わせて設けた構成が挙げられる。
また、別の変更の例として、図4(a)〜(d)に示す有機電界発光素子1,1’,1”,1'''の層構成において、その積層順を変更した構成や、一又は二以上の層を付加又は省略した構成等が挙げられる。
積層順の異なる構成の例としては、図4(a)〜(d)に示す有機電界発光素子1,1’,1”,1'''の層構成において、基板2に対して他の各層を、有機電界発光素子1,1’,1”,1'''とは逆の順に積層した構成等が挙げられる。
別の層を付加した構成の例としては、正孔注入の効率を更に向上させ、かつ、有機層全体の陽極3への付着力を改善させる目的で、陽極3と正孔注入層4との間に陽極バッファ層を設けた構成や、低仕事関数金属から成る陰極を保護する目的で、陰極7の上に、更に、仕事関数が高く大気に対して安定な金属層(例えばアルミニウム、銀、銅、ニッケル、クロム、金、白金等からなる層)を設けた構成等が挙げられる。
更には、少なくとも一方が透明性を有する2枚の基板の間に、上述の基板2以外の構成要素を順次積層することにより、有機電界発光素子1,1’,1”,1'''を構成することも可能である。
また、上述の各種の有機電界発光素子1,1’,1”,1'''を構成する層のうち、基板2以外の層からなるユニット(発光ユニット)を複数段重ねた構造(複数の発光ユニットを積層した構造)とすることも可能である。その場合には、各段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合は、それら2層)の代わりに、例えば五酸化バナジウム(V25)等からなる電荷発生層(Carrier Generation Layer:CGL)を設けると、段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
また、上述の各種層構成を有する有機電界発光素子1,1’,1”,1'''を、単一の有機電界発光素子1,1’,1”,1'''として構成してもよいが、複数の有機電界発光素子1,1’,1”,1'''がアレイ状に配置された構成としてもよい。このような構成の例としては、陽極3と陰極7とがX−Yマトリックス状に配置された構成が挙げられる。なお、アレイ状に配置された複数の有機電界発光素子1,1’,1”,1'''が、一又は二以上の層、例えば基板2を共有する構成としてもよい。
特に、アレイ状に配置された複数の有機電界発光素子1,1’,1”,1'''を製造する際に、本発明の有機薄膜の形成方法を用いて、これらの有機電界発光素子1,1’,1”,1'''の正孔注入層4を同時に形成することにより、製造の効率化を図ることができる。この際、マスクを用いてパターニングを行なえば、正孔注入層4の形状を精緻化することが可能となる。
以上の実施形態では、各種構成の有機電界発光素子を挙げ、それらに対して本発明の製造方法を適用する場合について説明したが、本発明の製造方法は、上述した各種構成の有機電界発光素子のみならず、任意の構成の有機電界発光素子に対して適用することが可能である。
また、以上の実施形態では、有機電界発光素子の正孔注入層の形成時に、本発明の有機薄膜の形成方法を適用する場合を例として説明したが、本発明の製造方法はこれに限られるものではなく、有機電界発光素子が陽極と陰極との間に有する各種の有機層のうち、一又は二以上の任意の有機層の形成時に、本発明の有機薄膜の形成方法を適用することが可能である。
以下、実施例を用いて本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例により限定されるものではない。なお、以下の記載中「部」という記載は全て「重量部」を表わす。
[実施例1]
被塗布物としては、寸法26mm×38mm、厚さ0.7mmのガラス板表面に厚さ100nmのITO電極が形成されたITOガラス基板を、界面活性剤及び純水で洗浄した後、更にUVオゾン洗浄処理を施してから使用した。
塗布液(有機薄膜形成用塗布液)としては、下記に示す構造式の芳香族アミノ基を有する高分子化合物(PB−1)(重量平均分子量:29400、数平均分子量:12600)を固形分濃度0.8重量%となるように安息香酸エチルに溶解させた。次いで、下記に示す構造式の電子受容性化合物(A−1)を固形分濃度0.32重量%となるように上述の溶液に溶解させ、孔径0.2μmのPTFE(テフロン(登録商標))製フィルタで濾過を行ない、得られた溶液を使用した。
Figure 0004952326
Figure 0004952326
マスクとしては、A4サイズ(寸法210mm×296mm)、厚さ約200μmのステンレス製マスクであって、その中央部に寸法13mm×20mmの開口部が複数形成されたものを使用した。
上記ITOガラス基板上に、厚さ約200μmのポリイミド製スペーサを介して上記マスクを載置し、マスクの上から上記塗布液をスプレー塗布した。
スプレーノズルとしては、二流体スプレーノズル(ノードソン社製マイクロスプレーガン)を使用した。霧化及び吐出用気体としては、圧力0.09MPaの窒素を用い、ノズル先端とITOガラス基板表面との間の距離は、250mmとした。
また、スプレー塗布時におけるITOガラス基板(被塗布物)上の気流速度を、風速計(日本カノマックス製アネモマスター6162)にて測定した。測定は、1秒間隔で行なう10回の計測を1セットとして10セット行ない、10セットの計測結果から、平均気流速度を算出した。本スプレー塗布条件におけるITOガラス基板上の平均気流速度は、2.91m/sであった。
塗布終了後、マスク及びスペーサを除去してから、塗布膜が形成されたITOガラス基板を、80℃のホットプレート上で10分間加熱乾燥し、更に230℃のクリーンオーブン内で30分間乾燥した。得られた塗布膜(有機薄膜)の厚さは約20nmであった。
得られた塗布膜を肉眼にて観察したところ、塗布膜の中央部に比べて、塗布膜の端部付近に若干色合いが異なる部分があった。また、塗布膜端部付近の形状を、表面形状測定装置(KLA−Tencor社製P−15)にて測定したところ、シャープな段差などは検出されなかった。
[実施例2]
霧化及び吐出用気体の圧力を0.08MPaとした以外は、実施例1と同様の手順により、ITOガラス基板上に塗布膜(有機薄膜)を形成した。本スプレー塗布条件におけるITOガラス基板上の平均気流速度は2.80m/sであった。また、乾燥後の塗布膜(有機薄膜)の厚さは約20nmであった。塗布膜を肉眼で観察したところ、全面に亘って色合いはほぼ均一であった。また、塗布膜端部付近の形状を、実施例1と同様の表面形状測定装置で測定したところ、段差等は検出されなかった。
[比較例1]
霧化及び吐出用気体の圧力を0.10MPaとした以外は、実施例1と同様の手順により、ITOガラス基板上に塗布膜(有機薄膜)を形成した。本スプレー塗布条件におけるITOガラス基板上の平均気流速度は3.04m/sであった。また、乾燥後の塗布膜(有機薄膜)の厚さは約20nmであった。塗布膜を肉眼で観察したところ、端部付近にスジ状のムラが確認された。この塗布膜のムラ付近の形状を、実施例1と同様の表面形状測定装置にて測定したところ、5〜13nm程度の段差が生じていることが判明した。
[比較例2]
霧化及び吐出用気体の圧力を0.11MPaとした以外は、実施例1と同様の手順により、ITOガラス基板上に塗布膜(有機薄膜)を形成した。本スプレー塗布条件におけるITOガラス基板上の平均気流速度は3.29m/sであった。また、乾燥後の塗布膜(有機薄膜)の厚さは約20nmであった。塗布膜を肉眼で観察したところ、端部に比較例1と同様のスジ状のムラが確認できた。この塗布膜のムラ付近の形状を、実施例1と同様の表面形状測定装置にて測定したところ、7〜13nm程度の段差が生じていることが判明した。
以上の実施例1,2及び比較例1,2におけるITOガラス基板上の平均気流速度と、塗布膜(有機薄膜)上に観察された段差との関係を、図5のグラフに示す。
[実施例3]
スプレーノズルとして、超音波スプレーノズル(Sono-Tek社製Ultrasonic Microspray Nozzle)を、ノードソン社製のエアノズルと組み合わせて使用し、吐出用気体の圧力を0.01MPaとし、ノズル先端とITOガラス基板との間の距離を110nmとした以外は、実施例1と同様の手順により、ITOガラス基板上に塗布膜(有機薄膜)を形成した。本スプレー塗布条件におけるITOガラス基板上の平均気流速度は1.9m/sであった。また、乾燥後の塗布膜(有機薄膜)の厚さは約30nmであった。塗布膜を肉眼で観察したところ、全面に亘って色合いはほぼ均一であった。また、塗布膜端部付近の形状を、実施例1と同様の表面形状測定装置で測定したところ、段差等は検出されなかった。
[比較例3]
吐出用気体の圧力を0.015MPaとした以外は、実施例3と同様の手順により、ITOガラス基板上に塗布膜(有機薄膜)を形成した。本スプレー塗布条件におけるITOガラス基板上の平均気流速度は2.3m/sであった。また、乾燥後の塗布膜(有機薄膜)の厚さは約30nmであった。塗布膜を肉眼で観察したところ、端部に比較例1と同様のスジ状のムラが確認できた。この塗布膜のムラ付近の形状を実施例1と同様の表面形状測定装置にて測定したところ、11〜26nm程度の段差が生じていることが判明した。
[比較例4]
吐出用気体の圧力を0.02MPaとした以外は、実施例3と同様の手順により、ITOガラス基板上に塗布膜(有機薄膜)を形成した。本スプレー塗布条件におけるITOガラス基板上の平均気流速度は2.7m/sであった。また、乾燥後の塗布膜(有機薄膜)の厚さは約30nmであった。塗布膜を肉眼で観察したところ、端部に比較例1と同様のスジ状のムラが確認できた。この塗布膜のムラ付近の形状を実施例1と同様の表面形状測定装置にて測定したところ、15〜31nm程度の段差が生じていることが判明した。
以上の実施例3及び比較例3,4における、ITOガラス基板上の平均気流速度と、塗布膜(有機薄膜)上に観察された段差との関係を、図6のグラフに示す。
本発明は、有機EL素子が使用される各種の分野、例えば、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯等の分野において、好適に使用することが出来る。
スプレー塗布時にパターニングを行なった場合に、塗布膜の流動により生じるパターン端部の厚さの不均一化について説明するための図である。 (a)は、被塗布物の一例を模式的に示す平面図であり、(b)は、(a)の被塗布物に用いられるマスクの一例を模式的に示す平面図である。 (a)〜(d)は何れも、スプレー塗布の好ましい手順の一例を説明するための図である。 (a)〜(d)は何れも、本発明の実施の形態に係る有機電界発光素子の層構成を模式的に示す断面図である。 実施例1,2及び比較例1,2における、ITOガラス基板上の平均気流速度と、塗布膜(有機薄膜)上に観察された段差との関係を表わすグラフである。 実施例3及び比較例3,4における、ITOガラス基板上の平均気流速度と、塗布膜(有機薄膜)上に観察された段差との関係を表わすグラフである。
符号の説明
1,1’,1”,1''' 有機電界発光素子
2 基板
3 陽極
4 正孔注入層
5 発光層
6 電子注入層
7 陰極
8 正孔輸送層
9 正孔阻止層
10 電子輸送層
11 被塗布物
12,102 マスク
13,103 スペーサ
14 スプレーノズル
15 霧化粒子
16 塗布膜(有機薄膜)
101 基板
104 塗布膜

Claims (6)

  1. 被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布することにより塗布膜を形成する工程を少なくとも有する、有機電界素子の有機層の形成方法であって、
    スプレーノズルとして二流体スプレーノズルを用いて、前記スプレー塗布を行ない、
    前記スプレー塗布時の前記被塗布物上における気流速度を2.99m/sec以下とすることで、前記塗布膜の流動を抑制し、前記有機層の端部付近の膜厚の乱れ及び端部形状の乱れを抑える
    ことを特徴とする、有機電界素子の有機層の形成方法。
  2. 被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布することにより塗布膜を形成する工程を少なくとも有する、有機電界素子の有機層の形成方法であって、
    スプレーノズルとして超音波スプレーノズル又は回転式スプレーノズルを用いて、前記スプレー塗布を行ない、
    前記スプレー塗布時の前記被塗布物上における気流速度を2.2m/sec以下とすることで、前記塗布膜の流動を抑制し、前記有機層の端部付近の膜厚の乱れ及び端部形状の乱れを抑える
    ことを特徴とする、有機電界素子の有機層の形成方法。
  3. 前記被塗布物の有機層非形成領域の少なくとも一部をマスクで覆い、前記スプレー塗布を行なう
    ことを特徴とする、請求項1又は請求項2に記載の有機電界素子の有機層の形成方法。
  4. 基板と、前記基板上に設けられる陽極及び陰極と、前記の陽極及び陰極の間に設けられる有機層とを少なくとも有する有機電界発光素子を製造する方法であって、
    前記有機層の形成時に、被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布することにより塗布膜を形成する工程を少なくとも有するとともに、
    スプレーノズルとして二流体スプレーノズルを用いて、前記スプレー塗布を行ない、
    前記スプレー塗布時の前記被塗布物上における気流速度を2.99m/sec以下とすることで、前記塗布膜の流動を抑制し、前記有機層の端部付近の膜厚の乱れ及び端部形状の乱れを抑える
    ことを特徴とする、有機電界発光素子の製造方法。
  5. 基板と、前記基板上に設けられる陽極及び陰極と、前記の陽極及び陰極の間に設けられる有機層とを少なくとも有する有機電界発光素子を製造する方法であって、
    前記有機層の形成時に、被塗布物の有機層形成領域に有機層形成用塗布液をスプレー塗布することにより塗布膜を形成する工程を少なくとも有するとともに、
    スプレーノズルとして超音波スプレーノズル又は回転式スプレーノズルを用いて、前記スプレー塗布を行ない、
    前記スプレー塗布時の前記被塗布物上における気流速度を2.2m/sec以下とすることで、前記塗布膜の流動を抑制し、前記有機層の端部付近の膜厚の乱れ及び端部形状の乱れを抑える
    ことを特徴とする、有機電界発光素子の製造方法。
  6. 前記有機層が正孔注入層である
    ことを特徴とする、請求項4又は請求項5記載の有機電界発光素子の製造方法。
JP2007078766A 2007-03-26 2007-03-26 有機薄膜の形成方法及び有機電界発光素子の製造方法 Active JP4952326B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078766A JP4952326B2 (ja) 2007-03-26 2007-03-26 有機薄膜の形成方法及び有機電界発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078766A JP4952326B2 (ja) 2007-03-26 2007-03-26 有機薄膜の形成方法及び有機電界発光素子の製造方法

Publications (2)

Publication Number Publication Date
JP2008243421A JP2008243421A (ja) 2008-10-09
JP4952326B2 true JP4952326B2 (ja) 2012-06-13

Family

ID=39914533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078766A Active JP4952326B2 (ja) 2007-03-26 2007-03-26 有機薄膜の形成方法及び有機電界発光素子の製造方法

Country Status (1)

Country Link
JP (1) JP4952326B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182637A (ja) * 2009-02-09 2010-08-19 Fujifilm Corp 有機電界発光素子の製造方法及び有機電界発光素子
JP5281457B2 (ja) * 2009-03-31 2013-09-04 日本曹達株式会社 部分的薄膜形成方法
SE537207C2 (sv) * 2012-10-26 2015-03-03 Lunalec Ab Förfarande för framställning av ljusemitterande elektrokemisk cell
JP7223144B2 (ja) 2019-07-26 2023-02-15 富士フイルム株式会社 スプレー装置およびスプレー塗布方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215869A (ja) * 1990-03-30 1992-08-06 Fuji Photo Film Co Ltd 静電塗装方法
JP2003123968A (ja) * 2001-10-15 2003-04-25 Univ Toyama 有機電界発光素子の製造方法
JP2005078892A (ja) * 2003-08-29 2005-03-24 Optrex Corp 有機el表示素子、その製造方法およびマスク
JP2006055756A (ja) * 2004-08-20 2006-03-02 Tohoku Univ レジスト塗布方法

Also Published As

Publication number Publication date
JP2008243421A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4770843B2 (ja) 有機電界発光素子及び有機デバイスの製造方法
JP5092248B2 (ja) 有機電界発光素子用組成物、有機電界発光素子用薄膜、有機電界発光素子用薄膜転写用部材、有機電界発光素子及び有機電界発光素子の製造方法
JP5259139B2 (ja) 有機電界発光素子用組成物、有機電界発光素子および有機電界発光素子の製造方法
CN102106017B (zh) 有机电致发光元件、有机电致发光显示装置以及有机电致发光光源
JP5088097B2 (ja) 有機電界蛍光発光素子用材料、有機電界蛍光発光素子用組成物、有機電界蛍光発光素子、有機elディスプレイ及びカラーディスプレイ表示装置
JP2007123257A (ja) 有機電界発光素子の製造方法
KR20110036098A (ko) 유기 전계 발광 소자용 조성물, 유기 박막, 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
JP4910741B2 (ja) 有機電界発光素子の製造方法
CN103314463B (zh) 有机电致发光元件、组合物以及有机电致发光装置
KR20150016507A (ko) 도전성 박막 적층체의 제조 방법
JP2010212354A (ja) 有機電界発光素子用組成物およびその製造方法、有機電界発光素子、有機el表示装置並びに有機el照明
JP4952326B2 (ja) 有機薄膜の形成方法及び有機電界発光素子の製造方法
JP2007100083A (ja) 有機電界発光素子用組成物及び有機電界発光素子
CN102696127A (zh) 有机el 元件及有机发光器件
JP2010098306A (ja) 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010225653A (ja) 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2009231278A (ja) 有機電界発光素子の製造方法、有機elディスプレイおよび有機el照明
JP5703859B2 (ja) 有機電界発光素子用組成物及び有機電界発光素子の製造方法
JP2014078528A (ja) 電子デバイス、有機電界発光素子、有機el表示装置および有機el照明の製造方法
JP2007335852A (ja) 電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子用薄膜および有機電界発光素子
JP2008192433A (ja) 有機電界発光素子の製造方法
WO2013035143A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP4967864B2 (ja) 有機電界発光素子
JP2011256129A (ja) 有機金属錯体材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2009146691A (ja) 有機電界発光素子の製造方法、及び有機エレクトロルミネッセンスディスプレイ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4952326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350