JPH01124282A - Wiring structure body and its formation - Google Patents

Wiring structure body and its formation

Info

Publication number
JPH01124282A
JPH01124282A JP28284287A JP28284287A JPH01124282A JP H01124282 A JPH01124282 A JP H01124282A JP 28284287 A JP28284287 A JP 28284287A JP 28284287 A JP28284287 A JP 28284287A JP H01124282 A JPH01124282 A JP H01124282A
Authority
JP
Japan
Prior art keywords
insulating film
wiring
polyimide
wiring structure
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28284287A
Other languages
Japanese (ja)
Inventor
Osamu Miura
修 三浦
Hiroshi Watanabe
宏 渡辺
Kunio Miyazaki
邦夫 宮崎
Yukio Ogoshi
大越 幸夫
Mitsuo Oginoya
萩野谷 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28284287A priority Critical patent/JPH01124282A/en
Publication of JPH01124282A publication Critical patent/JPH01124282A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To enhance contact adhesion performance between an insulating film and a wiring conductor and to enhance reliability of moistureproofness at an interface by a method wherein a mixed layer composed of the insulating film containing a hydropholic group and of a metal material constituting the wiring conductor is provided at a boundary part between the wiring conductor and the insulating film. CONSTITUTION:While the surface of a polyimide film 2 is being irradiated by a plasma of individual gases of helium and oxygen and, in succession, the surface of a polyimide is being irradiated with ions of helium, Al is electron- evaporated; after the evaporation, a photoetching operation is executed and a wiring conductor 4 of Al is formed. In addition, a process identical to this is repeated and an Al wiring part is laminated; an LSI 7 is bonded by using a solder 6; a multilayer wiring structure body is manufactured. A mixed layer formed at an interface between the polyimide and Al or Cu prevents water from penetrating because an ethyl group (-C2H5) as a hydrophobic group exists; in addition, the Al and the polyimide are bonded by laying a carbonyl group as a hydrophile group; a bonding force between both is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、配線基板の形成方法に係わり、特に配線用導
体と耐熱性樹脂からなる絶縁膜とを積層して構成される
配線構造体とその形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a wiring board, and particularly to a wiring structure formed by laminating a wiring conductor and an insulating film made of a heat-resistant resin. It relates to its formation method.

〔従来の技術〕[Conventional technology]

電子計算機のモジュール用基板として配線の密度を上げ
てLSIを高密度に実装するために、配線導体用の金属
と絶縁膜用のポリイミドを用いて薄膜多層にした配線構
造体、すなわち多層配線基板が適用されつつある。従来
、ポリイミドを用いた薄膜多層配線では、第1層目の配
線用導体を形成したのちにポリイミドを塗布、熱硬化し
たのちに第2層目の配線用導体を形成するというように
、下層から順に上層へと形成していく、いわゆる逐次積
層法である。また、ポリイミド上に配線用導体を形成す
る方法としては、蒸着スパッタリングなどの方法が適用
されている。この際、配線用導体と絶縁膜との密着性を
確保するため、ポリイミド膜の表面に02プラズマアツ
シング、すなわち高周波プラズマで発生した酸素プラズ
マをポリイミドに当ててCを気化する処理を行い、ある
いは特開昭51−31175号公報に示すように、導体
を含む半導体基体表面にAQ・キレート化合物の塗膜を
形成して200”Cに熱処理したのち、その塗膜上にポ
リイミド樹脂を形成して接着層を設けて接着力を高める
処理を行い、また、接着性を有するArスパッタリング
等の処理を行って、表面を粗化させるななどの改質処理
を施している。
In order to increase the wiring density and mount LSIs at high density as substrates for electronic computer modules, a wiring structure made of thin multilayers using metal for the wiring conductor and polyimide for the insulating film, that is, a multilayer wiring board, has been developed. It is being applied. Conventionally, in thin-film multilayer wiring using polyimide, the first layer of wiring conductor is formed, then polyimide is coated, heat-cured, and then the second layer of wiring conductor is formed. This is a so-called sequential lamination method in which layers are formed one after the other. Further, as a method for forming a wiring conductor on polyimide, a method such as vapor deposition sputtering is applied. At this time, in order to ensure adhesion between the wiring conductor and the insulating film, the surface of the polyimide film is subjected to 02 plasma ashing, that is, a process in which oxygen plasma generated by high-frequency plasma is applied to the polyimide to vaporize C, or As shown in Japanese Unexamined Patent Publication No. 51-31175, a coating film of AQ/chelate compound is formed on the surface of a semiconductor substrate including a conductor, heat treated at 200"C, and then a polyimide resin is formed on the coating film. An adhesive layer is provided to increase the adhesive strength, and a process such as Ar sputtering that has adhesive properties is performed to modify the surface so as not to roughen it.

モジュール基板用の多層配線基板では、高い信頼性が要
求されているが、なかでも配線の耐湿信頼性は特に重要
視され、高温容器内で配線のはがれを加速して配線の寿
命を予測するための試験。
Multilayer wiring boards for module boards are required to have high reliability, and moisture resistance reliability of wiring is particularly important, as it accelerates peeling of wiring in high temperature containers and predicts wiring life. exam.

すなわちP CT (Pressure Cooker
 Te5t)や、大気圧中で一50〜150℃の熱サイ
クルを与える試験、すなわち熱サイクル試験などの加速
試験を長時間行ったあとでも、配線のはがれ、腐食、断
線を生じないことが要求される。
That is, P CT (Pressure Cooker
It is required that the wiring does not peel off, corrode, or break even after long-term accelerated tests such as thermal cycle tests (Te5t) and tests that apply thermal cycles between -50 and 150 degrees Celsius at atmospheric pressure, i.e., thermal cycle tests. Ru.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、ポリイミドを絶縁膜とする配線構造体に
おける耐湿信頼性については、問題が残つている。特に
、配線用導体と絶縁膜との界面の信頼性に問題があり、
とりわけポリイミド上の配線用導体の接着性が低く、配
線用導体腐食の原因となっている。そこで従来は、ポリ
イミドの表面に02プラズマアツシングやArスパッタ
リングなどの処理を施し、配線金属との密着性の向上を
図ってきているが、導体用金属とポリイミド膜の界面の
接着性は、高温高湿下では劣化が避けられない。そこで
、本発明の目的は、配線用導体と絶縁膜との密着性が劣
化せず、界面の耐湿信頼性の高い配線構造体とその形成
方法を提供することにある。
However, problems remain regarding the moisture resistance reliability of wiring structures using polyimide as an insulating film. In particular, there is a problem with the reliability of the interface between the wiring conductor and the insulating film.
In particular, the adhesiveness of wiring conductors on polyimide is low, causing corrosion of the wiring conductors. Therefore, in the past, treatments such as 02 plasma ashing and Ar sputtering were applied to the surface of polyimide in an attempt to improve its adhesion to the wiring metal. Deterioration is inevitable under high humidity. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a wiring structure that does not deteriorate the adhesion between a wiring conductor and an insulating film and has high moisture resistance and reliability at the interface, and a method for forming the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、配線用導体と絶縁膜を逐次積層して形
成した配線構造体において、前記配線用導体と前記絶縁
膜との境界部に、疎水基を含む絶縁膜と前記配線用導体
を組成する金属材料とからなる混合層を設けたことを特
徴とする配線構造体を提供するとともに、配線用導体と
絶縁膜を逐次積層して形成する配線構造体の形成方法に
おいて、前記絶縁膜の表面に不活性ガス、酸素ガス、エ
チレン系炭化水素ガスのプラズマを照射して前記絶縁膜
の表面に疎水基を形成したのち、該疎水基を有する絶縁
膜表面上に導体用金属を蒸着し、不活性ガスイオンを加
速し打ち込んでイオンミキシングを行うことを特徴とす
る配線構造体の形成方法を提供することにより達成され
る。
An object of the present invention is to provide a wiring structure formed by sequentially laminating a wiring conductor and an insulating film, in which an insulating film containing a hydrophobic group and the wiring conductor are provided at a boundary between the wiring conductor and the insulating film. Provided is a wiring structure characterized by providing a mixed layer made of a metal material, and a method for forming a wiring structure in which a wiring conductor and an insulating film are successively laminated. After irradiating the surface with plasma of an inert gas, oxygen gas, or ethylene-based hydrocarbon gas to form a hydrophobic group on the surface of the insulating film, depositing a conductor metal on the surface of the insulating film having the hydrophobic group, This is achieved by providing a method for forming a wiring structure characterized by performing ion mixing by accelerating and implanting inert gas ions.

〔作用〕[Effect]

本発明の作用について、第4図(a、)〜(c)により
説明する。
The operation of the present invention will be explained with reference to FIGS. 4(a,) to (c).

絶縁膜として用いられるポリイミドは、第4図(a)に
示されるように、基本骨格であるベンゼン環と、それに
結合するイミドカルボニル基(−N−C=O)から構成
されている。このポリイミドに不活性ガスとエチレン系
炭化水素ガスと酸素ガスの3種のプラズマを照射すると
、不活性ガスイオンによりポリイミドの表面を粗化させ
るとともに、ベンゼン環に変化がおきる。すなわち、第
4図(b)に示すように、ベンゼン環のC=C結合が開
いて、エチレン系炭化水素ガス(例えば工チレンガス)
の作用により、疎水性のアルキル基(例えばエチル基−
Cz Ha )が付加し、酸素の作用でC−H結合が開
いて親水性のカルボニル基属(例えばAQ)を蒸着し不
活性ガスを照射してイオンミキシングを行うと、第4図
(c)に示すように、第4図(b)に示したカルボニル
基が開いて、酸素と親和性の強い導体用金属(例えばA
Q)が酸素に結合し、新たな結合(例えばC−0−AQ
)が生まれる。しかし、アルキル基はそのまま基本骨格
中に付加した状態で存在する。このように、絶縁膜のポ
リイミドと導体用金属の界面層では、疎水性基のアルキ
ル基の存在により水の侵入を防止するとともに、親水性
基のカルボニル基を介在して導体用金属とポリイミドを
結合させ、接着力を高めている。
As shown in FIG. 4(a), polyimide used as an insulating film is composed of a benzene ring as a basic skeleton and an imide carbonyl group (-N-C=O) bonded to the benzene ring. When this polyimide is irradiated with three types of plasma: an inert gas, an ethylene hydrocarbon gas, and an oxygen gas, the inert gas ions roughen the surface of the polyimide and change the benzene ring. That is, as shown in FIG. 4(b), the C=C bond of the benzene ring opens, and ethylene hydrocarbon gas (e.g. ethylene gas) is released.
due to the action of hydrophobic alkyl groups (for example, ethyl groups)
When Cz Ha ) is added, the C-H bond opens under the action of oxygen, a hydrophilic carbonyl group (e.g. AQ) is deposited, and ion mixing is performed by irradiation with inert gas, as shown in Figure 4(c). As shown in FIG. 4(b), the carbonyl group shown in FIG.
Q) binds to oxygen, creating a new bond (e.g. C-0-AQ
) is born. However, the alkyl group exists as it is added to the basic skeleton. In this way, in the interface layer between the polyimide of the insulating film and the conductor metal, the presence of the hydrophobic alkyl group prevents water from entering, and the interposition of the conductor metal and the polyimide through the hydrophilic carbonyl group. bond to increase adhesive strength.

〔実施例〕〔Example〕

本実施例を概説すれば、本発明は、配線構造体とその形
成方法に関する発明であって、その特徴は、配線用導体
と絶縁性樹脂からなる絶縁膜とで構成される多層薄膜の
配線構造体において、絶縁膜の表面をプラズマ処理によ
り疎水化させて水が侵入しにくくするとともに、その絶
縁膜表面上に導体用金属を蒸着し不活性ガスイオンによ
るイオンミキシング作用により絶縁膜中に金属粒子を打
ち込んで混合層を形成し、合わせて絶縁膜と配線用導体
との接着性も向上させ、配線の耐湿信頼性を改善できる
点にある。
To summarize this embodiment, the present invention relates to a wiring structure and a method for forming the same, and its feature is a multilayer thin film wiring structure composed of a wiring conductor and an insulating film made of an insulating resin. In the body, the surface of the insulating film is made hydrophobic by plasma treatment to make it difficult for water to penetrate, and a conductive metal is vapor-deposited on the surface of the insulating film, and metal particles are created in the insulating film by the ion mixing effect of inert gas ions. By implanting a mixed layer to form a mixed layer, it also improves the adhesion between the insulating film and the wiring conductor, thereby improving the moisture resistance reliability of the wiring.

配線構造体の絶縁膜としてポリイミドを用い、その表面
に不活性ガスと酸素ガスとエチレン系炭化水素ガスのプ
ラズマを照射すると、疎水性を有するエチル基((、z
Ha)等のアルキル基やフェニル基(CeHs)が形成
されることがわかった。
When polyimide is used as the insulating film of the wiring structure and its surface is irradiated with plasma of inert gas, oxygen gas, and ethylene hydrocarbon gas, hydrophobic ethyl groups ((, z
It was found that alkyl groups such as Ha) and phenyl groups (CeHs) were formed.

さらに、このポリイミド表面上に電子ビーム蒸着により
AQを蒸着したのち、あるいは同時に不活性ガスイオン
を照射してイオンミキシングを行った。以上の方法でポ
リイミド上に配線用導体を形成すると、従来の酸素プラ
ズマ処理やArスパッタリング処理に比べ、PCTにお
ける配線構造体の耐湿寿命を著しく改善できることがわ
かった。
Further, after AQ was deposited on the polyimide surface by electron beam evaporation, or at the same time, ion mixing was performed by irradiating inert gas ions. It has been found that when a wiring conductor is formed on polyimide using the above method, the moisture resistance life of a wiring structure in PCT can be significantly improved compared to conventional oxygen plasma treatment or Ar sputtering treatment.

本発明の実施例の詳細について、第1図〜第4図により
説明する。
Details of embodiments of the present invention will be explained with reference to FIGS. 1 to 4.

第1実施例 第2図に、本発明による配線構造体の形成順序の一例を
概略工程図として示す。第2図(a)のA部は、A部詳
細図に示すように、不活性ガス。
FIRST EMBODIMENT FIG. 2 is a schematic process diagram showing an example of the order in which a wiring structure according to the present invention is formed. Section A in FIG. 2(a) is an inert gas, as shown in the detailed view of section A.

酸素ガス、エチレン系炭化水素ガスによるプラズマ照射
工程終了後の絶縁膜(ポリイミド膜)表面層の拡大断面
図であり、第2図(b)のB部は、b部詳細図に示すよ
うに、導体用金属(A部)の蒸着と不活性ガスによるイ
オンミキシング工程後の混合層の拡大断面図である。ま
た、第3図は、第2図(a)のA部詳細図のポリイミド
表面のxps (X線光電子分光装置)分析結果であり
、第1図は、第2図(b)のB部詳細図の断面を深さ方
向へSIMS(2次イオン質量分析装置)により、AQ
とCの分析を行った結果を示している。
This is an enlarged cross-sectional view of the surface layer of the insulating film (polyimide film) after the plasma irradiation process using oxygen gas and ethylene-based hydrocarbon gas. FIG. 3 is an enlarged cross-sectional view of the mixed layer after the vapor deposition of the conductor metal (part A) and the ion mixing process using an inert gas. In addition, Figure 3 shows the results of XPS (X-ray photoelectron spectroscopy) analysis of the polyimide surface in the detailed view of part A in Figure 2(a), and Figure 1 shows the details of part B in Figure 2(b). AQ
The results of analysis of and C are shown.

第2図(a)に示すように、ポリイミド膜2の表面にエ
チレンとヘリウムと酸素の各ガスによるプラズマを照射
し、A部詳細図に示されている、プラズマ照射されたポ
リイミド膜表面3をXPSにより分析し、ポリイミド中
の膜構造の解析結果を第3図(a)に示している。また
、比較材として、従来の酸素プラズマ処理を施した表面
の分析結果を、第3図(b)に、全く処理を行わないポ
リイミド表面の分析結果を第3図(c)に示した。
As shown in FIG. 2(a), the surface of the polyimide film 2 is irradiated with plasma of ethylene, helium, and oxygen gases, and the plasma-irradiated polyimide film surface 3 shown in the detailed view of part A is The analysis results of the film structure in polyimide are shown in FIG. 3(a) by XPS analysis. Further, as comparison materials, the analysis results of the surface subjected to conventional oxygen plasma treatment are shown in FIG. 3(b), and the analysis results of the polyimide surface not subjected to any treatment are shown in FIG. 3(c).

その結果、何の処理もしない第3図(c)では。As a result, in FIG. 3(c), no processing is performed.

ポリイミドの基本骨格であるベンゼン環のピークでは、
ベンゼン環以外に親水性のカルボニル基の第3図(a)
では、カルボニル基の他に、疎水性のエチル基(−Cz
Hs)のピークが検出された。
The peak of the benzene ring, which is the basic skeleton of polyimide,
Figure 3 (a) of hydrophilic carbonyl groups other than benzene rings
In addition to the carbonyl group, a hydrophobic ethyl group (-Cz
A peak of Hs) was detected.

ここで、検出されたカルボニル基は、ポリイミドがもっ
ているカルボニル基と酸素ガスイオン照射により形成さ
れたカルボニル基とであり、またエチル基は、エチレン
ガスイオン照射により形成されたものである。
Here, the carbonyl groups detected were the carbonyl groups possessed by polyimide and the carbonyl groups formed by irradiation with oxygen gas ions, and the ethyl groups were formed by irradiation with ethylene gas ions.

続いて、第2図(a)のポリイミド表面3上に。Subsequently, on the polyimide surface 3 of FIG. 2(a).

ヘリウムイオンを照射しながら、AQtl−電子蒸着す
る。そして、蒸着後、ホト・エツチングを行い、第2図
(b)に示すAQの配線用導体4を形成した。第2図(
b)のB部詳細図のポリイミドとAQの界面をAMの側
からS IMSにより深さ方向の分析を行い、AQとC
の分布状況を解析した結果を第1図に示している。AQ
層側からポリイミド層の方へエツチングしながら分析し
ていくと。
AQtl-electronic evaporation is performed while irradiating with helium ions. After the vapor deposition, photo-etching was performed to form the AQ wiring conductor 4 shown in FIG. 2(b). Figure 2 (
The interface between polyimide and AQ in the detailed view of part B in b) was analyzed in the depth direction from the AM side using SIMS, and AQ and C
Figure 1 shows the results of an analysis of the distribution of . AQ
The analysis was performed while etching from the layer side to the polyimide layer.

AQ層とポリイミド層との間にAQとCの混合された混
合層があり、特にAQとCの一定の混合比で存在する領
域もみられた。Cはポリイミド中のCであるから、AQ
からポリイミドが混合している混合層が界面に形成され
ていることがわかる。
There was a mixed layer of AQ and C between the AQ layer and the polyimide layer, and in particular, there were regions where AQ and C were present at a certain mixing ratio. Since C is C in polyimide, AQ
It can be seen that a mixed layer containing polyimide is formed at the interface.

さらに、第2図(c)に示すように、同様の工程を繰り
返して、AQ配線を積層してはんだ6によってLSI7
を接合し、多層の配線構造体を作製した。
Furthermore, as shown in FIG. 2(c), by repeating the same process, AQ wiring is laminated and solder 6 is applied to the LSI 7.
A multilayer wiring structure was fabricated by bonding the two.

このようにして作製された配線構造体について、その絶
縁膜と配線用導体との境界部に形成された両者の混合層
の形成工程における混合層の化学構造の変化は、第4図
(a)〜(c)で表わされ、最終的に形成される混合層
の化学構造は、第4図(Q)で表わされる。
For the wiring structure fabricated in this manner, changes in the chemical structure of the mixed layer formed at the boundary between the insulating film and the wiring conductor during the formation process are shown in Figure 4(a). The chemical structure of the mixed layer finally formed is shown in FIG. 4(Q).

すなわち、第4図(a)は、絶縁膜であるポリイミドの
化学構造を示し、ポリイミドの基本骨格であるベンゼン
環にイミドカルボニル基(−N−C=0)が結合された
構造となっている。
That is, Figure 4(a) shows the chemical structure of polyimide, which is an insulating film, and has a structure in which an imide carbonyl group (-N-C=0) is bonded to a benzene ring, which is the basic skeleton of polyimide. .

このポリイミドにヘリウムガスとエチレンガスと酸素ガ
スの3種混合のガス、あるいはヘリウムガスの次にエチ
レンガスまたは酸素ガスの3種の各ガスのプラズマを照
射することにより、ヘリウムイオン照射によりポリイミ
ド表面が粗になるとともに、ベンゼン環に変化が起こる
。すなわち、第4図(b)に示すように、ベンゼン環の
C=C結合が開いて、エチレンガスの作用により疎水性
のエチル基(−CzHs)が付加され、酸素ガスの作用
でC,−H結合が開いて親水基のカルボニル基後にヘリ
ウムイオン照射を行うか、あるいは蒸着と照射を同時に
行ってイオンミキシングを行うことにより、第4図(c
)に示すように、第4図(b)のカルボニル基(C=O
)が開いて、酸素との親和性の強いAQが○に結合して
、新たな結合(C−0−Afi)が生れる。Afiの代
わりにCuを用いる場合は、AQの位置にCuが入る。
By irradiating this polyimide with plasma of a mixture of three gases: helium gas, ethylene gas, and oxygen gas, or plasma of each of three gases: helium gas and then ethylene gas or oxygen gas, the polyimide surface is heated by helium ion irradiation. As it becomes coarser, changes occur in the benzene ring. That is, as shown in FIG. 4(b), the C=C bond in the benzene ring opens, a hydrophobic ethyl group (-CzHs) is added under the action of ethylene gas, and C,- is added under the action of oxygen gas. By performing helium ion irradiation after the H bond opens and the carbonyl group of the hydrophilic group, or by performing ion mixing by performing vapor deposition and irradiation simultaneously,
), the carbonyl group (C=O
) opens, and AQ, which has a strong affinity for oxygen, bonds to ○, creating a new bond (C-0-Afi). When Cu is used instead of Afi, Cu is placed in the position of AQ.

エチル基はそのままベンゼン環の基本骨格中に付加した
状態で存在する。
The ethyl group exists as it is added to the basic skeleton of the benzene ring.

このように、ポリイミドとA2またはCuとの界面に形
成された混合層では、疎水性基であるアルキル基の一種
であるエチル基(−C2Hs)の存在により、水の侵入
を防止するとともに、親水基のカルボニル基を介在して
AIlとポリイミドを結合させることにより、両者の接
着力を高めている。
In this way, in the mixed layer formed at the interface between polyimide and A2 or Cu, the presence of the ethyl group (-C2Hs), which is a type of alkyl group that is a hydrophobic group, prevents water from entering and also makes it hydrophilic. By bonding AIl and polyimide through the carbonyl group of the group, the adhesive strength between the two is increased.

疎水性基であるアルキル基としては、上記のエチル基(
−CzHa)の外に、メチル基(−CHa)、プロピル
基(−C3H7)、ブチル基(−C4H9)、アミル基
(−C5H11)を用いても同様な効果が得られる。
As the alkyl group which is a hydrophobic group, the above-mentioned ethyl group (
Similar effects can be obtained by using a methyl group (-CHa), a propyl group (-C3H7), a butyl group (-C4H9), or an amyl group (-C5H11) in addition to -CzHa).

このような化学構造により、接着力が高く耐湿性も良好
で、耐湿信頼性に優れた配線構造体が得られる。
With such a chemical structure, a wiring structure with high adhesive strength, good moisture resistance, and excellent moisture resistance reliability can be obtained.

第2実施例 次に、第2図に示した配線構造体を作製する工程におい
て、ポリイミド絶縁膜上に、比較材として全く表面処理
を施さずにAQ配線を形成した試料(試料A)、表面処
理として酸素プラズマアッシングを施した試料(試料B
)、および本発明によるプラズマ処理とイオンミキシン
グとを併用して作製した試料(試料C)の各々について
、PCTによる高温耐湿性評価(121℃e 2atm
 を湿度100%中の雰囲気に保持)を行い、その結果
を第1表に示す。
Second Example Next, in the process of manufacturing the wiring structure shown in FIG. A sample subjected to oxygen plasma ashing as a treatment (Sample B
), and a sample (Sample C) prepared using plasma processing and ion mixing according to the present invention, were evaluated for high temperature humidity resistance by PCT (121°C e 2atm).
(maintained in an atmosphere with 100% humidity) and the results are shown in Table 1.

その結果、比較材の試料Aでは、PCT50時間で配線
用導体表面に腐食が発生し、100時間で全面腐食に至
った。また、比較材の試料Bでは。
As a result, in sample A, which is a comparative material, corrosion occurred on the surface of the wiring conductor after 50 hours of PCT, and corrosion occurred on the entire surface after 100 hours. Also, for sample B, which is a comparative material.

100時間で腐食を発生し、500時間になるとさらに
腐食は進行し、1000時間で全面腐食に至った。一方
、本発明材の試料Cは、P CT 1000時間後でも
、AQ配線に腐食に全く起こらなかった。以上の結果よ
り、本発明によれば、従来よりも耐湿信頼性の高い配線
構造体を提供できることが明らかとなった。
Corrosion occurred after 100 hours, further progressed after 500 hours, and complete corrosion occurred after 1000 hours. On the other hand, in Sample C of the present invention material, no corrosion occurred in the AQ wiring even after 1000 hours of PCT. From the above results, it has become clear that according to the present invention, a wiring structure with higher moisture resistance and reliability than the conventional wiring structure can be provided.

〔発明の効果〕〔Effect of the invention〕

本発明の構成によれば、絶縁膜の表面に不活性ガス、エ
チレン系炭化水素ガス、酸素ガスのプラズマ照射により
、絶縁膜表面が粗くなるとともに。
According to the configuration of the present invention, the surface of the insulating film is roughened by plasma irradiation with an inert gas, ethylene hydrocarbon gas, or oxygen gas.

絶縁膜表面層に疎水性のアルキル基を形成し、かつ親水
性のカルボニル基が形成され、続いて導体用金属の蒸着
と不活性ガスのイオン照射によるイオンミキシングによ
り、カルボニル基の酸素に導体用金属が結合した状態に
なるので、絶縁膜と導体用金属との界面では、疎水性の
アルキル基の存在により水の侵入を防止するとともに、
親木基のカルボニル基を介在して導体用金属と絶縁膜と
を結合させ接着力を高めるので、絶縁膜と配線用導体と
の密着性を向上させ、界面の耐湿信頼性が高まる。
A hydrophobic alkyl group and a hydrophilic carbonyl group are formed on the surface layer of the insulating film, and then by ion mixing by vapor deposition of a conductor metal and ion irradiation with an inert gas, the oxygen of the carbonyl group becomes a conductor. Since the metals are in a bonded state, the presence of hydrophobic alkyl groups at the interface between the insulating film and the conductor metal prevents water from entering.
Since the conductor metal and the insulating film are bonded to each other through the carbonyl group of the parent wood group and the adhesive strength is increased, the adhesion between the insulating film and the wiring conductor is improved, and the moisture resistance reliability of the interface is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による絶縁膜と導体用金属との界面層に
形成された混合層をSIMSにより分析した結果を示す
図であり、第2図は本発明による配線構造体とその形成
方法の概略工程の一例を示す説明図であり、第3図は本
発明によるプラズマ処理後のポリイミド膜表面のxPS
による分析結果を示す図であり、第4図は本発明による
混合層の形成過程を分子構造で示した説明図である。 2・・・絶縁膜(ポリイミド膜)、3・・・プラズマ照
射された絶縁膜表面、4・・・配線用導体、5・・・混
合層。
FIG. 1 is a diagram showing the results of SIMS analysis of a mixed layer formed at the interface layer between an insulating film and a conductive metal according to the present invention, and FIG. 2 shows a wiring structure according to the present invention and its formation method. FIG. 3 is an explanatory diagram showing an example of a schematic process, and FIG. 3 shows the xPS of the polyimide film surface after plasma treatment according to the present invention.
FIG. 4 is an explanatory diagram showing the formation process of a mixed layer according to the present invention in molecular structure. 2... Insulating film (polyimide film), 3... Insulating film surface irradiated with plasma, 4... Wiring conductor, 5... Mixed layer.

Claims (8)

【特許請求の範囲】[Claims] 1.配線用導体と絶縁膜を逐次積層して形成した配線構
造体において、前記配線用導体と前記絶縁膜との境界部
に、疎水基を含む絶縁膜と前記配線用導体を組成する金
属材料とからなる混合層を設けたことを特徴とする配線
構造体。
1. In a wiring structure formed by sequentially laminating a wiring conductor and an insulating film, an insulating film containing a hydrophobic group and a metal material forming the wiring conductor are formed at the boundary between the wiring conductor and the insulating film. A wiring structure characterized in that a mixed layer is provided.
2.前記絶縁膜の素材がポリイミド樹脂からなることを
特徴とする特許請求の範囲第1項に記載の配線構造体。
2. 2. The wiring structure according to claim 1, wherein the material of the insulating film is made of polyimide resin.
3.前記疎水基がアルキル基またはフェニル基であるこ
とを特徴とする特許請求の範囲第1項または第2項に記
載の配線構造体。
3. 3. The wiring structure according to claim 1, wherein the hydrophobic group is an alkyl group or a phenyl group.
4.配線用導体と絶縁膜を逐次積層して形成する配線構
造体の形成方法において、前記絶縁膜の表面に不活性ガ
ス、酸素ガス、エチレン系炭化水素ガスのプラズマを照
射して前記絶縁膜の表面に疎水基を形成したのち、該疎
水基を有する絶縁膜表面上に導体用金属を蒸着し、不活
性ガスイオンを加速し打ち込んでイオンミキシングを行
うことを特徴とする配線構造体の形成方法。
4. In a method for forming a wiring structure in which a wiring conductor and an insulating film are sequentially laminated, the surface of the insulating film is irradiated with plasma of an inert gas, oxygen gas, or ethylene-based hydrocarbon gas. 1. A method for forming a wiring structure, comprising: forming a hydrophobic group on the surface of the insulating film, depositing a conductor metal on the surface of an insulating film having the hydrophobic group, and performing ion mixing by accelerating and implanting inert gas ions.
5.前記絶縁膜の素材がポイミドであることを特徴とす
る特許請求の範囲第4項に記載の配線構造体の形成方法
5. 5. The method of forming a wiring structure according to claim 4, wherein the material of the insulating film is poimide.
6.前記疎水基がアルキル基またはフェニル基であるこ
とを特徴とする特許請求の範囲第4項または第5項に記
載の配線構造体の形成方法。
6. 6. The method for forming a wiring structure according to claim 4, wherein the hydrophobic group is an alkyl group or a phenyl group.
7.前記イオンミキシングを導体用金属の蒸着と同時に
行うことを特徴とする特許請求の範囲第4項ないし第6
項のいずれか1項に記載の配線構造体の形成方法。
7. Claims 4 to 6 are characterized in that the ion mixing is performed simultaneously with the vapor deposition of the conductor metal.
A method for forming a wiring structure according to any one of Items 1 to 9.
8.前記イオンミキシングを導体用金属の蒸着後に行う
ことを特徴とする特許請求の範囲第4項ないし第6項の
いずれか1項に記載の配線構造体の形成方法。
8. 7. The method of forming a wiring structure according to claim 4, wherein the ion mixing is performed after the conductor metal is vapor-deposited.
JP28284287A 1987-11-09 1987-11-09 Wiring structure body and its formation Pending JPH01124282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28284287A JPH01124282A (en) 1987-11-09 1987-11-09 Wiring structure body and its formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28284287A JPH01124282A (en) 1987-11-09 1987-11-09 Wiring structure body and its formation

Publications (1)

Publication Number Publication Date
JPH01124282A true JPH01124282A (en) 1989-05-17

Family

ID=17657779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28284287A Pending JPH01124282A (en) 1987-11-09 1987-11-09 Wiring structure body and its formation

Country Status (1)

Country Link
JP (1) JPH01124282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267900B2 (en) 2011-09-13 2016-02-23 Nippon Steel & Sumitomo Metal Corporation Method for measuring thread element at end portion of pipe or tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267900B2 (en) 2011-09-13 2016-02-23 Nippon Steel & Sumitomo Metal Corporation Method for measuring thread element at end portion of pipe or tube

Similar Documents

Publication Publication Date Title
US4720401A (en) Enhanced adhesion between metals and polymers
EP0187706A2 (en) A method of coating an organic substrate with a metal
JPH033742B2 (en)
JPS62171187A (en) Manufacture of printed wiring board
JP2004327931A (en) Metal coated polyimide substrate and its manufacturing method
JPH0559136B2 (en)
JPH01124282A (en) Wiring structure body and its formation
JP2602329B2 (en) Method of coating a substrate with a metal layer
JP2003218516A (en) Manufacturing method for wiring board
US5250327A (en) Composite substrate and process for producing the same
JPH06316759A (en) Production of polyimide film/metal foil composite film
EP0527572A1 (en) Formation of benzocyclobutene resin films
JP2002118168A (en) Thin film circuit board and its producing method
JPH07249867A (en) Method of surface treating insulating film
JPH04267597A (en) Manufacture of flexible printed wiring board
JP2003031580A (en) Method of manufacturing semiconductor device
TWI825647B (en) Laminated body and method of manufacturing the laminated body
CN111132466A (en) Method for preventing metal ion migration on surface of PCB
JP2804208B2 (en) Manufacturing method of wiring board
Yamanaka et al. Interface Formation Between Metal and Polyimide in High Wiring Density Build-up Substrate
JP3085067B2 (en) Wiring board and method of manufacturing the same
EP0564693A1 (en) Film carrier type substrate and method of manufacturing the same
JPH0464280A (en) Manufacture of multilayer polyimide film
JPH03225993A (en) Manufacture of wiring board
JPH02181496A (en) Multilayered interconnection board