JP2010225653A - 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明 - Google Patents

電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明 Download PDF

Info

Publication number
JP2010225653A
JP2010225653A JP2009068470A JP2009068470A JP2010225653A JP 2010225653 A JP2010225653 A JP 2010225653A JP 2009068470 A JP2009068470 A JP 2009068470A JP 2009068470 A JP2009068470 A JP 2009068470A JP 2010225653 A JP2010225653 A JP 2010225653A
Authority
JP
Japan
Prior art keywords
group
ring
organic
composition
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009068470A
Other languages
English (en)
Inventor
Masako Takeuchi
昌子 竹内
Wataru Shimizu
渡 清水
Joji Akiyama
穣慈 秋山
Junji Mizukami
潤二 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2009068470A priority Critical patent/JP2010225653A/ja
Publication of JP2010225653A publication Critical patent/JP2010225653A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】芳香族アミン系ポリマー、電子受容性化合物、及び有機溶媒を含有する組成物を用いて湿式成膜法で形成された層を有する有機電界発光素子において、駆動寿命が長い素子を提供する。
【解決手段】芳香族アミン系ポリマー、電子受容性化合物及び有機溶媒を含有する電荷輸送膜用組成物において、下記式(1)を満たすことを特徴とする、電荷輸送膜用組成物。I/D≧0.9×10(1)(式中、Iは、電荷輸送膜用組成物に含まれる溶質の波長450〜600nmにおける吸収極大の吸光度、Dは、I測定時の電荷輸送膜用組成物の全固形分濃度、を表す。)
【選択図】なし

Description

本発明は、有機電界発光素子の有機層等を形成するために用いられる、電荷輸送膜用組成物に関する。
本発明はまた、電荷輸送膜用組成物で形成された有機層を有する有機電界発光素子、並びにそれを備えた有機ELディスプレイ及び有機EL照明に関する。
近年、有機薄膜を用いた電界発光素子(有機電界発光素子)の開発が行われている。有機電界発光素子における有機薄膜の形成方法としては、真空蒸着法と湿式成膜法が挙げられる。
このうち、真空蒸着法は積層化が可能であるため、陽極及び/又は陰極からの電荷注入
の改善、励起子の発光層封じ込めが容易であるという利点を有する。
一方、湿式成膜法は真空プロセスが要らず、大面積化が容易で、1つの層(塗布液)に様々な機能をもった複数の材料を混合して入れることが容易である等の利点がある。
湿式成膜法で有機層を形成した例として、特許文献1や特許文献2に、正孔注入層、発光層を湿式成膜法で形成した有機電界発光素子の発明が開示されている。しかし、従来の組成物を用いて、湿式成膜法により有機薄膜を形成した場合、均一に成膜できなかったり、得られる素子の駆動寿命が短かったりなどと改善の必要があった。
特開2007−110093号公報 特開2007−335852号公報
本発明は、芳香族アミン系ポリマー、電子受容性化合物、及び有機溶媒を含有する組成物を用いて形成された有機電界発光素子において、駆動寿命が長い素子を提供することを課題とする。
本発明者らは鋭意検討した結果、芳香族アミン系ポリマー、電子受容性化合物と有機溶媒とを含有する組成物は、調製時は、芳香族アミン系ポリマーと電子受容性化合物との混合によって、カチオンラジカルが生じているが、膜を形成する際に加熱などを行うと消失してしまうと考えられた。つまり、上記課題は、膜とした場合に、カチオンラジカルが消失してしまっていることが一因であると推測される。
さらに検討を重ねた結果、電荷輸送膜用組成物に含まれる溶質の波長450〜600nmにおける吸収極大の吸光度と全固形分濃度との比をある特定の値とすることで、上記課題を解決することを見出して、本発明に至った。
即ち、芳香族アミン系ポリマー、電子受容性化合物及び有機溶媒を含有する電荷輸送膜用組成物において、下記式(1)を満たすことを特徴とする、電荷輸送膜用組成物、有機電界発光素子、並びにそれを備えた有機ELディスプレイ及び有機EL照明に存する。
/D≧0.9×10 (1)
(式中、Iは、電荷輸送膜用組成物に含まれる溶質の波長450〜600nmにおける吸収極大の吸光度、Dは、I測定時の電荷輸送膜用組成物の全固形分濃度、を表す。)
本発明の電荷輸送膜用組成物は、例えば、芳香族アミン系ポリマーや電子受容性化合物などの各種溶質に起因する凝集体の発生や経時の増加が見られず保存安定性が高いため、湿式成膜法で有機層を形成する場合において、均一に成膜可能であり、また、目詰まりなく一定に濾過されるなど工業的観点から不利益を生じさせない。
本発明の電荷輸送膜用組成物を用いて、湿式成膜法により形成された有機層を有する有機電界発光素子は、駆動寿命が長い。
本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。
以下に本発明の電荷輸送膜用組成物、有機電界発光素子、並びに有機ELディスプレイ及び有機EL照明の実施態様を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されない。
<電荷輸送膜用組成物>
芳香族アミン系ポリマー、電子受容性化合物及び有機溶媒を含有する電荷輸送膜用組成物において、下記式(1)を満たすことを特徴とする、電荷輸送膜用組成物。
/D≧0.9×10 (1)
(式中、Iは、電荷輸送膜用組成物に含まれる溶質の波長450〜600nmにおける吸収極大の吸光度、Dは、I測定時の電荷輸送膜用組成物の全固形分濃度、を表す。)
[吸光度Iの測定方法]
電荷輸送膜用組成物に含まれる溶質の波長450〜600nmにおける吸収極大の吸光度Iは、例えば、UV−3100PC(島津製作所社製)を用いて測定することができる。
芳香族アミン系ポリマー、電子受容性化合物及び有機溶媒を含有する電荷輸送膜用組成物(以下、「測定サンプル」という)、及び該電荷輸送膜用組成物に含有される有機溶媒(以下、「測定用溶媒」という)の各々について、波長450〜600nmにおける吸収極大の吸光度を測定する。
具体的には、測定サンプル及び測定用溶媒に、それぞれ光を照射して、吸光曲線の差分が得られる。ここで、450〜600nmの範囲中の吸収極大の吸光度をIとする。
吸収極大の吸光度を算出する範囲を450〜600nmとすることで、芳香族アミン系ポリマーと電子受容性化合物によって生じたカチオンラジカルの存在量を確認することができる。
尚、測定サンプルの測定濃度は、以下の理由で適宜希釈して用いる。
測定サンプルが高濃度であると、Iを測定することが難しくなる。つまり、Iが2以上の値になってしまうと、ランバートベール則から著しく外れて定量性を示さない。これより、測定サンプルは、Iが1以下の値になるように希釈して測定を行う。
つまり、Is/Dは上記のように希釈溶液のIsと、希釈時の固形分濃度Dより算出する。
本発明の電荷輸送膜用組成物における、I/Dは、通常0.9×10以上、好ましくは1.2×10以上、さらに好ましくは1.5×10以上、また通常1×105
下、好ましくは5×10以下、さらに好ましくは3×10以下である。
上記範囲内であると、後述の芳香族アミン系ポリマーと電子受容性化合物とが近接して、芳香族アミン系ポリマーのアミン部位にカチオンラジカルが生じ、このカチオンラジカルが組成物中に十分にあるため、正孔輸送能に優れた膜が形成され、得られる素子の駆動寿命が長くなるため好ましい。
[芳香族アミン系ポリマー]
本発明の電荷輸送膜用組成物は、芳香族アミン系ポリマーを含有する。本発明における芳香族アミン系ポリマーとは、芳香族アミノ基を中心構成単位とする芳香族アミン系ポリマーである。
芳香族アミン系ポリマー中が、下記式(I)で表される繰り返し単位を有することが、電荷輸送能が良好で、また有機溶媒に対する溶解性に優れる点から好ましい。
Figure 2010225653
(式中、mは0〜3の整数を表し、
Ar11、及びAr12は、各々独立して、直接結合、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
Ar13〜Ar15は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
但し、Ar11及びAr12のいずれもが、直接結合であることはない。
尚、該芳香族アミン系ポリマーは、置換基として1分子中に少なくとも一つの架橋性基を含む基を有する。)
[1−1.構造上の特徴]]
芳香族アミン系ポリマーは、式(I)で表される繰り返し単位に示されるとおり、共役系の構造を有する繰り返し単位からなるため、十分な電荷輸送能を有し、また溶媒に対する十分な溶解性を有する。また、架橋性基による不溶化ポリマーの形成が容易であるため、成膜時の表面平坦性が保たれるものと推測される。
芳香族アミン系ポリマーは、式(I)で表される繰り返し単位を2種以上含むものであってもよい。
[1−2.Ar11〜Ar15]
式(I)中、Ar11及びAr12は、各々独立して、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Ar13〜Ar15は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環又は2〜5縮合環由来の基が挙げられる。
置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5又は6員環の単環又は2〜4縮合環由来の基が挙げられる。
溶媒に対する溶解性、及び耐熱性の点から、Ar11〜Ar15は、各々独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環由来の基が好ましい。
また、Ar11〜Ar15としては、前記群から選ばれる1種又は2種以上の環を直接結合、又は―CH=CH―基により連結した2価の基も好ましく、ビフェニレン基及びターフェニレン基、がさらに好ましい。
Ar11〜Ar15における芳香族炭化水素基及び芳香族複素環基が後述の架橋性基以外に有していてもよい置換基としては、特に制限はないが、例えば、下記[置換基群Z]から選ばれる1種又は2種以上が挙げられる。
[置換基群Z]
メチル基、エチル基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルキル基;
ビニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルケニル基;
エチニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルキニル基;
メトキシ基、エトキシ基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルコキシ基;
フェノキシ基、ナフトキシ基、ピリジルオキシ基等の好ましくは炭素数4〜36、更に好ましくは炭素数5〜24のアリールオキシ基;
メトキシカルボニル基、エトキシカルボニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルコキシカルボニル基;
ジメチルアミノ基、ジエチルアミノ基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のジアルキルアミノ基;
ジフェニルアミノ基、ジトリルアミノ基、N−カルバゾリル基等の好ましくは炭素数10〜36、更に好ましくは炭素数12〜24のジアリールアミノ基;
フェニルメチルアミノ基等の好ましくは炭素数6〜36、更に好ましくは炭素数7〜24のアリールアルキルアミノ基;
アセチル基、ベンゾイル基等の好ましくは炭素数2〜24、好ましくは炭素数2〜12のアシル基;
フッ素原子、塩素原子等のハロゲン原子;
トリフルオロメチル基等の好ましくは炭素数1〜12、更に好ましくは炭素数1〜6のハロアルキル基;
メチルチオ基、エチルチオ基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルキルチオ基;
フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の好ましくは炭素数4〜36、更に好ましくは炭素数5〜24のアリールチオ基;
トリメチルシリル基、トリフェニルシリル基等の好ましくは炭素数2〜36、更に好ましくは炭素数3〜24のシリル基;
トリメチルシロキシ基、トリフェニルシロキシ基等の好ましくは炭素数2〜36、更に好ましくは炭素数3〜24のシロキシ基;
シアノ基;
フェニル基、ナフチル基等の好ましくは炭素数6〜36、更に好ましくは炭素数6〜24の芳香族炭化水素基;
チエニル基、ピリジル基等の好ましくは炭素数3〜36、更に好ましくは炭素数4〜24の芳香族複素環基
上記各置換基は、さらに置換基を有していてもよく、その例としては前記置換基群Zに例示した基が挙げられる。
Ar11〜Ar15における芳香族炭化水素基及び芳香族複素環基が後述の架橋性基以外に有してもよい置換基の分子量としては、さらに置換した基を含めて500以下が好ましく、250以下がさらに好ましい。
溶解性の点から、Ar11〜Ar15における芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、各々独立に、炭素数1〜12のアルキル基及び炭素数1〜12のアルコキシ基が好ましい。
なお、mが2以上である場合、前記式(I)で表される繰り返し単位は、2個以上のAr14及びAr15を有することになる。その場合、Ar14同士及びAr15同士は、各々、同じでもよく、異なっていてもよい。さらに、Ar14同士、Ar15同士は、各々互いに直接又は連結基を介して結合して環状構造を形成していてもよい。
[1−3.mの説明]
前記式(I)においてmは、0〜3の整数を表す。
mは、通常0以上であり、通常3以下、好ましくは2以下である。mが2以下である方が、原料となるモノマーの合成が容易である。
[1−4.架橋性基]
本発明における芳香族アミン系ポリマーは、置換基として架橋性基を含む基を有することが好ましい。
架橋性基とは、熱及び/又は活性エネルギー線の照射により反応する基であり、反応後は反応前に比べて有機溶媒や水への溶解性を低下させる効果を有する基である。
芳香族アミン系ポリマーは、置換基として架橋性基を含む基を有するが、架橋性基を有する位置は、式(I)で表される繰り返し単位中にあってもよく、また式(I)で表される繰り返し単位以外の部分、例えば、末端基に有していてもよい。
(1−4−1.架橋性基)
また、芳香族アミン系ポリマーは、架橋性基を有していることが、熱及び/又は活性エネルギー線の照射により起こる反応(架橋反応)の前後で、溶媒に対する溶解性に大きな差を生じさせることができる点で好ましい。
ここで、架橋性基とは、熱及び/又は活性エネルギー線の照射により近傍に位置するほかの分子の同一又は異なる基と反応して、新規な化学結合を生成する基のことをいう。
架橋性基としては、架橋しやすいという点で、例えば、架橋性基群Tに示す基が挙げられる。
[架橋性基群T]
Figure 2010225653
(式中、R〜Rは、各々独立に、水素原子又はアルキル基を表す。Ar31は置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
尚、ベンゾシクロブテン環は、置換基を有していてもよい。また、置換基同士が環を形成してもよい。)
エポキシ基、オキセタン基などの環状エーテル基、ビニルエーテル基などのカチオン重合によって架橋反応する基が、反応性が高く架橋が容易な点で好ましい。中でも、カチオン重合の速度を制御しやすい点でオキセタン基が特に好ましく、カチオン重合の際に素子の劣化をまねくおそれのあるヒドロキシル基が生成しにくい点でビニルエーテル基が好ましい。
シンナモイル基などアリールビニルカルボニル基、ベンゾシクロブテン環由来の基などの環化付加反応する基が、電気化学的安定性をさらに向上させる点で好ましい。
また、架橋性基の中でも、架橋後の構造が特に安定な点で、ベンゾシクロブテン環由来の基が特に好ましい。
架橋性基は分子内の芳香族炭化水素基又は芳香族複素環基に直接結合してもよいが、2価の基を介して結合してもよい。この2価の基としては、−O−基、−C(=O)−基又は(置換基を有していてもよい)−CH−基から選ばれる基を任意の順番で1〜30個連結してなる2価の基を介して、芳香族炭化水素基又は芳香族複素環基に結合することが好ましい。
[1−5.繰り返し単位の割合等]
芳香族アミン系ポリマーは、1種又は2種以上の式(I)で表される繰り返し単位を含むポリマーである。
芳香族アミン系ポリマーが2種以上の繰り返し単位を有する場合は、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体が挙げられる。溶媒に対する溶解性の点からランダム共重合体であることが好ましい。電荷輸送能がさらに高められる点で交互共重合体であることが好ましい。
芳香族アミン系ポリマーの重量平均分子量(Mw)は、通常3000以上、好ましくは7000以上であり、また通常150000以下、好ましくは120000以下である。
また、数平均分子量(Mn)は、通常100000以下、好ましくは90000以下、また通常1000以上、好ましくは3000以上である。
重量平均分子量がこの上限値を超えると、不純物の高分子量化によって精製が困難となる場合があり、また重量平均分子量がこの下限値を下回ると、ガラス転移温度及び、融点、気化温度などが低下するため、耐熱性が著しく損なわれるおそれがある。
また、本発明の芳香族アミン系ポリマーの分散度(Mw/Mn:Mwは重量平均分子量
を表し、Mnは数平均分子量を表す)は、通常2.40以下、好ましくは2.10以下、より好ましくは2.00以下である。下限値については、理想的には1.0である。
この上限値を上回ると、精製が困難となったり、溶媒に対する溶解性が低下したり、電荷輸送能が低下したりする等、本発明の効果が得られないおそれがある。
通常、重量平均分子量及び数平均分子量はSEC(サイズ排除クロマトグラフィー)測定により決定される。SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなるが、分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、重量平均分子量及び数平均分子量が算出される。
ここで、SEC測定条件を示す。
カラムは、TSKgel GMHXL(東ソー社製)又はこれと同等以上の分離能を示すもの、すなわち、
粒子径 :9mm
カラムサイズ:7.8mm内径×30cm長さ
保証理論段数:14000TP/30cm程度
のものを2本用い、カラム温度は40℃とする。
移動層はテトラヒドロフラン、クロロホルムのうち充填材への吸着のないものを選択し、流量は1.0ml/分とする。インジェクション濃度は0.1重量%とし、インジェクション量は0.10mlとする。検出器としてはRIを用いる。
分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、分子量分布が決定される。なお、SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなる。
尚、本発明の重量平均分子量(Mw)、及び分散度(Mw/Mn)を測定するのに用いる測定機器は、上記と同等の測定が可能であれば、上記の測定機器に限定されるものではなく、その他の測定機器を用いてもよいが、上記の測定機器を用いることが好ましい。
以下に、本発明における芳香族アミン系ポリマーの好ましい具体例を示すが、本発明はこれらに限定されるものではない。
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653
[電子受容性化合物]
本発明の電荷輸送膜用組成物は、電子受容性化合物を含有する。
電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上の化合物である化合物がさらに好ましい。
このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種または2種以上の化合物等が挙げられる。
本発明の電荷輸送膜用組成物に含有される電子受容性化合物は、周期表の第15〜17族に属する元素に、少なくとも一つの有機基が炭素原子で結合した構造を有するイオン化合物であることが好ましく、さらに下記式(I−1)〜(I−3)のいずれかで表される化合物であることが好ましい。
Figure 2010225653
(式(I−1)〜(I−3)中、R11、R21及びR31は、各々独立に、A1〜A3と炭素原子で結合する有機基を表す。R12、R22、R23及びR32〜R34は、各々独立に、置換基を表す。R11〜R34のうち隣接する2以上の基が、互いに結合して環を形成していてもよい。
1〜A3は何れも周期表第3周期以降の元素であって、A1は長周期型周期表の第17
族に属する元素を表し、A2は長周期型周期表の第16族に属する元素を表し、A3は長周期型周期表の第15族に属する元素を表す。
1 n1-〜Z3 n3-は、各々独立に、対アニオンを表す。
〜nは、各々独立に、対アニオンZ1 n1-〜Z3 n3-のイオン価に相当する任意の正の整数である。)
式(I−1)〜(I−3)中、R11、R21及びR31は、各々独立に、A1〜A3と炭素原子で結合する有機基を表し、R12、R22、R23及びR32〜R34は、各々独立に、置換基を表す。R11〜R34のうち隣接する2以上の基が、互いに結合して環を形成していてもよい。
11、R21及びR31としては、A1〜A3との結合部分に炭素原子を有する有機基であれば、本発明の効果を損なわない限り、その種類は特に制限されない。本発明における有機基とは、少なくとも一つの炭素原子を含む基である。
11、R21及びR31の分子量は、各々、その置換基を含めた値で、通常1000以下、好ましくは500以下の範囲である。R11、R21及びR31の好ましい例としては、正電荷を非局在化させる点から、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基が挙げられる。中でも、正電荷を非局在化させるとともに熱的に安定であることから、芳香族炭化水素基又は芳香族複素環基が好ましい。
芳香族炭化水素基としては、5又は6員環の単環又は2〜5縮合環由来の1価の基であり、正電荷を当該基上により非局在化させられる基が挙げられる。その具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオレン環等の由来の一価の基が挙げられる。
芳香族複素環基としては、5又は6員環の単環又は2〜4縮合環由来の1価の基であり、正電荷を当該基上により非局在化させられる基が挙げられる。その具体例としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、トリアゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の由来の一価の基が挙げられる。
アルキル基としては、直鎖状、分岐鎖状又は環状のアルキル基であって、その炭素数が通常1以上、また、通常12以下、好ましくは6以下のものが挙げられる。具体例としては、メチル基、エチル基、n−プロピル基、2−プロピル基、n−ブチル基、イソブチル基、tert−ブチル基、シクロヘキシル基等が挙げられる。
アルケニル基としては、炭素数が通常2以上、通常12以下、好ましくは6以下のものが挙げられる。具体例としては、ビニル基、アリル基、1−ブテニル基等が挙げられる。
アルキニル基としては、炭素数が通常2以上、通常12以下、好ましくは6以下のものが挙げられる。具体例としては、エチニル基、プロパルギル基等が挙げられる。
12、R22、R23及びR32〜R34の種類は、本発明の効果を損なわない限り特に制限されない。R12、R22、R23及びR32〜R34の分子量は、各々、その置換基を含めた値で、
通常1000以下、好ましくは500以下の範囲である。R12、R22、R23及びR32〜R34の例としては、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニルオキシ基、アルキルチオ基、アリールチオ基、スルホニル基、アルキルスルホニル基、アリールスルホニル基、スルホニルオキシ基、シアノ基、水酸基、チオール基、シリル基等が挙げられる。中でも、R11、R21及びR31と同様、電子受容性が大きい点から、A1〜A3との結合部分に炭素原子を有する有機基が好ましく、例としては、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基が好ましい。特に、電子受容性が大きいとともに熱的に安定であることから、芳香族炭化水素基又は芳香族複素環基が好ましい。
アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基としては、R11、R21及びR31について先に説明したものと同様のものが挙げられる。
アミノ基としては、アルキルアミノ基、アリールアミノ基、アシルアミノ基等が挙げられる。
アルキルアミノ基としては、炭素数が通常1以上、また、通常12以下、好ましくは6以下のアルキル基を1つ以上有するアルキルアミノ基が挙げられる。具体例としては、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基等が挙げられる。
アリールアミノ基としては、炭素数が通常3以上、好ましくは4以上、また、通常25以下、好ましくは15以下の芳香族炭化水素基又は芳香族複素環基を1つ以上有するアリールアミノ基が挙げられる。具体例としては、フェニルアミノ基、ジフェニルアミノ基、トリルアミノ基、ピリジルアミノ基、チエニルアミノ基等が挙げられる。
アシルアミノ基としては、炭素数が通常2以上、また、通常25以下、好ましくは15以下のアシル基を1つ以上有するアシルアミノ基が挙げられる。具体例としては、アセチルアミノ基、ベンゾイルアミノ基等が挙げられる。
アルコキシ基としては、炭素数が通常1以上、また、通常12以下、好ましくは6以下のアルコキシ基が挙げられる。具体例としては、メトキシ基、エトキシ基、ブトキシ基等が挙げられる。
アリールオキシ基としては、炭素数が通常3以上、好ましくは4以上、また、通常25以下、好ましくは15以下の芳香族炭化水素基又は芳香族複素環基を有するアリールオキシ基が挙げられる。具体例としては、フェニルオキシ基、ナフチルオキシ基、ピリジルオキシ基、チエニルオキシ基等が挙げられる。
アシル基としては、炭素数が通常1以上、また、通常25以下、好ましくは15以下のアシル基が挙げられる。具体例としては、ホルミル基、アセチル基、ベンゾイル基等が挙げられる。
アルコキシカルボニル基としては、炭素数が通常2以上、また、通常10以下、好ましくは7以下のアルコキシカルボニル基が挙げられる。具体例としては、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。
アリールオキシカルボニル基としては、炭素数が通常3以上、好ましくは4以上、また、通常25以下、好ましくは15以下の芳香族炭化水素基又は芳香族複素環基を有するものが挙げられる。具体例としては、フェノキシカルボニル基、ピリジルオキシカルボニル基等が挙げられる。
アルキルカルボニルオキシ基としては、炭素数が通常2以上、また、通常10以下、好ましくは7以下のアルキルカルボニルオキシ基が挙げられる。具体例としては、アセトキシ基、トリフルオロアセトキシ基等が挙げられる。
アルキルチオ基としては、炭素数が通常1以上、また、通常12以下、好ましくは6以下のアルキルチオ基が挙げられる。具体例としては、メチルチオ基、エチルチオ基等が挙げられる。
アリールチオ基としては、炭素数が通常3以上、好ましくは4以上、また、通常25以下、好ましくは14以下のアリールチオ基が挙げられる。具体例としては、フェニルチオ基、ナフチルチオ基、ピリジルチオ基等が挙げられる。
アルキルスルホニル基及びアリールスルホニル基の具体例としては、メシル基、トシル基等が挙げられる。
スルホニルオキシ基の具体例としては、メシルオキシ基、トシルオキシ基等が挙げられる。
シリル基の具体例としては、トリメチルシリル基、トリフェニルシリル基など挙げられる。
以上、R11、R21、R31及びR12、R22,R23、R32〜R34として例示した基は、本発明の趣旨に反しない限りにおいて、更に他の置換基によって置換されていてもよい。置換基の種類は特に制限されないが、例としては、上記R11、R21、R31及びR12、R22,R23、R32〜R34として各々例示した基の他、ハロゲン原子、シアノ基、チオシアノ基、ニトロ基等が挙げられる。中でも、イオン化合物(電子受容性化合物)の耐熱性及び電子受容性の妨げにならない観点から、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、芳香族炭化水素基、芳香族複素環基が好ましい。
式(I−1)〜(I−3)中、A1〜A3は、何れも周期表第3周期以降(第3〜第6周期)の元素であって、A1は、長周期型周期表の第17族に属する元素を表し、A2は、第16族に属する元素を表し、A3は、第15族に属する元素を表す。
中でも、電子受容性及び入手容易性の観点から、周期表の第5周期以前(第3〜第5周期)の元素が好ましい。即ち、A1としてはヨウ素原子、臭素原子、塩素原子のうち何れ
かが好ましく、A2としてはテルル原子、セレン原子、硫黄原子のうち何れかが好ましく、A3としてはアンチモン原子、ヒ素原子、リン原子のうち何れかが好ましい。特に、電子受容性、化合物の安定性の面から、式(I−1)におけるA1が臭素原子又はヨウ素原子であるイオン化合物、式(I−2)におけるA2がセレン原子又は硫黄原子であるイオン化合物が好ましく、中でも、式(I−1)におけるA1がヨウ素原子であるイオン化合物が最も好ましい。
式(I−1)〜(I−3)中、Z1 n1-〜Z3 n3-は、各々独立に、対アニオンを表す。対アニオンの種類は特に制限されず、単原子イオンであっても錯イオンであってもよい。但し、対アニオンのサイズが大きいほど負電荷が非局在化し、それに伴い正電荷も非局在化して電子受容能が大きくなるため、単原子イオンよりも錯イオンの方が好ましい。
〜nは、各々独立に、対アニオンZ1 n1-〜Z3 n3-のイオン価に相当する任意の正の整数である。n〜nの値は特に制限されないが、何れも1又は2であることが好ましく、1であることが最も好ましい。
1 n1-〜Z3 n3-の具体例としては、水酸化物イオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン、硝酸イオン、亜硝酸イオン、硫酸イオン、亜硫酸イオン、過塩素酸イオン、過臭素酸イオン、過ヨウ素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、リン酸イオン、亜リン酸イオン、次亜リン酸イオン、ホウ酸イオン、イソシアン酸イオン、水硫化物イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサクロロアンチモン酸イオン;酢酸イオン、トリフルオロ酢酸イオン、安息香酸イオン等のカルボン酸イオン;メタンスルホン酸、トリフ
ルオロメタンスルホン酸イオン等のスルホン酸イオン;メトキシイオン、t−ブトキシイオン等のアルコキシイオンなどが挙げられ、テトラフルオロホウ素酸イオン及びヘキフルオロホウ素酸イオンが好ましい。
また、対アニオンZ1 n1-〜Z3 n3-としては、化合物の安定性、有機溶媒への溶解性の点で、下記式(I−4)〜(I−6)のいずれかで表される錯イオンが好ましく、サイズが大きいという点で、負電荷が非局在化し、それに伴い正電荷も非局在化して電子受容能が大きくなるため、式(I−6)で表される錯イオンが更に好ましい。
Figure 2010225653
式(I−4)、(I−6)中、E1及びE3は、各々独立に、長周期型周期表の第13族に属する元素を表す。中でもホウ素原子、アルミニウム原子、ガリウム原子が好ましく、化合物の安定性、合成及び精製のし易さの点から、ホウ素原子が好ましい。
式(I−5)中、E2は、長周期型周期表の第15族に属する元素を表す。中でもリン
原子、ヒ素原子、アンチモン原子が好ましく、化合物の安定性、合成及び精製が容易である点から、毒性の点から、リン原子が好ましい。
式(I−4)、(I−5)中、Xは、フッ素原子、塩素原子、臭素原子などのハロゲン原子を表し、化合物の安定性、合成及び精製が容易である点から、フッ素原子、塩素原子であることが好ましく、フッ素原子であることが最も好ましい。
式(I−6)中、Ar1〜Ar4は、各々独立に、芳香族炭化水素基又は芳香族複素環基を表す。芳香族炭化水素基、芳香族複素環基の例示としては、R11、R21及びR31について先に例示したものと同様の、5又は6員環の単環又は2〜4縮合環由来の1価の基が挙げられる。中でも、化合物の安定性、耐熱性の点から、ベンゼン環、ナフタレン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環由来の1価の基が好ましい。
Ar1〜Ar4として例示した芳香族炭化水素基、芳香族複素環基は、本発明の趣旨に反しない限りにおいて、更に別の置換基によって置換されていてもよい。置換基の種類は特に制限されず、任意の置換基が適用可能であるが、電子求引性の基であることが好ましい。
Ar1〜Ar4が有してもよい置換基として好ましい電子求引性の基を例示するならば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;シアノ基;チオシアノ基;ニトロ基;メシル基等のアルキルスルホニル基;トシル基等のアリールスルホニル基;ホルミル基、アセチル基、ベンゾイル基等の、炭素数が通常1以上、通常12以下、好ましくは6以下のアシル基;メトキシカルボニル基、エトキシカルボニル基等の、炭素数が通常2以上、通常10以下、好ましくは7以下のアルコキシカルボニル基;フェノキシカルボニル基、ピリジルオキシカルボニル基等の、炭素数が通常3以上、好ましくは4以上、通常25以下、好ましくは15以下の芳香族炭化水素基又は芳香族複素環基を有するアリールオキシカルボニル基;アミノカルボニル基;アミノスルホニル基;トリフルオロメチル基、ペンタフルオロエチル基等の、炭素数が通常1以上、通常10以下、好ましくは6以下の直鎖状、分岐鎖状又は環状のアルキル基にフッ素原子、塩素原子などのハロゲン原子が置換したハロアルキル基、などが挙げられる。
中でも、Ar1〜Ar4のうち少なくとも1つの基が、フッ素原子又は塩素原子を置換基として1つ又は2つ以上有することがより好ましい。特に、負電荷を効率よく非局在化する点、及び、適度な昇華性を有する点から、Ar1〜Ar4の水素原子がすべてフッ素原子で置換されたパーフルオロアリール基であることが最も好ましい。パーフルオロアリール基の具体例としては、ペンタフルオロフェニル基、ヘプタフルオロ−2−ナフチル基、テトラフルオロ−4−ピリジル基等が挙げられる。
本発明における電子受容性化合物の分子量は、通常100以上、好ましくは300以上、更に好ましくは400以上、また、通常5000以下、好ましくは3000以下、更に好ましくは2000以下の範囲である。電子受容性化合物の分子量が小さすぎると、正電荷及び負電荷の非局在化が不十分なため、電子受容能が低下するおそれがあり、電子受容性化合物の分子量が大きすぎると、電子受容性化合物自体が電荷輸送の妨げとなるおそれがある。
以下に本発明における電子受容性化合物の具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653
Figure 2010225653

上記具体例のうち、電子受容性、耐熱性、有機溶媒に対する溶解性の点で、好ましくは、A−1〜48、A−54、A−55、A−60〜62、A−64〜75、A−79〜83、B−1〜20、B−24、B−25、B−27、B−30〜37、B−39〜43、C−1〜10、C−19〜21、C−25〜27、C−30、C−31の化合物であり、より好ましくは、A−1〜9、A−12〜15、A−17、A−19、A−24、A―29、A−31〜33、A−36、A−37、A−65、A−66、A−69、A−80〜82、B−1〜3、B−5、B−7〜10、B−16、B−30、B−33、B−39、C−1〜3、C−5、C−10、C−21、C−25、C−31の化合物であり、最も好ましくは、A−1〜7、A−80の化合物である。
以上説明した電子受容性化合物を製造する方法は特に制限されず、各種の方法を用いて製造することが可能である。例としては、Chem.Rev.、66巻、243頁、1966年、及び、J.Org.Chem.、53巻、5571頁、1988年に記載の方法等が挙げられる。
本発明の電荷輸送膜用組成物は、上述の電子受容性化合物のうち何れか一種を単独で含有していてもよく、二種以上を任意の組み合わせ及び比率で含有していてもよい。また、式(I−1)〜(I−3)のうち何れか一つの式に該当する電子受容性化合物を二種以上組み合わせてもよく、各々異なる式に該当する二種以上の電子受容性化合物を組み合わせてもよい。
本発明の電荷輸送膜用組成物における上述の電子受容性化合物の含有量は、先述の芳香族アミン系ポリマーに対する値で、通常0.1重量%以上、好ましくは1重量%以上、ま
た、通常100重量%以下、好ましくは40重量%以下である。電子受容性化合物の含有率が少な過ぎると駆動電圧が上昇するおそれがあり、また電子受容性化合物の含有率が多過ぎると成膜性が低下するおそれがある。二種以上の電子受容性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
[有機溶媒]
本発明の電荷輸送膜用組成物は、有機溶媒を含有する。
有機溶媒としては、本発明の芳香族アミン系ポリマーを、通常0.05重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上溶解する有機溶媒であることが好ましい。また、電子受容性化合物を0.005重量%以上溶解することが好ましく、0.05重量%以上溶解することがより好ましく、0.5重量%以上溶解することがさらに好ましい。
有機溶媒としては、具体的には、芳香族系有機溶媒、含ハロゲン有機溶媒、エーテル系有機溶媒、及びエステル系有機溶媒が挙げられる。
芳香族系有機溶媒の具体例としては、トルエン、キシレン、メチシレン、シクロヘキシルベンゼン、ペンタフルオロメトキシベンゼン、エチル(ペンタフルオロベンゾエート)等、
含ハロゲン有機溶媒の具体例としては、1,2−ジクロロエタン、クロロベンゼン、o−ジクロロベンゼン等、
エーテル系有機溶媒の具体例としては、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2−ジメトキシベンゼン,1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン,4−メトキシトルエン、2,3−ジメチルアニソール,2,4−ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル等、
エステル系有機溶媒の具体例としては、酢酸エチル、酢酸n―ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル等が挙げられる。
芳香族アミン系ポリマーを溶解させる必要があること、これら芳香族アミン系ポリマー等の正孔輸送材料と電子受容性化合物の混合から生じる正孔輸送性材料のカチオンラジカルを溶解する能力が高いことから、好ましくは、エーテル系有機溶媒、及びエステル系有機溶媒が挙げられる。
これらは1種で用いてもよく、2種以上の混合有機溶媒としてもよい。
本発明の電荷輸送膜用組成物に含有される有機溶媒として、25℃における蒸気圧が2mmHg以上、好ましくは3mmHg以上、より好ましくは4mmHg以上(但し、上限値は好ましくは10mmHg以下である。)である有機溶媒と、25℃における蒸気圧が2mmHg未満、好ましくは1mmHg以下、より好ましくは0.5mmHg以下である有機溶媒との混合有機溶媒が挙げられる。
また、組成物における有機溶媒の濃度は、通常、10重量%以上、好ましくは30重量
%以上、より好ましくは50%重量以上である。なお、有機溶媒として、前述した有機溶
媒以外にも、必要に応じて、各種の他の有機溶媒を含んでいてもよい。このような他の有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系有機溶媒、ジメチルスルホキシド等が挙げられる。また、レベリング剤や消泡剤等の各種添加剤を含んでいてもよい。
なお、水分は有機電界発光素子の性能劣化、中でも特に連続駆動時の輝度低下を促進する可能性があることが広く知られており、塗膜中に残留する水分をできる限り低減するために、これらの有機溶媒の中でも、25℃における水の溶解度が1重量%以下であるものが好ましく、0.1重量%以下である有機溶媒がより好ましい。また、有機溶媒として、20℃における表面張力が、通常40dyn/cm未満、好ましくは36dyn/cm以下、より好ましくは33dyn/cm以下である有機溶媒が挙げられる。有機溶媒としてはまた、25℃における蒸気圧が10mmHg以下、好ましくは5mmHg以下で、通常0.1mmHg以上の有機溶媒が挙げられる。このような有機溶媒を使用することにより、有機電界発光素子を湿式成膜法により製造するプロセスに好適な、また、芳香族アミン系ポリマーの性質に適した組成物を調製することができる。
[電荷輸送膜用組成物の物性について]
本発明の電荷輸送膜用組成物の粘度は、固形分の濃度に依存するが、通常15mPas以下、好ましくは10mPas以下、さらに好ましくは8mPas以下、また通常2mPas以上、好ましくは3mPas以上、さらに好ましくは5mPas以上である。
この上限値を超えると、湿式成膜法にて膜形成時、均一な成膜ができないおそれがある。また、この下限値を下回ると成膜できないおそれがある。
尚、粘度の測定方法は、回転式粘度測定装置を用いて測定した。通常、粘度は、温度及び測定回転数に依存する。上記値は、測定温度23℃、測定回転数20rpmの一定条件で測定での測定値である。
[添加剤]
また、本発明の電荷輸送膜用組成物は、必要に応じ、レベリング剤や消泡剤等の塗布性改良剤などの各種添加剤等を含んでいてもよい。この場合は、有機溶媒としては、芳香族アミン系ポリマーと添加剤の双方を0.05重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上溶解する有機溶媒を使用することが好ましい。
<用途>
本発明の電荷輸送膜用組成物は、保存安定性が高く、湿式成膜法で有機層を形成する場合において、均一に成膜可能であり、また工業的観点から不利益を生じさせないため、有機電界発光素子に用いられることが好ましい。
また、本発明における湿式成膜法とは、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷等の有機溶媒を含有する組成物を用いて成膜する方法をいう。パターニングのし易さという点で、ダイコート法、ロールコート法、スプレーコート法、インクジェット法、フレキソ印刷法が好ましい。
<本発明の効果を奏する理由>
本発明の構成とすることで、駆動寿命の長い素子が得られる理由を以下の通り推測する。
本発明の電荷輸送膜用組成物は、芳香族アミン系ポリマーと電子受容性化合物とが近接している為、芳香族アミン系ポリマーのアミン部位にカチオンラジカルが発生している。通常、発生したカチオンラジカルは、膜形成時の加熱によって消失してしまう。しかしながら、本発明の電荷輸送膜用組成物は、組成物調製時でカチオンラジカルの生成量をある特定の量まで担保することで、膜とした場合にも電荷輸送に関与しうるのに十分なカチオンラジカルが残るものと推測される。つまり、本発明は、組成物の調製時にカチオンラジカルの生成量をある特定量まで担保することで、膜とした場合に電荷輸送能が高いため、ホールトラップなどを生じさせることを抑制できるため、得られる素子の駆動寿命が長い。
<電荷輸送膜用組成物の製造方法>
本発明の電荷輸送膜用組成物の製造方法の一例を以下に示すが、本発明はこれらに限定されるものではない。
特に、本発明の電荷輸送膜用組成物は、以下に記載する方法、特に好ましい方法を組み合わせるなどして用いることにより製造することができる。
[1]添加形態・方法
本発明の電荷輸送膜用組成物に含有される、芳香族アミン系ポリマー、電子受容性化合物及び有機溶媒を混合する場合、混合する芳香族アミン系ポリマー及び電子受容性化合物は、各々独立に、固体であってもよく、また溶液であってもよい。
芳香族アミン系ポリマー及び電子受容性化合物を共に溶液状態で混合することが好ましい。
この場合、各々の有機溶媒は、本発明の効果を損なわない限り先述した有機溶媒の範囲内であれば、異なる有機溶媒を用いてもよく、また2種以上を混合して用いてもよい。
また、芳香族アミン系ポリマー及び電子受容性化合物の何れか一方が固体状態で、何れか一方が溶液状態で混合することが好ましい。この場合、固体の溶解を確認しながら添加できる点で溶液に、固体を入れることが好ましい。
さらに芳香族アミン系ポリマー及び電子受容性化合物が共に固体で、これらを粉砕混合した後に、有機溶媒で溶解することが好ましい。
上記の通り固体で混合する場合、粒径は、通常5cm以下、好ましくは1cm以下、より好ましくは5mm以下、また通常0.5mm以上である。
[2]溶解工程
本発明の電荷輸送膜用組成物の製造方法においては、通常溶解工程を有する。
溶解工程は、固体を有機溶媒に攪拌し、固体が浮遊していることが目視で確認できなくなるようにする工程をいう。
(溶解条件)
溶解工程における温度は、通常20℃以上、好ましくは40℃以上、また通常有機溶媒の沸点以下、好ましくは有機溶媒の沸点より10℃以上低い温度である。この上限値を上回ると、有機溶媒が一部蒸発し濃度が変化するおそれがあり、またこの下限値を下回ると使用有機溶媒が固化、あるいは溶解度が低下するために所望の濃度が得られないおそれがある。
溶解工程における雰囲気は、本発明の効果を損なわない限りは特に制限はないが、不活性ガスが挙げられる。不活性ガスとしては、例えば、窒素、アルゴン、などが挙げられ、取り扱い容易な点で、窒素が好ましい。
[3]超音波処理・光照射処理・加熱処理
本発明の電荷輸送膜用組成物を得るための製造方法としては、特に、超音波処理、光照射処理、加熱処理の少なくとも一つの処理を含むことが好ましい。
また、処理を行う時期は、本発明の効果を損なわない限り特に制限はなく、溶解工程で行ってもよく、また溶解工程の後に行ってもよい。
尚、これらの処理は、いずれか一種の処理を単独で行ってもよく、また併用して処理を行ってもよい。
(超音波処理)
超音波処理を行う場合、振動子28kHzを用いることが好ましい。
超音波処理における超音波時間は、通常5分以上、好ましくは10分以上、また通常2
時間以下、好ましくは1時間以下である。
この上限値を上回ると、ポリマーが分解するおそれがあり、またこの下限値を下回ると溶解が不十分となるおそれがある。
(光照射処理)
光照射処理を行う場合、高圧水銀灯を用いることが好ましい。高圧水銀灯は404.7nm、435.8nm、546.1nm、 577.0nm、及び579.1nmの輝線
スペクトルからなる緑がかった青白色(5,700K)の光源で、253.7nm、365.0nmの紫外線照射を伴う。
光照射処理における光照射時間は、通常5時間以上、好ましくは10時間以上、また通常36時間以下、好ましくは20時間以下である。
この上限値を上回ると有機溶媒が一部蒸発等で濃度変化をきたすおそれがあり、またこの下限値を下回ると溶解が不十分となるおそれがある。
(加熱処理)
加熱処理における加熱手段は、本発明の効果を損なわない限り、公知の技術を用いることができる。
具体的には、芳香族アミン系ポリマー、電子受容性化合物及び有機溶媒を加熱可能な容器に入れ、攪拌しながら、加熱バスにより温度を調節し、加熱攪拌する方法が挙げられる。加熱バスとしては、水バス、オイルバス等が用いられる。
また、芳香族アミン系ポリマー、電子受容性化合物及び有機溶媒を加熱容器に入れ攪拌した後、一定の温度制御可能な恒温槽内に置くことにより加熱処理できる。安全を考慮した観点から、加熱バスを用いた加熱攪拌による方法が好ましい。
加熱処理における加熱温度は、通常95℃以上、好ましくは100℃以上、また、通常200℃以下、好ましくは150℃以下である。
また、異なる2種の有機溶媒を用いている場合、上限値である沸点は、最も低い沸点の有機溶媒における沸点が基準となる。
この上限値を上回ると、有機溶媒が突沸するおそれがありかつ有機溶媒の蒸発により仕込み時の濃度変化をきたす。またこの下限値を下回ると加熱処理の効果がなく、溶解不十分になるおそれがある。
加熱処理における加熱時間は、通常1時間以上、好ましくは5時間以上、また通常36時間以下、好ましくは24時間以下である。この上限値を上回ると、有機溶媒が蒸発するおそれがあり、またこの下限値を下回ると溶解が不十分となるおそれがある。
超音波処理、光照射処理又は加熱処理のうち少なくとも何れか一種の処理を行うことで、本発明の電荷輸送膜用組成物を製造できる理由は以下の様に推測される。
超音波処理、光照射処理又は加熱処理の何れか一種の処理を行うことで、芳香族アミン系ポリマーの凝集状態が緩和されることにより、芳香族アミン系ポリマーと電子受容性化合物が近接し易くなる。この近接により、芳香族アミン系ポリマーは分子内でカチオンラジカル状態となり、アニオンラジカルである電子受容性化合物とイオン対状態となり、ポリマーの凝集や、電子受容性化合物の凝集が生じにくくなり、粒径がミクロンオーダである大きな凝集体を含む割合が小さい電荷輸送膜用組成物が製造できる。
[4]濾過工程
本発明の電荷輸送膜用組成物の製造方法においては、濾過工程を含むことが好ましい。また、本発明における濾過工程は、溶解工程の後に行うことが好ましい。
濾過工程に用いるフィルターの穴は、通常5μm以下、好ましくは0.5μm以下、また通常0.2μm以上である。
この上限値を上回ると、不溶物が混入するおそれがあり、また、この下限値を下回ると濾過ができず目詰まりするおそれがある。
<有機電界発光素子>
本発明の有機電界発光素子は、基板上に、陽極、陰極、及び該陽極と該陰極の間に配置された有機層を有する有機電界発光素子において、該有機層が、本発明の電荷輸送膜用組成物を用いて形成された層を含むことを特徴とする、有機電界発光素子である。
さらに、本発明の有機電界発光素子は、本発明の電荷輸送膜用組成物を用いて形成された層が、正孔注入層であることが好ましい。
また、上記正孔注入層の陰極側に、湿式成膜法で形成される正孔輸送層を有することが好ましく、さらに該正孔輸送層の陰極側に有する発光層は、湿式成膜法で形成されることが好ましい。
即ち、本発明の有機電界発光素子は、正孔注入層、正孔輸送層及び発光層の全てが湿式成膜法で形成されることが好ましい。
図1は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。図1に示す有機電界発光素子は、基板の上に、陽極、正孔注入層、正孔輸送層、発光層、正孔阻止層,電子注入層及び陰極を、この順に積層して構成される。この構成の場合、通常は正孔注入層が、本発明の電荷輸送膜用組成物を用いて形成された層に該当する。
(基板)
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
(陽極)
陽極2は発光層側の層への正孔注入の役割を果たすものである。
この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
陽極2の形成は通常、スパッタリング法、真空蒸着法等により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより陽極2を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極2の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極2の厚みは任意であり、陽極2は基板1と同一でもよい。また、さらには、上記の陽極2の上に異なる導電材料を積層することも可能である。
陽極2に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極2表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることは好ましい。
(正孔注入層)
陽極の上には、正孔注入層が形成される。
正孔注入層は、陽極の陰極側に隣接する層へ正孔を輸送する層である。
なお、本発明の有機電界発光素子は、正孔注入層を省いた構成であってもよい。
正孔注入層は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。
正孔注入層は、必要に応じて、バインダー樹脂や塗布性改良剤を含んでもよい。なお、バインダー樹脂は、電荷のトラップとして作用し難いものが好ましい。
つまり、本発明における正孔注入層は、本発明の電荷輸送膜用組成物を用いて形成されることが好ましい。
正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
なお、正孔注入層における電子受容性化合物の正孔注入性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
{正孔輸送層}
本発明に係る正孔輸送層4の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔輸送層4を湿式成膜法により形成することが好ましい。
正孔輸送層4は、正孔注入層がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成することができる。 また、本発明の有機電界発光素子は、正
孔輸送層を省いた構成であってもよい。
正孔輸送層4を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。また、多くの場合、発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
このような正孔輸送層4の材料としては、前記[芳香族アミン系ポリマー]の項に記載のものが挙げられる。その他、従来、正孔輸送層の構成材料として用いられている材料でもよく、例えば、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p−フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
ポリアリールアミン誘導体としては、下記式(II)で表される繰り返し単位を含む重合体であることが好ましい。特に、下記式(II)で表される繰り返し単位からなる重合体であることが好ましく、この場合、繰り返し単位それぞれにおいて、Ar又はArが異なっているものであってもよい。
Figure 2010225653
(式(II)中、Ar及びArは、各々独立して、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。)
置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環又は2〜5縮合環由来の基及びこれらの環が2環以上直接結合で連結してなる基が挙げられる。
置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5又は6員環の単環又は2〜4縮合環由来の基及びこれらの環が2環以上直接結合で連結してなる基が挙げられる。
溶解性、耐熱性の点から、Ar及びArは、各々独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環由来の基やベンゼン環が2環以上連結してなる基(例えば、ビフェニル基(ビフェニレン基)やターフェニル基(ターフェニレン基))が好ましい。
中でも、ベンゼン環由来の基(フェニル基)、ベンゼン環が2環連結してなる基(ビフェニル基)及びフルオレン環由来の基(フルオレニル基)が好ましい。
Ar及びArにおける芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素環基、芳香族複素環基などが挙げられる。
ポリアリーレン誘導体としては、前記式(II)におけるArやArとして例示した置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基などのアリーレン基をその繰り返し単位に有する重合体が挙げられる。
ポリアリーレン誘導体としては、下記式(III−1)及び/又は下記式(III−2)からなる繰り返し単位を有する重合体が好ましい。
Figure 2010225653
(式(III−1)中、Ra、Rb、R及びRは、各々独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基、又はカルボキシ基を表す。t及びsは、各々独立に、0〜3の整数を表す。t又はsが2以上の場合、一分子中に含まれる複数のRa又はRbは同一であっても異なっていてもよく、隣接するRa又はRb同士で環を形成していてもよい。)
Figure 2010225653
(式(III−2)中、R及びRは、各々独立に、上記式(III−1)におけるRa、Rb、R又はRと同義である。r及びuは、各々独立に、0〜3の整数を表す。r又はuが2以上の場合、一分子中に含まれる複数のR及びRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。Xは、5員環又は6員環を構成する原子又は原子群を表す。)
Xの具体例としては、―O―、―BR―、―NR―、―SiR―、―PR―、―SR―、―CR―又はこれらが結合してなる基である。尚、Rは、水素原子又は任意の有機基を表す。本発明における有機基とは、少なくとも一つの炭素原子を含む基である。
また、ポリアリーレン誘導体としては、前記式(III−1)及び/又は前記式(III−2)からなる繰り返し単位に加えて、さらに下記式(III−3)で表される繰り返し単位を有することが好ましい。
Figure 2010225653
(式(III−3)中、Ar〜Arは、各々独立に、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。v及びwは、各々独立に0又は1を表す。)
Ar〜Arの具体例としては、前記式(II)における、Ar及びArと同様である。
上記式(III−1)〜(III−3)の具体例及びポリアリーレン誘導体の具体例等は、特開2008-98619号公報に記載のものなどが挙げられる。
湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。
正孔輸送層形成用組成物には、上述の正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。
真空蒸着法により正孔輸送層を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。
正孔輸送層4は、上記正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。
正孔輸送層4はまた、架橋性化合物を架橋して形成される層であってもよい。架橋性化合物は、架橋性基を有する化合物であって、架橋することにより網目状高分子化合物を形成する。
この架橋性基の例を挙げると、オキセタン、エポキシなどの環状エーテル由来の基;ビニル基、トリフルオロビニル基、スチリル基、アクリル基、メタクリロイル、シンナモイル等の不飽和二重結合由来の基;ベンゾシクロブテン由来の基などが挙げられる。
架橋性化合物は、モノマー、オリゴマー、ポリマーのいずれであってもよい。 架橋性
化合物は1種のみを有していてもよく、2種以上を任意の組み合わせ及び比率で有していてもよい。
架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物としては、上記の例示したものが挙げられ、これら正孔輸送性化合物に対して、架橋性基が主鎖又は側鎖に結合しているものが挙げられる。特に架橋性基は、アルキレン基等の連結基を介して、主鎖に結合していることが好ましい。また、特に正孔輸送性化合物としては、架橋性基を有する繰り返し単位を含む重合体であることが好ましく、上記式(II)や式(III−1)〜(III−3)に架橋性基が直接又は連結基を介して結合した繰り返し単位を有する重合体であることが好ましい。
架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物の例を挙げると、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体等の含窒素芳香族化合物誘導体;トリフェニルアミン誘導体;シロール誘導体;オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。その中でも、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体等の含窒素芳香族誘導体;トリフェニルアミン誘導体、シロール誘導体、縮合多環芳香族誘導体、金属錯体などが好ましく、特に、トリフェニルアミン誘導体がより好ましい。
架橋性化合物を架橋して正孔輸送層4を形成するには、通常、架橋性化合物を溶媒に溶解又は分散した正孔輸送層形成用組成物を調製して、湿式成膜により成膜して架橋させる。
正孔輸送層形成用組成物には、架橋性化合物の他、架橋反応を促進する添加物を含んでいてもよい。架橋反応を促進する添加物の例を挙げると、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、メタロセン化合物、オキシムエステル化合物、アゾ化合物、オニウム塩等の重合開始剤及び重合促進剤;縮合多環炭化水素、ポルフィリン化合物、ジアリールケトン化合物等の光増感剤;などが挙げられる。
また、さらに、レベリング剤、消泡剤等の塗布性改良剤;電子受容性化合物;バインダー樹脂;などを含有していてもよい。
正孔輸送層形成用組成物は、架橋性化合物を通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、通常50重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下含有する。
このような濃度で架橋性化合物を含む正孔輸送層形成用組成物を下層(通常は正孔注入層3)上に成膜後、加熱及び/又は光などの活性エネルギー照射により、架橋性化合物を架橋させて網目状高分子化合物を形成する。
成膜時の温度、湿度などの条件は、前記正孔注入層3の湿式成膜時と同様である。
成膜後の加熱の手法は特に限定されない。加熱温度条件としては、通常120℃以上、好ましくは400℃以下である。
加熱時間としては、通常1分以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、成膜された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。
光などの活性エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ、ハロゲンランプ、赤外ランプ等の紫外・可視・赤外光源を直接用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。光以外の活性エネルギー照射では、例えばマグネトロンにより発生させたマイクロ波を照射する装置、いわゆる電子レンジを用いて照射する方法が挙げられる。照射時間としては、膜の溶解性を低下させるために必要な条件を設定することが好ましいが、通常、0.1秒以上、好ましくは10時間以下照射される。
加熱及び光などの活性エネルギー照射は、それぞれ単独、あるいは組み合わせて行ってもよい。組み合わせる場合、実施する順序は特に限定されない。
このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
{発光層}
正孔注入層3の上、又は正孔輸送層4を設けた場合には正孔輸送層4の上には発光層5が設けられる。発光層5は、電界を与えられた電極間において、陽極2から注入された正孔と、陰極9から注入された電子との再結合により励起されて、主たる発光源となる層である。
<発光層の材料>
発光層5は、その構成材料として、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する化合物(正孔輸送性化合物)、あるいは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有する。発光材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として使用してもよい。発光材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。更に、発光層5は、本発明の効果を著しく損なわない範囲で、その他の成分を含有していてもよい。なお、湿式成膜法で発光層5を形成する場合は、何れも低分子量の材料を使用することが好ましい。
(発光材料)
発光材料としては、任意の公知の材料を適用可能である。例えば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。また、青色は蛍光発光材料を用い、緑色や赤色は燐光発光材料を用いるなど、組み合わせて用いてもよい。
なお、溶媒への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることが好ましい。
以下、発光材料のうち蛍光発光材料の例を挙げるが、蛍光色素は以下の例示物に限定されるものではない。
青色発光を与える蛍光発光材料(青色蛍光色素)としては、例えば、ナフタレン、ペリレン、ピレン、クリセン、アントラセン、クマリン、p−ビス(2−フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
緑色発光を与える蛍光発光材料(緑色蛍光色素)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
黄色発光を与える蛍光発光材料(黄色蛍光色素)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
赤色発光を与える蛍光発光材料(赤色蛍光色素)としては、例えば、DCM(4−(dicyanomethylene)−2−methyl−6−(p−dimethylaminostyryl)−4H−pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7〜11族から選ばれる金属を含む有機金属錯体が挙げられる。
周期表第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。
錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。
燐光発光材料として、具体的には、トリス(2−フェニルピリジン)イリジウム、トリス(2−フェニルピリジン)ルテニウム、トリス(2−フェニルピリジン)パラジウム、ビス(2−フェニルピリジン)白金、トリス(2−フェニルピリジン)オスミウム、トリス(2−フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等が挙げられる。
発光材料として用いる化合物の分子量は、本発明の効果を著しく損なわない限り任意であるが、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。発光材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来したりする場合がある。一方、発光材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、溶媒に溶解させる際に時間を要したりする傾向がある。
なお、上述した発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
発光層5における発光材料の割合は、本発明の効果を著しく損なわない限り任意であるが、通常0.05重量%以上、通常35重量%以下である。発光材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の発光材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
(正孔輸送性化合物)
発光層5には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の正孔注入層3における(低分子量の正孔輸送性化合物)として例示した各種の化合物のほか、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5−234681号公報)、4,4’,4”−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence, 1997年, Vol.72−74, pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications, 1996年, pp.2175)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のスピロ化合物(Synthetic Metals, 1997年, Vol.91,pp.209)等が挙げられる。
なお、発光層5において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
発光層5における正孔輸送性化合物の割合は、本発明の効果を著しく損なわない限り任意であるが、通常0.1重量%以上、通常65重量%以下である。正孔輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
(電子輸送性化合物)
発光層5には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)や、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)や、4,4’−ビス(9−カルバゾール)−ビフェニル(CBP)等が挙げられる。なお、発光層5において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
発光層5における電子輸送性化合物の割合は、本発明の効果を著しく損なわない限り任意であるが、通常0.1重量%以上、通常65重量%以下である。電子輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電子輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
<発光層の形成>
本発明に係る湿式成膜法により発光層5を形成する場合は、上記材料を適切な溶媒に溶解させて発光層形成用組成物を調製し、それを用いて成膜することにより形成する。
発光層5を本発明に係る湿式成膜法で形成するための発光層形成用組成物に含有させる発光層用溶媒としては、発光層の形成が可能である限り任意のものを用いることができる。発光層用溶媒の好適な例は、上記正孔注入層形成用組成物で説明した溶媒と同様である。
発光層5を形成するための発光層形成用組成物に対する発光層用溶媒の比率は、本発明の効果を著しく損なわない限り任意であるが、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶媒として2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。
また、発光層形成用組成物中の発光材料、正孔輸送性化合物、電子輸送性化合物等の固形分濃度としては、通常0.01重量%以上、通常70重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると膜に欠陥が生じる可能性がある。
発光層形成用組成物を湿式成膜後、得られた塗膜を乾燥し、溶媒を除去することにより、発光層が形成される。具体的には、上記正孔注入層の形成において記載した方法と同様である。湿式成膜法の方式は、本発明の効果を著しく損なわない限り限定されず、前述のいかなる方式も用いることができる。
発光層5の膜厚は本発明の効果を著しく損なわない限り任意であるが、通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層5の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。
{正孔阻止層}
発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
この正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。
正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2−メチル−8−キノリノラト)(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10−79297号公報)などが挙げられる。更に、国際公開第2005−022962号パンフレットに記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。
なお、正孔阻止層6の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正孔阻止層6の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。
正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。
{電子輸送層}
発光層5と後述の電子注入層8の間に、電子輸送層7を設けてもよい。
電子輸送層7は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。
電子輸送層7に用いられる電子輸送性化合物としては、通常、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−ヒドロキシフラボン金属錯体、5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
なお、電子輸送層7の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
電子輸送層7の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
電子輸送層7の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
{電子注入層}
電子注入層8は、陰極9から注入された電子を効率良く発光層5へ注入する役割を果たす。電子注入を効率よく行なうには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
更に、バソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10−270171号公報、特開2002−100478号公報、特開2002−100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。
なお、電子注入層8の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
電子注入層8の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
{陰極}
陰極9は、発光層5側の層(電子注入層8又は発光層5など)に電子を注入する役割を果たすものである。
陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率良く電子注入を行なうには、仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
陰極9の膜厚は、通常、陽極2と同様である。
さらに、低仕事関数金属から成る陰極9を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
{その他の層}
本発明に係る有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えば、その性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、任意の層が省略されていてもよい。
<電子阻止層>
有していてもよい層としては、例えば、電子阻止層が挙げられる。
電子阻止層は、正孔注入層3又は正孔輸送層4と発光層5との間に設けられ、発光層5から移動してくる電子が正孔注入層3に到達するのを阻止することで、発光層5内で正孔と電子との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔注入層3から注入された正孔を効率よく発光層5の方向に輸送する役割とがある。特に、発光材料として燐光材料を用いたり、青色発光材料を用いたりする場合は電子阻止層を設けることが効果的である。
電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いこと等が挙げられる。更に、本発明においては、発光層5を本発明に係る有機層として湿式成膜法で作製する場合には、電子阻止層にも湿式成膜の適合性が求められる。このような電子阻止層に用いられる材料としては、F8−TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号パンフレット)等が挙げられる。
なお、電子阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
電子阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
さらに陰極9と発光層5又は電子輸送層7との界面に、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、酸化リチウム(Li2O)、炭酸セシウム(II)(CsCO3)等で形成された極薄絶縁膜(0.1〜5nm)を挿入することも、素子の効率を向上させる有効な方法である(Applied Physics Letters, 1997年, Vol.70, pp.152;特開平10−74586号公報;IEEE Transactions on Electron Devices, 1 997年,Vol.44, pp.1245;SID 04 Digest, pp.154等参照)。
また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば、図1の層構成であれば、基板1上に他の構成要素を陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に設けてもよい。
更には、少なくとも一方が透明性を有する2枚の基板の間に、基板以外の構成要素を積層することにより、本発明に係る有機電界発光素子を構成することも可能である。
また、基板以外の構成要素(発光ユニット)を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その場合には、各段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合は、それら2層)の代わりに、例えば五酸化バナジウム(V25)等からなる電荷発生層(Carrier Generation Layer:CGL)を設けると、段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
更には、本発明に係る有機電界発光素子は、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX−Yマトリックス状に配置された構成に適用してもよい。
また、上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。
<有機ELディスプレイ及び有機EL照明>
本発明の有機電界発光素子は、有機ELディスプレイ及び有機EL照明に使用される。本発明により得られる有機電界発光素子は、例えば、「有機ELディスプレイ」(オーム社,平成16年8月20日発行,時任静士、安達千波矢、村田英幸著)に記載されているような方法で有機ELディスプレイ及び有機EL照明を形成することができる。
以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。
[有機電界発光素子の作製]
(実施例1)
図1に示す有機電界発光素子を作製した。
ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を120nmの厚さに堆積したもの(三容真空社製、スパッタ成膜品)を、通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。パターン形成したITO基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。
まず、下の構造式(P1)に示す繰り返し構造を有する正孔輸送性高分子化合物(重量平均分子量:65000,Mw/Mn:1.6))(=P1−1)、構造式(A1)に示す4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート及び安息香酸エチルを含有する正孔注入層用組成物を調製した。調製方法は下記の調液方法1を用いた。この組成物を下記条件で陽極上にスピンコートにより成膜して、膜厚30nmの正孔注入層を得た。
Figure 2010225653
<正孔注入層用組成物>
溶媒 安息香酸エチル
組成物濃度 (P1−1):2.0重量%
(A1):0.4重量%
<調液方法1>
上記式(P1)で表される高分子化合物(P1−1)(2g)、及び上記式(A1)で表される化合物(4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート)(0.4g)、安息香酸エチル(97.6g)を冷却還流管を備えた、200mlの4つ口フラスコ中に混合し、N気流下、内温100℃で5時間加熱攪拌した。攪拌はフラスコ内にスターラーチップを仕込み、底面よりスターラーを用いて行った。また、加熱はシリコーンオイルを入れたオイルバスを用いて行った。スターラーの回転数は300rpmであった。調製した電荷輸送組成物溶液を安息香酸エチルにて重量で1000倍に希釈して、UV−3100PC(島津製作所製)を用いて、調製した溶液を内径1cm×1cmの石英セルにいれ、リファレンスとして溶液を調製した溶媒を用い、可視吸収スペクトルを測定した。470nmに吸収極大を持ち、吸光度は0.059であった。これより、I/Dは2.46×10であった。
(正孔輸送層の形成)
引き続き、下記構造式(H1)に示す架橋性化合物(重量平均分子量:95000)を含有する有機電界発光素子用組成物を調製し、下記の条件でスピンコートにより成膜して、加熱により架橋させることにより膜厚45nmの正孔輸送層を形成した。
Figure 2010225653
<架橋膜用組成物>
溶媒 トルエン
固形分濃度 0.4重量%
<成膜条件>
スピナ回転数 1500rpm
スピナ回転時間 30秒
スピンコート雰囲気 窒素中
加熱条件 窒素中、230℃、1時間
(発光層〜封止)
続いて、トリス(8−ヒドロキシキノリナート)アルミニウム(Alq)を加熱して、正孔輸送層上に蒸着を行い、膜厚60nmの発光層券、電子輸送層を成膜した。蒸着時の真空度は1.3×10−4Pa、蒸着速度は0.6〜1.0Å/秒の範囲で制御した。
ここで、電子輸送層まで蒸着を行った素子を一度前記真空蒸着装置内より大気中に取り出して、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内に設置して上記電子輸送層と同様にして装置内の真空度が2.1×10−4Pa以下になるまで排気した。
電子注入層として、フッ化リチウム(LiF)を、モリブデンボートを用いて、蒸着速度0.07〜0.17Å/秒、真空度2.3〜2.4×10−4Paで制御し、0.5nmの膜厚で電子輸送層の上に成膜した。
次に、陰極としてアルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.7〜6.1Å/秒、真空度2.3〜2.7×10−4Paで制御して膜厚80nmのアルミニウム層を形成した。以上の2層の蒸着時の基板温度は室温に保持した。
引き続き、素子が保管中に大気中の水分等で劣化することを防ぐため封止処理を行った。以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
素子の発光スペクトルの極大波長は526nmであり、Alqからのものと同定された。色度はCIE(x,y)=(0.33,0.62)であった。
4000cd/mでの輝度半減時間を測定した。
その結果を、表12に纏める。
(実施例2)
実施例1の式(P1)で表される正孔輸送性高分子化合物において、(P1−1)(重量平均分子量(Mw):65,000、分散度(Mw/Mn):1.6)から、(P1−2)(重量平均分子量(Mw):66,000、分散度(Mw/Mn):1.8)、に変更した他は、実施例1と同様にして素子を作製した。
4000cd/mでの輝度半減時間を測定した。
その結果を、表12に纏める。
(比較例1)
実施例1の<調液方法1>において、冷却還流管つきの200ml4つ口フラスコ中、N気流下、内温100℃で5時間熱攪拌したのを、100℃のホットプレート上においたビーカー中で5時間攪拌したことに変更した他は、実施例1と同様にして素子を作製した。
4000cd/mでの輝度半減時間を測定した。
その結果を、表12に纏める。
Figure 2010225653
表12に示すが如く、本発明の電荷輸送膜用組成物を用いて形成された素子は、駆動寿命が長いことがわかる。
本発明は、有機電界発光素子が使用される各種の分野、例えば、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯等の分野において、好適に使用することが出来る。
1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極

Claims (10)

  1. 芳香族アミン系ポリマー、電子受容性化合物及び有機溶媒を含有する電荷輸送膜用組成物において、
    下記式(1)を満たすことを特徴とする、電荷輸送膜用組成物。
    /D≧0.9×10 (1)
    (式中、Iは、電荷輸送膜用組成物に含まれる溶質の波長450〜600nmにおける吸収極大の吸光度、
    Dは、I測定時の電荷輸送膜用組成物の全固形分濃度、を表す。)
  2. 前記芳香族アミン系ポリマーが、下記式(I)で表される繰り返し単位を有することを特徴とする、請求項1に記載の電荷輸送膜用組成物。
    Figure 2010225653
    (式中、mは0〜3の整数を表し、
    Ar11及びAr12は、各々独立して、直接結合、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
    Ar13〜Ar15は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
    但し、Ar11及びAr12のいずれもが、直接結合であることはない。)
  3. 前記芳香族アミン系ポリマーが、架橋性基を有することを特徴とする、請求項1又は2に記載の電荷輸送膜用組成物。
  4. 架橋性基が、下記架橋性基群Tの中から選ばれる請求項3に記載の芳香族アミン系ポリマー。
    <架橋性基群T>
    Figure 2010225653
    (式中、R21〜R25は、各々独立に、水素原子又はアルキル基を表す。Ar31は置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
    尚、ベンゾシクロブテン環は、置換基を有していてもよい。
    置換基同士が環を形成してもよい。)
  5. 上記芳香族アミン系ポリマーが、重量平均分子量(Mw)3000以上、150000以下のポリマーであることを特徴とする、請求項1〜4のいずれか一項に記載の電荷輸送膜用組成物。
  6. 前記電子受容性化合物が、下記式(I−1)〜(I−3)のいずれかで表される化合物からなる群より選ばれることを特徴とする、請求項1〜5のいずれか一項に記載の電荷輸送膜用組成物。
    Figure 2010225653
    (式(I−1)〜(I−3)中、R11、R21及びR31は、各々独立に、A1〜A3と炭素原子で結合する有機基を表す。R12、R22、R23及びR32〜R34は、各々独立に、置換基を表す。R11〜R34のうち隣接する2以上の基が、互いに結合して環を形成していてもよい。
    1〜A3は何れも周期表第3周期以降の元素であって、A1は長周期型周期表の第17
    族に属する元素を表し、A2は長周期型周期表の第16族に属する元素を表し、A3は長周期型周期表の第15族に属する元素を表す。
    1 n1-〜Z3 n3-は、各々独立に、対アニオンを表す。
    〜nは、各々独立に、対アニオンZ1 n1-〜Z3 n3-のイオン価に相当する任意の正の整数である。)
  7. 有機電界発光素子用であることを特徴とする、請求項1〜6の何れか一項に記載の電荷輸送膜用組成物。
  8. 基板上に、陽極及び陰極、該陽極及び陰極の間に配置された有機層を有する有機電界発光素子において、該有機層が、請求項7に記載の電荷輸送膜用組成物で形成された有機層を含むことを特徴とする、有機電界発光素子。
  9. 請求項8に記載の有機電界発光素子を備えたことを特徴とする、有機ELディスプレイ。
  10. 請求項8に記載の有機電界発光素子を備えたことを特徴とする、有機EL照明。
JP2009068470A 2009-03-19 2009-03-19 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明 Pending JP2010225653A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068470A JP2010225653A (ja) 2009-03-19 2009-03-19 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068470A JP2010225653A (ja) 2009-03-19 2009-03-19 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明

Publications (1)

Publication Number Publication Date
JP2010225653A true JP2010225653A (ja) 2010-10-07

Family

ID=43042581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068470A Pending JP2010225653A (ja) 2009-03-19 2009-03-19 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明

Country Status (1)

Country Link
JP (1) JP2010225653A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105790A (ja) * 2009-11-12 2011-06-02 Mitsubishi Chemicals Corp アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2012147397A1 (ja) * 2011-04-26 2012-11-01 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2017034278A (ja) * 2011-07-08 2017-02-09 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置
JP2019087675A (ja) * 2017-11-08 2019-06-06 三菱ケミカル株式会社 電子デバイス及びその製造方法、並びに半導体層形成用塗布液及びその製造方法
US10319912B2 (en) 2015-01-29 2019-06-11 Samsung Electronics Co., Ltd. Charge-transporting material and organic light-emitting device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332076A (ja) * 2002-05-10 2003-11-21 Syntec Ges Fuer Chemie & Technologie Der Informationsaufzeichnung Mbh 有機赤色電気発光装置およびドーパント
JP2004193101A (ja) * 2002-11-26 2004-07-08 Seiko Epson Corp 液状組成物、成膜方法及び成膜装置、電気光学装置及びその製造方法、有機エレクトロルミネッセンス装置及びその製造方法、デバイス及びその製造方法、電子機器
JP2005531915A (ja) * 2002-06-26 2005-10-20 スリーエム イノベイティブ プロパティズ カンパニー 有機エレクトロルミネセンス・デバイス用のバッファ層、並びに製造および使用方法
JP2008222558A (ja) * 2007-03-08 2008-09-25 Mitsubishi Chemicals Corp 有機化合物、有機電界発光素子用組成物、有機電界発光素子用薄膜および有機電界発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332076A (ja) * 2002-05-10 2003-11-21 Syntec Ges Fuer Chemie & Technologie Der Informationsaufzeichnung Mbh 有機赤色電気発光装置およびドーパント
JP2005531915A (ja) * 2002-06-26 2005-10-20 スリーエム イノベイティブ プロパティズ カンパニー 有機エレクトロルミネセンス・デバイス用のバッファ層、並びに製造および使用方法
JP2004193101A (ja) * 2002-11-26 2004-07-08 Seiko Epson Corp 液状組成物、成膜方法及び成膜装置、電気光学装置及びその製造方法、有機エレクトロルミネッセンス装置及びその製造方法、デバイス及びその製造方法、電子機器
JP2008222558A (ja) * 2007-03-08 2008-09-25 Mitsubishi Chemicals Corp 有機化合物、有機電界発光素子用組成物、有機電界発光素子用薄膜および有機電界発光素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105790A (ja) * 2009-11-12 2011-06-02 Mitsubishi Chemicals Corp アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2012147397A1 (ja) * 2011-04-26 2012-11-01 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP5821951B2 (ja) * 2011-04-26 2015-11-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP2017034278A (ja) * 2011-07-08 2017-02-09 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置
US10319912B2 (en) 2015-01-29 2019-06-11 Samsung Electronics Co., Ltd. Charge-transporting material and organic light-emitting device including the same
JP2019087675A (ja) * 2017-11-08 2019-06-06 三菱ケミカル株式会社 電子デバイス及びその製造方法、並びに半導体層形成用塗布液及びその製造方法
JP7116904B2 (ja) 2017-11-08 2022-08-12 三菱ケミカル株式会社 電子デバイスの製造方法
JP2022161921A (ja) * 2017-11-08 2022-10-21 三菱ケミカル株式会社 電子デバイス及びその製造方法、並びに半導体層形成用塗布液及びその製造方法

Similar Documents

Publication Publication Date Title
JP5757244B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
JP5644063B2 (ja) 有機電界発光素子用組成物、高分子膜、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5598591B2 (ja) 有機電界発光素子の製造装置
JP2011184684A (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP4910741B2 (ja) 有機電界発光素子の製造方法
WO2012096352A1 (ja) 有機電界発光素子、有機電界発光素子用組成物、及び有機電界発光装置
WO2011126095A1 (ja) 有機電界発光素子用組成物の製造方法、有機電界発光素子用組成物、有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置および有機el照明
JP5717333B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置及び有機el照明
JP5672681B2 (ja) 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5617202B2 (ja) 有機化合物、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010239125A (ja) 有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010225653A (ja) 電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5703859B2 (ja) 有機電界発光素子用組成物及び有機電界発光素子の製造方法
JP5573697B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2010209320A (ja) 有機電界発光素子用組成物、有機電界発光素子の製造方法、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010199296A (ja) 有機電界発光素子、有機elディスプレイおよび有機el照明
WO2011019025A1 (ja) 有機電界発光素子、有機el表示装置及び有機el照明
JP2010229121A (ja) 有機金属錯体、有機電界発光素子用組成物および有機電界発光素子
JP5402703B2 (ja) 有機電界発光素子、有機elディスプレイ、有機el照明及び有機el信号装置
JP5966422B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2010235708A (ja) 蛍光発光材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010239134A (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP5456282B2 (ja) 有機電界発光素子
JP5304301B2 (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP2014033134A (ja) 有機電界発光素子用組成物、有機膜、有機電界発光素子、有機el表示装置及び有機el照明

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603