JP4947452B1 - Method for measuring thread elements at the end of pipes - Google Patents
Method for measuring thread elements at the end of pipes Download PDFInfo
- Publication number
- JP4947452B1 JP4947452B1 JP2011538788A JP2011538788A JP4947452B1 JP 4947452 B1 JP4947452 B1 JP 4947452B1 JP 2011538788 A JP2011538788 A JP 2011538788A JP 2011538788 A JP2011538788 A JP 2011538788A JP 4947452 B1 JP4947452 B1 JP 4947452B1
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- screw
- tube
- cleaning
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000004140 cleaning Methods 0.000 claims abstract description 87
- 238000001035 drying Methods 0.000 claims abstract description 69
- 238000005259 measurement Methods 0.000 claims description 54
- 230000008569 process Effects 0.000 claims description 36
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 22
- 235000011089 carbon dioxide Nutrition 0.000 claims description 22
- 238000005507 spraying Methods 0.000 claims description 5
- 238000000691 measurement method Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 42
- 238000012423 maintenance Methods 0.000 description 23
- 239000000314 lubricant Substances 0.000 description 15
- 238000003754 machining Methods 0.000 description 13
- 239000003960 organic solvent Substances 0.000 description 13
- 238000005406 washing Methods 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 239000002699 waste material Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 238000009434 installation Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000003129 oil well Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9515—Objects of complex shape, e.g. examined with use of a surface follower device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2425—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures of screw-threads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/10—Cleaning by methods involving the use of tools characterised by the type of cleaning tool
- B08B1/12—Brushes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
- B08B1/34—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members rotating about an axis parallel to the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/02—Cleaning by the force of jets or sprays
- B08B3/022—Cleaning travelling work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/021—Cleaning pipe ends or pipe fittings, e.g. before soldering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/023—Cleaning the external surface
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Cleaning In General (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
Abstract
【課題】ねじ加工が施された管端部のねじ要素をオンライン(ねじ加工ライン)で自動的に精度良く測定する方法を提供する。
【解決手段】本発明は、順次搬送される管Pの端部にねじ加工が施されるねじ加工ライン100上で、ねじ加工後の管端部のねじ要素を自動的に測定する方法であって、ねじ加工後の管端部をねじ洗浄装置30で洗浄する洗浄工程と、前記洗浄された管端部をねじ乾燥装置40で乾燥させる乾燥工程と、前記乾燥後の管端部のねじ要素を自動ねじ要素測定装置50で測定する測定工程とを含み、少なくとも前記測定工程においては、管端部が清浄雰囲気下におかれることを特徴とする。
【選択図】図1The present invention provides a method for automatically and accurately measuring a thread element of a threaded end of a pipe on-line (threading line).
The present invention is a method for automatically measuring screw elements at the end of a pipe after threading on a threading line 100 in which the end of the pipe P that is sequentially conveyed is threaded. A cleaning step of cleaning the threaded tube end portion with the screw cleaning device 30, a drying step of drying the cleaned tube end portion with the screw drying device 40, and a screw element of the tube end portion after the drying Is measured by the automatic screw element measuring device 50, and at least in the measuring step, the tube end is placed in a clean atmosphere.
[Selection] Figure 1
Description
本発明は、油井管など、ねじ加工が施された管端部のねじ要素をオンラインで自動的に精度良く測定する方法に関する。 The present invention relates to a method for automatically and accurately measuring a screw element at a pipe end portion subjected to screw machining, such as an oil well pipe, on-line.
従来より、油井管等は、管端部に加工されたねじを用いて管端部同士を継ぐことで使用されてきた。このねじは、油井の深化や腐食環境性に対する要請に伴い、ねじ形状等において種々の改善がなされてきている(例えば、非特許文献1参照)。このようなねじは、場合によっては、長さにして数十m、重さにして数百kg重に及ぶ管の端部に形成され、且つ、複雑・高精度なねじ形状を有する。そして、このねじに関して、ねじ要素と称される品質管理項目が定められており、このねじ要素の測定値が所定の公差内にあるか否かが検査されている。ねじ要素としては、例えば、ねじ部外径、シール部外径、平行部外径、ねじ溝径、ねじ山高さ、ねじ溝深さ、ねじテーパ、シールテーパ等を列挙することができる。 Conventionally, oil well pipes and the like have been used by connecting pipe ends to each other using screws machined on the pipe ends. Various improvements in the screw shape and the like have been made with this screw in response to demands for deepening the oil well and corrosive environment (see, for example, Non-Patent Document 1). In some cases, such a screw is formed at the end of a pipe having a length of several tens of meters and a weight of several hundred kg, and has a complicated and highly accurate screw shape. For this screw, a quality control item called a screw element is defined, and it is inspected whether or not the measured value of the screw element is within a predetermined tolerance. Examples of the screw element can include a screw portion outer diameter, a seal portion outer diameter, a parallel portion outer diameter, a screw groove diameter, a screw thread height, a screw groove depth, a screw taper, and a seal taper.
従来、上記のような品質管理項目であるねじ要素は、オンライン(ねじ加工ライン)では専用の測定器具を用いて手動で測定されていたが、省力やヒューマンエラー抑制、測定の高速化及び高精度化の観点から、より高精度な自動測定技術の開発が試行されてきた。
具体的には、ねじ要素を自動測定する技術として、光源からの平行光をねじ溝に対して略平行に照射し、管軸に対して前記光源とは反対側に漏れ出た光を検出する光学式センサを有し、当該光学式センサの検出結果に基づいてねじ要素を測定する自動測定装置が公知である(例えば、特許文献1、2参照)。Conventionally, screw elements, which are quality control items as described above, have been measured manually on-line (threading line) using a dedicated measuring instrument, but labor saving, human error suppression, measurement speedup and high accuracy From the standpoint of computerization, development of more accurate automatic measurement technology has been attempted.
Specifically, as a technique for automatically measuring the screw element, the parallel light from the light source is irradiated substantially parallel to the screw groove, and the light leaking to the opposite side of the light source with respect to the tube axis is detected. An automatic measuring device that has an optical sensor and measures a screw element based on the detection result of the optical sensor is known (see, for example, Patent Documents 1 and 2).
しかしながら、特許文献1、2に記載のようなねじ要素の自動測定装置をオンライン(ねじ加工ライン)で適用するには、環境面での問題があった。
具体的に説明すれば、管端部にねじ加工を施す際には、一般的に、管端部に潤滑剤(水及び防錆剤)を散布しながら、旋盤を用いて管端部をねじ切削するが、この潤滑剤がねじ切削後の管端部に残存して、ねじ要素の測定精度の劣化を招く場合がある。また、切削後にかえり取りを行う場合には、ねじ切削時と同様に潤滑剤が残存する他、かえり取りによって管端部に付着した切削屑により、ねじ要素の測定精度の劣化を招くこともある。However, in order to apply the automatic measuring device for screw elements as described in Patent Documents 1 and 2 on-line (threading line), there has been an environmental problem.
More specifically, when threading a pipe end, the pipe end is generally screwed using a lathe while spraying lubricant (water and rust inhibitor) to the pipe end. Although it cuts, this lubricant may remain at the end of the tube after thread cutting, leading to deterioration in measurement accuracy of the screw element. In addition, when burr is removed after cutting, the lubricant remains in the same way as during thread cutting, and cutting scraps adhering to the end of the pipe due to burr removal may cause deterioration in measurement accuracy of the screw element. .
このため、ねじ要素の自動測定装置をオンラインで適用し、全数測定を行うことは、実際には困難である。従って、従来は、適宜のタイミングで管をねじ加工ラインから抜き取り、環境条件の良い試験室で潤滑剤や切削屑を取り除いた後に自動測定を行っている。 For this reason, it is actually difficult to apply the automatic measurement device for screw elements online and perform total measurement. Therefore, conventionally, automatic measurement is performed after the pipe is extracted from the threading line at an appropriate timing and the lubricant and cutting waste are removed in a test room with good environmental conditions.
本発明は、斯かる従来技術の問題を解決するためになされたものであり、ねじ加工が施された管端部のねじ要素をオンライン(ねじ加工ライン)で自動的に精度良く測定する方法を提供することを課題とする。 The present invention has been made to solve such a problem of the prior art, and provides a method for automatically and accurately measuring a thread element at a threaded end of a pipe on-line (a threading line). The issue is to provide.
前記課題を解決するため、本発明は、順次搬送される管の端部にねじ加工が施されるねじ加工ライン上で、ねじ加工後の管端部のねじ要素を自動的に測定する方法であって、ねじ加工後の管端部を洗浄する洗浄工程と、前記洗浄された管端部を乾燥させる乾燥工程と、前記乾燥後の管端部のねじ要素を測定する測定工程とを含み、少なくとも前記測定工程においては、管端部が正圧状態の清浄エアーで満たされた測定室内におかれることを特徴とする管端部のねじ要素測定方法を提供する。 In order to solve the above-mentioned problems, the present invention is a method for automatically measuring screw elements at the end of a pipe after threading on a threading line in which the end of the pipe that is sequentially conveyed is threaded. A cleaning process for cleaning the threaded pipe end, a drying process for drying the cleaned pipe end, and a measuring process for measuring the thread element of the dried pipe end, At least in the measurement step, the tube end portion is placed in a measurement chamber filled with clean air in a positive pressure state .
本発明は、ねじ加工後の管端部を洗浄する洗浄工程を含むため、ねじ要素の測定精度劣化の要因となり得る、ねじ切削やかえり取りの際に管端部に残存する潤滑剤や、かえり取りによって管端部に付着した切削屑が洗浄されることが期待できる。洗浄工程における管端部の洗浄には、例えば、有機溶剤が使用される。
また、本発明は、洗浄された管端部を乾燥させる乾燥工程を含むため、洗浄工程で管端部に残存するおそれのある有機溶剤等が乾燥し、有機溶剤等によるねじ要素の測定精度の劣化を招くことが防止可能である。
さらに、本発明は、正圧状態の清浄エアーで満たされた測定室内におかれた管端部のねじ要素を測定する測定工程を含むため、精度良く、ねじ要素を測定することが可能である。測定工程におけるねじ要素の測定には、例えば、特許文献1、2に記載のような光学式の自動測定装置が用いられる。
以上のように、本発明によれば、管端部が正圧状態の清浄エアーで満たされた測定室内におかれるため、ねじ加工ラインの雰囲気中に存在するパーティクルが管端部に付着してねじ要素の測定精度の劣化を招くおそれが低減し、ねじ加工が施された管端部のねじ要素をオンライン(ねじ加工ライン)で自動的に精度よく測定することが可能である。
Since the present invention includes a cleaning process for cleaning the pipe end after threading, the lubricant remaining on the pipe end during thread cutting or burr removal, which may cause a deterioration in measurement accuracy of the screw element, or burr It can be expected that the cutting waste adhering to the pipe end portion is cleaned by the removal. For example, an organic solvent is used for cleaning the tube end in the cleaning process.
In addition, since the present invention includes a drying process for drying the cleaned pipe end, the organic solvent that may remain at the pipe end in the cleaning process is dried, and the measurement accuracy of the screw element by the organic solvent is improved. It is possible to prevent deterioration.
Furthermore, since the present invention includes a measurement step of measuring the screw element at the end of the tube placed in the measurement chamber filled with clean air in a positive pressure state, the screw element can be measured with high accuracy. . For example, an optical automatic measuring device as described in Patent Documents 1 and 2 is used for measuring the screw element in the measuring step.
As described above, according to the present invention, since the tube end portion is placed in the measurement chamber filled with clean air in a positive pressure state, particles present in the atmosphere of the screw processing line adhere to the tube end portion. The possibility of deteriorating the measurement accuracy of the screw element is reduced, and the screw element at the pipe end subjected to the screw processing can be automatically and accurately measured online (screw processing line).
また、前記課題を解決するため、本発明は、順次搬送される管の端部にねじ加工が施されるねじ加工ライン上で、ねじ加工後の管端部のねじ要素を自動的に測定する方法であって、ねじ加工後の管端部を洗浄する洗浄工程と、前記洗浄された管端部を乾燥させる乾燥工程と、前記乾燥後の管端部のねじ要素を測定する測定工程とを含み、少なくとも前記乾燥工程から前記測定工程までの間において、前記ねじ加工後の管端部が清浄雰囲気下におかれることを特徴とする管端部のねじ要素測定方法としても提供される。 Moreover, in order to solve the said subject, this invention automatically measures the screw element of the pipe end part after a screw process on the screw process line by which the thread process is given to the end part of the pipe conveyed sequentially. A method comprising: a washing step for washing a pipe end after threading; a drying step for drying the washed pipe end; and a measuring step for measuring a screw element at the dried pipe end. wherein, during the period from at least the drying step to said measuring step, the tube end after the threading is provided as a screw element measuring method tube end, characterized in that it is placed under a clean atmosphere.
前記洗浄工程において管端部に残存する潤滑剤や管端部に付着した切削屑が洗浄され、前記乾燥工程において管端部が乾燥した後に、管端部がねじ加工ラインの雰囲気に晒されると、ねじ加工ラインの雰囲気中に存在するパーティクルが管端部に付着して、ねじ要素の測定精度の劣化を招くおそれがある。
しかしながら、本発明に係る管端部のねじ要素測定方法によれば、少なくとも乾燥工程から測定工程までの間において、管端部が清浄雰囲気下におかれるため、ねじ加工ラインの雰囲気中に存在するパーティクルが管端部に付着してねじ要素の測定精度の劣化を招くおそれが低減し、より一層精度良くねじ要素を測定することが可能である。
When the lubricant remaining on the pipe end in the cleaning process and the cutting waste adhering to the pipe end are cleaned and the pipe end is dried in the drying process, the pipe end is exposed to the atmosphere of the threading line. There is a possibility that particles existing in the atmosphere of the screw processing line adhere to the pipe end portion and cause deterioration in measurement accuracy of the screw element.
However, according to the screw element measuring method of the pipe end portion according to the present invention , the pipe end portion is placed in a clean atmosphere at least from the drying step to the measurement step, and therefore exists in the atmosphere of the screw processing line. It is possible to reduce the possibility that particles adhere to the end portion of the tube and cause deterioration in the measurement accuracy of the screw element, and the screw element can be measured with higher accuracy.
また、前記課題を解決するため、本発明は、順次搬送される管の端部にねじ加工が施されるねじ加工ライン上で、ねじ加工後の管端部のねじ要素を自動的に測定する方法であって、ねじ加工後の管端部に粒状のドライアイスを圧縮空気と共に噴出して該管端部を洗浄する洗浄工程と、前記洗浄後の管端部のねじ要素を測定する測定工程とを含み、少なくとも前記測定工程においては、管端部が正圧状態の清浄エアーで満たされた測定室内におかれることを特徴とする管端部のねじ要素測定方法としても提供される。 Moreover, in order to solve the said subject, this invention automatically measures the screw element of the pipe end part after a screw process on the screw process line by which the thread process is given to the end part of the pipe conveyed sequentially. A method for cleaning a pipe end by spraying granular dry ice together with compressed air to a pipe end after threading, and a measurement process for measuring a screw element at the pipe end after the washing And at least in the measurement step, the pipe end portion is placed in a measurement chamber filled with clean air in a positive pressure state .
本発明も、ねじ加工後の管端部を洗浄する洗浄工程を含むため、ねじ要素の測定精度劣化の要因となり得る、ねじ切削やかえり取りの際に管端部に残存する潤滑剤や、かえり取りによって管端部に付着した切削屑が洗浄されることが期待できる。
そして、本発明の洗浄工程では、粒状のドライアイスを圧縮空気と共に噴出してねじ加工後の管端部を洗浄するため、洗浄に供されたドライアイスは自然に気化することになる。このため、洗浄された管端部を乾燥させる乾燥工程が不要になるという利点がある。
さらに、本発明は、正圧状態の清浄エアーで満たされた測定室内におかれた管端部のねじ要素を測定する測定工程を含むため、精度良く、ねじ要素を測定することが可能である。測定工程におけるねじ要素の測定には、例えば、特許文献1、2に記載のような光学式の自動測定装置が用いられる。
以上のように、本発明によれば、ねじ加工が施された管端部のねじ要素をオンライン(ねじ加工ライン)で自動的に精度良く測定することが可能である。
好ましくは、本発明において、前記洗浄工程において、前記管を5rpm〜23rpmの回転速度で回転させながら、前記ドライアイスを前記管の軸方向に沿った線状に散布する。
回転速度が5rpm未満であれば、管の端部の同一箇所に過度にドライアイスが散布されることになり、結露が生じ易い。一方、回転速度が23rpmを超えれば、ねじ切削やかえり取りの際に管の端部に残存する潤滑剤や、かえり取りによって管の端部に付着した切削屑を十分に洗浄できないおそれがある。
しかしながら、前記好ましい構成によれば、管の端部に結露を生じさせることなく、管の端部を十分に洗浄することが可能である。
また、好ましくは、前記管のねじ部のフランク面が、ねじ山からねじ溝に向かうに従って管端側に傾斜している形状であって、前記管のねじ軸方向に垂直な方向に対して、前記ドライアイスの噴出方向の中心が成す角度をαとし、前記ねじ山より管中央側のフランク面が成す角度をβとし、前記ねじ山より管端側のフランク面が成す角度をγとしたとき、前記洗浄工程において、前記ドライアイスの噴出方向がβ<α<γの条件を満足する。
前記好ましい構成によれば、管の端部に加工されたねじ部のフランク面を効果的に洗浄することが可能である。
Since the present invention also includes a cleaning process for cleaning the pipe end after threading, the lubricant remaining on the pipe end during thread cutting or burr removal, which may cause a deterioration in measurement accuracy of the screw element, or burr It can be expected that the cutting waste adhering to the pipe end portion is cleaned by the removal.
And in the washing | cleaning process of this invention, since granular dry ice is ejected with compressed air and the pipe end part after a screw process is wash | cleaned, the dry ice provided to washing | cleaning will vaporize naturally. For this reason, there exists an advantage that the drying process which dries the pipe | tube edge part wash | cleaned becomes unnecessary.
Furthermore, since the present invention includes a measurement step of measuring the screw element at the end of the tube placed in the measurement chamber filled with clean air in a positive pressure state, the screw element can be measured with high accuracy. . For example, an optical automatic measuring device as described in Patent Documents 1 and 2 is used for measuring the screw element in the measuring step.
As described above, according to the present invention, it is possible to automatically and accurately measure the thread element of the pipe end portion subjected to the thread machining on-line (screw machining line).
Preferably, in the present invention, in the cleaning step, the dry ice is sprayed linearly along the axial direction of the tube while rotating the tube at a rotation speed of 5 rpm to 23 rpm.
If the rotational speed is less than 5 rpm, dry ice will be excessively sprayed on the same location at the end of the tube, and condensation is likely to occur. On the other hand, if the rotational speed exceeds 23 rpm, there is a possibility that the lubricant remaining at the end of the pipe during thread cutting or burr removal or cutting waste adhering to the end of the pipe due to burr removal cannot be sufficiently cleaned.
However, according to the preferable configuration, it is possible to sufficiently clean the end of the tube without causing condensation at the end of the tube.
Preferably, the flank surface of the thread portion of the tube is inclined toward the tube end side from the thread to the thread groove, and is perpendicular to the thread axis direction of the tube. When the angle formed by the center of the spray direction of the dry ice is α, the angle formed by the flank surface on the tube center side from the screw thread is β, and the angle formed by the flank surface on the tube end side from the screw thread is γ In the washing step, the dry ice ejection direction satisfies the condition of β <α <γ.
According to the said preferable structure, it is possible to wash | clean effectively the flank surface of the thread part processed into the edge part of a pipe | tube.
本発明に係る管端部のねじ要素測定方法によれば、ねじ加工が施された管端部のねじ要素をオンライン(ねじ加工ライン)で自動的に精度良く測定可能である。このため、オンラインでの全数測定も可能となることが期待できる。 According to the thread element measuring method of the pipe end part according to the present invention, the thread element of the pipe end part subjected to the threading process can be automatically and accurately measured online (screw machining line). For this reason, it is expected that 100% online measurement is possible.
以下、添付図面を適宜参照しつつ、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings as appropriate.
<第1実施形態>
図1は、本発明の第1実施形態に係る管端部のねじ要素測定方法を実施するねじ加工ラインの概略構成を示す模式図である。
図1に示すように、ねじ加工ライン100では、所定の搬送装置(図示せず)によって、順次搬送される管Pの端部にねじ加工が施される。
具体的には、まず管Pがねじ切削用旋盤10の設置位置に向けて管軸方向に搬入される。そして、管Pの端部に潤滑剤(水及び防錆剤)を散布しながら、ねじ切削用旋盤10によって管Pの端部がねじ切削される。管端部のねじ切削を終えた管Pは、ねじ切削用旋盤10から管軸方向に搬出され、かえり取り装置20の設置位置に対向する位置まで横送りされる。
次に、かえり取り装置20が管Pの端部に向けて管軸方向に前進する。そして、かえり取り装置20によって管Pの端部のかえり取りが実施される。かえり取り装置20としては、例えば、ねじ切削用旋盤10と同様の旋盤が用いられる。つまり、管Pの端部に潤滑剤(水及び防錆剤)を散布しながら、かえり取り装置20によって管Pの端部のねじに生じたかえりが除去される。かえり取り装置20は、管Pの端部のかえり取りを終えた後、元の位置に後退する。<First Embodiment>
FIG. 1 is a schematic diagram showing a schematic configuration of a screw machining line for carrying out a thread element measuring method for a pipe end according to a first embodiment of the present invention.
As shown in FIG. 1, in the threading line 100, the end of the pipe P that is sequentially transported is threaded by a predetermined transport device (not shown).
Specifically, first, the pipe P is carried in the pipe axis direction toward the installation position of the thread cutting lathe 10. Then, the end of the pipe P is threaded by the lathe 10 for thread cutting while spraying the lubricant (water and rust preventive agent) to the end of the pipe P. The pipe P, which has finished the thread cutting of the pipe end, is carried out from the thread cutting lathe 10 in the pipe axis direction and is laterally fed to a position facing the installation position of the burr removal apparatus 20.
Next, the burr removal device 20 advances in the tube axis direction toward the end of the tube P. Then, the end portion of the pipe P is removed by the burr removing device 20. As the burr removing device 20, for example, a lathe similar to the thread cutting lathe 10 is used. That is, the burr generated on the screw at the end of the pipe P is removed by the burr removing device 20 while the lubricant (water and rust preventive agent) is sprayed on the end of the pipe P. The burr removal device 20 moves back to the original position after burr removal of the end of the pipe P.
以上のようにして、端部にねじ加工が施された管Pは、ねじ洗浄装置30の設置位置に対向する位置まで横送りされ、ねじ加工後の管端部を洗浄する洗浄工程が実行される。具体的には、ねじ洗浄装置30が管Pの端部に向けて管軸方向に前進し、有機溶剤による洗浄が行われる。 As described above, the pipe P whose end is threaded is laterally fed to a position facing the installation position of the screw cleaning device 30, and a cleaning process for cleaning the pipe end after threading is executed. The Specifically, the screw cleaning device 30 moves forward in the tube axis direction toward the end of the tube P, and cleaning with an organic solvent is performed.
図2は、本実施形態の洗浄工程で用いることのできるねじ洗浄装置30の一例を概略的に示す模式図である。図2(a)は部分的に透視(筐体31の内部を透視)した正面図を、図2(b)は平面図を示す。ただし、図2(b)では、筐体31及びノズル32の図示を省略している。
図2に示すように、本実施形態のねじ洗浄装置30は、管Pの上方に位置決めされた筐体31と、筐体31に内蔵されたノズル32と、管Pの下方に位置決めされ、軸33A周りに回転可能な洗浄ブラシ33とを備えている。筐体31、ノズル32及び洗浄ブラシ33は、ノズル32がねじ加工が施された管Pの端部の直上に位置し、洗浄ブラシ33がねじ加工が施された管Pの端部の直下に位置するまで、一体として管Pの端部に向けて管Pの軸方向に前進する。そして、前進動作を終えた後、ノズル32から洗浄液としての有機溶剤Sを噴出する。ノズル32から噴出した有機溶剤Sは、筐体31下面の開口部を介して、管Pの端部に散布される。この際、管PをターニングローラRによって周方向に回転させると共に、洗浄ブラシ33も軸33A周りに回転させて、洗浄ブラシ33で管Pの端部を擦る。以上の動作により、管Pの端部全周が洗浄され、ねじ切削やかえり取りの際に管端部に残存する潤滑剤や、かえり取りによって管端部に付着した切削屑が除去されることが期待できる。
ねじ洗浄装置30は、管Pの端部の洗浄を終えた後、元の位置に後退する。FIG. 2 is a schematic view schematically showing an example of a screw cleaning device 30 that can be used in the cleaning process of the present embodiment. 2A is a front view partially seen through (the inside of the housing 31 is seen through), and FIG. 2B is a plan view. However, in FIG. 2B, the casing 31 and the nozzle 32 are not shown.
As shown in FIG. 2, the screw cleaning device 30 of the present embodiment includes a casing 31 positioned above the pipe P, a nozzle 32 built in the casing 31, and a position positioned below the pipe P, and the shaft The cleaning brush 33 is rotatable around 33A. The casing 31, the nozzle 32, and the cleaning brush 33 are located immediately above the end of the pipe P on which the nozzle 32 is threaded, and just below the end of the pipe P on which the cleaning brush 33 is threaded. It moves forward in the axial direction of the tube P toward the end of the tube P as a unit until it is positioned. Then, after finishing the forward movement, the organic solvent S as the cleaning liquid is ejected from the nozzle 32. The organic solvent S ejected from the nozzle 32 is sprayed on the end of the pipe P through the opening on the lower surface of the housing 31. At this time, the tube P is rotated in the circumferential direction by the turning roller R, and the cleaning brush 33 is also rotated around the shaft 33A, and the end of the tube P is rubbed with the cleaning brush 33. Through the above operation, the entire circumference of the end of the pipe P is cleaned, and the lubricant remaining on the pipe end during thread cutting and burr removal and the cutting waste adhering to the pipe end due to burr removal are removed. Can be expected.
The screw cleaning device 30 moves back to the original position after cleaning the end of the pipe P.
次に、図1に示すように、端部が洗浄された管Pは、ねじ乾燥装置40の設置位置に対向する位置まで横送りされ、洗浄された管端部を乾燥させる乾燥工程が実行される。具体的には、ねじ乾燥装置40が管Pの端部に向けて管軸方向に前進し、エアーによる乾燥が行われる。 Next, as shown in FIG. 1, the pipe P whose end has been cleaned is laterally fed to a position facing the installation position of the screw drying device 40, and a drying process for drying the cleaned pipe end is performed. The Specifically, the screw drying device 40 advances in the tube axis direction toward the end of the tube P, and drying by air is performed.
図3は、本実施形態の乾燥工程で用いることのできるねじ乾燥装置40の一例を概略的に示す模式図である。図3(a)は正面図を、図3(b)は斜視図を示す。ただし、図3(b)では、ノズル42の図示を省略している。
図3に示すように、本実施形態のねじ乾燥装置40は、管Pの外径よりも内径の大きな環状部材41と、環状部材41に取り付けられた複数のノズル42を備えている。環状部材41及びノズル42は、これらがねじ加工が施された管Pの端部を囲繞する位置まで、一体として管Pの端部に向けて前進する。そして、前進動作を終えた後、ノズル42から管Pの端部に向けてエアーAを噴出する。以上の動作により、前述した洗浄工程で管Pの端部に残存するおそれのある有機溶剤Sを乾燥させ得ることが期待できる。
ねじ乾燥装置40は、管Pの端部の乾燥を終えた後、元の位置に後退する。FIG. 3 is a schematic view schematically showing an example of a screw drying device 40 that can be used in the drying process of the present embodiment. 3A is a front view, and FIG. 3B is a perspective view. However, illustration of the nozzle 42 is abbreviate | omitted in FIG.3 (b).
As shown in FIG. 3, the screw drying device 40 of the present embodiment includes an annular member 41 having an inner diameter larger than the outer diameter of the tube P and a plurality of nozzles 42 attached to the annular member 41. The annular member 41 and the nozzle 42 advance toward the end of the tube P as a unit to a position where they surround the end of the tube P that has been threaded. Then, after finishing the forward movement, air A is ejected from the nozzle 42 toward the end of the pipe P. With the above operation, it can be expected that the organic solvent S that may remain at the end of the pipe P in the above-described cleaning step can be dried.
The screw drying device 40 moves back to the original position after drying the end of the tube P.
最後に、図1に示すように、端部が乾燥した管Pは、自動ねじ要素測定装置50の設置位置に対向する位置まで横送りされ、清浄雰囲気下で乾燥後の管端部のねじ要素を測定する測定工程が実行される。具体的には、管Pの端部が、清浄雰囲気下におかれた自動ねじ要素測定装置50の設置位置に向けて管軸方向に搬入される。より具体的には、自動ねじ要素測定装置50は正圧状態の清浄エアーで満たされた測定室内に設置されており、管Pの端部が、この測定室に設けられた開口部から測定室内に搬入され、自動ねじ要素測定装置50でねじ要素が測定される。自動ねじ要素測定装置50としては、例えば、特許文献1、2に記載のような光学式の自動測定装置を用いることが可能である。ねじ要素の測定を終えた管Pは、前記測定室の開口部を介して、前記測定室の外部に搬出された後、横送りされる。 Finally, as shown in FIG. 1, the pipe P whose end is dried is laterally fed to a position opposite to the installation position of the automatic screw element measuring device 50, and the screw element at the pipe end after drying in a clean atmosphere. A measurement step for measuring is performed. Specifically, the end of the pipe P is carried in the pipe axis direction toward the installation position of the automatic screw element measuring device 50 placed in a clean atmosphere. More specifically, the automatic screw element measuring device 50 is installed in a measurement chamber filled with clean air in a positive pressure state, and the end of the pipe P is connected to the measurement chamber from an opening provided in the measurement chamber. And the screw element is measured by the automatic screw element measuring device 50. As the automatic screw element measuring device 50, for example, an optical automatic measuring device as described in Patent Documents 1 and 2 can be used. After the measurement of the screw element, the pipe P is carried out to the outside of the measurement chamber through the opening of the measurement chamber and then laterally fed.
以上に説明した本実施形態に係る管端部のねじ要素測定方法は、ねじ加工(ねじ切削及びかえり取り)後の管端部を洗浄する洗浄工程を含むため、ねじ要素の測定精度劣化の要因となり得る、ねじ切削やかえり取りの際に管端部に残存する潤滑剤や、かえり取りによって管端部に付着した切削屑が洗浄されることが期待できる。
また、本実施形態に係る管端部のねじ要素測定方法は、洗浄された管端部を乾燥させる乾燥工程を含むため、洗浄工程で管端部に残存するおそれのある有機溶剤Sが乾燥し、有機溶剤Sによるねじ要素の測定精度の劣化を招くことを防止可能である。
さらに、本実施形態に係る管端部のねじ要素測定方法は、清浄雰囲気下におかれた管端部のねじ要素を測定する測定工程を含むため、精度良く、ねじ要素を測定することが可能である。Since the screw element measuring method for the pipe end portion according to the present embodiment described above includes a cleaning process for washing the pipe end portion after screw machining (screw cutting and burr removal), the factor of deterioration in measurement accuracy of the screw element is caused. It can be expected that the lubricant remaining at the end of the pipe during thread cutting or burr removal and the cutting waste adhering to the end of the pipe by burr removal will be washed.
Moreover, since the thread element measuring method of the pipe end part according to the present embodiment includes a drying step of drying the washed pipe end part, the organic solvent S that may remain at the pipe end part in the washing process is dried. Further, it is possible to prevent the measurement accuracy of the screw element from being deteriorated by the organic solvent S.
Furthermore, since the screw element measuring method of the pipe end part according to the present embodiment includes a measuring step of measuring the screw element of the pipe end part placed in a clean atmosphere, the screw element can be measured with high accuracy. It is.
なお、本実施形態では、かえり取り装置20、ねじ洗浄装置30及びねじ乾燥装置40が、管Pの端部に向けて管軸方向に前進し、管Pの端部のかえり取り、洗浄及び乾燥を終えた後、元の位置に後退する態様について説明した。しかしながら、本発明は、このような態様に限るものではなく、管Pが各装置20〜40の設置位置に向けて管軸方向に搬入され、管Pの端部のかえり取り、洗浄及び乾燥を終えた後、管Pが各装置20〜40から管軸方向に搬出される態様とすることも可能である。 In the present embodiment, the burr removing device 20, the screw washing device 30 and the screw drying device 40 move forward in the tube axis direction toward the end of the tube P, and burr, wash and dry the end of the tube P. After finishing the above, the mode of retreating to the original position has been described. However, the present invention is not limited to such an embodiment, and the pipe P is carried in the pipe axis direction toward the installation position of each device 20 to 40, and the end portion of the pipe P is burred, washed and dried. After finishing, it is also possible to adopt a mode in which the pipe P is unloaded from the devices 20 to 40 in the pipe axis direction.
<第2実施形態>
前述した第1実施形態では、ねじ乾燥装置40による乾燥工程で管Pの端部が乾燥した後、自動ねじ要素測定装置50による測定工程で管Pの端部のねじ要素が測定されるまでの間、管Pの端部は、ねじ加工ライン100の雰囲気に晒されることになる。このため、管Pの端部のねじ要素が測定される前に、ねじ加工ライン100の雰囲気中に存在するパーティクルが管Pの端部に付着して、ねじ要素の測定精度の劣化を招くおそれがある。Second Embodiment
In 1st Embodiment mentioned above, after the edge part of the pipe P dries in the drying process by the screw drying apparatus 40, until the screw element of the edge part of the pipe P is measured by the measurement process by the automatic screw element measuring apparatus 50. Meanwhile, the end of the pipe P is exposed to the atmosphere of the screw machining line 100. For this reason, before the screw element at the end portion of the pipe P is measured, particles existing in the atmosphere of the screw processing line 100 may adhere to the end portion of the pipe P, leading to deterioration in measurement accuracy of the screw element. There is.
そこで、本発明者らは、ねじ加工ライン100の雰囲気中に存在するパーティクルの影響を評価する試験を行った。
まず、本発明者らは、ねじ加工ライン100において2日間に亘り、パーティクルカウンタを用いて、パーティクル径0.3μm、0.5μm及び1μmのパーティクル密度(単位体積当たりのパーティクル個数)を測定した。パーティクル密度の測定には、市販のパーティクルカウンタを用いた。
図4(a)は、測定したパーティクル密度の評価時間内における平均値を示すグラフである。図4(b)は、測定したパーティクル密度の評価時間内における最大値を示すグラフである。本発明者らは、図4(a)、(b)に示すパーティクル径0.3μm、0.5μm及び1μmのパーティクル密度の測定値を外挿し(図4(a)、(b)に示す破線が外挿結果)、パーティクル径5μm及び10μmのパーティクル密度を推定した。Therefore, the present inventors conducted a test for evaluating the influence of particles present in the atmosphere of the screw machining line 100.
First, the inventors measured the particle density (number of particles per unit volume) with a particle diameter of 0.3 μm, 0.5 μm, and 1 μm for 2 days in the threading line 100 using a particle counter. A commercially available particle counter was used to measure the particle density.
FIG. 4A is a graph showing the average value of the measured particle density within the evaluation time. FIG. 4B is a graph showing the maximum value of the measured particle density within the evaluation time. The present inventors extrapolate the measured values of the particle densities of 0.3 μm, 0.5 μm, and 1 μm shown in FIGS. 4A and 4B (broken lines shown in FIGS. 4A and 4B). Is an extrapolation result), and the particle densities of 5 μm and 10 μm are estimated.
次に、本発明者らは、ねじ加工ライン100の雰囲気に晒された状態で搬送される管Pのねじ部の搬送距離(5mと仮定)と、ねじ部外径及びねじ部長さとから、ねじ部が上記の搬送中に通過する領域の体積を算出した。そして、この算出した体積中に存在するパーティクルが管Pのねじ部全体に均等に付着すると仮定した。具体的には、前述のようにして測定したパーティクル径1μmのパーティクル密度と、上記の算出した体積とを乗算し、管Pのねじ部全体に付着するパーティクル径1μmのパーティクルの個数を算出した。また、前述のようにして推定したパーティクル径5μm及び10μmのパーティクル密度と、上記の算出した体積とを乗算し、管Pのねじ部全体に付着するパーティクル径5μm及び10μmのパーティクルの個数を算出した。 Next, the present inventors have determined the screw thread from the conveying distance (assumed to be 5 m) of the threaded portion of the pipe P that is transported while being exposed to the atmosphere of the threading line 100, the outer diameter of the threaded portion, and the threaded portion length. The volume of the region through which the section passes during the above-mentioned conveyance was calculated. Then, it was assumed that the particles present in the calculated volume were uniformly attached to the entire threaded portion of the tube P. Specifically, the number of particles having a particle diameter of 1 μm adhering to the entire thread portion of the tube P was calculated by multiplying the particle density having a particle diameter of 1 μm measured as described above and the calculated volume. Further, the number of particles having a particle diameter of 5 μm and 10 μm adhering to the entire thread portion of the tube P was calculated by multiplying the particle density of the particle diameters of 5 μm and 10 μm estimated as described above by the calculated volume. .
さらに、本発明者らは、ねじ要素測定装置として、光源と受光手段とを備えた光学式の測定装置を用いる場合を想定し、受光手段の焦点深度を0.2mm、受光手段の撮像視野を5mm×5mmと仮定した。そして、管Pのねじ部全体に付着するパーティクルのうち、上記の評価領域(5mm×5mm×0.2mm)に付着するパーティクルの個数を算出した。 Further, the present inventors assume a case where an optical measuring device including a light source and a light receiving unit is used as the screw element measuring device, and the depth of focus of the light receiving unit is 0.2 mm, and the imaging field of view of the light receiving unit is set. Assuming 5 mm × 5 mm. And among the particles adhering to the whole thread part of the pipe | tube P, the number of the particles adhering to said evaluation area | region (5 mm x 5 mm x 0.2 mm) was computed.
図4(c)は、上記のようにして算出した、評価領域に付着するパーティクルの個数を示す図である。図4(c)では、管Pの外径が178mmの場合と60mmの場合の双方について、評価領域に付着するパーティクルの個数を示している。
図4(c)から分かるように、パーティクル径5μmのパーティクルは、多い場合には7〜8%程度の確率で、管Pのねじ部の評価領域に付着する(換言すれば、100本の管Pのうち、7〜8本の管Pのねじ部の評価領域に付着する)ことになる。また、パーティクル径10μmのパーティクルでも、多い場合には3%程度の確率で、管Pのねじ部の評価領域に付着することになる。さらに、パーティクル径1μmのパーティクルは、通常でも15%程度の確率で、多い場合には70%程度の確率で、管Pのねじ部の評価領域に付着することになる。
ねじ要素の要求測定精度が5μm程度であり、管Pの全数を精度良く測定しようとすれば、上記のようなパーティクルの影響は無視できないことになる。FIG. 4C is a diagram showing the number of particles attached to the evaluation region calculated as described above. FIG. 4C shows the number of particles adhering to the evaluation region in both cases where the outer diameter of the tube P is 178 mm and 60 mm.
As can be seen from FIG. 4C, particles having a particle diameter of 5 μm adhere to the evaluation region of the threaded portion of the tube P with a probability of about 7 to 8% when there are many particles (in other words, 100 tubes Of the P, it adheres to the evaluation region of the threaded portion of the 7 to 8 pipes P). Further, even particles having a particle diameter of 10 μm are attached to the evaluation region of the threaded portion of the tube P with a probability of about 3% when there are many particles. Furthermore, particles having a particle diameter of 1 μm are usually attached to the evaluation region of the threaded portion of the tube P with a probability of about 15%, and with a probability of about 70% when there are many particles.
If the required measurement accuracy of the screw element is about 5 μm and the total number of tubes P is to be measured with high accuracy, the influence of the particles as described above cannot be ignored.
このため、少なくとも乾燥工程(洗浄された管端部を乾燥させる工程)から測定工程(管端部のねじ要素を測定する工程)までの間において、ねじ加工後の管端部が清浄雰囲気下におかれることが望ましい。本発明の第2実施形態では、この点を考慮している。 For this reason, at least from the drying step (step of drying the cleaned tube end) to the measurement step (step of measuring the screw element at the tube end), the threaded tube end is in a clean atmosphere. It is desirable to leave. This point is taken into consideration in the second embodiment of the present invention.
以下、本発明の第2実施形態について、前述した第1実施形態と異なる点を主として説明し、第1実施形態と同じ点については説明を適宜省略する。
図5は、本発明の第2実施形態に係る管端部のねじ要素測定方法を実施するねじ加工ラインの概略構成を示す模式図である。
図5に示すように、本実施形態のねじ加工ライン100Aでも、所定の搬送装置(図示せず)によって、順次搬送される管Pの端部にねじ加工(ねじ切削及びかえり取り)が施される。第1実施形態と同様に、ねじ切削にはねじ切削用旋盤10が用いられ、かえり取りにはかえり取り装置20が用いられる。Hereinafter, the second embodiment of the present invention will be described mainly with respect to differences from the first embodiment described above, and the description of the same points as the first embodiment will be omitted as appropriate.
FIG. 5 is a schematic diagram showing a schematic configuration of a screw machining line for carrying out a screw element measuring method for a pipe end according to a second embodiment of the present invention.
As shown in FIG. 5, also in the threading line 100A of the present embodiment, the end of the pipe P that is sequentially transported is subjected to threading (screw cutting and burr removal) by a predetermined transport device (not shown). The As in the first embodiment, a thread cutting lathe 10 is used for thread cutting, and a burr removing device 20 is used for burr cutting.
端部にねじ加工が施された管Pは、第1実施形態と同様に、ねじ洗浄装置30の設置位置に対向する位置まで横送りされ、ねじ加工後の管端部を洗浄する洗浄工程が実行される。具体的には、ねじ洗浄装置30が管Pの端部に向けて管軸方向に前進し、有機溶剤による洗浄が行われる。ねじ洗浄装置30は、管Pの端部の洗浄を終えた後、元の位置に後退する。 As in the first embodiment, the pipe P whose end is threaded is laterally fed to a position facing the installation position of the screw cleaning device 30, and a cleaning process for cleaning the pipe end after threading is performed. Executed. Specifically, the screw cleaning device 30 moves forward in the tube axis direction toward the end of the tube P, and cleaning with an organic solvent is performed. The screw cleaning device 30 moves back to the original position after cleaning the end of the pipe P.
次に、図5に示すように、端部が洗浄された管Pは、洗浄維持装置60の設置位置に対向する位置まで横送りされ、洗浄された管端部を乾燥させる乾燥工程が実行される。具体的には、まず管Pの端部が清浄維持装置60内に搬入される。そして、管Pの端部が清浄維持装置60内に位置する状態で、管Pが横送りされ、この間に清浄維持装置60内の清浄エアーによって管Pの端部が乾燥する。 Next, as shown in FIG. 5, the pipe P whose end has been cleaned is laterally fed to a position facing the installation position of the cleaning maintenance device 60, and a drying process for drying the cleaned pipe end is performed. The Specifically, first, the end of the pipe P is carried into the cleanliness maintenance device 60. Then, the pipe P is laterally fed in a state where the end portion of the pipe P is located in the cleanness maintenance device 60, and during this time, the end portion of the pipe P is dried by the clean air in the cleanness maintenance device 60.
図6は、本実施形態で用いることのできる清浄維持装置60の一例を概略的に示す模式図である。図6(a)は斜視図を、図6(b)は側面視断面図を示す。
本実施形態の清浄維持装置60は、本件出願人が提案している特開2003−248158号公報に記載の「清浄空間形成装置」の技術思想を適用したものである。
具体的には、図6に示すように、本実施形態の清浄維持装置60は、第1室61と、第2室62と、第1室61と第2室62とを仕切るメッシュフィルタ(例えば、メッシュの大きさは5μm以下とされる)63とを備えている。管Pが搬入される側の第2室62の壁面は開口している。また、自動ねじ要素測定装置50が設置された測定室51に対向する側の第2室62の壁面の一部(管Pが測定室51内に搬入される箇所)も開口しており、測定室51と連通している。FIG. 6 is a schematic diagram schematically showing an example of the cleanliness maintenance device 60 that can be used in the present embodiment. 6A shows a perspective view, and FIG. 6B shows a side sectional view.
The clean maintenance device 60 of the present embodiment is an application of the technical idea of “clean space forming device” described in Japanese Patent Application Laid-Open No. 2003-248158 proposed by the present applicant.
Specifically, as shown in FIG. 6, the cleaning maintenance device 60 of the present embodiment includes a mesh filter (for example, a first chamber 61, a second chamber 62, and a first chamber 61 and a second chamber 62). The mesh size is 5 μm or less) 63. The wall surface of the second chamber 62 on the side into which the pipe P is carried is open. In addition, a part of the wall surface of the second chamber 62 on the side facing the measurement chamber 51 in which the automatic screw element measuring device 50 is installed (the place where the pipe P is carried into the measurement chamber 51) is also opened. It communicates with the chamber 51.
清浄維持装置60の第1室61内には、配管65を介して、エアーフィルタや加圧装置を具備するエアー供給源64から正圧状態の清浄エアーが供給される。第1室61内に供給された清浄エアーは、メッシュフィルタ63を通過する過程でメッシュの大きさに応じたパーティクルが除去され、第2室62内に供給される。第2室62内に供給された清浄エアーは、第2室62の開口部を介して外部に流出する。
以上の構成を有する清浄維持装置60により、管Pが横送りされる過程において、管Pの端部が清浄雰囲気下におかれると同時に、管Pの端部を乾燥させることができる。Clean air in a positive pressure state is supplied into the first chamber 61 of the clean maintenance device 60 from an air supply source 64 including an air filter and a pressurizing device via a pipe 65. The clean air supplied into the first chamber 61 removes particles according to the size of the mesh in the process of passing through the mesh filter 63 and is supplied into the second chamber 62. The clean air supplied into the second chamber 62 flows out through the opening of the second chamber 62.
With the cleaning maintenance device 60 having the above-described configuration, the end of the pipe P can be dried at the same time that the end of the pipe P is placed in a clean atmosphere in the course of the lateral feed of the pipe P.
最後に、管Pの端部が、正圧状態の清浄エアーで満たされた測定室51内に搬入され、測定室51内に設置された自動ねじ要素測定装置50でねじ要素が測定される。ねじ要素の測定を終えた管Pは、測定室51及び第2室62の開口部を介して、第2室62内に搬出され、更に第2室62の開口部を介して、第2室62の外部に搬出された後、横送りされる。 Finally, the end portion of the pipe P is carried into the measurement chamber 51 filled with clean air in a positive pressure state, and the screw element is measured by the automatic screw element measuring device 50 installed in the measurement chamber 51. After the measurement of the screw element, the pipe P is carried out into the second chamber 62 through the openings of the measurement chamber 51 and the second chamber 62, and further into the second chamber through the opening of the second chamber 62. After being carried out of 62, it is laterally fed.
以上に説明した本実施形態に係る管端部のねじ要素測定方法によれば、乾燥工程から測定工程までの間において、管Pの端部が清浄雰囲気下におかれる。このため、本実施形態に係る方法では、前述した第1実施形態に係る方法の利点に加えて、ねじ加工ライン100Aの雰囲気中に存在するパーティクルが管端部に付着してねじ要素の測定精度の劣化を招くおそれが低減し、より一層精度良くねじ要素を測定することが可能である。 According to the thread element measuring method of the pipe end part according to the present embodiment described above, the end part of the pipe P is placed in a clean atmosphere between the drying process and the measurement process. For this reason, in the method according to the present embodiment, in addition to the advantages of the method according to the first embodiment described above, particles existing in the atmosphere of the screw machining line 100A adhere to the pipe end and the measurement accuracy of the screw element Therefore, the thread element can be measured with higher accuracy.
なお、本実施形態では、洗浄維持装置60内の清浄エアーで管端部を乾燥させる態様について説明したが、本発明はこのような態様に限るものではない。例えば、清浄維持装置60内に、第1実施形態で説明したねじ乾燥装置40を設置し、この乾燥装置40で管端部を乾燥させる態様とすることも可能である。 In addition, although this embodiment demonstrated the aspect which dries a pipe end part with the clean air in the washing | cleaning maintenance apparatus 60, this invention is not limited to such an aspect. For example, the screw drying device 40 described in the first embodiment may be installed in the cleanness maintenance device 60, and the tube end portion may be dried by the drying device 40.
また、本実施形態では、乾燥工程から測定工程までの間において、管Pの端部が清浄雰囲気下におかれる態様について説明したが、本発明はこのような態様に限るものではない。例えば、図7に示すような清浄維持装置60Aを用いて、清浄工程から測定工程までの間において、管Pの端部が清浄雰囲気下におかれる態様とすることも可能である。 Moreover, although this embodiment demonstrated the aspect in which the edge part of the pipe | tube P was put in a clean atmosphere between a drying process and a measurement process, this invention is not limited to such an aspect. For example, it is possible to adopt a mode in which the end portion of the pipe P is placed in a clean atmosphere between the cleaning process and the measurement process using a cleaning maintenance device 60A as shown in FIG.
具体的に説明すれば、図7に示す清浄維持装置60Aは、第2室62内に、第1実施形態で説明したねじ洗浄装置30及びねじ乾燥装置40が設置されている。また、ねじ洗浄装置30を用いて洗浄工程を実行する第2室62内のスペース(ねじ洗浄スペース)と、ねじ乾燥装置40を用いて乾燥工程を実行する第2室62内のスペース(ねじ乾燥スペース)とが、開閉自在のシャッター66Aで仕切られている。また、ねじ乾燥スペースと、第2室62内のその他のスペースとが、開閉自在のシャッター66Bで仕切られている。ねじ洗浄スペースには、配管65Dを介して清浄エアーが供給され、ねじ乾燥スペースには、配管65Cを介して清浄エアーが供給され、第2室62内のその他のスペースには、配管65A、65Bを介して清浄エアーが供給される。
清浄維持装置60Aのその他の構成は、前述した清浄維持装置60と同様である。More specifically, in the cleaning maintenance device 60A shown in FIG. 7, the screw cleaning device 30 and the screw drying device 40 described in the first embodiment are installed in the second chamber 62. Further, a space in the second chamber 62 (screw cleaning space) in which the cleaning process is performed using the screw cleaning device 30 and a space (screw drying in the second chamber 62 in which the drying process is performed using the screw drying device 40). Space) is partitioned by an openable / closable shutter 66A. Further, the screw drying space and the other space in the second chamber 62 are partitioned by an openable / closable shutter 66B. Clean air is supplied to the screw cleaning space via the pipe 65D, clean air is supplied to the screw drying space via the pipe 65C, and pipes 65A and 65B are supplied to the other spaces in the second chamber 62. Clean air is supplied via
The other configuration of the cleanness maintenance device 60A is the same as that of the cleanness maintenance device 60 described above.
以上の構成を有する清浄維持装置60Aで洗浄工程を実行する際には、ねじ洗浄スペースに管Pの端部が搬入されると共に、ねじ洗浄装置30が管Pの端部に向けて第2室62内を前進し、有機溶剤による洗浄が行われる。この洗浄工程を実行する際には、シャッター66Aが閉じられ、隣接するねじ乾燥スペースへの有機溶媒S等の飛散が防止される。ねじ洗浄装置30は、管Pの端部の洗浄を終えた後、元の位置に後退する。次に、シャッター66Aが開き、管Pは、管端部が第2室62内に位置する状態で、ねじ乾燥スペースまで横送りされる。 When the cleaning process is executed by the cleaning maintenance device 60A having the above configuration, the end portion of the pipe P is carried into the screw cleaning space, and the screw cleaning device 30 faces the end portion of the pipe P in the second chamber. Advancing through 62, cleaning with an organic solvent is performed. When this cleaning process is executed, the shutter 66A is closed, and scattering of the organic solvent S or the like to the adjacent screw drying space is prevented. The screw cleaning device 30 moves back to the original position after cleaning the end of the pipe P. Next, the shutter 66A is opened, and the pipe P is laterally fed to the screw drying space in a state where the pipe end portion is located in the second chamber 62.
乾燥工程を実行する際には、ねじ乾燥装置40が管Pの端部に向けて第2室62内を前進し、エアーによる乾燥が行われる。この乾燥工程を実行する際には、シャッター66Bが閉じられ、隣接するスペースへの有機溶媒S等の飛散が防止される。ねじ乾燥装置40は、管Pの端部の乾燥を終えた後、元の位置に後退する。次に、シャッター66Bが開き、管Pは、管端部が第2室62内に位置する状態で、隣接するスペースまで横送りされる。
以降の動作は、前述した清浄維持装置60を用いる場合と同様であるため、説明を省略する。When the drying process is executed, the screw drying device 40 moves forward in the second chamber 62 toward the end of the pipe P, and drying by air is performed. When this drying process is executed, the shutter 66B is closed, and scattering of the organic solvent S or the like to the adjacent space is prevented. The screw drying device 40 moves back to the original position after drying the end of the tube P. Next, the shutter 66B is opened, and the pipe P is laterally fed to the adjacent space in a state where the pipe end portion is located in the second chamber 62.
Subsequent operations are the same as in the case of using the above-described cleaning maintenance device 60, and thus the description thereof is omitted.
以上に説明した清浄維持装置60Aを用いた方法によれば、洗浄工程から測定工程までの間において、管Pの端部が清浄雰囲気下におかれるため、ねじ加工ライン100Aの雰囲気中に存在するパーティクルが管端部に付着してねじ要素の測定精度の劣化を招くおそれがより一層低減されることが期待できる。 According to the method using the cleaning maintenance device 60A described above, the end of the pipe P is placed in a clean atmosphere between the cleaning process and the measurement process, and therefore exists in the atmosphere of the screw processing line 100A. It can be expected that the possibility of particles adhering to the tube end and causing deterioration in the measurement accuracy of the screw element is further reduced.
なお、以上に説明した清浄維持装置60Aを用いた方法では、ねじ乾燥装置40を用いて管端部を乾燥させる態様について説明したが、清浄維持装置60の場合と同様に、ねじ乾燥装置40を設置せずに、清浄維持装置60A内の清浄エアーで管端部を乾燥させる態様にすることも可能である。 In the method using the cleaning maintenance device 60 </ b> A described above, the mode of drying the tube end using the screw drying device 40 has been described. However, as in the case of the cleaning maintenance device 60, the screw drying device 40 is used. It is also possible to use a mode in which the pipe end is dried with clean air in the cleanness maintenance device 60A without being installed.
<第3実施形態>
前述した第1実施形態及び第2実施形態では、洗浄された管Pの端部を乾燥させる乾燥工程が含まれている。しかしながら、本実施形態では、洗浄工程において粒状のドライアイスを圧縮空気と共に噴出して管端部を洗浄するため、乾燥工程が不要であるという点が第1実施形態及び第2実施形態と異なる。<Third Embodiment>
In the first embodiment and the second embodiment described above, a drying step of drying the end portion of the cleaned pipe P is included. However, the present embodiment is different from the first embodiment and the second embodiment in that the drying process is unnecessary because granular dry ice is ejected together with compressed air in the cleaning process to clean the tube end.
図8は、本発明の第3実施形態に係る管端部のねじ要素測定方法を実施するためのねじ洗浄装置の一例を概略的に示す模式図である。図8(a)は正面図を、図8(b)は平面図を、図8(c)は管端部の管軸方向に平行な拡大断面図を示す。図8に示すように、本実施形態のねじ洗浄装置30Aは、管Pの上方に位置決めされたノズル34を備えている。ノズル34は、ノズル34がねじ加工が施された管Pの端部の上方に位置するまで、管Pの端部に向けて管Pの軸方向に前進する。そして、前進動作を終えた後、供給源(図示せず)からノズル34に対して粒状のドライアイスDと圧縮空気が供給され、ノズル34から管Pの端部に向けて粒状のドライアイスDを圧縮空気と共に噴出する。ノズル34から噴出されたドライアイスDは、管Pの軸方向に沿った線状に散布される。この際、管PをターニングローラRによって周方向に回転させる。また、必要に応じ、ノズル34を管Pの軸方向に移動させる。以上の動作により、管Pの端部全周が洗浄され、ねじ切削やかえり取りの際に管端部に残存する潤滑剤や、かえり取りによって管端部に付着した切削屑が除去されることが期待できる。
本発明者らが、鉛直方向(図8(a)に示すVの方向)に対するドライアイスDの噴出角度(図8(a)に示す角度θ)を約45°、ノズル34と管Pとの距離を約50mm、洗浄幅(線状に散布されたドライアイスDの幅)を約40mm、洗浄長さ(線状に散布されたドライアイスDの長さ)を約200mm、噴出圧を約0.35MPa、管Pの回転速度を約10rpmとした条件で、管Pを1回転させて洗浄を行ったところ、ねじ切削やかえり取りの際に管端部に残存する潤滑剤や、かえり取りによって管端部に付着した切削屑が十分に除去されることを確認できた。FIG. 8 is a schematic view schematically showing an example of a screw cleaning device for carrying out the pipe element screw element measuring method according to the third embodiment of the present invention. 8A is a front view, FIG. 8B is a plan view, and FIG. 8C is an enlarged sectional view parallel to the tube axis direction of the tube end. As shown in FIG. 8, the screw cleaning device 30 </ b> A of the present embodiment includes a nozzle 34 positioned above the pipe P. The nozzle 34 advances in the axial direction of the tube P toward the end of the tube P until the nozzle 34 is positioned above the end of the tube P that has been threaded. After the forward movement is finished, granular dry ice D and compressed air are supplied from a supply source (not shown) to the nozzle 34, and the granular dry ice D is directed from the nozzle 34 toward the end of the pipe P. Are ejected together with compressed air. The dry ice D ejected from the nozzle 34 is dispersed in a linear shape along the axial direction of the pipe P. At this time, the pipe P is rotated in the circumferential direction by the turning roller R. Further, the nozzle 34 is moved in the axial direction of the pipe P as necessary. Through the above operation, the entire circumference of the end of the pipe P is cleaned, and the lubricant remaining on the pipe end during thread cutting and burr removal and the cutting waste adhering to the pipe end due to burr removal are removed. Can be expected.
The inventors set the ejection angle of dry ice D (angle θ shown in FIG. 8A) to about 45 ° with respect to the vertical direction (direction V shown in FIG. Distance is about 50 mm, cleaning width (width of dry ice D sprayed linearly) is about 40 mm, cleaning length (length of dry ice D sprayed linearly) is about 200 mm, and jet pressure is about 0 Washing was performed by rotating the pipe P once under the condition of 35 MPa and the rotational speed of the pipe P being about 10 rpm. Due to the lubricant remaining at the end of the pipe during thread cutting or burr removal, or burr removal. It was confirmed that the cutting waste adhering to the pipe end was sufficiently removed.
ここで、管端部を洗浄する際の管Pの回転速度は、5rpm〜23rpm程度に設定することが好ましい。これは、回転速度が5rpm未満であれば、管Pの端部の同一箇所に過度にドライアイスDが散布されることになり、結露が生じ易い(乾燥工程が不要であるという本実施形態の利点が損なわれる)からである。一方、回転速度が23rpmを超えれば、ねじ切削やかえり取りの際に管Pの端部に残存する潤滑剤や、かえり取りによって管Pの端部に付着した切削屑を十分には洗浄できないおそれがあるからである。 Here, it is preferable to set the rotation speed of the pipe P when cleaning the pipe end to about 5 to 23 rpm. This is because if the rotational speed is less than 5 rpm, the dry ice D is excessively sprayed on the same portion of the end of the pipe P, and condensation is likely to occur (the drying process is unnecessary in this embodiment). This is because the advantage is lost. On the other hand, if the rotational speed exceeds 23 rpm, the lubricant remaining at the end of the pipe P during thread cutting or burr removal or the cutting waste adhering to the end of the pipe P due to burr removal may not be sufficiently cleaned. Because there is.
また、洗浄による結露の発生を防止するには、洗浄の際の管Pの回転回数に上限を設けることが好ましい。回転回数が過度に大きいと、管Pの端部の同一箇所に過度にドライアイスDが散布されることになるからである。この上限値は、管Pの回転速度に応じて変化し、回転速度が5rpmのときには1回転以下、回転速度が23rpmのときには5回転以下とすることが好ましい。本発明者らが、前述した条件(噴出角度θ:約45°、ノズル34と管Pとの距離:約50mm、洗浄幅:約40mm、洗浄長さ:約200mm、噴出圧:約0.35MPa、管Pの回転速度:約10rpm)で洗浄を行ったところ、管Pを3回転させると結露が生じる(2回転以下なら結露が生じない)ことを確認できた。 In order to prevent the occurrence of condensation due to cleaning, it is preferable to set an upper limit on the number of rotations of the pipe P during cleaning. This is because if the number of rotations is excessively large, the dry ice D will be excessively sprayed on the same portion of the end of the pipe P. This upper limit value changes according to the rotation speed of the pipe P, and is preferably 1 rotation or less when the rotation speed is 5 rpm and 5 rotations or less when the rotation speed is 23 rpm. According to the above-mentioned conditions (the ejection angle θ: about 45 °, the distance between the nozzle 34 and the pipe P: about 50 mm, the washing width: about 40 mm, the washing length: about 200 mm, the ejection pressure: about 0.35 MPa. When the tube P was washed at a rotation speed of about 10 rpm, it was confirmed that condensation was generated when the tube P was rotated 3 times (no condensation was generated at 2 rotations or less).
さらに、管Pの端部に加工されたねじ部のフランク面を効果的に洗浄するには、フランク面の傾斜角度に応じてノズル34を傾斜させることが好ましい。
管Pが油井管等である場合のねじ部は、図8(c)に示すように、ねじ山とねじ溝との間に位置するフランク面F1、F2の双方が、ねじ山からねじ溝に向かうに従って管端側に傾斜している場合が多い。換言すれば、両フランク面F1、F2のうち、管端側のフランク面F2が、ねじ山からねじ溝に向かうに従ってねじ山から離れるように傾斜している一方、管中央側のフランク面F1が、ねじ山からねじ溝に向かうに従ってねじ山中央に近づくように傾斜していることが多い。そして、フランク面F1の傾斜角度(ねじ軸に垂直な方向Nに対する傾斜角度)をβ、フランク面F2の傾斜角度(ねじ軸に垂直な方向Nに対する傾斜角度)をγとすると、β<γとなっている場合が多い。
このとき、ノズル34のねじ軸方向(管軸方向)についての傾斜角度(ねじ軸に垂直な方向Nに対して、ノズル34からのドライアイスDの噴出方向(噴出方向の中心C)が成す角度)αは、両フランク面F1、F2を洗浄できるように、β<α<γの条件を満足するように設定することが好ましい。例えば、β=3°、γ=10°の場合には、3°<α<10°となるように、ノズル34の傾斜角度αを設定することが好ましい。また、β、γの値は、管Pの用途等に応じて種々の値を取り得るため、ノズル34の傾斜角度αの値は固定ではなく、可変とすることが好ましい。すなわち、ノズル34を管Pのねじ軸方向(管軸方向)に対し傾動自在に設置することが好ましい。Further, in order to effectively clean the flank surface of the threaded portion processed at the end of the pipe P, it is preferable to incline the nozzle 34 according to the inclination angle of the flank surface.
When the pipe P is an oil well pipe or the like, as shown in FIG. 8C, both the flank surfaces F1 and F2 positioned between the thread and the thread groove are changed from the thread to the thread groove. In many cases, it is inclined toward the tube end as it goes. In other words, of the flank surfaces F1 and F2, the flank surface F2 on the tube end side is inclined so as to be separated from the thread as it goes from the thread to the thread groove, while the flank surface F1 on the tube center side is In many cases, it is inclined so as to approach the center of the thread as it goes from the thread to the groove. When the inclination angle of the flank surface F1 (inclination angle with respect to the direction N perpendicular to the screw axis) is β and the inclination angle of the flank surface F2 (inclination angle with respect to the direction N perpendicular to the screw axis) is γ, β <γ. In many cases.
At this time, an inclination angle of the nozzle 34 with respect to the screw axis direction (tube axis direction) (an angle formed by an ejection direction (center C of the ejection direction) of the dry ice D from the nozzle 34 with respect to a direction N perpendicular to the screw axis). It is preferable to set α so as to satisfy the condition of β <α <γ so that both flank surfaces F1 and F2 can be cleaned. For example, when β = 3 ° and γ = 10 °, it is preferable to set the inclination angle α of the nozzle 34 so that 3 ° <α <10 °. Further, since the values of β and γ can take various values depending on the use of the pipe P, the value of the inclination angle α of the nozzle 34 is preferably not fixed but variable. That is, it is preferable that the nozzle 34 is installed so as to be tiltable with respect to the screw axis direction (tube axis direction) of the pipe P.
前述のように、本実施形態では、洗浄工程において粒状のドライアイスDを圧縮空気と共に噴出して管端部を洗浄するため、乾燥工程が不要であるという点が第1実施形態及び第2実施形態と異なるが、その他の構成については、第1実施形態及び第2実施形態と同様の構成を適宜適用可能であるため、ここではその説明を省略する。 As described above, in the present embodiment, the granular dry ice D is jetted together with the compressed air in the cleaning process to clean the tube end portion, so that the drying process is not necessary. Although different from the embodiment, for the other configurations, the same configurations as those of the first embodiment and the second embodiment can be applied as appropriate, and thus the description thereof is omitted here.
10・・・ねじ切削用旋盤
20・・・かえり取り装置
30・・・ねじ洗浄装置
40・・・ねじ乾燥装置
50・・・自動ねじ要素測定装置
100・・・ねじ加工ライン
P・・・管DESCRIPTION OF SYMBOLS 10 ... Lathe for screw cutting 20 ... Deburring device 30 ... Screw cleaning device 40 ... Screw drying device 50 ... Automatic screw element measuring device 100 ... Screw processing line P ... Pipe
Claims (5)
ねじ加工後の管端部を洗浄する洗浄工程と、
前記洗浄された管端部を乾燥させる乾燥工程と、
前記乾燥後の管端部のねじ要素を測定する測定工程とを含み、
少なくとも前記測定工程においては、管端部が正圧状態の清浄エアーで満たされた測定室内におかれることを特徴とする管端部のねじ要素測定方法。A method of automatically measuring screw elements at the end of a pipe after threading on a threading line in which the end of the pipe being sequentially conveyed is threaded,
A cleaning process for cleaning the pipe end after threading;
A drying step of drying the washed tube end;
Measuring the thread element of the tube end after the drying,
At least in the measurement step, the tube end portion is placed in a measurement chamber filled with clean air in a positive pressure state .
ねじ加工後の管端部を洗浄する洗浄工程と、
前記洗浄された管端部を乾燥させる乾燥工程と、
前記乾燥後の管端部のねじ要素を測定する測定工程とを含み、
少なくとも前記乾燥工程から前記測定工程までの間において、前記ねじ加工後の管端部が清浄雰囲気下におかれることを特徴とする管端部のねじ要素測定方法。 A method of automatically measuring screw elements at the end of a pipe after threading on a threading line in which the end of the pipe being sequentially conveyed is threaded,
A cleaning process for cleaning the pipe end after threading;
A drying step of drying the washed tube end;
Measuring the thread element of the tube end after the drying,
During the period from at least the drying step to said measuring step, the screw element measuring method tube end you characterized in that the pipe end portion after the threading is placed under a clean atmosphere.
ねじ加工後の管端部に粒状のドライアイスを圧縮空気と共に噴出して該管端部を洗浄する洗浄工程と、
前記洗浄後の管端部のねじ要素を測定する測定工程とを含み、
少なくとも前記測定工程においては、管端部が正圧状態の清浄エアーで満たされた測定室内におかれることを特徴とする管端部のねじ要素測定方法。A method of automatically measuring screw elements at the end of a pipe after threading on a threading line in which the end of the pipe being sequentially conveyed is threaded,
A cleaning step of spraying granular dry ice together with compressed air to the tube end after threading to clean the tube end;
Measuring the thread element of the pipe end after the cleaning,
At least in the measurement step, the tube end portion is placed in a measurement chamber filled with clean air in a positive pressure state .
前記管のねじ軸方向に垂直な方向に対して、前記ドライアイスの噴出方向の中心が成す角度をαとし、前記ねじ山より管中央側のフランク面が成す角度をβとし、前記ねじ山より管端側のフランク面が成す角度をγとしたとき、前記洗浄工程において、前記ドライアイスの噴出方向がβ<α<γの条件を満足することを特徴とする請求項3又は4に記載の管端部のねじ要素測定方法。The angle formed by the center of the jet direction of the dry ice with respect to the direction perpendicular to the screw axis direction of the tube is α, the angle formed by the flank surface on the tube center side from the thread is β, and from the thread 5. The method according to claim 3, wherein when the angle formed by the flank surface on the tube end side is γ, the spraying direction of the dry ice satisfies the condition of β <α <γ in the cleaning step. Method for measuring thread elements at the end of a pipe.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/070785 WO2013038485A1 (en) | 2011-09-13 | 2011-09-13 | Method for measuring threaded element at tube end |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4947452B1 true JP4947452B1 (en) | 2012-06-06 |
JPWO2013038485A1 JPWO2013038485A1 (en) | 2015-03-23 |
Family
ID=46498715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011538788A Active JP4947452B1 (en) | 2011-09-13 | 2011-09-13 | Method for measuring thread elements at the end of pipes |
Country Status (6)
Country | Link |
---|---|
US (1) | US9267900B2 (en) |
EP (1) | EP2767799B1 (en) |
JP (1) | JP4947452B1 (en) |
CN (1) | CN103917846B (en) |
BR (1) | BR112014005671B1 (en) |
WO (1) | WO2013038485A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015050402A (en) * | 2013-09-04 | 2015-03-16 | 株式会社ディスコ | Cutting device including cleaning means |
JOP20200120A1 (en) * | 2013-10-21 | 2017-06-16 | Esco Group Llc | Wear assembly removal and installation |
AT520613A1 (en) | 2017-11-13 | 2019-05-15 | Voestalpine Tubulars Gmbh & Co Kg | Device for optical measurement of the external thread profile of pipes |
DE102021202211A1 (en) * | 2020-10-22 | 2022-04-28 | Sms Group Gmbh | Method for producing a thread on at least one end of at least one metal pipe and thread cutting machine |
WO2022098957A1 (en) * | 2020-11-05 | 2022-05-12 | Emerson Professional Tools, Llc | Algorithms and methods for controlling threading of pipe |
CN117686519B (en) * | 2024-02-04 | 2024-04-30 | 易事特智能化系统集成有限公司 | Wind driven generator blade surface defect detection device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6115749A (en) * | 1984-07-03 | 1986-01-23 | Toho Gas Kk | Cleaning method by dry ice |
JPH08247727A (en) * | 1995-03-13 | 1996-09-27 | Toshiba Corp | Optical path protective structure for rolling measuring instrument |
JP2011203220A (en) * | 2010-03-26 | 2011-10-13 | Sumitomo Metal Ind Ltd | Screw element measuring method of tube end |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3306194A1 (en) * | 1982-02-25 | 1983-09-08 | Mitsubishi Denki K.K., Tokyo | METHOD FOR TESTING SCREW SURFACES FOR FAULTS AND DEVICE FOR IMPLEMENTING THEM |
GB8320292D0 (en) * | 1983-07-27 | 1983-09-01 | Ramco Oilfield & Marine Servic | Pipe cleaning/treating plant |
CH666547A5 (en) | 1984-12-20 | 1988-07-29 | Fischer Ag Georg | OPTICAL-ELECTRONIC MEASURING METHOD, A DEVICE REQUIRED FOR THIS AND ITS USE. |
JPS63212808A (en) | 1987-02-27 | 1988-09-05 | Sumitomo Metal Ind Ltd | Measuring apparatus of shape of screw |
JPH01124282A (en) | 1987-11-09 | 1989-05-17 | Hitachi Ltd | Wiring structure body and its formation |
JPH01124282U (en) * | 1988-02-12 | 1989-08-24 | ||
JP2892693B2 (en) | 1989-07-25 | 1999-05-17 | 株式会社放電精密加工研究所 | Tire mold |
JPH0357606U (en) * | 1989-10-09 | 1991-06-04 | ||
US5521707A (en) * | 1991-08-21 | 1996-05-28 | Apeiron, Inc. | Laser scanning method and apparatus for rapid precision measurement of thread form |
JP3149990B2 (en) | 1992-06-26 | 2001-03-26 | 株式会社リコー | Toner for developing electrostatic images |
JPH0611881U (en) * | 1992-07-17 | 1994-02-15 | 住友金属工業株式会社 | Cleaning and drying device for pipe end thread |
US6111601A (en) * | 1995-12-11 | 2000-08-29 | Adachi; Yoshi | Non-contacting laser gauge for qualifying screw fasteners and the like |
JP3552440B2 (en) | 1996-01-25 | 2004-08-11 | Jfeスチール株式会社 | Method and apparatus for measuring screw element |
US6027568A (en) * | 1996-06-12 | 2000-02-22 | Nd Industries, Inc. | Apparatus for processing fasteners |
WO2002016081A1 (en) * | 2000-08-22 | 2002-02-28 | Linde Ag | Method and device for removing metallic impurities |
JP2002177828A (en) * | 2000-12-12 | 2002-06-25 | Canon Inc | Cleaning method, apparatus therefor, object cleaned therewith, and hopper |
JP2003248158A (en) | 2001-11-14 | 2003-09-05 | Sumitomo Metal Ind Ltd | Clean space forming apparatus |
DE102007017747B4 (en) | 2007-04-12 | 2009-05-07 | V & M Deutschland Gmbh | Method and device for the optical measurement of external threads |
-
2011
- 2011-09-13 BR BR112014005671-4A patent/BR112014005671B1/en active IP Right Grant
- 2011-09-13 EP EP11872503.5A patent/EP2767799B1/en active Active
- 2011-09-13 CN CN201180074668.5A patent/CN103917846B/en active Active
- 2011-09-13 JP JP2011538788A patent/JP4947452B1/en active Active
- 2011-09-13 US US14/343,903 patent/US9267900B2/en active Active
- 2011-09-13 WO PCT/JP2011/070785 patent/WO2013038485A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6115749A (en) * | 1984-07-03 | 1986-01-23 | Toho Gas Kk | Cleaning method by dry ice |
JPH08247727A (en) * | 1995-03-13 | 1996-09-27 | Toshiba Corp | Optical path protective structure for rolling measuring instrument |
JP2011203220A (en) * | 2010-03-26 | 2011-10-13 | Sumitomo Metal Ind Ltd | Screw element measuring method of tube end |
Also Published As
Publication number | Publication date |
---|---|
CN103917846B (en) | 2017-03-22 |
EP2767799A1 (en) | 2014-08-20 |
BR112014005671B1 (en) | 2020-10-06 |
BR112014005671A2 (en) | 2017-03-28 |
EP2767799B1 (en) | 2018-12-12 |
CN103917846A (en) | 2014-07-09 |
EP2767799A4 (en) | 2015-06-24 |
US20140226154A1 (en) | 2014-08-14 |
US9267900B2 (en) | 2016-02-23 |
WO2013038485A1 (en) | 2013-03-21 |
JPWO2013038485A1 (en) | 2015-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4947452B1 (en) | Method for measuring thread elements at the end of pipes | |
KR101096880B1 (en) | apparatus of cleaning water-pipe | |
US7469565B2 (en) | Manufacturing method and cleaning equipment for seamless tube | |
CN106925961B (en) | A kind of vehicle bridge remanufactures production method | |
JP2008049345A (en) | Mandrel bar cleaning facility | |
CN106670977A (en) | Steel structure shot blasting and rust removing method | |
WO2016180521A1 (en) | Application device, coating system and method for coating objects | |
JP2011203220A (en) | Screw element measuring method of tube end | |
KR102334418B1 (en) | Washing apparatus for steel pipes | |
US4787549A (en) | Automatic pipe inspection and repair system | |
US9061328B2 (en) | Method for cleaning the interior surface of hollow articles | |
RU190597U1 (en) | Device for cleaning the inner surface of pipes | |
JP2007203422A (en) | Through hole forming method | |
JP4059999B2 (en) | Ultrasonic flaw detection method and apparatus | |
JP7238836B2 (en) | Steel pipe pass/fail judgment system and pass/fail judgment method, and steel pipe manufacturing method | |
JP7147739B2 (en) | Steel flaw detection method and apparatus, and steel manufacturing method | |
KR102613122B1 (en) | Descaling device for tubes using vanes rotating with pneumatic system | |
JP4706972B2 (en) | Seamless pipe manufacturing method and cleaning equipment | |
US20160202139A1 (en) | Contamination detection for pipelines | |
JPH0618500A (en) | Remover of stain on surface of probe for rotary ultrasonic flaw detector | |
JP2007136462A (en) | Device for removing weld spatter/slug residue on surface of steel tube | |
JP2007260785A (en) | Milling machine and milling method | |
KR100467230B1 (en) | On-line surface crack detector of work roll | |
CN110864655A (en) | Casing drift diameter thickness measuring device and sorting and repairing method for old stored casings | |
CN117470623A (en) | Nondestructive testing equipment for hollow shaft of automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120223 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4947452 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |